E136 MAPS 39 Taco Hoekwater

LuaTEX says goodbye to
Pascal

Abstract
LuaTEX 0.50 features a complete departure from Pascal source code. This article explains a
little of the why and how of this change.

Introduction

For more than a quarter of a century, all implementations of the TgX programming
language have been based on WEB, a literate programming environment invented by
Donald Knuth. WEB input files consist of a combination of Pascal source code and TgX
explanatory texts, and have to be processed by special tools to create either input that
is suitable for a Pascal compiler to create an executable (this is achieved via a program
called tangle) or input for TEX82 to create a typeset representation of the implemented
program (via a program called weave).

A WEB file is split into numerous small building blocks called ‘modules’ that consist
of an explanatory text followed by source code doing the implementation. The expla-
nations and source are combined in the WEB input in a way that attempts to maximise
the reader’s understanding of the program when the typeset result is read sequentially.
This article will, however, focus on the program source code.

Pascal WEB

The listing that follows shows a small part of the WEB input of TgX82, defining two
‘modules’. It implements the function that scans for a left brace in the TgX input
stream, for example at the start of a token list.

@ The |scan_left_brace| routine is called when a left brace is supposed to
be the next non-blank token. (The term ‘‘left brace’’ means, more precisely,
a character whose catcode is |left_brace|.) \TeX\ allows \.{\\relax} to
appear before the |left_brace].

@p procedure scan_left_brace; {reads a mandatory |left_brace|}
begin @<Get the next non-blank non-relax non-call token@>;
if cur_cmd<>left_brace then
begin print_err(”"Missing { inserted");
@.Missing \{ inserted@>
help4("A left brace was mandatory here, so I’ve put one in.")@/

("You might want to delete and/or insert some corrections"”)@/

("so that I will find a matching right brace soon.")@/

("(If you’re confused by all this, try typing ‘I}’ now.)");
back_error; cur_tok:=left_brace_token+"{"; cur_cmd:=left_brace;
cur_chr:="{"; incr(align_state);
end;

end;

@ @<Get the next non-blank non-relax non-call token@>=
repeat get_x_token;
until (cur_cmd<>spacer)and(cur_cmd<>relax)

LuaTEX says goodbye to Pascal EUROTEX 2009

It would take too much space here to explain everything about the WEB programming,
but it is necessary to explain a few things. Any @ sign followed by a single character in-
troduces a WEB command that is interpreted by tangle, weave or both. The commands
used in the listing are:

@ This indicates the start of a new module, and the explanatory text that follows
uses special TgX macros but is otherwise standard TgX input (this command is fol-
lowed by a space).

@ This command starts the Pascal implementation code that will be transformed
into the compiler input.

@< When this command is seen after a @ has already been seen, the text up to the
following @> is a reference to a named module that is to be inserted in the compiler
output at this spot. If a @ has not been seen yet, then instead it defines or extends
that named module.

@. This defines an index entry up to the following @>, used by weave and filtered
out by tangle.

@/ This is a command to control the line breaks in the typeset result generated by
weave.

If you are familiar with Pascal, the code above may look a bit odd to you. The main
reason for that apparent weirdness of the Pascal code is that the WEB system has a
macro processor built in. The symbol help4 is actually one of those macros, and it
handles the four sets of parenthesized strings that follow. In expanded form, its output

would look like this:
begin
help_ptr:=4;

help_line[3]:="A left brace was mandatory here, so I’ve put one in.";

help_line[2]:="You might want to delete and/or insert some corrections”;

help_line[1]:="so that I will find a matching right brace soon.";

help_line[0]:="(If you’re confused by all this, try typing ‘I}’ now.)";
end

The symbol print_err is another macro, and it expand into this:

begin if interaction=error_stop_mode then wake_up_terminal;
print_nl("! "); print("Missing { inserted”);
end

Tangle output
Now let’s have a look at the generated Pascal.

{:381}{403:}procedure scanleftbrace;begin{404:}repeat getxtoken;
until(curcmd<>10)and(curcmd<>0){:404}%;

if curcmd<>1 then begin begin if interaction=3 then;

if filelineerrorstylep then printfileline else printnl(262);print(671);
end;begin helpptr:=4;helpline[3]:=672;helpline[2]:=673;helpline[1]:=674;
helpline[0]:=675;end;backerror;curtok:=379;curcmd:=1;curchr:=123;
incr(alignstate);end;end;{:4033}{405: }procedure scanoptionalequals;

That looks even weirder! Don’t panic. Let go through the changes one by one.

O First, tangle does not care about indentation. The result is supposedly only read
by the Pascal compiler, so everything is glued together.

O Second, tangle has added Pascal comments before and after each module that give
the sequence number of that module in the WEB source: those are 403 and 404.

0O Third, tangle removes the underscores from identifiers, so scan_left_brace be-
came scanleftbrace etcetera.

E137

E138 MAPS 39

Taco Hoekwater

O Fourth, many of the identifiers you thought were present in the WEB source are
really macros that expand to constant numbers, which explains the disappearance
of left_brace, spacer, relax, left_brace_token, and error_stop_mode

O Fifth, macro expansion has removed print_err, help4 and wake_up_terminal
(which expands to nothing).

O Sixth, WEB does not make use of Pascal strings. Instead, the strings are collected
by tangle and output to a separate file that is read by the generated executable
at runtime and then stored in a variable that can be indexed as an array. This ex-
plains the disappearance of all the program text surrounded by ".

O Seventh, addition of two constants is optimized away in some cases. Since sin-
gle character strings in the input have a fixed string index (its ASCII value),
left_brace_token+"{" becomes 379 instead of 256+123

Web2c

Assuming you have generated the Pascal code above via tangle, you now run into a
small practical problem: the limited form of Pascal that is used by the WEB program
is not actually understood by any of the current Pascal compilers and has not for a
quite some time. The build process of modern TgX distributions therefore make use of
a different program called web2c that converts the tangle output into C code.

The result of running web2c on the above snippet is in the next listing.

void scanleftbrace (void)
{
do {
getxtoken () ;
} while (! ((curcmd !'= 10) & (curcmd !=0))) ;
if (curemd !'= 1)

{

{
if (interaction == 3)
printnl (262) ;
print (671) ;

}

{
helpptr = 4 ;
helpline [3 1= 672 ;
helpline [2 1= 673 ;
helpline [1 J]= 674 ;
helpline [0 1= 675 ;

}

backerror () ;

curtok = 379 ;

curcmd = 1 ;

curchr = 123 ;
incr (alignstate) ;
}
3

This output is easier to read for us humans because of the added indentation and the
addition of parentheses after procedure calls, but does not significantly alter the code.

Actually, some more tools are used by the build process of modern TgX distributions,
for example there is a small program that splits the enormous source file into a few
smaller C source files, and another program converts Pascal write procedure calls to C
printf function calls.

LuaTEX says goodbye to Pascal EUROTEX 2009

Issues with WEB development

Looking at the previous paragraphs, there are number of issues when using WEB for
continuous development.

O Compiling WEB source, especially on a modern platform without a suitable Pascal
compiler, is a fairly complicated and lengthy process requiring a list of dedicated
tools that have to be run in the correct order.

O Literate programming environments like WEB never really caught on, so it is hard
to find programmers that are familiar with the concepts, and there are nearly no
editors that support its use with the editor features that modern programmers have
come to depend on, like syntax highlighting.

O Only a subset of an old form of Pascal is used in the Knuthian sources, and as this
subset is about the extent of Pascal that is understood by the web2c program, that
is all that can be used.

This makes interfacing with external programming libraries hard, often requir-
ing extra C source files just to glue the bits together.

O The ubiquitous use of WEB macros makes the external interface even harder, as
these macros do not survive into the generated C source.

O Quite a lot of useful debugging information is irretrievably lost in the tangle
stage. Of course, TpX82 is so bug-free that this hardly matters, but when one is
writing new extensions to TgX, as is the case in LuaTgX, this quickly becomes
problematic.

O Finally, to many current programmers WEB source simply feels over-documented
and even more important is that the general impression is that of a finished book:
sometimes it seems like WEB actively discourages development. This is a subjec-
tive point, but nevertheless a quite important one.

Our solution

In the winter of 2008-2009, we invested a lot of time in hand-converting the entire
LuaTgX code base into a set of C source files that are much closer to current program-
ming practices. The big WEB file has been split into about five dozen pairs of C source
files and include headers.

During conversion, quite a bit of effort went into making the source behave more
like a good C program should: most of the WEB macros with arguments have been con-
verted into C #defines, most of the numerical WEB macros are now C enumerations,
and many of the WEB global variables are now function arguments or static variables.
Nevertheless, this part of the conversion process is nowhere near complete yet.

The new implementation of scan_left_brace in LuaTgX looks like this:

/*

The |scan_left_brace| routine is called when a left brace is supposed
to be the next non-blank token. (The term ‘‘left brace’’ means, more
precisely, a character whose catcode is |left_brace|.) \TeX\ allows
\.{\\relax} to appear before the |left_brace].

*/
void scan_left_brace(void)
{ /* reads a mandatory |left_brace| */
/* Get the next non-blank non-relax non-call token */
do {
get_x_token();
} while ((cur_cmd == spacer_cmd) || (cur_cmd == relax_cmd));

if (cur_cmd != left_brace_cmd) {
print_err("Missing { inserted");

E139

E140 MAPS 39

}

Taco Hoekwater

help4("A left brace was mandatory here, so I’ve put one in.",
"You might want to delete and/or insert some corrections”,
"so that I will find a matching right brace soon.”,
"If you’re confused by all this, try typing ‘I}’ now.");

back_error();

cur_tok = left_brace_token + '{’;

cur_cmd = left_brace_cmd;

cur_chr = "{’;

incr(align_state);

I could write down all of the differences with the previously shown C code, but that
is not a lot of fun so I will leave it to the reader to browse back a few pages and spot
all the changes. The only thing I want to make a note of is that we have kept all of
the WEB explanatory text in C comments, and we are actively thinking about a way to
reinstate the ability to create a beautifully typeset source book.

Taco Hoekwater
taco (at) luatex dot org

