
Luigi Scarso VOORJAAR 2010 73

OpenType PostScript fonts with
unusual units-per-em values
Abstract
OpenType fonts with Postscript outline are usually defined
in a dimensionless workspace of 1000×1000 units per em
(upm). Adobe Reader exhibits a strange behaviour with pdf
documents that embed an OpenType PostScript font with
unusual upm: this paper describes a solution implemented
by LuaTEX that resolves this problem.

Keywords
LuaTeX, ConTeXt Mark IV, OpenType, FontMatrix.

Introduction
Opentype is a font format that encompasses three kinds
of widely used fonts:
1. outline fonts with cubic Bézier curves, sometimes
referred to CFF fonts or PostScript fonts;

2. outline fonts with quadratic Bézier curve, sometimes
referred to TrueType fonts;

3. bitmap fonts.

Nowadays in digital typography an outline font is almost
the only choice and no longer there is a relevant diUer-
ence between a “PostScript” font and a “TrueType” font;
there are some good commercial programs for creating
and editing OpenType fonts for Windows and at least
one GPL program, fontforge, which is known to run on
Linux andMac platforms. As an example, this is the MALE
AND FEMALE SIGN Unicode character from font Symbola
[1] with its points as they are shown by fontforge:

]

Symbola is an example of OpenType font with TrueType
outlines which has been designed to match the style of
Computer Modern font.

A brief note about bitmap fonts: among others, Adobe
has published a “Glyph Bitmap Distribution Format
(BDF)” [2] and with fontforge it’s easy to convert a
bdf font into an opentype one without outlines. A fairly
complete bdf font is http://unifoundry.com/unifont-5.1
.20080820.bdf.gz: this Vle can be converted to an Open-
type format unifontmedium.otf with fontforge and it
can inspected with showttf, a C program from [3]. Here
is an example of glyph U+26A5 MALE AND FEMALE
SIGN:

Glyph 9887 (uni26A5) starts at 492 length=17

height=12 width=8 sbX=4 sbY=10 advance=16

Bit aligned

.....***

......**

.....*.*

..***...

.*...*..

......

......

.*...*..

..***...

...*....

..***...

...*....

This font can also be viewed with ftview from freetype
suite[4]:

#>ftview 16 unifontmedium.otf

and it can be embedded in a pdf document, but until
today there isn’t still a pdf reader capable to display it.
One can use Emacs to produce a PostScript Vle with bdf
fonts embedded and then transform it into a pdf Vle, so
that these bitmap fonts are managed as Type3 fonts, as
shown in the example below:

 (require 'ps-print)
 (require 'ps-mule)
 (setq ps-multibyte-buffer 'bdf-font)

74 MAPS 40 Luigi Scarso

CFF fonts come from Type1 fonts, where outlines
are expressed in a subset of PostScript language in a
dimensionless XY-space that is limited to the region with
vertices (-16384,-16384) and (16383,16383), but usually it
stays within a square measuring 1000 units.

With regard to this point in [7] we can read:

“The program inserts eight items (FontInfo, Font-
Name, PaintType, FontType, FontMatrix, Encod-
ing, FontBBox, and UniqueID) into the dictionary.
The 1000 to 1 scaling in the FontMatrix as shown
is typical of a Type 1 font program and is highly
recommended.”

and also in [6] at page 15 the default value for FontMa-
trix is 0.001 0 0 0.001 0 0.
In [5] Adobe seems to enforce this position: at page 394
we can read (bold from the author):

“The glyph coordinate system is the space in which
an individual character’s glyph is deVned. All
path coordinates and metrics are interpreted in
glyph space. For all font types except Type 3,
the units of glyph space are one-thousandth
of a unit of text space; for a Type 3 font, the
transformation from glyph space to text space is
deVned by a font matrix speciVed in an explicit
FontMatrix entry in the font.”

Starting from Adobe Reader 8, pdf documents that em-
bed OpenType CFF fonts with upm diUerent from 1000
units are shown in a wrong manner: for example this is
the Italian word “assalire” with IM_FELL_English_PRO_Roman

font with 2048 upm:

while the correct behaviour is

a s s a l i r e

Note that the same font converted in a Type1 format
doesn’t show this behaviour, so that the traditional way
to manage fonts in ConTEXt-mkii works correctly with
Adobe Reader 9 release and former (of course the correct
encodings must be present in the system).

In the next section we will see how LuaTEX tackles
this problem.

Inside LuaTEX
We will follow the evolution of luatex vers. 0.60.0 in
a step-by-step fashion in a Linux box with the following
Vle test.tex as input:

\pdfobjcompresslevel0

\pdfcompresslevel=0

\font\test=FeDPrm27C

\setuppagenumbering[location=]

\starttext

\test ab

\stoptext

We need a “nostrip” version of luatex which is easy to
build from scratch with

#>build.sh --parallel --nostrip

and then eventually regenerate the ConTEXt-mkiv format
with

#>context --make --all

Note that when a new luatex is installed ConTEXt-
mkiv is able to detect the new binary and hence rebuild
the formats on the Wy, but the author has found that
sometimes erasing the internal cache can resolve some
problems due to erroneous experimental conVgurations.

Next we will use the ddd debugger[8] with:

#>ddd --args

"$ltxpath/luatex"

--fmt="$ctxcache/cont-en"

--lua="$ctxcache/cont-en.lui"

--backend=pdf "$cwd/test.tex"

(one can see these values inspecting the Vrst lines of out,
where out is from #> context test.tex out, while
$ltxpath is the full path of luatex exec. and $cwd is the
directory of test.tex)
A useful program is also valgrind[9] with its tool
callgrind:

#>valgrind --tool=callgrind

"$ltxpath/luatex"

--fmt="$ctxcache/cont-en"

--lua="$ctxcache/cont-en.lui"

--backend=pdf "$cwd/test.tex"

and kcachegrind[10] to display the call graph.

Inside the BIG_SWITCH
The program luatex starts at

IIsource/texk/web2c/luatexdir/luatex.w
424 int main(int ac, string * av)}

the so-called /* The main program, etc. */.

Then there is an initialization function:

IIsource/texk/web2c/luatexdir/luatex.w
435 lua_initialize(ac, av);

which takes care to manage luatex as (possibly) Lua in-
terpreter only, parsing command line arguments, init the
lua interpreter, setup synctex (“Synchronize TeXnology”
cfr.[11]), and other things related to paths.

OpenType PostScript fonts with unusual units-per-em values VOORJAAR 2010 75

The heart of the program is mainbody():

IIsource/texk/web2c/luatexdir/luatex.w
437 /* Call the real main program. */

438 mainbody();

Inside this function there are the initializations of vari-
ous data structures and checks of hard-wired limits, the
loading of the cont-en.fmt format and the test.tex in-
put Vle, the initialization of the log Vle and, most impor-
tant of all, the call of the main routine main_control():

IIsource/texk/web2c/luatexdir/tex/mainbody.w
477 main_control();

which is in essence a big loop that gets a token at a time
from input

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
205 BIG_SWITCH:

206 get_x_token();

and executes the appropriate function according to the
cur_cmd value of the token:

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
222 switch (abs(mode) + cur_cmd) {

223 case hmode + letter_cmd:

224 case hmode + other_char_cmd:

226 case hmode + char_given_cmd:

226 case hmode + char_num_cmd:

227 if (abs(mode)+cur_cmd==hmode

+char_num_cmd){

228 scan_char_num();

229 cur_chr = cur_val;

:

:

888 }/* end of the big |switch| statement */

889

890 goto BIG_SWITCH; /* restart */

891 }

There are 212 case-labels grouped into 80 diUerent sets;
it takes around Vfty thousand calls to get_x_token()
to go to the do_final_end of the program after
main_control():

IIsource/texk/web2c/luatexdir/tex/mainbody.w
478 flush_node(text_dir_ptr);

479 final_cleanup(); /* prepare for death */

480 close_files_and_terminate();

481 FINAL_END:

482 do_final_end();

483 }

because cont-en is a big format.
The TEX mission is to build boxes and put them in

appropriate order: coming back to the BIG_SWITCH there
are the most important cases:

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
442 /* Cases of |main_control| that build

boxes and lists */

443 case vmode + hrule_cmd:

444 case hmode + vrule_cmd:

445 case mmode + vrule_cmd:

446 /* The most important parts of |main_control|

are concerned with \TeX’s

447 chief mission of box-making.

:

460 */

but now the main focus is on \font primitive because
with \font\test=FeDPrm27Cwe are deVning a macro for
font FeDPrm27C.otf:

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
806 /* Cases of |main_control| that

do not depend on |mode| */

:

837 case any_mode(def_font_cmd):

:

861 prefixed_command();

which in turn calls prefixed_command:

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
2082 void prefixed_command(void)

:

2652 case def_font_cmd:

2653 /* Here is where the information

for a new font gets loaded. */

2654 tex_def_font((small_number) a);

2655 break;

The macro \test is now deVned and a new font structure
is created for font Vle FeDPrm27C, but no box is made
from this font until TEX reads the tokens \test ab from
the input Vle. As seen before, the most important part
of TEX is making boxes, so \test ab will end in a box
inside a page, which in turn is another \vbox emitted by
the output routine. ConTEXt-mkiv has a complex page
layout, so the box emitted is also complex: in this case
there are 244 items (called “nodes”) in this box and near
the end there are the “a” and “b” characters in \test font.

1\vbox(772.77686+0.0)x426.78743, direction TLT

2.\glue -72.26999

3.\hbox(845.04684+0.0)x426.78743, direction TLT

4..\whatsit

5...\localinterlinepenalty=0

6...\localbrokenpenalty=0

7...\localleftbox=null

8...\localrightbox=null

9..\hbox(0.0+0.0)x0.0, direction TLT

10..\glue -72.26999

:

:

76 MAPS 40 Luigi Scarso

215.....................\pdfliteral page0 g 0 G

216.....................\test a

217.....................\test b

218.....................\penalty 10000

243..\glue(\parfillskip) 0.0 plus 1.0fil

244..\glue(\leftskip) 0.0

The function box_end manages all types of boxes that
make up the page and also the Vnal vbox of the page (cfr.
nr. 1 of the list above) by calling the ship_out function:

IIsource/texk/web2c/luatexdir/tex/maincontrol.w
1282 @ The global variable |cur_box| will point

to a newly-made box. If the box

1283 is void, we will have |cur_box=null|.

Otherwise we will have

1284 |type(cur_box)=hlist_node| or |vlist_node|

or |rule_node|; the |rule_node|

1285 case can occur only with leaders.

1286

1287 @c

1288 halfword cur_box; /* box to be placed

into its context */

1289

1290

1291 @ The |box_end| procedure does

the right thing with |cur_box|, if

1292 |box_context| represents

the context as explained above.

1293

1294 @c

1295 void box_end(int box_context)

:

1364 } else

1365 ship_out(static_pdf, cur_box, true);

1366 }

1367 }

The ship_out function manages two types of nodes, the
vertical one and the horizontal one:

IIsource/texk/web2c/luatexdir/pdf/pdfshipout.w
46 @ |ship_out| is used to shipout a box to PDF

or DVI mode.

47 If |shipping_page| is not set then the

output will be a Form object

48 (only PDF), otherwise it will be a Page object.

49

50 @c

51 void ship_out(PDF pdf, halfword p,

boolean shipping_page)

:

273 switch (type(p)) {

274 case vlist_node:

275 vlist_out(pdf, p);

276 break;

277 case hlist_node:

278 hlist_out(pdf, p);

279 break;

280 default:

281 assert(0);

282 }

In this case it’s a horizontal node and the program sends
one char to the output back-end:

IIsource/texk/web2c/luatexdir/pdf/pdWistout.w
313 void hlist_out(PDF pdf, halfword this_box)

:

382 output_one_char(pdf, font(p),

character(p));

For ConTEXt-mkiv the pdf back-end is the default output
back-end, but one can choose the dvi back-end as well:

IIsource/texk/web2c/luatexdir/pdf/pdUont.w
44 @ The following code typesets

a character to PDF output

45

46 @c

47 void output_one_char(PDF pdf,

internal_font_number ffi, int c)

:

70 backend_out[glyph_node] (pdf, ffi, c);

/* |pdf_place_glyph(pdf, ffi, c);| */

Given that it’s the Vrst time that the font is used, a
setup_fontparameters is needed:

IIsource/texk/web2c/luatexdir/pdf/pdfglyph.w
173 void pdf_place_glyph(PDF pdf,

internal_font_number f, int c)

:

182 if (f != pdf->f_cur)

183 setup_fontparameters(pdf, f);

This is the Vrst part (of two) where luatex manages non
standard fontmatrix: at line 68 with

u = (float) (font_units_per_em(f)/ 1000.0);
the fonts_units_per_em matrix is “normalized” in a
way that, in essence, the font appears to be loaded at
font design size × 1000

2048
i.e. 10 × 1000

2048
= 4.8828bp. It’s

important to note that there aren’t other “re-scaling”
actions, (no “outline re-scaling” for example) so that
rounding errors are limited.

IIsource/texk/web2c/luatexdir/pdf/pdfglyph.w
59 static void setup_fontparameters(PDF pdf,

internal_font_number f)

60 {

61 float slant, extend, expand;

62 float u = 1.0;

63 pdfstructure *p = pdf->pstruct;

64 /* fix mantis bug \#

0000200 (acroread "feature") */

OpenType PostScript fonts with unusual units-per-em values VOORJAAR 2010 77

65 if ((font_format(f) == opentype_format ||

66 (font_format(f) == type1_format &&

font_encodingbytes(f) == 2))

67 && font_units_per_em(f) > 0)

68 u = (float) (font_units_per_em(f)

/ 1000.0);

69 pdf->f_cur = f;

70 p->f_pdf = pdf_set_font(pdf, f);

71 p->fs.m = lround((float) font_size(f) / u

/ one_bp * ten_pow[p->fs.e]);

72 slant = (float) font_slant(f)

/ (float) 1000.0;

73 extend = (float) font_extend(f)

/ (float) 1000.0;

74 expand = (float) 1.0

+ (float) font_expand_ratio(f)

/ (float) 1000.0;

75 p->tj_delta.e = p->cw.e - 1;

/* "- 1" makes less

corrections inside []TJ */

76 /* no need to be more precise

than TeX (1sp) */

77 while (p->tj_delta.e > 0

78 && (double) font_size(f)

/ ten_pow[p->tj_delta.e + e_tj] < 0.5)

79 p->tj_delta.e--; /* happens for

very tiny fonts */

80 assert(p->cw.e >= p->tj_delta.e);

/* else we would need, e. g., |ten_pow[-1]| */

81 p->tm[0].m =

lround(expand * extend

* (float) ten_pow[p->tm[0].e]);

82 p->tm[2].m = lround(slant

* (float) ten_pow[p->tm[2].e]);

83 p->k2 =

84 ten_pow[e_tj +

85 p->cw.e]

/ (ten_pow[p->pdf.h.e]

* pdf2double(p->fs) *

86 pdf2double(p->tm[0]));

87 }

With this step only and no other correction, xpdf and
mupdf readers will show the same wrong picture seen
before for Adobe Reader because there is an eUective
mismatch in font dimensions: the font matrix does not
match the eUective dimensions of each glyph in the
text. Note that until here there are no glyphs on the
output, only nodes, because this is a back-end issue. For
example, at the end of this part the text “ab” (glyphs
number 0x0044 and 0x0045) is placed into the output pdf:

IItest.pdf
14 0 obj <<

/Length 86

>>

stream

0 g 0 G

0 g 0 G

BT

/F44 4.86457 Tf 1 0 0 1 70.867 702.3845

Tm [<0044>-430<0045>]TJ ET

In the next subsection it’s described the second and last
part that corrects this behaviour.

Outside the BIG_SWITCH
The second part gets into play when there are no more
boxes to manage, i.e. when \stoptextmacro is executed.
The program luatex is now after main_control:

IIsource/texk/web2c/luatexdir/tex/mainbody.w
477 main_control();

478 flush_node(text_dir_ptr);

479 final_cleanup(); /* prepare for death */

480 close_files_and_terminate();

481 FINAL_END:

482 do_final_end();

483 }

flush_node makes sure that all remaining nodes, if
any, are deleted from memory, while the final_cleanup
function is called when luatex has expanded \stoptext
which in turn calls \end (it’s also called when dumping
formats):

IIsource/texk/web2c/luatexdir/tex/mainbody.w
586 @ We get to the |final_cleanup| routine

when \.{\\end} or \.{\\dump} has

587 been scanned and |its_all_over|\kern-2pt.

588

589 @c

590 void final_cleanup(void)

:

The function close_files_and_terminate is the most
important because it translates TEX data structures to
back-end data structures (pdf in this case). It’s hard
here to keep track of every step but in essence a pdf
Vle is a collection of objects organized in tree-like data
structures (a tree plus attributes); all objects are indexed
by an xref table and they can be referenced to from
other objects: for example these are the objects that
make reference to some page:

IItest.pdf
:

16 0 obj <<

/Type /Pages

/Count 1

/Kids [13 0 R]

>> endobj

22 0 obj <<

78 MAPS 40 Luigi Scarso

q>> endobj

23 0 obj <<

/Type /Catalog

/Pages 16 0 R

/Names 22 0 R

/Version /1.6 /PageMode /UseNone /Metadata 11 0 R

>> endobj

(a quick but good overview of pdf is [12]).
Given that currently luatex output mode is pdf

(OMODE_PDF) then the close_files_and_terminate func-
tion calls finish_pdf_file:

IIsource/texk/web2c/luatexdir/tex/mainbody.w
501 void close_files_and_terminate(void)

:

547 switch (pdf->o_mode) {

548 case OMODE_NONE: /* during initex run */

549 break;

550 case OMODE_PDF:

551 if (history == fatal_error_stop) {

552 remove_pdffile(pdf);

553 print_err

554 (" ==> Fatal error occurred,

no output PDF file produced!");

555 } else

556 finish_pdf_file(pdf,

luatex_version,

get_luatexrevision());

557 break;

558 case OMODE_DVI:

In the finish_pdf_file function there is the code that
manages the font, do_pdf_font (line 2246):

IIsource/texk/web2c/luatexdir/pdf/pdfgen.w
2182 @ Now the finish of PDF output file.

At this moment all Page objects

2183 are already written completely to

PDF output file.

2184

2185 @c

2186 void finish_pdf_file(PDF pdf,

int luatex_version,

str_number luatex_revision)

2187 {

:

2241 k = pdf->head_tab[obj_type_font];

2242 while (k != 0) {

2243 f = obj_info(pdf, k);

2244 assert(pdf_font_num(f) > 0);

2245 assert(pdf_font_num(f) == k);

2246 do_pdf_font(pdf, f);

2247 k = obj_link(pdf, k);

2248 }

2249 write_fontstuff(pdf);

Font FeDPrm27C.otf is an OpenType font, hence it can
manage up to 65536 glyphs that need 2 bytes to be
indexed, (font_encodingbytes(f) == 2); the font dic-
tionary is created at line 806, after some setups:

IIsource/texk/web2c/luatexdir/font/writefont.w
730 void do_pdf_font(PDF pdf,

internal_font_number f)

731 {

:

741 if (font_encodingbytes(f) == 2) {

742 /* Create a virtual font map entry,

as this is needed by the

743 rest of the font inclusion mechanism.

744 */

:

805 set_cidkeyed(fm);

806 create_cid_fontdictionary(pdf, f);

807

808 if (del_file)

809 unlink(fm->ff_name);

810

811 }

With function create_cid_fontdictionary luatex starts
to write to the pdf Vle the current font parameters (there
is only one in test.tex) , i.e. the chars widths, the
font description and the font dictionary (which contains
informations like font type, subtype etc.):

IIsource/texk/web2c/luatexdir/font/writefont.w
937 static void create_cid_fontdictionary(PDF pdf,

internal_font_number f)

938 {

:

956 write_cid_charwidth_array(pdf, fo);

957 write_fontdescriptor(pdf, fo->fd);

958

959 write_cid_fontdictionary(pdf, fo, f);

The function write_fontdescriptor manages the em-
bedding of the font Vle that contains the actual glyphs:

IIsource/texk/web2c/luatexdir/font/writefont.w
471 static void write_fontdescriptor(PDF pdf,

fd_entry * fd)

472 {

:

498 if (is_fontfile(fd->fm)

&& is_included(fd->fm))

499 write_fontfile(pdf, fd); /* this will

set |fd->ff_found| if font

file is found */

At this level there is not so much diUerence between
a Type1 font, a TrueType font or their counterparts in
OpenType, so write_fontfile manages all of them: in
this case FeDPrm27C.otf is an OpenType “Type 1”-like

OpenType PostScript fonts with unusual units-per-em values VOORJAAR 2010 79

font, and is managed by writetype0:

IIsource/texk/web2c/luatexdir/font/writefont.w
418 static void write_fontfile(PDF pdf, fd_entry * fd)

419 {

420 assert(is_included(fd->fm));

421 if (is_cidkeyed(fd->fm)) {

422 if (is_opentype(fd->fm))

423 writetype0(pdf, fd);

writetype0 opens the Vle to read font parameters,
i.e. the table “head” (Font header), “hhea” (Horizontal
header), “PCLT” (PCL 5 data), “post” (PostScript in-
formation) and then reads the glyphs with read_cff
(the table “CFF”, PostScript font program (compact font
format)) to put them into the pdf Vle:

IIsource/texk/web2c/luatexdir/font/writetype0.w
30 void writetype0(PDF pdf, fd_entry * fd)

31 {

:

88 /* copy font file */

89 tab = ttf_seek_tab("CFF ", 0);

90

91 /* TODO the next 0 is a subfont index */

92 cff = read_cff(tt_buffer + ttf_curbyte,
(long) tab->length, 0);

Before the glyphs are actuelly put into pdf, luatex needs
to read, among others, the font dictionary DICT(cfr. [6]):

IIsource/texk/web2c/luatexdir/font/writecU.w
1096 cff_font *read_cff(unsigned char *buf,

long buflength, int n)

1097 {

:

1144 cff->topdict = cff_dict_unpack(idx->data

+ idx->offset[n] - 1,

1145 x->data + idx->offset[n + 1] - 1);

and it’s just here that, with add_dict

IIsource/texk/web2c/luatexdir/font/writecU.w
829 cff_dict *cff_dict_unpack(card8 * data,

card8 * endptr)

830 {

831 cff_dict *dict;

832 int status = CFF_PARSE_OK;

833

834 stack_top = 0;

835

836 dict = cff_new_dict();

837 while (data < endptr && status

== CFF_PARSE_OK) {

838 if (*data < 22) { /* operator */

839 add_dict(dict, &data, endptr, &status);

:

the FontMatrix is reset to 1000upm:

IIsource/texk/web2c/luatexdir/font/writecU.w
748 static void add_dict(cff_dict * dict,

749 card8 ** data,

card8 * endptr, int *status)

750 {

751 int id, argtype, t;

752

753 id = **data;

754 if (id == 0x0c) {

:

808 if (t > 3 && strcmp(dict_operator[id].opname,

"FontMatrix") == 0) {

809 /* reset FontMatrix to [0.001 * * 0.001 * *],

810 fix mantis bug \# 0000200

(acroread "feature") */

811 (dict->entries)[dict->count].values[0] = 0.001;

812 (dict->entries)[dict->count].values[3] = 0.001;

813 }

814 dict->count += 1;

It’s important to note that not all of these operations
must be repeated — for the Vrst used glyph.

Conclusion
LuaTEX with ConTEXt-mkiv is the Vrst TEX system that
manages opentype CFF fonts with unusual upm with-
out transforming them in an equivalent Type1, hence
avoiding the need of an explicit encoding map. By
examining the luatex program internals to see how
this is implemented, a number of small changes are
shown that minimize the necessary recalculations so as
to keep rounding errors to a minimum. Anyway this
solution does not preclude an automatic conversion from
OpenType CFF to Type1 format in the future, which is
possible but more complicated.

References
All links were veriVed between 2010.04.02 and 2010.04.09.

[1] http://users.teilar.gr/~g1951d/Symbola253.zip
[2] http://www.adobe.com/devnet/font/pdfs/5005.BDF_Spec.pdf
[3] http://fontforge.cvs.sourceforge.net/viewvc/fontforge/fontforge

/fonttools/
[4] http://www.freetype.org/
[5] http://www.adobe.com/devnet/acrobat/pdfs/pdf_reference_1-7

.pdf
[6] http://www.adobe.com/devnet/font/pdfs/5176.CFF.pdf
[7] http://www.adobe.com/devnet/font/pdfs/T1_SPEC.PDF
[8] http://www.gnu.org/software/ddd
[9] http://valgrind.org/
[10] http://kcachegrind.sourceforge.net/cgi-bin/show.cgi
[11] http://itexmac.sourceforge.net/SyncTeX.html
[12] http://wiki.contextgarden.net/images/a/a7/Eurotex06he.pdf

Luigi Scarso

