
Hans Hagen & Taco Hoekwater EUROTEX 2009 E143

MetaPost 2 project goals
Abstract
Now that MetaPost 1.200 has been released the time has
finally come to focus on the numerical precision extensions
that we have been hinting at for some years already. Version
2.000 of MetaPost will have a runtime configurable preci-
sion and infinite numeric input range.

Introduction
A few years ago John Hobby transferred MetaPost de-
velopment to a team of users of which Taco Hoekwater
is now responsible for the coding. Some pending bugs
were resolved and a few extensions made.

A major step was made when the code base was
converted to C and MetaPost became a library compo-
nent. This made usage in, for instance, luaTEX possible,
and we could also get rid of some dependencies of
external programs. This project was funded by TEX user
groups and the results have been reported at user group
meetings and in journals.

Recently an extra backend was added (SVG) which
was also partially funded. The version that ships with
TEX Live 2009 is the Vrst version that is built on top of
the library and it has these extensions on board.

More extensions
However, we are not yet Vnished as it has been a long
standing wish to free MetaPost from one particularly
signiVcant limitation. In the original MetaPost library
proposal we wrote in May 2007, one of the big user-side
problem points mentioned was:

“All number handling is based on fractions of a 32-
bit integer and user input often hits one of the
many boundaries that are the result of that. For
instance, no numbers can be larger than 16384
and there is a noticeable lack of precision in the
intersection point calculations.”

It is for this reason that we will start the next stage in
the development of the MetaPost library. The aim is to
resolve the mentioned limitation once and for all.

In order to do so, we will have to replace the MetaPost
internal 32-bit numeric values with something more
useful, and to achieve that, the plan is to incorporate one
or both of the following external libraries.

GNU MPFR library
From the web site:

“The MPFR library is a C library for multiple-
precision Woating-point computations with cor-
rect rounding. MPFR has continuously been sup-
ported by the INRIA and the current main authors
come from the CACAO and Arénaire project-
teams at Loria (Nancy, France) and LIP (Lyon,
France) respectively; see more on the credit page.
MPFR is based on the GMP multiple-precision
library.

The main goal of MPFR is to provide a li-
brary for multiple-precision Woating-point com-
putation which is both eXcient and has a well-
deVned semantics. It copies the good ideas from
the ANSI/IEEE-754 standard for double-precision
Woating-point arithmetic (53-bit mantissa).”

See http://www.mpfr.org/ for more details.

IBM decNumber
From the web site:

“decNumber is a high-performance decimal arith-
metic library in ANSI C, especially suitable for
commercial and human-oriented applications.”

See http://www.alphaworks.ibm.com/tech/decnumber/
for more details.

We have not decided yet which one will be used, and
possibly we will include both. MPFR will likely be faster
and has a larger development base, but decNumber is
more interesting from a user interface point of view
because decimal calculus is generally more intuitive. For
both libraries the same internal steps need to be taken,
so that decision can be safely postponed until later in the
project. The Vnal decision will be based on a discussion
to be held on the MetaPost mailing list.

The goals of the project
The project can be split up into a number of subsidiary
goals.



E144 MAPS 39 Hans Hagen & Taco Hoekwater

Dynamic memory allocation
Because values in any numerical calculation library are
always expressed as C pointers, it is necessary to move
away from the current array-based memory structure
with overloaded members to a system using dynamic
allocation (using malloc()) and named structure com-
ponents everywhere, so that all internal MetaPost values
can be expressed as C pointers internally.

As a bonus, this will remove the last bits of static
allocation code from MetaPost so that it will Vnally be
able to use all of the available RAM.

Internal API
An internal application programming interface layer
will need to be added for all the internal calculation
functions and the numeric parsing and serialization
routines. All such functions will have to be stored in
an array of function pointers, thus allowing a run-time
switch between 32-bit backward-compatible calculation
and an arbitrary precision library.

This internal interface will also make it possible to add
additional numerical engines in the future.

The external application programming interface layer
will be extended to make direct access to the numerical
and path handling functions possible.

Backends
The SVG and PostScript backends need to be updated
to use double precision Woat values for exported points
instead of the current 32-bit scaled integers.

In the picture export API, doubles are considered to
be the best common denominator because there is an
acceptable range and precision and they are simple to
manipulate in all C code. This way, the actual SVG
and PostScript backend implementations and the Lua
bindings can remain small and simple.

Input language
The input language needs to be extended in order to fulVl
the following project objectives.

1. It must be possible to select which numerical engine
to use.

2. In the case of an arbitrary precision engine, it has to
be possible to set up the actual precision.

3. It has to be possible to read (and write) numerical
values in scientiVc notation.

4. Some mathematical functions (especially trigonom-
etry) and constants (like π) will have to be added to
make sure all the numerical engines present a uniVed
interface while still oUering the best possible preci-
sion.

Here is a tentative input example that would select the
decNumber library with 50 decimal digits of precision:

mathengine := "decNumber";
mathprecision := 50;
beginfig(1);
z1 = (1/3,0.221533334556544532266322);
v = 23.45678888E512;
x2 = v/1E511;
endfig;
end.

Timeline
Thanks to funding received from various local user
groups, we hope to be able to have MetaPost 2 ready
in time for the TUG and EuroTEX conferences in 2010.

Hans Hagen & Taco Hoekwater
taco (at) metapost dot org


