
Paweł Jackowski NAJAAR 2010 25

Luna—my side of the moon

Perhaps everyone knows this pleasant feeling when
a long lasting project is finally done. A few years
ago, just when I was almost happy with my pdfTEX
environment, I saw LuaTEX for the first time. Instead
of enjoying a relief, I had to take a deep breath and
started moving the world to the Moon. The state of
weightlessness resulted in that now, I am not able to
walk on the ‘normal’ ground anymore. But I don’t
even think about going back. Although I still haven’t
settled down for good, the adventure is delightful. To
domesticate a new environment I gave it a name—Luna.

First thoughts
My first thought after meeting LuaTEX was ‘wow!’.
Scripting with a neat programming language, access to
TEX lists, the ability to hook some deep mechanisms via
callbacks, font loader library on hand, integrated Meta-
Post library and more. All this was tempting and I had
no doubts I wanted to go for it. At the first approach
Iwas thinking ofmigratingmyworkflows step-by-step,
replacing some core mechanisms with those provided
by LuaTEX. But not only the macros needed to change.
It was considering ‘TEX’ a programming language that
needed to change. In LuaTEX I rather treat TEX as
a paragraph and page building machine to which I can
talk in a real programming language.

There were a lot of things I had to face before I was
able to typeset anything, at least UTF-8 regime and a
new TEX font representation. A lot of work that I never
wanted to do myself. So just after ‘wow!’ also ‘ooops… ’
has come. In this article I focus on things rather tightly
related to pdf graphics, as I find that part the most
interesting, at least in a sense of taking advantage of
Lua and LuaTEX functionalities.

\pdfliteral retires
TEX concentrates on texts, providing only a raw mech-
anism for document graphics features, such as colors,
transparencies or geometry transformations. pdfTEX
goes a little bit further providing some concept of
a graphic state accessible for the user. But the tools
for the graphic control remain the same. We have only
specials in several variants.

What’s wrongwith them? The things they do behind
the scenes may be harmful.

\def\flip#1{%
\pdfliteral{q -1 0 0 -1 20 6 cm}%
\hbox to0pt{#1\hss}%
\pdfliteral{Q}\hbox to20bp{\hss}}

\def\red#1{%
\pdfliteral page{q 0 1 1 0 k}%
#1\pdfliteral page{Q}}

The first macro applies a transformation to a

text

object, the second applies a color. If used separately,
they work just fine. If used as \flip{\red{text}}, it’s
still ok:

text

. Now try to say \red{\flip{text}}. The
text is transformed and colored as expected. But all
the rest of the page is broken, as its content is com-
pletely displaced! And now try \red{\flip{text}?}
(with a question mark at the end of a parameter text).
Everything is perfectly ok again:

text

?
Here is what happens. When \pdfliteral occurs,

pdfTEX outputs a whatsit. This whatsit will cause writ-
ing the data into the output pdf content stream at the
shipout time. If the literal was used in a default mode
(with no direct or page keywords) pdfTEX first writes
a transformation from lower-left corner of the page to
the current position, then prints the user data, then
writes another transformation from the current posi-
tion back to the pdf page origin. Actually the transform
restoration is not performed immediately after writing
the user data, but on the beginning of the very next
textual node. So in the case of several subsequent literal
whatsit nodes, the transform may occur not where the
naive user expects it. Simplifying the actual pdf output,
we expected something like

q 0 1 1 0 k % save, set color
1 0 0 1 80 750 cm % shift to TeX pos
q -1 0 0 -1 20 6 cm % save, transform
BT ... ET % put text
Q % restore transform
1 0 0 1 -80 -750 cm % shift (redundant)
Q % restore color

but we got

q 0 1 1 0 k
1 0 0 1 80 750 cm
q -1 0 0 -1 20 6 cm

26 MAPS 41 Paweł Jackowski

BT ... ET
Q
Q
1 0 0 1 -80 -750 cm

In general, the behavior of \pdfliterals depends on
the surrounding node list. There are reasons behind it.
Nevertheless, one can hardly control lists in pdfTEX, so
it’s hard to avoid surprises.

Does LuaTEX provide something better then
\pdfliterals? It provides \latelua. Very much like
\pdfliteral, a \latelua instruction inserts a whatsit.
At the time of shipout, LuaTEX executes the Lua code
provided as an argument to \latelua. The codemay call
the standard pdf.print() function, which writes a raw
data into a pdf content stream. Sowhat’s the difference?
The difference is that in \latelua chunks we know the
current position on the page, it is accessible through
pdf.h and pdf.v fields. We can therefore use the po-
sition coordinates explicitly in the literal content. To
simulate the behavior of \pdfliteral one can say

\latelua{
local bp = 65781
local cm = function(x, y)
return string.format(
"1 0 0 1 \%.4f \%.4f cm\string\n",
x/bp, y/bp
)

end
pdf.print("page", cm(pdf.h, pdf.v))
% special contents
pdf.print("page", cm(-pdf.h, -pdf.v))

}

Having the \latelua mechanism and the pdf.print()
function, I don’t need and don’t use \pdfliterals any
longer.

Graphic state
Obviously writing raw pdf data is supposed to be
covered by lower level functions. Here is an example
of how I set up graphic features in the higher level
interface:

\pdfstate{
local cmyk = color.cmyk
cmyk.orange =
(0.8*cmyk.red+cmyk.yellow)/2

fillcolor = cs.orange
opacity = 30
linewidth = '1.5pt'
rotate(30)

...
}

The definition of \pdfstate is something like

\long\def\pdfstate#1{%
\latelua{setfenv(1, pdf) #1}}

The parameter text is Lua code. setfenv() call simply
allows me to omit the ‘pdf.’ prefix before variables.
Without that I would need

\latelua{
pdf.fillcolor = pdf.color.cmyk.orange
pdf.opacity = 30
pdf.linewidth = '1.5pt'
pdf.rotate(30)
...

}

pdf is a standard LuaTEX library. I extend its function-
ality, so that every access to special fields causes an as-
sociated function call. Every such function updates the
internal representation of a graphic state and keeps the
output pdf graphic state synchronized by writing out
the appropriate content stream data. But whatever goes
on behind the scenes, on top I have just key=value pairs.
I’m glad I no longer need to think about obscure TEX
interfaces for that. The Lua language is the interface.

I expect graphic features to behave more or less like
the basic text properties, such as font and size. They
should obey grouping and they should remain active
across page breaks. The first requirement can be satis-
fied simply by using \aftergroup in conjunction with
\currentgrouplevel. A simple grouping-wise graphic
state could be made as follows:

\newcount\gstatelevel
\def\pdfsave{\latelua{
pdf.print("page", "q\string\n")}}

\def\pdfrestore{\latelua{
pdf.print("page", "Q\string\n")}}

\def\pdflocal#1{
\ifnum\currentgrouplevel=\gstatelevel
\else
\gstatelevel=\currentgrouplevel
\pdfsave \aftergroup\pdfrestore

\fi \latelua{pdf.print"#1\string\n"}}

\begingroup \pdflocal{0.5 g}
this is gray
\endgroup
this is black

Passing the graphic state through page breaks is rel-

Luna—my side of the moon NAJAAR 2010 27

atively difficult due to the fact that we usually don’t
know where TEX thinks the best place to break is. In
my earth-life I was abusing marks for that purpose or,
when a more robust mechanism was needed, I used
\writes at the price of another TEX run and auxil-
iary file analysis. And here is another advantage of
using \latelua: since Lua chunks are executed during
shipout, we don’t need to worry about the page break
because it has already happened. If every graphic state
setup is a Lua statement performed in order during
shipout and every such statement keeps the output pdf
state in sync through pdf.print() calls, then after the
shipout the graphic state is exactly what should be
passed on to the next page.

In a well structured pdf document every page should
refer only to those resources, which were actually used
on that page. The pdfTEX engine guarantees that for
fonts and images, the \latelua mechanism makes it
straightforward for other resource types.

Note a little drawback of that late graphic state
concept: before shipout one can only access the state
at the beginning of the page, because recent \latelua
calls that should update the current state have not
happened yet. I thought this might be a problem and
made a mechanism that updates a pending-graphic
state for early usage, but, so far, I never needed to use
it in practice.

PDF data structures
When digging deeper, we have to face creating custom
pdf objects for various purposes. Due to the lack of com-
posite data structures, in pdfTEX one was condemned
to strings. Here is an example of pdf object creation in
pdfTEX.

\immediate\pdfobj{<<
/FunctionType 2
/Range [0 1 0 1 0 1 0 1]
/Domain [0 1] /N 1
/C0 [0 0 0 0] /C1 [0 .4 1 0]
>>}
\pdfobj{

[/Separation /Spot /DeviceCMYK
\the\pdflastobj\space 0 R]

}\pdfrefobj\pdflastobj

In LuaTEX one can use Lua structures to represent pdf
structures. Although it involves some heuristics, I find
it convenient to build pdf objects from clean Lua types,
like in this example:

\pdfstate{create
{"Separation","Spot","DeviceCMYK",

dict.ref{

FunctionType = 2,
Range = {0,1,0,1,0,1,0,1},
Domain = {0,1}, N = 1,
C0 = {0,0,0,0}, C1 = {0,.4,1,0}

}
}

}

Usually, I don’t need to create an independent represen-
tation of a pdf object in Lua. I rather operate on more
abstract constructs, which may have a pdf-independent
implementation and may work completely outside of
LuaTEX. For color representation and transformations
I use my color library, which has no knowledge about
pdf at all. An additional LuaTEX-dependent binder ex-
tends that library with extra skills necessary for the pdf
graphic subsystem.

Here is an example of a somewhat complex colorspa-
ce, a palette of duotone colors, each consisting of two
spot components with lab equivalent (the pdf structure
representation for this is much too long to be shown
here):

\pdfstate{
local lab = colorspace.lab{
reference = "D65"

}
local duotone = colorspace.poly{
{name = "Black", lab.black},
{name = "Gold", lab.yellow},

}
local palette = colorspace.trans{
duotone(0,100), duotone(100,0),
n = 256

}
fillcolor = palette(101)

}

On the last line, the color object (simple Lua table) is
set in a graphic state (Lua dictionary), and its color-
space (another Lua dictionary) is registered in a page
resources dictionary (yet another Lua dictionary). The
graphic state object takes care of updating a pdf content
stream, and finally the resources dictionary ‘knows’
how to become a pdf dictionary.

It’s never to late
When talking about pdf objects construction I’ve
concealed one sticky difficulty. If I want to handle
graphic setup using \latelua, I need to be able to
create pdf objects during shipout. Generally, \latelua
provides no legal mechanism for that. There is the
pdf.obj() standard function, a LuaTEX equivalent of
the \pdfobj primitive, but it only obtains an allo-

28 MAPS 41 Paweł Jackowski

cated pdf object number. What actually ensures writ-
ing the object into the output is a whatsit node in-
serted by the \pdfrefobj<number> instruction. But in
\latelua it is too late to use it. Also, don’t try to
use pdf.immediateobj() variant within \latelua, as it
writes the object into the page content stream, resulting
in an invalid pdf document.

So what can one do? LuaTEX allows one to create an
object reference whatsit by hand. If we know the tail
of the list currently written out (or any list node not
yet swallowed by a shipout procedure), we can create
this whatsit and put it into the list on our own (risk),
without the use of \pdfrefobj.

\def\shipout{%
\setbox256=\box\voidb@x
\afterassignment\doshipout\setbox256=}

\def\doshipout{%
\ifvoid256 \expandafter\aftergroup \fi
\lunashipout}

\def\lunashipout{\directlua{
luna = luna or {}
luna.tail =
node.tail(tex.box[256].list)

tex.shipout(256)
}}

\latelua{
local data = "<< /The /Object >>"
local ref = node.new(
node.id "whatsit",
node.subtype "pdf_refobj"

)
ref.objnum = pdf.obj(data)
local tail = luna.tail
tail.next = ref ref.prev = tail
luna.tail = ref % for other lateluas

}

In this example, before every \shipout the very last
item of the page list is saved in luna.tail. During
shipout all code snippets from late_lua whatsits may
create a pdf_refobj node and insert it just after the page
tail which ensures that the LuaTEX engine will write
them out.

Self-conscious \latelua
If every \latelua code chunk may access the page
list tail, why not to give it access to the late_lua
whatsit node to which this code is linked? Here is the
conceptual representation of a whatsit that contains
Lua code that can access the whatsit itself:

\def\lateluna#1{\directlua{

local self = node.new(
node.id "whatsit",
node.subtype "late_lua"

)
self.data = "\luaescapestring{#1}"
luna.this = self
node.write(self)

}}

\lateluna{print(luna.this.data)}

Beyond the page builder
A self-printing Lua code is obviously not what I use this
mechanism for. It is worthwhile to note that if we can
make a self-aware late_luawhatsit, we can also access
the list following this whatsit. It is too late to change
previous nodes, as they were already eaten by shipout
and written to the output, but one can freely (which
doesn’t mean safely!) modify the nodes that follow the
whatsit.

Let’s start with amore general self-conscious late_lua
whatsit:

\long\def\lateluna#1{\directlua{
node.write(
luna.node("\luaescapestring{#1}")

)
}}
\directlua{
luna.node = function(data)
local self = node.new(
node.id "whatsit",
node.subtype "late_lua"

)
local n = \string#luna+1
luna[n] = self
self.data =
"luna.this = luna["..n.."] "..data

return self
end
}

Here is a function that takes a text string, font identifier
and absolute position as arguments and returns a hori-
zontal list of glyph nodes:

local string = unicode.utf8
function luna.text(s, font_id, x, y)
local head = node.new(node.id "glyph")
head.char = string.byte(s, 1)
head.font = font_id
head.xoffset = -pdf.h+tex.sp(x)
head.yoffset = -pdf.v+tex.sp(y)
local this, that = head
for i=2, string.len(s) do

Luna—my side of the moon NAJAAR 2010 29

that = node.copy(this)
that.char = string.byte(s, i)
this.next = that that.prev = this
this = that

end
head = node.hpack(head)
head.width = 0
head.height = 0
head.depth = 0
return head

end

Now we can typeset texts even during shipout. The
code below results in typing the it is never too
late! text with a 10bp offset from the page origin.

\lateluna{
local this = luna.this
local text = luna.text(
"it is never too late!",
font.current(), '10bp', '10bp'

)
local next = this.next
this.next = text text.prev = this
if next then
text = node.tail(text)
text.next = next next.prev = text

end
}

Note that when mixing shipout-time typesetting (man-
ually generated lists) and graphic state setups (using
pdf.print() calls), one has to ensure that the placement
of things is in the correct order. Once a list of glyphs
is inserted after a late_lua whatsit, the embedded Lua
code should not print literals into the output. All literals
will effectively be placed before the text anyway. Here
is a funny mechanism to cope with that:

\lateluna{
luna.thread = coroutine.create(
function()
local this, next, text, tail
for i=0, 360, 10 do
% graphic setup
pdf.fillcolor =
pdf.color.hsb(i,100,100)

pdf.rotate(10)
% glyphs list
this = luna.this next = this.next
text = luna.text("!",
font.current(), 0, 0)

this.next = text text.prev = this
text = node.tail(text)
% luna tail

tail = luna.node
"coroutine.resume(luna.thread)"

text.next = tail tail.prev = text
if next then
tail.next = next next.prev = tail

end
coroutine.yield()

end
end)
coroutine.resume(luna.thread)
}\end

This is the output:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Once the page shipout starts, the list is almost empty.
It contains just a late_lua whatsit node. The code of
this whatsit creates a Lua coroutine that repeatedly sets
some color, some transformation and generates some
text (an exclamation mark) using an already known
method. The tail of the text is another late_lua node.
After inserting the newly created list fragment, the
thread function yields, effectively finishing the exe-
cution of the first late_lua chunk. Then the shipout
procedure swallows the recently generated portion of
text, writes it out and takes care of font embedding.
After the glyph list, the shipout spots the late_lua
whatsit with the Lua code that resumes the thread
and performs another loop iteration, creating a graphic
setup and generating text again. So the execution of the
coroutine starts in onewhatsit, but ends in another, that
didn’t exist when the procedure started. Every list item
is created just before being processed by the shipout.

Reinventing the wheel
Have you ever tried to draw a circle or ellipse us-
ing \pdfliterals? It is very inconvenient, because the
pdf format provides no programming facilities and
painting operations are rather limited in comparison
with its PostScript ancestors. Here is an example of
some PostScript code and its output. The code uses
control structures, which are not available in pdf. It also

30 MAPS 41 Paweł Jackowski

takes advantage of the arc operator that approximates
arcs with Bézier curves. To obtain elliptical arcs, it uses
the fact that (unlike in pdf) transformations can be
applied between path construction operators.

/r 15 def
/dx 50 def /dy -50 def
/pos {day 7 mod dx mul week dy mul} def
/arx /arc load def

dx dy 4 mul neg translate
0.6 setgray 0.4 setlinewidth
1 setlinejoin 1 setlinecap
0 1 27 {
/day exch def /week day 7 idiv def
/s day 360 mul 28 div cos def
day 14 eq {
/arx /arcn load def

} {
gsave pos r 90 270 arx
day 7 eq day 21 eq or {
closepath
gsave 0 setgray stroke grestore

} {
s 1 scale
pos exch s div exch r 270 90 arx
gsave 0 setgray initmatrix stroke
grestore

} ifelse
fill grestore

} ifelse
} for

In LuaTEX one can hire MetaPost for drawings, obtain-
ing a lot of coding convenience. The above program
wouldn’t be much simpler, though. As for now Meta-
Post does not generate pdf, the data it outputs still needs
some postprocessing to include the graphic on-the-fly
into the main pdf document.

As I do notwant to invent a completely new interface
for graphics, I decided to involve PostScript code into

the document creation. Just to explain how it may
pay off, after translating the example above into a pdf
content stream I obtain 30k bytes of code, which is quite
a lot in comparison with 500 bytes of PostScript input.

PostScript support sounds scary. Obviously I’m not
aiming to develop a fully featured PostScript machine
on the LuaTEX platform. The PostScript interpreter is
supposed to render the page on the output. In Luna
I just write the vector data into the pdf document
content, so what I actually need is a reasonable subset
of PostScript operators. The aim is to control my doc-
ument graphics with a mature language dedicated to
that purpose. The following two setups are equivalent,
as at the core level they both operate on the same Lua
representation of a graphic state.

\pdfstate{% lua interface
save()
fillcolor = color.cmyk(0,40,100,0)
...
restore()}

\pdfstate{% postscript interface
ps "gsave 0 .4 1 0 setcmykcolor"
...
ps "grestore"

}

A very nice example of the benefit of joining typeset-
ting beyond the page builder and PostScript language
support is the π-spiral submitted by Kees van der Laan:

3
.1

4
1
5

9 2 6 5 3 5 8979
3

2
3

8
4

6
2
6

4338327950
2

8
8

4
1

9
7
1

6 9 3 9 9 3 7510
5

8
2

0
9

7
4
9

4459230781
6

4
0

6
2

8
6
2

0 8 9 9 8 6 2803
4

8
2

5
3

4
2
1

1706798214
8

0
8

6
5

1
3
2

8 2 3 0 6 6 4709
3

8
4

4
6

0
9
5

5058223172
5

3
5

9
4

0
8
1

2 8 4 8 1 1 1745
0

2
8

4
1

0
2
7

0193852110
5

5
5

9
6

4
4
6

2 2 9 4 8 9 5493
0

3
8

1
9

6
4
4

2881097566
5

9
3

3
4

4
6
1

2 8 4 7 5 6 4823
3

7
8

6
7

8
3
1

6527120190
9

1
4

5
6

4
8
5

6 6 9 2 3 4 6034
8

6
1

0
4

5
4
3

2664821339
3

6
0

7
2

6
0
2

4 9 1 4 1 2 7372
4

5
8

7
0

0
6
6

0631558817
4

8
8

1
5

2
0
9

2 0 9 6 2 8 2925
4

0
9

1
7

1
5
3

6436789259
0

3
6

0
0

1
1
3

3 0 5 3 0 5 4882
0

4
6

6
5

2
1
3

8414695194
1

5
1

1
6

0
9
4

3 3 0 5 7 2 7036
5

7
5

9
5

9
1
9

5309218611
7

3
8

1
9

3
2
6

1 1 7 9 3 1 0511
8

5
4

8
0

7
4
4

6237996274
9

5
6

7
3

5
1
8

8 5 7 5 2 7 2489
1

2
2

7
9

3
8
1

830119491..
.¼

(see www.gust.org.pl/projects/pearls/2010p)

Paweł Jackowski
GUST

