
Paul Isambert NAJAAR 2010 37

Three things you can do with LuaTEX that
would be extremely painful otherwise1

Introduction

LuaTEX has made some typographic operations so easy
one might wonder why it wasn't invented thirty years
ago (probably because Lua didn't exist then).2

Here I'm going to describe three simple features
that would require advanced wizardry to do the same
with any other engine. LuaTEX allows you to explore
some of TEX's most intimate parts with a rather easy
programming language, and the result is you can quite
readily access things that were unreachable before. The
three issues I'm going to address are:

Turning lines into rules whose color depends on
the line's original stretch or shrink.
Underlining.
Margin notes that align properly with the text.

I'll try to explain some of LuaTEX's basic functionality
as we encounter these issues, but two of them areworth
mentioning right now: callbacks and nodes.

First, we can control TEX's operations at various
stages thanks to callbacks. These are points at which we
can insert Lua code tomodify or enhance TEX's process-
ing. Callbacks range from processing TEX's input buffer
(e.g. to accommodate a special encoding) to rewriting
the paragraph builder and loading OpenType fonts.

Second, we can manipulate lists of nodes. To put it
simply, nodes are the atoms that TEX uses to create
pages: boxes, glyphs, glues, but also penalties, what-
sits, etc. A list of nodes is a sequence of such atoms
linked together. A simple paragraph, for instance, is
a list made of horizontal boxes (the lines), penalties
and glues. The boxes themselves are lists containing
mostly glyph and glue nodes. Nodes are linked together
like beads on a string, and the prev field of a node
points to the preceding node in the list, whereas the
next field returns the one that follows (there is an
understandable exception for the first and last nodes
of a list, whose prev and last fields respectively return
nil). An important point to keep in mind is that when

you query the content of, say, an \hbox, which in TEX's
internal is a horizontal list, what you get is the first
node of that list; you access the rest by sliding from
next to next.

Nodes also have several other fields, depending on
their types. These types are recorded as a number in
their id field, a numeric value. For instance, a glue node
has id 10, whereas a glyph node has id 37. As long as
LuaTEX hasn't reached version 1, though, such values
might change. So, in order for our code to last, we must
use the following workaround: the node.id() function,
when fed a string denoting a node type, returns the
associated id number. For instance, node.id("glue")
returns 10. Thus, when using symbolic names, we can
get the right id value, regardless of changes in ver-
sions of LuaTEX. Another important field for nodes is
subtype, which distinguishes between nodes with the
same id. It's a numeric value, and for whatsits (which
are numerous), one should use node.subtype() like
node.id().

Symbolic names won't change; they are listed in
the LuaTEX reference manual, in the chapter called
Nodes, available from the LuaTEX web site; they're
also listed in the tables returned by node.types() and
node.whatsits(). It's simpler to define variables be-
forehand rather than call node.id and node.subtype
each time we need them. That's what we'll do here: the
following declarations should start any file containing
our code; it can also be made global by removing the
local prefix and thus used anywhere once declared, but
local variables are faster and safer. I use uppercase to
mark their status.

local HLIST = node.id("hlist")
local RULE = node.id("rule")

1. First published in TUGboat 31:3 (2010), pp. 184–190.
2. Author's note: I'm not a member of the LuaTEX team and
this paper has no kind of official authority—it's just the
result of experimentation by a LuaTEX user. Any error or
misconception is mine.



38 MAPS 41 Paul Isambert

local GLUE = node.id("glue")
local KERN = node.id("kern")
local WHAT = node.id("whatsit")
local COL = node.subtype("pdf_colorstack")

The color of a page
Typographers speak of a page's color. While the color
itself depends on several factors, its evenness depends
on how lines are justified: loose lines make the page
uneven in color, because large interword space creates
holes in the overall greyness.

The code that follows takes the metaphor literally: it
turns a page's color into a real color pattern. The idea is
to replace each line with a rule of the same height and
width, andwhose color depends on the line's badness. If
we take 0 as black and 1 as white, then a good line gets
.5, tight lines approach 0 (which represents an overfull
line) and loose lines tend to 1 (an underfull line). Now
we have paragraphs and pages made of grey bars; the
less contrast between them, the better the page.

To do this, we retrieve the horizontal boxes cre-
ated by the paragraph builder, check the badness of
each, then replace the box with the desired rule. This
is easy to do in LuaTEX: we register a function in
the post_linebreak_filter callback. This callback ac-
cesses the list of nodes output by the paragraph builder,
i.e. the lines of text interspersed with interline penalties
and glues, plus perhaps other things (whatsits, inserts,
…) that we'll ignore. Among these nodes we retrieve
the ones we want, namely the lines of text, and replace
them as described.

The code that follows, as all Lua code, should be fed
to \directlua or stored in a .lua file.

local color_push = node.new(WHAT, COL)
local color_pop = node.new(WHAT, COL)
color_push.stack = 0
color_pop.stack = 0
color_push.cmd = 1
color_pop.cmd = 2

Here we have created two new whatsit nodes iden-
tified by their subtype as the Lua equivalents of
\pdfcolorstack. They both modify stack 0 and
color_push adds code to the stack while color_pop
removes it. We'll use them to set the color of each line,
with the exact content of the code added by color_push
to be specified each time.

textcolor = function (head)
for line in node.traverse_id(HLIST, head) do
local glue_ratio = 0
if line.glue_order == 0 then

if line.glue_sign == 1 then
glue_ratio = .5 * math.min(line.glue_set,

1)
else
glue_ratio = -.5 * line.glue_set

end
end
color_push.data = .5 + glue_ratio .. " g"

Here's the beginning of our main function. It takes
a node as its argument: it will be the first node of
the list returned by the paragraph builder. That node,
remember, denotes the entire list. We retrieve each line
of text in this list, i.e. each node with id HLIST, and
check its glue_order field; if it is 0, then the line has
been justified with finite glue and we want to know
how bad it is (if the line uses infinite glue then it is
good by definition, as far as glue setting is concerned).
We access glue_sign to know whether stretching or
shrinking was used and glue_set to know the ratio (1
means the stretch/shrink was fully used; glues can also
be overstretched, but we don't allow more than 1 in
order to remain in the color range).

The last line sets the color of the line as the code
to color_push, i.e. `n g', where n is a number between
0 and 1 and g a pdf operator setting the color in the
grey model. In the rest of the loop we replace the line's
content with a sequence of three nodes: color_push, a
rule, and color_pop:

local rule = node.new(RULE)
rule.width = line.width
local p = line.list
line.list = node.copy(color_push)
node.flush_list(p)
node.insert_after(line.list,
line.list, rule)

node.insert_after(line.list,
node.tail(line.list),
node.copy(color_pop))

end

What is done here is: first, we create a rule whose width
is the same as the original line's (we could have created
this rule beforehand with a width equal to \hsize, but
this way we accommodate changing line widths). Then
we set the line's list as a copy of color_push (we use a
copy since we need that node for each line), and then
we insert the rule node and a copy of color_pop. The
first argument to node.insert_after is the list (denoted
by its first node!) where we perform the insertion, the
second one is the node in that list after which the
insertion is performed, and the last one is the inserted
node; node.tail returns the last node of its argument,



Three things you can do with LuaTEX … NAJAAR 2010 39

so the third node.insert_after inserts at the end of the
list.

The story with p is this: we retrieve the line's con-
tent before replacing it, so we can erase it from TEX's
memory; it has no effect on the output.

Finally, and most importantly, we return the mu-
tated list for TEX to continue its operations, and close
the function.

return head
end

Now, to use the function, we register it in the
post_linebreak_filter callback:

\directlua{%
callback.register("post_linebreak_filter",
textcolor)}

Note that we could improve this code for the first
and last lines of a paragraph, taking the indent and
\parfillskip into account to create more faithful im-
ages of those lines. I leave it as an exercise to the reader,
as is customary.

Underlining
The previous code was (hopefully) fun but not terribly
useful (well, who knows?); let's do something (hope-
fully) more useful and no less fun.

Everybody knows that underlining is in bad typo-
graphic taste. That said, it may have its uses, and any-
way allows us to investigate LuaTEX further. Underlin-
ing has been done in TEX (see Donald Arseneau's ulem,
for instance); it requires great wizardry and has some
limitations. With LuaTEX, it's (almost) child's play.

The problem with underlining in TEX is that you
have to add the underline before the paragraph is built,
and this hinders hyphenation. In LuaTEX we can do
it after hyphenation is done: we retrieve the nodes to
underline in the typeset lines. But how do we spot
them? The answer lies with another basic LuaTEX func-
tionality, namely attributes. These are very simple yet
very powerful. An attribute is like a count register in
that it holds a number. The difference with a count
register is that nodes retain the values of all attributes
in force when they were created. Thus, we can set an
attribute to some value, input some text, and then reset
the attribute; the text will have the value attached to it
for the rest of TEX's processing.

This leads to the first definition:

\def\underline#1{%
\quitvmode \attribute100 = 1 #1%
\attribute100 = -"7FFFFFFF

\directlua{callback.register(
"post_linebreak_filter", get_lines)}%

}

It's important to use \quitvmode so that the indentation
box is inserted before the attribute is set and not be
underlined (in case the underlined text is the beginning
of a paragraph).

An attribute is `set' if it has any value but -"7FFFFFFF.
So setting it to 1 here would be the same thing as setting
it to −45 (see the end of this section for an example
of use for different values). Now all nodes produced
by the argument to underline have the value 1 for
attribute 100—which was arbitrarily chosen. Attribute
458would have been equally good. Actually, one should
use attributes with greater care, i.e. they should be
allocated with macros like \newcount, so that one never
uses the same attribute for different tasks.

The last action performed by \underline is to regis-
ter a function in the post_linebreak_filter callback.
It does so because the Lua function used to underline
clears the callback (as we'll see), so that it is called only
on those paragraphs where it is required. It could be
called on all paragraphs, but it'd waste TEX's time.

Let's now turn to the Lua functions:

get_lines = function (head)
for line in node.traverse_id(HLIST, head) do
underline(line.list, line.glue_order,
line.glue_set, line.glue_sign)

end
callback.register
("post_linebreak_filter", nil)

return head
end

This first function retrieves all lines in the paragraph
and feeds their content to the underline function along
with information about glue setting. It then clears the
callback and returns the head. This part is nothing we
haven't seen in the previous code.

Some nodes might have inherited the attribute's
value, although we don't want to underline them:
\leftskip, \rightskip, and \parfillskip. These are
glue nodes and their subtypes are 8, 9 and 15, respec-
tively. The following function is meant to filter them
out. (Note: versions prior to v0.62 had a bug where
\leftskip and \rightskipwere not properly identified,
so item.subtype == 7 should be added to the or condi-
tional below. Both TEX Live 2010 and MikTEX 2.9 uses
v0.60, so they are affected.)

local good_item = function (item)
if item.id == GLUE and
(item.subtype == 8 or item.subtype == 9



40 MAPS 41 Paul Isambert

or item.subtype == 15) then
return false

else
return true

end
end

Now, here's how the underline Lua function starts:

underline =
function (head, order, ratio, sign)
local item = head
while item do
if node.has_attribute(item,100)
and good_item(item) then
local item_line = node.new(RULE)
item_line.depth = tex.sp("1.4pt")
item_line.height = tex.sp("-1pt")

The while loop is basically the same thing as traversing
the list, but we'll sometimes want to skip nodes, so we'll
set the next one by hand. We scan nodes, and once
we've found one with the right value for the attribute
(and which is not one of the glues above), we create our
rule (with arbitrary dimensions). tex.sp turns a dimen-
sion (expressed as a string) into scaled points, the native
measure for Lua code. How wide should the rule be?
The length of the material starting at the current node
up to the last node with the right attribute. To find this
last node, we use the following loop, and then retrieve
the length of that material via node.dimensions, which
returns the material's length when it is typeset with the
text line's glue setting. We use end_node.next because
the function actually measures up to its last argument's
prev node.

local end_node = item
while end_node.next and
good_item(end_node.next) and
node.has_attribute(end_node.next, 100) do
end_node = end_node.next

end
item_line.width = node.dimensions
(ratio, sign, order, item, end_node.next)

Finally we insert the line into the list. That's pretty
simple: we insert a negative kern (with subtype 1, i.e. a
handmade kern, not a font kern) as long as the line after
the last underlined node, followed by the line itself. This
is equivalent to using \llap in plain TEX. The end of the
code sets the next node to be analyzed (including the
false part of the overall conditional).

local item_kern = node.new(KERN, 1)
item_kern.kern = -item_line.width

node.insert_after(head, end_node,
item_kern)

node.insert_after(head, item_kern,
item_line)

item = end_node.next
else
item = item.next

end
end

end

We could use different values of the attribute to distin-
guish different underlining styles. To do so, we would
still use node.has_attribute, since it returns the value
of the attribute, or nil if the attribute isn't set. That's
another exercise left to the reader.

Marginal notes
When a document has comfortable margins and notes
are infrequent and short, marginal notes are an elegant
and convenient alternative to footnotes. They are best
typeset with their first line level with the line in the
text to which they refer. However, such a rule cannot
be absolute. Suppose for instance that a note is called
on the last line of a page, and itself is made of more
than one line. If we follow the rule then the note will
invade the bottom margin and ruin the design of the
page. So it should be shifted up so that its last line is
level with the last line of the page. Doing this is also an
improvement when the text doesn't fill the page, e.g. at
the end of a chapter, even though there might remain
space on the page to accommodate the note. The page
looks better that way: a note is a note and would be too
conspicuous if it were allowed to run without the main
text by its side. Ideally, a note should also be shifted up
if it runs along a section break, but I'll ignore that case,
to keep things simpler. (For an alternative approach in
LATEX, see Stephen Hicks' article in TUGboat 30:2.)

Generally marginal notes are typeset in a smaller
font size and on a smaller leading than the main text.
Since the leading is smaller, some lines of the notes
won't be level with the textblock's lines; however, there
should be some `cyclical synchronicity' between the
two blocks, so that for instance three lines of the main
text have the same height as four lines of the note (in
TEX terms it would mean, for instance, \baselineskip
at 12pt and 9pt respectively), and the following lines are
level again.

Here, however, I will typeset notes with the same
leading as the main text to avoid complications. Extra
calculations are required to achieve what's been previ-
ously described—nothing very complicated, though. I'll
simply use italics to distinguish the notes from themain
text.



Three things you can do with LuaTEX … NAJAAR 2010 41

Margin notes so numerous that they sometimes
overlap each other and must be shifted upward should
probably be converted to footnotes, all the more as
they'll require a number or symbol so the reader can
spot where in the main text they refer to—whereas
sparse notes don't need such a mark, since they're
supposed to start on the same line as the text they
comment, with the known exception we're investigat-
ing here. However, we can use the code below to shift
notes whatever the reason, so we'll leave æsthetics
aside and shift all notes (the shift might go wrong if
there are stretchable vertical glues on the page, e.g.
\parskip; that can be amended, and it's left as yet
another exercise). We won't allow more than one note
per line, though, because that definitely doesn't make
sense.

Here's the TEX part of the code:

\newcount\notecount
\suppressoutererror=1
\def\note#1{%
\advance\notecount 1
\expandafter\newbox
\csname marginnote_\the\notecount\endcsname

\expandafter\setbox
\csname marginnote_\the\notecount\endcsname=
\vtop{\hsize=4cm
\rightskip=0pt plus 1fil
\noindent\it #1}%

\bgroup
\attribute100=\expandafter\the
\csname marginnote_\the\notecount\endcsname

\vadjust pre {\pdfliteral{}}%
\egroup

}

This might be somewhat unfamiliar, even to advanced
TEXies, because what we're doing is preparing the
ground for Lua code. First, we choose not to insert
the note directly in the paragraph (to be shifted later
if necessary). Instead, we store the note in a box. For
each note, we create a new box; that might seem
somewhat resource-consuming, but there are 65,536
available boxes in LuaTEX, so a shortage seems only a
distant possibility. Alternatively, we could store only
the source code for the note (in a macro), and typeset
it in a box only when we place notes on the page in
the output routine, but the asynchronicity between the
processing of the main text and the note might lead to
trouble.

So we create boxes instead, with proper settings
(mostly, a reduced \hsize). To allow \newbox to appear
inside a macro definition in plain TEX, we suppress the
outer error beforehand; then we set the note in its box
with a uniquely defined name (thanks to \newcount),

and most importantly we set an attribute to the value
of the box register and \vadjust a literal with that
attribute. This literal's only role is to mark the line it
comes from, so we'll be able to spot lines with margin
notes when needed, along with the box's number (the
value of the attribute).

The following Lua function, to be inserted in the
post_linebreak_filter callback, does exactly that: our
special \pdfliterals give their attributes to the lines
they come from, and are removed. Now, the reader
might have wondered why we used the pre version
of \vadjust instead of the default: it's because of a
bug in the actual version of LuaTEX (to be fixed in
v0.64, I am told): some prev fields are sometimeswrong,
as would be the case here, and we couldn't link each
literal to its line if the latter was before the former.
So we use next instead. Note that we can't just take
for granted that the first next node is the line, first
because `pre-\vadjusted' material is inserted before
the baselineskip glue, and because there might be more
adjustedmaterial between the literal and the line. So we
recurse over next fields until we find a line (i.e. a node
id HLIST).

mark_lines = function (head)
for mark in node.traverse_id(WHAT, head) do
local attr = node.has_attribute(mark, 100)
if attr then
local item = mark.next
while item do
if item.id == HLIST then
node.set_attribute(item, 100, attr)
item = nil

else
item = item.next

end
end
head = node.remove(head, mark)

end
end
return head

end

The following function scans the content of a verti-
cal list, probably box 255, finds the lines that have
attribute 100 set to some value, and adds the margin
notes to those lines. Remember that our goal is to
avoid margin notes running into the space below the
textblock (either the bottommargin or the vacant space
at the end of a chapter). So wemust compute howmuch
space remains to accommodate the note. To do so, we
scan the box (the page), starting at the bottom, and
accumulate the height and depth of lines and the width
of kerns and glues—except kerns and glues that might
appear before the last line, i.e. space filling the page. To



42 MAPS 41 Paul Isambert

do so, we have a first boolean that is true as long as
a line hasn't been found and prevents adding the width
of glues and kerns. With node.slide we grasp the last
node of the list, since we're reading it backward.

process_marginalia = function (head)
local remainingheight, first, item =
0, true, node.slide(head)

while item do
if node.has_field(item, "kern") then
if not first then
remainingheight = remainingheight
+ item.kern

end
elseif node.has_field(item, "spec") then
if not first then
remainingheight = remainingheight
+ item.spec.width

end

Now, if we find a line, we add its depth if and only if
it's not the first one we encounter (i.e. the last one on
the page), because in that case its depth belongs to the
bottom margin. Its height is added later, if and only if
the line doesn't take a note.

elseif node.has_field(item, "height") then
if first then
first = false

else
remainingheight = remainingheight
+ item.depth

end

If attribute 100 is set to some value, then the line takes
a note. In that case, we retrieve the box, measure its
depth, and compare it to the remaining height. Note
that the depth of the box is all its material barring the
height of its first line (since we used a \vtop), which
is exactly what we want: its first line can't go wrong,
since it's level with the main text's line from whence it
came. We also remove the depth of the last line, since
its going into the bottom margin is perfectly ok.

local attr = node.has_attribute(item, 100)
if attr then

local note = node.copy(tex.box[attr])
local upward = note.depth
- node.tail(note.list).depth

if upward > remainingheight then
upward = remainingheight - upward

else
upward = 0

end

Now we insert the note box after the line: first, we add
a negative vertical kern to account for the upward shift
(possibly 0), plus the line's depth and the note's height
(i.e. the height of its first line), so it is level with the
line. We then set the note's height and depth to 0, so
it doesn't take up space on the page. (Since the kern
becomes the head of the list, we have to explicitly set
note.list to it, otherwise TEX still thinks the previous
head is the good one.)

local kern = node.new(KERN, 1)
kern.kern = upward - note.height
- item.depth

node.insert_before(note.list,
note.list, kern)

note.list = kern
note.height, note.depth = 0, 0

Finally, we insert the note and set its horizontal shift
(here it goes into the right margin, but this should
depend on whether the page is even or odd), and reset
first and remainingheight, the latter to upward so the
vertical shift of the current note (if any) is taken into
account for the following one. The rest of the code is the
end of the attr conditional (false, so we add the line's
height to the remainingheight) and the end of the main
loop.

node.insert_after(head, item, note)
note.shift = tex.hsize + tex.sp("1em")
first = true
remainingheight = upward

else
remainingheight = remainingheight
+ item.height

end
end
item = item.prev

end
end

When a page is found good, before we ship it out (and
before we add inserts too), we feed it to the function,
so notes are added. For instance, a very simple output
routine would be:

\output{%
\directlua{%
process_marginalia(tex.box[255].list)
}%

\shipout\box255}

The important part is, of course, the Lua code.



Three things you can do with LuaTEX … NAJAAR 2010 43

Conclusion
LuaTEX has much to offer: utf-8 encoding, non-tfm
fonts, a comfortable programming language, … Access
to TEX's internals is, to me, one of its most valuable
features: it enables the user to do things that were
previously unthinkable, and gives such control over ty-
pography that the software's limitations almost vanish,
as if we were working on a hand press—except we don't
manipulate metal, but nodes.

A final note: in this paper, functions have been
added to callbacks with LuaTEX's bare mechanism. If
two functions are added to the same callback this way,
the second erases the first. To do this properly, the
luatexbase package can be used for plain TEX and
LATEX, and it is taken care of in ConTEXt.

The next page shows examples of our three programs.
First comes the page color, displaying a typeset text
and its translation to shades of grey; the second text
uses font expansion to show the resulting improvement
in justification. Then are examples of underlining and
marginal notes. The text used is the first page of Robert
Coover's novel The Adventures of Lucky Pierre.

Paul Isambert
Université de la Sorbonne Nouvelle
France
zappathustra (at) free dot fr



44 MAPS 41 Paul Isambert

In the darkness, softly. A whisper becom-
ing a tone, the echo of a tone. Doleful, incip-
ient lament blowing in the night like a wind,
like the echo of a wind, a plainsong wafting
silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred
by light, plying its fricatives like a persistent
woeful wind, the echo of woe, affanato, pi-
angevole, a piangevole wind rising in the flut-
tering night through its perfect primes, lament-
ing the beautiful princess become an unclean
widow, an emergence from C, a titular C, ten-
tative and parenthetical, the widow then, weep-
ing sore in the night, the candle searching the
pale expanse for form, for the suggestion of
form, a balm for the anxious eye, weeping she
weepeth.

In the darkness, softly. A whisper be-
coming a tone, the echo of a tone. Doleful,
incipient lament blowing in the night like a
wind, like the echo of a wind, a plainsong waft-
ing silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred by
light, plying its fricatives like a persistent woe-
ful wind, the echo of woe, affanato, piangevole,
a piangevole wind rising in the fluttering night
through its perfect primes, lamenting the beau-
tiful princess become an unclean widow, an
emergence from C, a titular C, tentative and
parenthetical, the widow then, weeping sore
in the night, the candle searching the pale ex-
panse for form, for the suggestion of form, a
balm for the anxious eye, weeping she weepeth.

And now, the flickering of a light, a pallor emerging from the
darkness as though lit by a candle, a candle guttering in the cold
wind, a forgotten candle, hid and found again, casting its doubtful
luster on this faint white plane, now visible, now lost again in the
tenebrous absences behind the eye.

And still the hushing plaint, undeterred by light, plying its
fricatives like a persistent woeful wind, the echo of woe, affanato,

‘Affanato’ means
‘anguished’

piangevole, a piangevole wind rising in the fluttering night through ‘Piangevole’ means
‘plaintive’its perfect primes, lamenting the beautiful princess become an unclean

widow, an emergence from C, a titular C, tentative and parenthetical,
the widow then, weeping sore in the night, the candle searching the
pale expanse for form, for the suggestion of form, a balm for the
anxious eye, weeping she weepeth.

‘Weepeth’ is an archaic
form of ‘weeps’


