
68 MAPS 41 Jean-Michel Hufflen

Processing “Computed” Texts

Abstract
This article is a comparison of methods that may be
used to derive texts to be typeset by a word processor.
By ‘derive’, we mean that such texts are extracted from
a larger structure, which can be viewed as a database.
The present standard for such a structure uses an
XML-like format, and we give an overview of the
available tools for this derivation task.

Keywords
Typesetting computed texts, TEX, LaTEX, ConTEXt,
X ETEX, LuaTEX, XML, XSLT, character maps, XQuery,
XSL-FO.

Introduction
Formats based on the TEX typesetting engine—e.g., Plain
TEX [27], or LaTEX [30], or ConTEXt [8], or LuaTEX [9]—
are known as wonderful tools to get high-quality print
outputs. Of course, they have been initially designed to
typeset texts directly written by end-users. But other
texts may be generated dynamically, in the sense that
they result from some computation applied to more data,
in particular, items belonging to databases. A very sim-
ple example is given by a bill computed by means of
a spreadsheet program like Microsoft Excel: the mas-
ter Vle is an .xls or .xlsx Vle—that is, all information
about data is centralised into this Vle—but we may wish
such a bill to be typeset nicely using a word processor
comparable with LaTEX1.

We personally experienced a more signiVcant exam-
ple: at the University of Franche-Comté, we manage
the projects proposed to Computer Science students in
several degrees, this curriculum being located at Besan-
çon, in the East of France. That is, we collect projects’
proposals, control the assignment of student groups to
projects. Then, at the semester’s end, we organise the
projects’ oral defences, and rate students from informa-
tion transmitted by jurys. During projects, information
is transmitted to students and projects’ supervisors ei-
ther on the Web, or by means of printed documents.
Managing only a list of project speciVcations and en-
riching it progressively is insuXcient: it is better for
oral defences’ announcement to be shown with respect
to defences’ chronological order, and this order is un-
known when projects are proposed. Likewise, we may

wish to present the grades received by students accord-
ing to the decreasing order of these grades, or according
to students’ alphabetical order, other criteria being pos-
sible, too. In these cases, we have to perform a sort
operation before typesetting the result. These examples
are not limitative: other operations related to ‘classical’
programming may be needed if we are only interested
in a subset of the information concerning projects, for
example, extracting projects proposed by companies,
not by people working at our university.

It is well-known that TEX’s language is not very suit-
able for tasks directly related to programming2. A better
idea is to use a format suitable for information man-
agement, with interface tools serving several purposes.
Database formats could be used, but presently, the in-
disputable standard to model such formats is XML3, pro-
viding a rich toolbox for this kind of task. In particular,
this toolbox provides the XPath language [38], this lan-
guage’s expressions allow parts of an XML document
to be addressed precisely. But these tools related to
XML have advantages and drawbacks: we are going
thoroughly into these points in this article, which is a
revised, updated, and extended version of [19]. Reading
this article requires only basic knowledge about (LA)TEX
and the tools related to XML.

A simple example
The examples given in the introduction are ‘real’ appli-
cations and belong to our framework: Microsoft Excel
can generate XML Vles4, and we personally manage stu-
dents’ projects by means of a master Vle using XML-like
syntax. However, for sake of simplicity, we consider
an easier example for the present article, pictured in
Figure 1. This XML text—a Vle ds.xml—describes some
items of a series of stories—Doc Savage—Vrst published
as pulps in the 1930’s, then republished as pocket books
in the 1960’s5. As it can be noticed in the given exam-
ple, the original publication order—for pulps—was not
followed by the series of pocket books6. In addition,
some stories were unpublished as pulps (e.g., The Red
Spider) or retitled when published as pocket books (e.g.,
The Deadly Dwarf, previously entitled Repel), in which
case, the pulp’s title is given as the pulp element’s con-
tents7. More precisely, if a pulp element’s contents is
empty, this means that the pulp’s title was the same as

Processing “Computed” Texts NAJAAR 2010 69

<story-list>
<story>

<title>The Deadly Dwarf</title>
<pulp nb="56">Repel</pulp>
<pocket-book nb="28"/>

</story>
<story>

<title>The Land of Terror</title>
<pulp nb="2"/>
<pocket-book nb="8"/>

</story>
<story>

<title>The Lost Oasis</title>
<pulp nb="7"/>
<pocket-book nb="6"/>

</story>
<story>

<title>The Man of Bronze</title>
<pulp nb="1"/>
<pocket-book nb="1"/>

</story>
<story>

<title>The Red Spider</title>
<pocket-book nb="95"/>

</story>
<story>

<title>World's Fair Goblin</title>
<pulp nb="74"/>
<pocket-book nb="39"/>

</story>
</story-list>

Figure 1. Master file using XML-like syntax.

the pocket book’s. Fig. 2 gives the schema modelling
our taxonomy8, written using XML Schema [42]. Let
us recall that this language provides a datatype library:
for example, ‘xsd:string’ for strings, the preVx ‘xsl:’
allows us to get access to XML Schema’s constructs9.

Now we propose to search the information given in
Fig. 1, extract the items published as pulps, sort them
according to the publication order10. The title given is
the pulp’s; if the corresponding pocket book has been
retitled, a footnote must give the ‘new’ title. Of course,
we wish the result to be typeset nicely, as LaTEX or
ConTEXt is able to do. To be more precise, a good
solution processable by Plain TEX could look like the
source text given in Fig. 3. As mentioned above, a TEX-
based solution:
\story-list{%
\story{\title{...}\pulp{...}...}%
...%

}

could use TEX commands for dealing with the elements
story-list, story, title, pulp, and pocket-book,
but would lead to complicated programming.

<xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="story-list">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="story"
maxOccurs="unbounded">

<xsd:complexType>
<xsd:sequence>

<xsd:element name="title"
type="xsd:string"/>

<xsd:element name="pulp"
minOccurs="0">

<xsd:complexType>
<xsd:simpleContent>

<xsd:extension
base="xsd:string">
<xsd:attribute

ref="nb"
use="required"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>
</xsd:element>
<xsd:element name="pocket-book">

<xsd:complexType>
<xsd:attribute

ref="nb"
use="required"/>

</xsd:complexType>
</xsd:element>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
</xsd:sequence>

</xsd:complexType>
</xsd:element>
<xsd:attribute name="nb"

type="xsd:positiveInteger"/>
</xsd:schema>

Figure 2. Our organisation expressed in XML Schema.

Using tools related to XML

XSLT producing TEX sources
XSLT11 [41] is the language designed for transforma-
tions of XML texts. By ‘transformations’, we mean that
we can build printed documents as well as online docu-
ments to be put on theWeb from the source Vle. ‘Simple’
texts are possible, too. We also can perform some com-
putation from data stored in the original XML Vle. Let us
come to our example, the text of a stylesheet that may be
used to get Fig. 3 from Fig. 1 is given in extenso in Fig. 4.
This stylesheet takes as much advantage as possible
of the features introduced by XPath’s and XSLT’s new
version12 (2.0): for example, we have made precise the
types of the used variables, by means of as attributes,

70 MAPS 41 Jean-Michel Hufflen

\item{1} The Man of Bronze
\item{2} The Land of Terror
\item{7} The Lost Oasis
\item{56} Repel\footnote*{Book’s title of pulp \#56:
The Deadly Dwarf}

\item{74} World’s Fair Goblin

\end

Figure 3. Stories’ titles sorted by pulp numbers.

these types being provided by XML Schema’s library13.
Likewise, we have made precise the types of templates’
results. As it can be noticed in Fig. 4, these types belong
to XML Schema’s namespace, whereas XSLT constructs
are preVxed by the namespace associated with ‘xsl:’.

Since we are interested in deriving texts processable
by (LA)TEX, an important new feature introduced by
XSLT 2.0 is the possible use of character maps [41, § 20.1].
In particular, they allow TEX’s special characters to be
replaced by commands producing them:

−→ \# \ −→ \backslash14

whenever they appear within a text node to be put
by XSLT. More precisely, a single character can be re-
placed by a string, as shown by the character map
some-special-characters given in Fig. 4. To dis-
tinguish an ‘actual’ backslash character, belonging to a
string, and a command’s beginning, a solution is to use a
character belonging to a private area of Unicode [34] for
the latter. For sake of readabiblity, we deVne this Vctive
character by means of an entity15—start-command—
[32, p. 48–49]. Introducing this entity leads us to put
a dummy DOCTYPE tag, since XSLT stylesheets do not
refer to a DTD. In other words, specifying these addi-
tional characters is a ‘trick’, but that allows us to process
strings extracted from the original XML Vle systemat-
ically. As shown in Fig. 4, the same technique can be
used for opening and closing a group: we use Vctive
characters the character map transforms into braces.
The same for a delimited fragment in (LA)TEX’s math
mode. Another solution could be the direct generation
of Unicode texts and the use of a Unicode-compliant
TEX-like engine16, e.g. X ETEX [26] or LuaTEX [9].

As abovementioned, XSLT is not limited to texts’ gen-
eration, the xsl:output element’s method attribute
may also be set to html or xhtml17 [41, § 20], in which
case it allows Web pages to be generated. Likewise,
this method attribute set to xml means that XML texts
are to be generated. Using these output methods pro-
vides a great advantage: since any XSLT stylesheet is an
XML text, an XSLT processor checks that the Vnal docu-
ment is well-formed, in particular, opening and closing
tags must be balanced. The generation of (LA)TEX texts
lacks an analogous check: an XSLT processor cannot

ensure that opening and closing braces are balanced, as
in TEX; likewise, when LaTEX texts are generated, it is
impossible to ensure that environments like:

\begin{document} . . . \end{document} (1)

are balanced. Since such errors are not detected stati-
cally, they just appear when generated texts are pro-
cessed. Let us notice that such a check would be
more diXcult to apply to the texts generated for the
ConTEXt format, because the opening and closing com-
mands for ConTEXt’s environments are ‘\start...’
and ‘\stop...’, e.g., the equivalent formulation for (1)
in LaTEX is:

\starttext . . . \stoptext

in ConTEXt. Concerning the delimiters of a com-
mand’s arguments, we can ensure that opening and
closing braces—more precisely, the two character enti-
ties start-group and end-group, before their replace-
ment by braces—are balanced by using only the XSLT
function ntg:make-group to build a TEX group from
a sequence of strings. Let us remark that XSLT func-
tions have been introduced in XSLT 2.0, so there is an
additional reason to use this version. Another solution
could be the use of an XML dialect whose architecture
would reWect TEX’s markup. From our point of view,
that would complicate the process since an additional
step—a translation from this dialect into ‘actual’ TEX-
like syntax—would be performed. In addition, some
versions of such dialects have already been proposed—
e.g., in [7, § A.1] for LaTEX—but it seems to us that none
is actually used.

XSLT producing XSL-FO texts
Since deriving XML texts by means of XSLT provides a
better check level about syntax, an alternative idea is
to get XSL-FO18 [37] texts. Such texts use an XML-like
syntax that aims to describe high-quality print outputs.
As shown in [16], there is some similarity between
LaTEX and XSL-FO, the latter providing, of course, more
systematic markup19. This language is verbose, but
it is not devoted to direct use: XSL-FO texts usually
result from applying an XSLT stylesheet. The use of
several namespaces—usually denoted by the preVxes
‘xsl:’ and ‘fo:’—clearly distinguish elements belong-
ing to XSLT and XSL-FO.

This approach’s advantage is clear: generated texts
are well-formed. However, XSL-FO lacks document
classes, as in LaTEX. Some elements allow the descrip-
tion of page models, but end-users are entirely responsi-
ble for this deVnition. XSL-FO provides much expressive
power about placement of blocks20, but is very basic
on other points. For example, let us consider footnotes,
end-users are responsible of choosing each footnote

Processing “Computed” Texts NAJAAR 2010 71

<!DOCTYPE stylesheet [<!ENTITY start-command ""> <!ENTITY start-group "">
<!ENTITY end-group "">]>

<xsl:stylesheet version="2.0" id="pulps-plus" xmlns:maps="http://www.ntg.nl"
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
extension-element-prefixes="xsd">

<xsl:output method="text" encoding="ISO-8859-1" use-character-maps="some-special-characters"/>

<xsl:strip-space elements="*"/>

<xsl:character-map name="some-special-characters">
<xsl:output-character character="#" string="\#"/>
<xsl:output-character character="%" string="\%"/>
<xsl:output-character character="$" string="\$"/>
<xsl:output-character character="&" string="\&"/> <!-- &. Plain TEX’s commands -->
<xsl:output-character character="\" string="\backslash"/> <!-- ‘\{’ and ‘\}’ are only -->
<xsl:output-character character="{" string="$\{$"/> <!-- usable in math mode -->
<xsl:output-character character="}" string="$\}$"/> <!-- (cf. [27, Exercise 16.12]). -->
<xsl:output-character character="~" string="{\char’7E}"/> <!-- Using hexadecimal code. -->
<xsl:output-character character="&start-command;" string="\"/>
<xsl:output-character character="&start-group;" string="{"/>
<xsl:output-character character="&end-group;" string="}"/>

</xsl:character-map>

<xsl:variable name="eol" select="’
’" as="xsd:string"/> <!-- (End-Of-Line character.) -->

<xsl:template match="story-list" as="xsd:string">
<xsl:variable name="pulps" as="xsd:string+">

<xsl:apply-templates select="story[pulp]">
<xsl:sort select="xsd:integer(pulp/@nb)"/> <!-- Numerical sort. -->

</xsl:apply-templates>
</xsl:variable>
<xsl:value-of select="$pulps,$eol,’&start-command;end’,$eol" separator=""/>

</xsl:template>

<xsl:template match="story" as="xsd:string">
<xsl:variable name="pulp-0" select="pulp" as="element(pulp)"/>
<xsl:variable name="pulp-nb-0-string" select="xsd:string($pulp-0/@nb)" as="xsd:string"/>
<xsl:variable name="pulp-title-0" select="data(pulp-0)" as="xsd:string"/>
<xsl:variable name="title-processed" as="xsd:string">

<xsl:apply-templates select="title"/>
</xsl:variable>
<xsl:value-of select=’"&start-command;item",maps:mk-group($pulp-nb-0-string)," ",

if ($pulp-title-0) then
$pulp-title-0,"&start-command;footnote*",
maps:mk-group(("Book's title of pulp #",$pulp-nb-0-string,": ",

$title-processed)) else
$title-processed,

$eol’
separator=""/>

</xsl:template>

<xsl:template match="title" as="xsd:string"><xsl:apply-templates/></xsl:template>

<xsl:function name="maps:mk-group" as="xsd:string+">
<xsl:param name="string-seq" as="xsd:string*"/>
<xsl:sequence select="’&start-group;’,$string-seq,’&end-group;’"/>

</xsl:function>

</xsl:stylesheet>

Figure 4. Getting a source text for Plain TEX by means of an XSLT stylesheet.

72 MAPS 41 Jean-Michel Hufflen

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>...</fo:layout-master-set>

<fo:page-sequence master-reference="simple-page" font-family="serif" font-size="medium" text-align="left">
<fo:flow flow-name="xsl-region-body">

<fo:list-block provisional-distance-between-starts="20mm" provisional-label-separation="3mm">
...
<fo:list-item>

<fo:list-item-label start-indent="10mm" end-indent="label-end()">
<fo:block>56</fo:block>

</fo:list-item-label>
<fo:list-item-body start-indent="body-start()">

<fo:block>
Repel<fo:footnote>

<fo:inline font-size="x-small" vertical-align="super">*</fo:inline>
<fo:footnote-body>

<fo:block text-align-last="justify"><fo:leader leader-pattern="rule"/></fo:block>
<fo:block font-size="xx-small">

<fo:inline font-size="xx-small" vertical-align="super">*</fo:inline>Book’s title for
pulp #56: The Deadly Dwarf

</fo:block>
</fo:footnote-body>

</fo:footnote>
</fo:block>

</fo:list-item-body>
</fo:list-item>
...

</fo:list-block>
</fo:flow>

</fo:page-sequence>

</fo:root>

Figure 5. How to put a footnote in XSL-FO (see the equivalent Plain TEX source text in Fig. 3).

mark. Fig. 5 provides the result of applying an XSLT
stylesheet providing an XSL-FO text for our example.
The Vrst child of the fo:footnote element gives the
footnote reference, the second child is the actual foot-
note’s contents [37, § 6.12.3]. This fo:footnote ele-
ment seems to be low-level in comparison with LaTEX’s
\footnote command21. Of course, if you want foot-
notes to be numbered automatically, XSLT addresses
this problem. However, another point seems to us to be
more debatable: end-users are responsible for putting
a leader separating footnotes from the text body22 (we
show how to proceed in Fig. 5). So some footnotes may
be preceded by a leader, some may not. This point may
seem anecdotal, but for LaTEX users, some features of
XSL-FO can be viewed as low-level and be diXcult to
handle since they are already programmed in LaTEX
classes.

Last but not least, most current XSL-FO processors do
not implement the whole of this language, even if they
can successfully process most of XSL-FO texts used in
practice23. So some features may be unusable, whereas
an equivalent construct will work in (LA)TEX. XSL-FO has
been designed to deal with the whole of Unicode, so it
shows how the Unicode bidirectional algorithm [35] is

put into action [18], but this point may also be observed
with X ETEX.

XQuery producing TEX sources
XQuery [40] is a query language for data stored in XML
form, as SQL24 does for relational data bases25. XQuery
can be used to search documents and arrange the result,
as an XML structure or a simple text (possibly suitable
for a TEX-like engine). An XQuery program processing
our example in order to get Fig. 3’s text is given in Fig. 6.
Like XSLT 2.0, XQuery uses XPath 2.0 expressions and
the datatype library provided by XML Schema. As we
did in XSLT, we systematically put type declarations
using the as keyword, for sake of clarity and for taking
as much advantage as possible ofXQuery’s type-checker.
Such programs, using FLWOR26 expressions, are more
compact than equivalent ones in XSLT.

However, XQuery is suitable only for generating sim-
ple texts: advanced features like character maps in XSLT
are provided by some XQuery processors, but are not
portable. You have to use the replace function [39,
§ 7.6.3] to deal with TEX’s special characters:

replace($s,"(#|%)","\\$1")

substitutes each occurrence of ‘#’ (resp. ‘%’) by ‘\#’

Processing “Computed” Texts NAJAAR 2010 73

declare namespace maps = "http://www.ntg.nl" ;
declare namespace saxon = "http://saxon.sf.net/" ;
declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ;

declare option saxon:output "omit-xml-declaration=yes" ;

declare variable $eol as xsd:string := "
" ;
declare variable $filename as xsd:string external ;

declare function maps:mk-group($string-seq as xsd:string*) as xsd:string+ {
"{",$string-seq,"}"

} ;

if (doc-available($filename)) then
string-join((for $story-0 as element(story) in doc($filename)/story-list/story[pulp]

let $pulp-nb-0 as xsd:untypedAtomic := data($story-0/pulp/@nb),
$pulp-nb-0-int as xsd:integer := xsd:integer($pulp-nb-0),
$pulp-nb-0-string as xsd:string := xsd:string($pulp-nb-0),
$pulp-title-0 as xsd:string := xsd:string(data($story-0/pulp)),
$story-title-0 as xsd:string := xsd:string(data($story-0/title))

order by $pulp-nb-0-int
return ("\item",maps:mk-group($pulp-nb-0-string)," ",

if ($pulp-title-0) then
$pulp-title-0,"\footnote*",
maps:mk-group(("Book’s title of pulp \#",$pulp-nb-0-string,": ",

$story-title-0)) else
$story-title-0,$eol),

$eol,"\end",$eol),
"") else

()

Figure 6. Getting a source text for Plain TEX by means of XQuery.

(resp. ‘\%’) within the string $s. Let us come back to
implementation-dependent features, a simple example
is given in Fig. 6: we declare that the result is not an
XML text by a non-portable option, saxon:output27.
Of course, if XQuery is used to generate XML texts, they
are well-formed, but no analogous check can be done
about texts generated for a TEX-like engine. In other
words, XQuery has the same drawback as XSLT.

A curiosity: DSSSL
DSSSL28 [21] was initially designed as the stylesheet
language for displaying SGML29 texts. DSSSL includes a
core expression language that is a side-eUect free subset
of the Scheme programming language [25]. XML being
a subset of SGML, stylesheets written using DSSSL can be
applied to XML texts. DSSSL is rarely used now, but the
example we cite illustrates how a functional program-
ming language can be suitable for our requirements.
Fig. 7 gives a stylesheet that produces a result equiv-
alent to Fig. 3. In fact, end-users do not write (LA)TEX
commands when they develop a stylesheet, the jade30
program can generate TEX-like texts31:

jade -d pulps.dsl -t tex ds.sgml

—we have to specify a predeVned backend, here ‘tex’—

the typesetting engine usable to process jade’s results
being JadeTEX [7, § 7.5.2]. Deriving texts directly pro-
cessable by LaTEX or ConTEXt is impossible.

As shown in Fig. 7, processing a name element uses
pattern-matching:

(element name E)

the E expression consists of assembling literals by
means of the make form, using types predeVned in
DSSSL: paragraph, sequence, . . . The generic type of
such results is called sosofo32 w.r.t. DSSSL’s terminology.

Enriched TEX engines
If we go back to programs based on TEX-like typesetting
engines, there are two other possible methods, based
on TEX-engines ‘enriched’ by using a ‘more classical’
programming language. In both cases, XML texts are pre-
processed by procedures belonging to a programming
language, and the result is sent to a TEX-engine. Of
course, such amodus operandi is suitable only if we want
to generate (LA)TEX texts, it would be of little interest to
get XML texts or pages written using (X)HTML33.

PyTEX [6] is written using Python [28] and uses TEX
as a daemon. Getting the components of a ‘computed’

74 MAPS 41 Jean-Michel Hufflen

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>
<style-specification id="pulps-plus">

<style-specification-body>
(declare-flow-object-class page-footnote

"UNREGISTERED::Sebastian Rahtz//Flow Object Class::page-footnote")

(root (let ((margin-size 1in))
(make simple-page-sequence

page-width: 210mm page-height: 297mm left-margin: margin-size right-margin: margin-size
top-margin: margin-size bottom-margin: margin-size header-margin: margin-size
footer-margin: 12mm center-footer: (page-number-sosofo)
(process-children))))

(element story-list-sgml
(make sequence

(let ((get-pulp (lambda (node-list) (select-elements (children node-list) "pulp"))))
(process-node-list
(apply node-list

(list-stable-sort
(node-list->list (node-list-filter (lambda (node-list)

(not (node-list-empty? (get-pulp node-list))))
(children (current-node))))

<
(lambda (story-node-list)

(string->number (attribute-string "nb" (get-pulp story-node-list))))))))))
(element story

(let* ((story-indent 20pt)
(current-children (children (current-node)))
(pulp-node-list (select-elements current-children "pulp"))
(pulp-processed (process-node-list pulp-node-list))
(pulp-title-string (data pulp-node-list))
(title-processed (process-node-list (select-elements current-children "title"))))

(make paragraph
first-line-start-indent: (- story-indent) font-size: 12pt space-before: 10pt
start-indent: story-indent pulp-processed space-literal
(if (string-null? pulp-title-string)

title-processed
(let* ((footnote-marker-sosofo (literal "*"))

(footnotemark-sosofo (make-superscript footnote-marker-sosofo)))
(make sequence

(literal pulp-title-string) footnotemark-sosofo
(make page-footnote

footnotemark-sosofo (literal "Book’s title of pulp #") pulp-processed (literal ": ")
title-processed)))))))

(element title (process-children-trim))
(element pulp (literal (attribute-string "nb")))
(define space-literal (literal " "))
(define make-superscript

(let ((shift-factor 0.4)
(size-factor 0.6))

(lambda (sosofo-0)
(make sequence

font-size: (* (inherited-font-size) size-factor)
position-point-shift: (* (inherited-font-size) shift-factor)
sosofo-0))))

(define (string-null? string-0) ...)
(define (list-stable-sort list-0 rel-2? key-f1)

;; Sorts list-0 according to the order relation rel-2?. The argument key-f1 gives a key for each element.
...)

</style-specification-body>
</style-specification>

</style-sheet>

Figure 7. DSSSL stylesheet generating a text to be printed.

Processing “Computed” Texts NAJAAR 2010 75

text is left to the Python functions dealing with XML
texts and successive results are sent to TEX, in turn.

LuaTEX [9] is able to call functions written using
Lua [20]. On another point, this TEX-engine can pro-
cess texts using XML-like syntax, as shown in [10].
Fig. 8 gives an implementation of our example in
ConTEXt MkIV: it uses Lua to deVne an interface with
sorting functions, the other functionalities being put
into action using TEX-like commands. As in ConTEXt,
the layout is controlled by set-up commands:

\start...setup ... \stop...setup

—for example, title elements’ contents are just dis-
played, processing pulp elements displays the num-
ber or the title, depending on a mode—then our
XML Vle is processed ‘atomically’, by means of the
\xmlprocessfile command. This approach is promis-
ing, but let us recall that LuaTEX and ConTEXt MkIV
have not yet reached stable state: that is planned for
the year 2012. Another important drawback: as shown
by the examples using the \xmlfilter command in
Fig. 8, this command uses path expressions, very close
to XPath expressions, but not identical. For example,
command—used to connect a selected item to the set-up
command that processes it—obviously does not belong
to XPath. On the contrary, some XPath expressions
are not recognised, even if ‘simple’ paths are processed.
Some tricks may be used as workarounds, but we per-
sonally think that complete compatibility with XPath
should be attained.

Conclusion
If we sum up the approaches shown throughout this
article, those that seem suitable are XQuery for sim-
ple examples, XSLT for more ambitious ones, provided
that Version 2.0 is used. The use of LuaTEX could be
interesting in a near future, too.

However, we think that there are two directions that
should be explored. The Vrst would be a modern imple-
mentation of XSL-FO using a TEX-like typesetting engine.
Such an implementation has begun: Passive TEX [4],
but this project is presently stalled. We think that pro-
cessing XSL-FO could re-use the experience accumulated
by (LA)TEX developers, even if syntaxes are very diUer-
ent34. The second direction would be the deVnition and
implementation of an output mode of XSLT suitable for
(LA)TEX; some additional services could be performed:
for example, checking that braces and environments are
balanced. Such an output mode already exists in nbst35,
the language of bibliography styles close to XSLT and
used by MlBibTEX36 [11], but it concerns only the way
to process LaTEX’s special characters. If the method
attribute of the nbst:output element is set to text,
the result of:

\enablemode[ds:pulp]

\startxmlsetups xml:ds:base
\xmlsetsetup{#1}{%
story-list|story|title|pulp|pocket-book}{%
xml:ds:*}

\stopxmlsetups

\xmlregisterdocumentsetup{ds}{xml:ds:base}

\startxmlsetups xml:ds:story-list
\xmlresetsorter{story}
\xmlfilter{#1}{%
/story/command(xml:story-list:getkeys)}

\subject{sortkeys}
\xmlshowsorter{story}\blank
\xmlsortentries{story}
\xmlflushsorter{story}{xml:story-list:flush}

\stopxmlsetups

\startxmlsetups xml:story-list:getkeys
\xmladdsortentry{story}{#1}{%
\xmlattribute{#1}{/pulp}{nb}}

\stopxmlsetups

\startxmlsetups xml:story-list:flush
\startitemize\xmlfirst{#1}{.}\stopitemize

\stopxmlsetups

\startxmlsetups xml:ds:story
\sym{\xmlfirst{#1}{pulp}}
\xmldoifelsetext{#1}{pulp}{
{\disablemode[ds:pulp] \xmlfirst{#1}{pulp}
\footnote{%
Book’s title: \xmlfirst{#1}{title}}}{%

\xmlfirst{#1}{title}}
\stopxmlsetups

\startxmlsetups xml:ds:title
\xmlflush{#1}

\stopxmlsetups

\startxmlsetups xml:ds:pulp
\doifmodeelse{ds:pulp}{\xmlatt{#1}{nb}}{%
\xmlflush{#1}}

\stopxmlsetups

\starttext
\xmlprocessfile{ds}{ds.xml}{}

\stoptext

Figure 8. Processing a master file with ConTEXt Mk IV.

<nbst:text>#60 The Maji</nbst:text>

is ‘#60 The Maji’. If this attribute is set to LaTeX, the
result is ‘\#60 The Maji’.

Acknowledgements
I wish to thank Hans Hagen who greatly helped me
debug and improve LuaTEX source texts. Thanks also
to Karl Berry, who clariVed some terminology notions.

76 MAPS 41 Jean-Michel Hufflen

Last but not least, thanks to Taco Hoekwater for his
patience when he was waiting for this Vnal version.

References
[1] Apache FOP. November 2010. http://

xmlgraphics.apache.org/fop/.
[2] Frédéric Boulanger : « LaTEX au pays des

tableurs ». Cahiers GUTenberg, Vol. 39–40,
p. 7–16. In Actes du Congrès GUTenberg 2001,
Metz. Mai 2001.

[3] Neil Bradley: The Concise SGML Companion.
Addison-Wesley. 1997.

[4] David Carlisle, Michel Goossens et Sebastian
Rahtz : « De XML à PDF avec xmltex, XSLT et
PassiveTEX ». Cahiers GUTenberg, Vol. 35–36,
p. 79–114. In Actes du congrès GUTenberg 2000,
Toulouse. Mai 2000.

[5] James Clark et al.: Relax NG. http://www.
oasis-open.org/committees/relax-ng/.
2002.

[6] Jonathan Fine: “TEX Forever!”. In: Proc. EuroTEX
2005, pp. 150–158. Pont-à Mousson, France.
March 2005.

[7] Michel Goossens and Sebastian Rahtz, with
Eitan M. Gurari, Ross Moore and Robert S.
Sutor: The LaTEX Web Companion. Addison-
Wesley Longman, Inc., Reading, Massachusetts.
May 1999.

[8] Hans Hagen: ConTEXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com/
general/manuals/cont-enp.pdf.

[9] Hans Hagen: “The LuaVcation of TEX and
ConTEXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114–123. April 2008.

[10] Hans Hagen: “Dealing with XML in ConTEXt
MkIV”. MAPS, Vol. 37, pp. 25–39. 2008.

[11] Jean-Michel Hufflen: “MlBibTEX’s Version 1.3”.
TUGboat, Vol. 24, no. 2, pp. 249–262. July 2003.

[12] Jean-Michel Hufflen: “Introduction to XSLT”.
Biuletyn GUST, Vol. 22, pp. 64. In BachoTEX 2005
conference. April 2005.

[13] Jean-Michel Hufflen: “Advanced Techniques
in XSLT”. Biuletyn GUST, Vol. 23, pp. 69–75. In
BachoTEX 2006 conference. April 2006.

[14] Jean-Michel Hufflen: “Introducing LaTEX users
to XSL-FO”. TUGboat, Vol. 29, no. 1, pp. 118–124.
EuroBachoTEX 2007 proceedings. 2007.

[15] Jean-Michel Hufflen: “XSLT 2.0 vs XSLT 1.0”.
In: Proc. BachoTEX 2008 Conference, pp. 67–77.
April 2008.

[16] Jean-Michel Hufflen : « Passer de LaTEX à
XSL-FO ». Cahiers GUTenberg, Vol. 51, p. 77–99.
Octobre 2008.

[17] Jean-Michel Hufflen: “Introduction to XQuery”.
In: Tomasz Przechlewski, Karl Berry and
Jerzy B. Ludwichowski, eds., TEX: at a Turning
Point, or at the Crossroads? Proc. BachoTEX 2009
Conference, pp. 17–25. April 2009.

[18] Jean-Michel Hufflen: “Multidirectional Type-
setting in XSL-FO”. In: Tomasz Przechlewski,
Karl Berry and Jerzy B. Ludwichowski, eds.,
TEX: at a Turning Point, or at the Crossroads?
Proc. BachoTEX 2009 Conference, pp. 37–40. April
2009.

[19] Jean-Michel Hufflen: “Processing ‘Computed’
Texts”. ArsTEXnica, Vol. 8, pp. 102–109. In GUIT
2009 meeting. October 2009.

[20] Roberto Ierusalimschy: Programming in Lua.
2nd edition. Lua.org. March 2006.

[21] International Standard ISO/IEC 10179:1996(E):
DSSSL. 1996.

[22] ISO/IEC 19757: The Schematron. An XML
Structure Validation Language Using Pat-
terns in Trees. http://www.ascc.net/xml/
resource/schematron/schematron.html.
June 2003.

[23] Michael H. Kay: XSLT 2.0 Programmer’s Ref-
erence. 3rd edition. Wiley Publishing, Inc.
2004.

[24] Michael H. Kay: Saxon. The XSLT and XQuery
Processor. October 2010. http://saxon.
sourceforge.net.

[25] Richard Kelsey, William D. Clinger, and
Jonathan A. Rees, with Harold Abelson,
Norman I. Adams iv, David H. Bartley, Gary
Brooks, R. Kent Dybvig, Daniel P. Friedman,
Robert Halstead, Chris Hanson, Christopher T.
Haynes, Eugene Edmund Kohlbecker, Jr,
Donald Oxley, Kent M. Pitman, Guillermo J.
Rozas, Guy Lewis Steele, Jr, Gerald Jay
Sussman and Mitchell Wand: “Revised5 Report
on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7–105. August 1998.

[26] Jonathan Kew: “X ETEX in TEX Live and be-
yond”. TUGboat, Vol. 29, no. 1, pp. 146–150.
EuroBachoTEX 2007 proceedings. 2007.

[27] Donald Ervin Knuth: Computers & Typesetting.
Vol. A: The TEXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.

[28] Alex Martelli: Python in a Nutshell. 2nd
edition. O’Reilly. July 2006.

[29] Jim Melton and Alan R. Simon: Understanding
the new SQL. Morgan Kaufmann. 1993.

[30] Frank Mittelbach and Michel Goossens, with
Johannes Braams, David Carlisle, Chris A.
Rowley, Christine Detig and Joachim Schrod:
The LaTEX Companion. 2nd edition. Addison-
Wesley Publishing Company, Reading, Mas-

Processing “Computed” Texts NAJAAR 2010 77

sachusetts. August 2004.
[31] Chuck Musciano and Bill Kennedy: HTML

& XHTML: The DeVnitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[32] Erik T. Ray: Learning XML. O’Reilly & Asso-
ciates, Inc. January 2001.

[33] Denis B. Roegel : « Anatomie d’une macro ».
Cahiers GUTenberg, Vol. 31, p. 19–27. Décembre
1998.

[34] The Unicode Consortium: The Unicode Stan-
dard Version 5.0. Addison-Wesley. November
2006.

[35] The Unicode Consortium, http://unicode.
org/reports/tr9/: Unicode Bidirectional
Algorithm. Unicode Standard Annex #9. March
2008.

[36] Eric van der Vlist: Comparing XML Schema
Languages. http://www.xml.com/pub/a/
2001/12/12/schemacompare.html. Decem-
ber 2001.

[37] W3C: Extensible Stylesheet Language (XSL).
Version 1.1. W3C Recommendation. Edited by
Anders Berglund. December 2006. http://www.
w3.org/TR/2006/REC-xsl11-20061205/.

[38] W3C: XML Path Language (XPath) 2.0. W3C
Recommendation Draft. Edited by Anders
Berglund, Scott Boag, Don Chamberlin, Mary F.
Fernández, Michael H. Kay, Jonathan Robie and
Jérôme Siméon. January 2007. http://www.w3.
org/TR/2007/WD-xpath20-20070123.

[39] W3C: XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Recommendation. Edited
by Ashok Malhotra, Jim Melton, and Norman
Walsh. January 2007. http://www.w3.org/
TR/2007/REC-xpath-functions-20070123.

[40] W3C: XQuery 1.0: an XML Query Language.
W3C Recommendation. Edited by Scott Boag,
Don Chamberlin, Mary F. Fernández, Daniela
Florescu, Jonathan Robie and Jérôme Siméon.
January 2007. http://www.w3.org/TR/
xquery.

[41] W3C: XSL Transformations (XSLT). Version 2.0.
W3C Recommendation. Edited by Michael H.
Kay. January 2007. http://www.w3.org/TR/
2007/WD-xslt20-20070123.

[42] W3C: XML Schema. December 2008. http:
//www.w3.org/XML/Schema.

[43] Larry Widen and Chris Miracle: Doc Sav-
age: Arch Enemy of Evil. Fantasticon Press,
Milwaukee, Wisconsin. 1993.

Notes
1. Let us mention that [2] shows—in French—how to use
LaTEX to put spreadsheets’ functionalities into action.

2. As an example of using TEX’s language for programming
purposes, readers interested in putting a sort procedure into
action can refer to [33]: thismodus operandimay be viewed as
a worthwhile exercise, but is unusable in practice, especially
when it is not trivial to obtain sort keys from items to be
sorted.
3. eXtensibleMarkup Language. Readers interested in a gen-
eral introductory book to this formalism can refer to [32].
4. The XML format used byMicrosoft Excel is OOXML (OXce
Open XML).
5. All the source texts mentioned throughout [19] and this
article—including new versions realised for this present arti-
cle, in which case the corresponding Vle names are suXxed
with ‘-plus’—can be downloaded in extenso from the Web
page http://lifc.univ-fcomte.fr/home/~jmhufflen/
texts/guit-2009/.
6. If you are interested in the story of Doc Savage series and
its successive editions, you can Vnd more information in [43].
7. When several titles have been used, such a story is more
commonly known under the pocket book’s title, because
pocket books are easier to get than pulps, which are very
rare. That is why our title elements always refer to pocket
books’, the contents of pocket-book elements being always
empty.
8. Schemas allow speciVers to deVne document types, which
can be viewed as some taxonomy common to a family of XML
texts. There exist several schema languages, and the Web
page abovementioned gives several versions, using a DTD
(Document Type DeVnition) [32, Ch. 5], XML Schema [42],
Relax NG (New Generation) [5], and Schematron [22]. A
discussed comparison among these schema languages can be
found in [36].
9. Readers interested in more details about XML namespaces
can consult [32, pp. 41–45].
10. This example seems to us to be pertinent, because there is
no order ‘better’ than others: the original order is based on
pulps, but—as mentioned above—some stories are unpublished
as pulps, whereas sorting stories according to pocket books’
order allows us to sort all the stories, but this is not really
chronological.
11. eXtensible Stylesheet Language Transformations. Intro-
ductions to this language have been given in some BachoTEX
conferences, held in Poland: [12, 13, 15].
12. A study of XPath 2.0’s and XSLT 2.0’s new features, in
comparison with XPath 1.0 and XSLT 1.0, can be found in
[15].
13. In addition, let us mention that when an XML text is
processed by XSLT 2.0, the information put into a DTD or an
XML Schema text can be exploited [23, p. 58]. That is not
true about other schema languages.
14. In text mode, LaTEX2ε’s modern versions provide the
\textbackslash command [30, Table 7.33].
15. If we name this character by introducing a variable
by means of an xsl:variable element—as we did in
Fig. 4 for the end-of-line character—we cannot use this
variable’s value within the character attribute of the
xsl:output-character element.
16. Engines are not formats: a format is a set of pre-loaded
deVnitions based on primitives of a TEX-like engine, whereas
an engine is TEX or is derived from TEX by adding or redeVning

78 MAPS 41 Jean-Michel Hufflen

some primitives. Plain TEX and LaTEX are formats, X ETEX and
LuaTEX are engines.
17. (eXtensible) HyperText Markup Language. XHTML is a
reformulation of HTML—the original language ofWeb pages—
using XML conventions. [31] is a good introduction to these
languages.
18. eXtensible Stylesheet Language–Formatting Objects.
19. [16] is written in French. If you would like a similar text
in English, [14] is an abridged version.
20. Roughly speaking, a block in XSL-FO is analogous to a
minipage in LaTEX [16, § 1.2].
21. XSL-FO’s footnotes can be compared with Plain TEX’s
\footnote command, as shown in Fig. 3.
22. That is done in standard LaTEX class, but not universal: as
an example related to TEX’s community, the arstexnica class,
used for articles of the ArsTEXnica journal—published by guIt
(Gruppo Utilizzatori Italiani di TEX), the Italian-speaking TEX
users group—does not put leaders just above footnotes.
23. We personally use Apache FOP (Formatting Objects
Processor) [1]:

fop pulps-result.fo pulps-result.pdf

generates a PDF (Portable Document Format) Vle from a
source text in XSL-FO.
24. Structured Query Language. A good introductory book
about it is [29].
25. A short introduction to XQuery is given in [17].
26. ‘For, Let, Where, Order by, Return’, the keywords used
throughout such expressions.
27. The XQuery processor we have used for this example is
Saxon [24]. Fig. 6’s text can be processed by:

java net.sf.saxon.Query pulps-plus.xq \
filename="ds.xml"

We also use Saxon as an XSLT 2.0 processor and the stylesheet
of Fig. 4 can be processed by:

java net.sf.saxon.Transform -s:ds.xml \
-xsl:pulps-plus.xsl

28. Document Style Semantics SpeciVcation Language.
29. Standard GeneralisedMarkup Language. Now it is only of
a historical interest. Readers interested in this metalanguage
can refer to [3].
30. James Clark’s Awesome DSSSL Engine.
31. We use a diUerent Vle and a diUerent name for the root
element (story-list-sgml) because of syntactic reasons:
empty tags’ syntax was diUerent in SGML [3, p. 259].
32. SpeciVcation Of a Sequence Of Flow Objects.
33. Unless a converter to (X)HTML is used, of course.
34. Besides, it is well-known that TEX recognises only its own
formats, which complicates cooperation between TEX and
other programs.
35. New Bibliography STyles.
36. MultiLingual BibTEX.

Jean-Michel Hufflen
LIFC (EA CNRS 4157),
University of Franche-Comté, 16, route de Gray,
25030 Besançon Cedex, France

