NUMMER 41 e NAJAAR 2010

REDACTIE

Taco Hoekwater, hoofdredacteur
Wybo Dekker
Frans Goddijn

m NEDERLANDSTALIGE TEX GEBRUIKERSGROEP



NEDERLANDSTALIGE TgEX GEBRUIKERSGROEP

Voorzitter
Taco Hoekwater
ntg-president@ntg.nl

Secretaris

Willi Egger
ntg-secretary@ntg.nl
Penningmeester

Ferdy Hanssen
ntg-treasurer@ntg.nl

Bestuursleden
Frans Absil
fgj.absilenlda.nl

Frans Goddijn
frans@goddijn.com

Hans Hagen
pragma@uxs.nl

Postadres

Nederlandstalige TEX Gebruikersgroep
Maasstraat 2

5836 BB Sambeek

ING bankrekening

1306238

t.n.v. NTG, Arnhem

BIC-code: INGBNL2A

IBAN-code: NL53INGB0001306238

E-mail bestuur
ntglntg.nl

E-mail MAPS redactie
maps@ntg.nl
Www

www.ntg.nl

Copyright © 2010 NTG

De Nederlandstalige TgX Gebruikersgroep (NTG) is een vereniging die tot doel heeft
de kennis en het gebruik van TgX te bevorderen. De NTG fungeert als een forum voor
nieuwe ontwikkelingen met betrekking tot computergebaseerde document-opmaak in
het algemeen en de ontwikkeling van “TgX and friends’ in het bijzonder. De doelstel-
lingen probeert de NTG te realiseren door onder meer het uitwisselen van informatie,
het organiseren van conferenties en symposia met betrekking tot TgX en daarmee
verwante programmatuur.

De NTG biedt haar leden ondermeer:

O Tweemaal per jaar een NTG-bijeenkomst.

O Het NTG-tijdschrift MAPS.

O De “TgX Live'-distributie op DVD/CDROM inclusief de complete CTAN
software-archieven.

O Verschillende discussielijsten (mailing lists) over TiX-gerelateerde onderwerpen,
zowel voor beginners als gevorderden, algemeen en specialistisch.

O DeFTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen te
gebruiken “TgX-producten’ staan.

O De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,
bijeenkomsten, publicaties en links naar andere TgX sites.

O Korting op (buitenlandse) TgX-conferenties en -cursussen en op het lidmaatschap
van andere TgX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-
giro (zie links); vermeld IBAN- zowel als SWIFT/BIC-code en selecteer shared cost.
Daarnaast dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig
kan ook een papieren formulier bij het secretariaat worden opgevraagd.

De contributie bedraagt € 40; voor studenten geldt een tarief van € 20. Dit geeft
alle lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is
vereist. Een gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op
beide contributies op. De prijs in euro’s wordt bepaald door de dollarkoers aan het
begin van het jaar. De ongekorte TUG-contributie is momenteel $65.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in ETgX- of ConTgXt
formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een BIEX class file en een ConTgXt mo-
dule. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdftex 1.40.9
en luatex 0.64.0 draaiend onder Linux 2.6. De gebruikte fonts zijn Linux Libertine, het
niet-proportionele font Inconsolata, schreefloze fonts uit de Latin Modern collectie, en
de Euler wiskunde fonts, alle vrij beschikbaar.

TgX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het
letterzetten van documenten, een documentopmaaksysteem. Met TgX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.

Er is een aantal op TiX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TgX. Voorbeelden zijn EIEX van Leslie Lamport, AAS-TEX van Michael Spivak,
en ConTgXt van Hans Hagen.




Inhoudsopgave

Redactioneel, Taco Hoekwater 1

Announcement: EuroTgX conference 2011, Taco Hoekwater 2
tlcontrib.metatex.org, Taco Hoekwater 3

Nieuws van CTAN, Piet van Oostrum 9

Up to ConTgXt MkVI, Hans Hagen 14

LuaTgX 0.60, Taco Hoekwater 19

Luna — my side of the moon, Pawet Jackowski 25

PDF/A-1a in ConTgXt MKIV, Luigi Scarso 31

Three things you can do with LuaTgX that would be extremely painful otherwise, Paul Isambert 37
Toward subtext, John Haltiwanger 45

Typesetting in Lua using LuaTgX, Hans Hagen 49

Processing “Computed” Texts, Jean-Michel Hufflen 68

a la Mondrian, Kees van der Laan 79

NTG Najaarsbijeenkomst 2010, Frans Goddijn 91






Taco Hoekwater

Redactioneel

Laat ik beginnen met iedereen een
Gelukkig en productief 2011

toe te wensen namens de Maps redactie en het NTG
bestuur.

Tegen de tijd dat je dit leest zou het namelijk wel
eens voorbij half januari kunnen zijn. Met andere woor-
den: deze najaars-Maps is te laat. Ik zou graag willen
kunnen zeggen dat het aan weerbarstige auteurs lag,
of dat de redactie onderbezet is, of dat de ConTgXt
beta die ik gebruik zorgde voor onbetrouwbare uitvoer
waardoor ik op Hans moest wachten voor een nieuwe
beta, of aan vertraging bij TNT post vanwege de stakin-
gen, of dat de drukker het veel te druk had vanwege
de eindejaars-rush, maar helaas. Al voornoemde zaken
zijn waar, maar de hoofdreden is dat ik het veel te druk
heb gehad met andere zaken om me op de Maps te
kunnen concentreren. En dat is niet voor het eerst, dus
hierbij mijn welgemeende excuses voor de veroorzaak-
te vertraging.

En als ik me dan toch aan het verontschuldigen ben,
laat ik dan ook maar meteen schuld bekennen over
de vreselijk lelijke inhoudsopgave op de achterkant
van Maps 40. Om eerlijk te zijn weet ik nog steeds
niet wat er fout is gegaan daar, maar ik beloof dat
de inhoudsopgave van deze Maps met argusogen is
bekeken.

Nu ik toch over bekijken ben begonnen: Siep Kroo-
nenberg heeft eind van het jaar de stylesheet van de
NTG website onder handen genomen. Wijzelf zijn erg
tevreden over de nieuwe frisse uitstraling van de NTG
website, maar ga vooral even kijken op http://www.ntg
.nl om het resultaat met eigen ogen te zien.

En dan deze Maps zelf. Er is weer een kleine lay-
out aanpassing; de titels en eventuele subtitels van de
artikelen zijn niet meer schreefloos, maar in hetzelfde
font als de eigenlijke tekst (Linux Libertine). Met deze
verandering ziet de aanvang van een artikel er nu

NAJAAR 2010

wat rustiger uit. En wie weet, in de volgende Maps
veranderen wellicht de kopjes en subkopjes ook nog
wel.

Die volgende Maps wordt overigens waarschijnlijk
niet meer gedrukt in offset, maar geprint via een goe-
de Nederlandse printing on demand service die Hans
Hagen heeft ontdekt. We zouden dat liever niet doen,
maar door het langzaam maar gestaag zakken van het
ledenaantal van de NTG zakt uiteraard ook de oplage
van de Maps, en het gebruik van een echte drukker
begint een onredelijke zware druk op de begroting te
worden.

En er is ook een lichtpuntje aan de omschakeling
naar printen: voortaan is het dan niet meer belangrijk
of de artikelen in kleur helemaal vooraan of helemaal
achteraan staan. Bij printwerk wordt er namelijk per
pagina afgerekend voor kleur of zwart-wit, in plaats
van per katern zoals bij drukwerk.

Een laatste nieuwtje: Hans Hagen en ik hebben op
http://www.boekplan.nl een site, waar diverse boeken
via printing on demand worden aangeboden. Op die-
zelfde site is een pagina aangemaakt waar jullie oudere
Maps uitgaven kunnen bestellen (uiteraard zolang de
voorraad strekt). Het gebruik van de site is eenvoudig
en de weg wijst zich vanzelf. Dus als je een bepaalde
Maps niet meer hebt, of zo vaak gelezen hebt dat hij
vervangen zou moeten worden, kijk dan eens op de
boekplan site. Alle opbrengsten uit de NTG catalogus
van boekplan gaan rechtstreeks naar de NTG, dus je
sponsort er ook nog eens de vereniging mee.

Met al die nieuwtjes is er niet veel ruimte meer
over op deze pagina, dus voor deze ene keer ga ik niet
proberen een samenvatting te geven van de inhoud van
Maps 41. De deadline van Maps 42 is 1 April 2011, en
tot die tijd:

Veel leesplezier toegewenst,

Taco Hoekwater



2 MAPS 41

CIrp Oy Grupa
Jzytka OW
EuroBachoTEX 2011: CALLFOR PAPERS i

AEsthetics and effectiveness of the message, cultural contexts. The BacholpX confer-
ence in 2011, already XIXth of the series, will be held from April 29t until May 3rd 2011.
It will also be the official European TEX conference, hence we will reference it by the already
traditional name EuroBacholpX with the distinguishing “2011”. BacholpX conferences are being
organized yearly since 1993 by GUST, the Polish TeX Users Group.

As the lead theme we propose the aesthetics of publications from the perspective of the effective-
ness of the message. Encouraged are also references to the cultural contexts — not everywhere
and everything is liked by all.

We await TgX, Metapost, ConlpXt, IAIEX, and friends related presentations revolving around
those issues, but will be more than happy if programmers and designers of typographic systems,
typographers and other users of such systems want to share their thoughts and experience.

In addition, we await papers on support that typography systems can offer to the disabled,
e.g., in connection with sign languages or generating speech (e.g., from TpX's mathematical
notation). Perhaps somebody looked into issues with non-alphabetic notations such as tabulature
(http: //en.wikipedia.org/wiki/Tablature).

Also, please note the “Call for TeX Pearls” below.

Workshops and tutorials. Especially welcome are proposals for TeX-related tutorials or in-
troductions. If you have suggestions for tutorials or workshops by others than yourself or about
specific topics, please let us know.

Poster sessions. All participants will be given the opportunity to present their TEX and typo-
graphic results in the form of posters. We will provide exhibition space. Perhaps new ideas or
solutions will emerge?

Call for TgX Pearls. We are continuing the tradition of “The Pearls of TEX Programming”.
Here is, briefly, what is wanted:

= short TpX, Metafont or Metapost macro(s), not necessarily useful,

= the solution not obvious at the first glance,

= easy to explain: necessarily 10 minutes at most.

If you have something that fits the bill, please consider submitting a proposal. If you know of
somebody's work that does the same, please let us know, and we will contact that person.
The email address is: pearls at gust dot org dot pl. Previously collected pearls can be found at
http: //www.gust.org.pl/projects/pearls.

The TgX Clinic. We hope that more advanced TpXies will help out the TeX Clinic team led
by Joanna Rycko (http: //www.gust.org.pl/projects/klinika).

Deadlines and addresses. The deadline for abstracts and other proposals is March 28t
201 1. The deadline for final papers to appear in the conference materials is April | 1th,

Contributions should be send by email to the Programme Committee: prog-ebt201 | at gust dot
org dot pl. The PC is chaired by Bogustaw Jackowski (b underscore jackowski at gust dot org
dot pl).



Taco Hoekwater

tlcontrib.metatex.org

Abstract

TLContrib is a distribution and associated website that
hosts contributed, supplementary packages for TEX Live.
The packages on TLContrib are those not distributed in-
side TEX Live proper for one or several of the following rea-
sons: because the are not free software according to the
FSF guidelines, because they contain an executable update,
because they are not available on CTAN, or because they
represent an intermediate release for testing.

Anything related to TEX that can not be on TEX Live but
can still legally be distributed over the Internet can have its
place on TLContrib.

Keywords
TEX Live, TLContrib, distribution, contribution, packages

Introduction

Many of you are familiar with TEX Live as an easy way
to install TgX. This distribution provides a comprehen-
sive TgX system with binaries for most flavors of Unix,
including GNU/Linux, and also Windows. It includes
all the major TgX-related programs, macro packages,
and fonts that are free software, including support for
many languages around the world. The current version
is TEX Live 2010.

TEX Live is distributed on DVD by most of the local
TgX user groups, but it also allows for continuous pack-
age updates over the Internet using the t1mgr program.

TEX Live is a wonderful tool, but there are a few

considerations to be aware of:

o it only contains FSF-defined ‘free’ software pack-
ages

o it uses CTAN as its primary source for packages

o it does not make interim executable updates

o it is not a suitable medium for package test releases

Each of these limitations has a perfectly reasonable

cause:

o The TEX Live maintainers agree (at least for the
purposes of working on TEX Live) with the princi-
ples and philosophy of the free software movement.
Therefore they follow the FSF guidelines on licens-
ing.

o It is good for the TgX community if CTAN is as com-
plete as possible. That gives users one place to look,

NAJAAR 2010

for instance. Also, it makes it more likely for sepa-

rate distributions like TEX Live and MiKTeX to be

consistent with each other. By using CTAN as the
primary package source, TEX Live promotes the

use of CTAN.

A secondary reason for the use of CTAN is that
creating a large distribution like TEX Live takes a
lot of work, and the number of volunteers is lim-
ited. Having a single place to check for new pack-
age updates is a lot easier, because this process can
be automated to a large extent. Using many sepa-
rate sources would make this task much more com-
plicated.

o TEX Live ships binaries for 19 different computer
platforms, and something like 300 binaries need
to be compiled for each of those. Coordinating the
task of preparing these binaries is a major effort.

o Because TEX Live is not just a network installation,
but also shipped on DVD, it is important that the
included packages and binaries are as stable as pos-
sible. After all, there is no guarantee that the DVD
users will ever update their system after the initial
installation.

Nevertheless, the limitations of TEX Live mean that

there is room for extension. This is the reason for the

existence of TLContrib."

On TLContrib, anything that is freely distributable
is acceptable, so packages that are not on CTAN are
also fine, and TLContrib can and will contain updates
to executables (just not necessarily for all platforms).

This is possible because the two major limitations of
TEX Live do not exist in TLContrib. Firstly, TLContrib
is a network-only distribution without the limitations
introduced by the physical medium. Secondly, the prob-
lem of lack of human resources is solved by oftloading
the burden of creating and maintaining packages to the
actual package maintainers.

Before going on to explain how to use TLContrib, it is

important to note the following:

o TLContrib is not a full TEX Live repository: it is a
completement and contains only its own packages.
This means TLContrib can only be used as a sec-
ondary repository on top of an existing TEX Live
installation.

o TLContrib is not maintained by the TEX Live team:

3



4  MAPS 41

the responsibility for the actual packages lies with
the package maintainers themselves, and the server
maintenance is handled by yours truly.

There is no competition between TLContrib
and TEX Live, but as one of the goals of TLCon-
trib is to ease the workload of the TEX Live team, it
would not make much sense for them to be the ac-
tual maintainers. For this reason there is a separate
mailing list dedicated to TLContrib.? Please address
your questions related to packages obtained from
TLContrib there, and not on the regular TEX Live
list.

Using TLContrib as a distribution

First things first: before attempting to use TLContrib,
make sure that you have the latest (network) update of
TEX Live 2010, and in particular that you run the latest
tlmgr. During the development of TLContrib, a small
number of incompatibilities have been found in the
tlmgr as distributed on the DVD that have since been
fixed. Furthermore, the current version of TLContrib
only works with TEX Live 2010 and not for any earlier
versions of TEX Live.

And a warning: Executable packages are not necessarily
available for all platforms on TLContrib. Unfortunately,
it appears that the current TEX Live update manager
is not smart enough to correctly detect versioning in
dependencies. In practice, this means that you should
not update packages that depend on executable package
updates unless the actual executable package update is
also available on TLContrib for your platform.

In order to use TLContrib as an extra repository in the
TEX Live 2010 package manager (t1lmgr), there are two
options, depending on whether you prefer to use the
command line version or the GUI version of the TEX
Live 2010 package manager.

Graphical interface usage

In the GUI version of the package manager, select the
menu item Load other repository ... from within the
tlmgr menu. Set the value to

http://tlcontrib.metatex.org/2010

There is currently no way to save this setting.

Besides not being able to save the TLContrib setting,
when using the graphical user interface it is not always
easy to see whether executable package updates are
available. For this reason you should consider using the
command line version of the package manager for use
with TLContrib, even if you are accustomed to using
the GUI interface.

Taco Hoekwater

Command line usage
The simplest approach is to just start tlmgr from the
command line with an extra option:

$ tlmgr --repository \
http://tlcontrib.metatex.org/2010

If you plan to use TLContrib regularly, it makes sense
to define a shell alias to save you some typing (the next
trick is courtesy of Will Robertson).

Define an alias to make things easier to remember;
put this into your .bash_profile or equivalent (this has
to be on a single line):

alias tlc="tlmgr --repository
http://tlcontrib.metatex.org/2010"

You can now view what is available in the TLContrib
repository with standard t1lmgr commands such as

$ tlc list

to see what is currently available for installation. Pack-
ages can be updated to their pre-release versions by

typing, say,
$ tlc update siunitx

and if an update performed in this way ‘goes bad’ and
you'd like to revert to the official release, execute

$ tlmgr install fontspec --reinstall

and things will be back to normal.

Using TLContrib for distribution

The rest of this article describes further details impor-
tant for a package maintainer aiming to use TLContrib
for distribution.

Before you decide to add a package to TLContrib,
please bear this in mind:

o It is not the intention of TLContrib to replace either
TEX Live or CTAN: if a package is not blocked from
TEX Live for one of the reasons mentioned earlier,
and can be made available on TEX Live or CTAN,
then it should not be part of TLContrib at all.

In order to be able to upload packages to TLContrib, you
have to be a registered user. You can register as a user
via the TLContrib website, and, not by coincidence, this
is also the place where you create new packages and
package releases.

After registration is complete, you can log in to
TLContrib by following the member section link.

If you do upload a package to TLContrib, please also



tlcontrib.metatex.org

subscribe to the TLContrib mailing list, because any
questions about your package a likely to be made there.

Package creation example

This quick start guide uses an update of the
context-lettrine

package as an example of how to create a package. In

the following, you need to replace context-lettrine

by the actual package name that you are updating, of

course.

Besides being logged in to TLContrib, the first thing
you need to do is to create your updated package
source. In this case, the easiest way is to start from the
current TEX Live version, so first you have to fetch the
current context-lettrine archive(s) from the network
distribution of TEX Live. The base URL is: http://www
.ctan.org/tex-archive/systems/texlive/tlnet/archive.

In fact, for this example, there are two archives to be
downloaded:

context-lettrine.tar.xz
context-lettrine.doc.tar.xz

For some TEX Live packages there is even a third
archive file named <package>.source.tar.xz. This is
because the distribution system of both TEX Live and
TLContrib splits the contribution into run-time files,
documentation files, and source files. Users can ask the
installer not to install the last two file types to save on
disk space and network traffic.

You have to create a single local archive file with the
combined and updated content of the two downloaded
archives. After extracting both tar.xz files in the same
directory, you will have a tree structure that looks like
this:

doc/
context/
third/
lettrine/
lettrine-doc.pdf
lettrine-doc. tex
W.pdf
tex/
context/
interface/
third/
lettrine.xml
third/
lettrine/
t-lettrine. tex
tlpkg/
tlpobj/
context-lettrine.doc.tlpobj
context-lettrine.tlpobj

NAJAAR 2010 5

First, delete the whole t1pkg sub-tree. The tlpobj files
contain meta-data specific to each particular revision
of a package, and the information in the downloaded
version of these files will henceforth be no longer
applicable. New versions of the tlpobj files will be
generated automatically by TLContrib's distribution
creation tool.

You may now update the other files in the tree,
and create the archive file (the acceptable formats are
tar.gz, tar.xz, and zip). Please read the next section
named ‘About package sources’ carefully before final-
izing the archive.

The TLContrib context-lettrine package will use
the newly created archive as source for the package,
so make doubly sure you use the right files. The use
of existing TEX Live package archive(s) to start with is
just so you get an idea of what goes where: sometimes
TEX Live packages contain more files and symbolic
links than you initially expect. You can build the source
package completely from scratch if you want to, but it
is easy to forget files if you don't check.

Incidentally, while the base name of the local archive
file does not matter, you have to make sure that the
extension is .tar.gz, .tar.xz, or zip, otherwise the
upload will fail.

Now go to http://tlcontrib.metatex.org, log in,
and click new package. As the new package is an up-
date to TEX Live, make sure you select that option,
and the proper package name from the drop-down
(context-lettrine).

In the next screen, most of the needed input will be
automatically filled in for you, based on the current
TEX Live revision of the package.

Edit the rest of the input form to have a proper
version and set the source to File upload. Its value has
to be set to the new archive that was created earlier.
Adjust the Release state drop-down so it is set to public.
It is also wise to check the license field, for it does not
always import correctly due to database mismatches.

Then press submit new revision, verify the upload,
and submit again to finalize the new package.

Assuming all went well, all that is needed for now is
to wait until the hour has passed: your package should
be available from the TLContrib repository after that.

The TLContrib distribution system works asynchro-
nously: the front-end data that you as a package main-
tainer can create and modify is exported to the user-side
TLContrib repository by a cron job that runs indepen-
dent of the actual website. Currently this cron job runs
hourly, on the hour.

About package sources
Please note: Currently only the tar.gz, tar.xz, and
zip archive formats are supported in the File upload



6 MAPS 41

and HTTP URL methods, and there are further strict
requirements on the archive itself:

For a non-executable package, it should contain
a complete TDS® sub-tree. In TEX Live, normally all
macro files go under texmf-dist, and, in that case, this
directory level can be skipped in the archive (it will
be added automatically by the TLContrib publication
system). Be advised that, in general, uploading a CTAN
zipped folder will not work, because CTAN packages are
almost never in TDS format.

For an executable package, you can also use the
TDS layout (with the binaries in bin/$ARCH/), but if
you only have files inside the binaries folder, you can
skip the directory structure completely: in this case, the
TLContrib publication system will automatically add
the needed structure.

Make sure that your archive contains only files that
belong to your package, and especially that it does not
accidentally overwrite files owned by other packages.

Also, check twice that the archive contains only
files that belong in the TDS: Delete backup files, and
remove any special files that may have been added by
the operating system (MacOSX especially has a very
bad habit of adding sub-directories for its Finder that
really do not belong in the package).

It is not always simple to guess what should go into
a TEX Live update package. If you are building such
an updated package, it is always wise to start from the
existing TEX Live sources.

TLContrib accepts no responsibility for package con-
tents: the system does run some sanity checks, but
ultimately, you as maintainer are responsible for cre-
ating a correctly functioning package. Badly behaving
or non-working packages will be removed on executive
decision by the TLContrib maintainer(s) without prior
notice.

Package creation in detail

When you create a new package, a short wizard will
help present itself to help you set up the package type.
There are two types of packages: those that are up-
dates of existing TEX Live packages, and those that are
standalone. The wizard screen presents you the choice
between these two types, and a dropdown listing TEX
Live packages. The list of existing TEX Live packages
is updated daily. Once this decision is made, it becomes
fixed forever: the Id field of a package cannot be edited
afterwards.

The Id field is the internal identifier of the package.
Id-s should consist of a single ‘word’ with a length of at
least two characters that only contains alphanumerics,
dashes, and underscores. It can optionally followed by
a platform identifier, which is then separated from the
first part by a single dot.

Taco Hoekwater

Also note that when Release state becomes public (as
explained below), it will no longer be possible to edit
that particular release of the package. All further edits
will force the creation of a new release, with a new
revision id, and needing new sources.

Yet another note: If you intend to create an executable
package, you have to be really sure you know what you
are doing. Creating portable binaries for any platform
is far from trivial. Paraphrasing Norbert Preining from
the TLContrib mailing list:

“If you have NO experience with compiling,
preparing binaries for various platforms,
distributing, etc., JUST DO NOT GO THERE!”

Macro packages are much easier; for those you only
need a good understanding of how the TDS works.

Package editing

After the initial New package wizard screen, or after
pressing Edit in the your package list for pre-existing
packages, you will be presented with a fairly large edit
screen.

During the initial TLContrib package creation process,
if the package is updating an existing TEX Live pack-
age, certain fields will have been filled in automatically
from the TEX Live package database. Otherwise you
will have to fill in everything yourself.

Title
This is the human-readable name of your package

Description
This is a description in a few sentences of what the
package does.

Package type
Even though the drop-down is long, really there
are only two choices in the drop-down: A package
is either a Macro package, or a Executable package.
The distinction is important because the required
package source structure is different for each of the
two types, as explained below.

TLMGR directives
A list of TLMGR directives like e.g. addMap or add-
Format. A better interface is planned, but, for the
moment, you have to make sure you know what
you are doing. Have a look at the existing TEX Live
package database (texlive.tlpdb) for examples.

You only have to specify the directives, do not

add execute at the start.

TL dependencies
Package Id-s of other TEX Live packages on which
this package depends, one per line. Unless you
know exactly what is needed, it is probably best
to leave this field blank, but in any case:



tlcontrib.metatex.org NAJAAR 2010

You only have to specify the package Id-s, do not those other errors. Contrary to the other fields,
add depend at the start. If your package depends on local file selection is not persistent across form
a executable package, for example luatex, write the submits.
Id as luatex.ARCH. Doing so will make tlmgr auto- HTTP URL
matically select the appropriate executable package This asks the system to do a wget of an archive
for the user's platform. file on a specific URL, which could be either HTTP
TL postactions or FTP. If you need remote log-in information to
A list of TLMGR post-install actions like e.g. access the file, please encode the user name and
shortcut or fileassoc. A better interface is also password in the URL, exactly as you would do
planned, but, for the moment, you have to make when using wget on the command line.
sure you know what you are doing here as well.
Have a look at the existing TEX Live package data- SVN URL
base (texlive.tlpdb) for examples. This asks the system to do a svn checkout on
You only have to specify the actions, do not add a specific URL. In this case, you may also need
postaction at the start. SVN Username and SVN Password. Also, some
License repositories may need anonymous as user name
Pick one from the two drop-downs, and set the ra- for anonymous access. The top-level checkout
dio button accordingly. If you need to use Other folder will be stripped away before creating the
free license or Other non-free license, please drop package. This is so that you can e.g. give http:/
me an email. I am sure the list is incomplete. In this /foundry.supelec.fr/svn/metapost/trunk/texmf/ as
context, Free means: according to the Debian Free URL without getting an extra directory level.
Software Guidelines. GIT URL
Log message This asks the system to do a git clone on a spe-
This field is just for release notes: it will not be ex- cific URL. It is very similar to SVN URL, just us-
ported to the TLContrib repository. The SVN URL ing a different versioning system. In this case,
and GIT URL methods will automatically refill in you may also need GIT Branch.
this field with the remote revision and log message.
For other source methods, you can fill in whatever Please verify package contents
seems appropriate. The first time the edit form is loaded, this will only
Release state display a message, but after the initial submit (as-
Only packages that are public are exported, but this suming everything else went well), it will display
also has side-effects. Once the Release state is pub- the full list of files that will become the source of
lic, it is no longer possible to edit a package release your package.
on the spot. Submitting the form in that case will Please check this list carefully! TLContrib does
always create a new release. run some tests on the package contents and will

On edits, you will see some extra information:
Synch state and rev. The first is the current status
of a package release with respect to the published
repository, the second is the revision number that
has been assigned to this release.

Version

This is the user-visible version field.

Source

Here things get interesting. There are five ways to

put the source of a package release into the data-

base, as explained in the next sections.

As previous revision
If you are editing an already existing package,
then it is possible to re-use the uploaded source
from the revision you are editing as the source
for the new revision that will be created.

File upload
Upload of a local archive file via CGIL Be warned
that if there are other errors in your form, you
will have to re-select the local file after fixing

refuse to accept package sources that are horribly
wrong, but it does not check the actual contents
of any of the files, and of course it can not test for
every possible problem.

Package transfer

It is possible for the maintainer of a package to transfer
the package to another user completely. To do so,
follow the Share link in your package list. See the help
text in that form for details.

Package sharing
It is also possible for the maintainer of a package to
share the package maintenance with other users.

To set up package sharing for a package you main-
tain, follow the Share link in your package list. See the
help text in that form for details.

When someone else has shared a package with you,
then you will see new entries in your package list.
These will have the user id of the actual package



8 MAPS 41

maintainer added after the Date field. You can edit such
packages (and thus create new revisions), but the new
revisions will become property of the actual package
maintainer.

In other words: a package can only have one actual
maintainer, and that maintainer is responsible for all
revisions of the package. However, the maintainer can
allow other users to help with the actual creation of
new revisions.

Package deletion

In the list of your packages and in the view screen of
one of your package releases, there are two links that
delete items:

Del / Delete revision
This link deletes a single revision of a package.
Delete package (in view screen only)
This link removes a whole package completely,
including all revisions of it.

Both links show a confirmation screen first.

Remote revision creation (advanced usage)

Once a package has been created (there must at least
one revision record present already), and under the
conditions that it has a source method of HTTP URL,
SVN URL, or GIT URL, it is possible to submit a
new revision by fetching a special URL from a remote
location or script. Using this method, there is no need
to be logged in at all.

The URL template looks like this:

http://tlcontrib.metatex.org
/cgi-bin/package.cgi/action=notify/key=<key>
/check=<md5>?version=<version>

Please note that version is preceded by a question
mark, but everything else is separated by slashes, and,
of course, the actual URL should be a single line, without
any spaces. All three fields are required.

The three special fields have to be filled in like this:

<key>
This is the package Id of the package.
Let's use luatex.i386-1inux as example value
for <key>.
<md5>
This is a constructed check-sum, created as fol-
lows: it is the hexadecimal representation of the
md5 check-sum of the string created by combining
your userid, your password, and the new version
string, separated by slashes.
For example, let's assume that your userid is taco
and your password is test, and that the new release
that you are trying to create has version 0.64.0.

Taco Hoekwater

On a Unix command line, the check-sum can be
calculated like this:

$ echo taco/test/0.64.0 | md5sum
Cc704f499e086e0d54fca36fblabc973e -

The value of <md5> is therefore
c704f499e086e0d54fca36fboabc973e.
<version>
This is the version field of the new release.

Note: if this contains spaces or other characters
that cannot be used in URLs, then you either have
to escape the version string in the URL, or use POST
instead of GET. In any case, do not escape the ver-
sion while calculating the check-sum string.

There is no need to do any URL escaping here, so
the value of <version> will be 0.64.0

Using the example variables given above, the final URL
that would have to be accessed is (again without line
breaks or spaces):

http://tlcontrib.metatex.org/cgi-bin/package.cgi
/action=notify/key=luatex.i386-1inux
/check=c704f499e086e0d54fca36fb@abc973e
?version=0.64.0

Accessing this URL will cause TLContrib to fetch the
HTTP or SVN or GIT URL source in the package's
top-level revision (regardless of what its publication
state is), and create a new revision based on the fetched
file(s) and the supplied version string. All other fields
will remain exactly the same as in the original top-level
revision.

This new package revision will appear in the web
interface just like any other revision, there is nothing
special about it other than what is already mentioned.

Final remark

TLContrib is a fairly new project, and some improve-
ments are definitely possible, especially in the edit
forms on the website. But I hope that even in the
current state, it will be a useful addition to the whole
TEX Live experience.

Notes

1. The website for TLContrib is http://tlcontrib.metatex.org/
2. The mailman page for the mailing list is http://www.ntg.nl
/cgi-bin/mailman/listinfo/tlcontrib

3. See http://www.tug.org/tds/tds.html for a detailed descrip-
tion of the current TgX Directory Structure specification.

Taco Hoekwater
tlcontrib@metatex.org



Piet van Oostrum

Nieuws van CTAN

NAJAAR 2010 9

Een uittreksel uit de recente bijdragen in het CTAN archief

Abstract

Dit artikel beschrijft een aantal recente bijdragen uit het
CTAN archief (en andere bronnen op het Internet). De
selectie is gebaseerd op wat ik zelf interessant vind en
wat ik denk dat voor veel anderen interessant is. Het is
dus een persoonlijke keuze. Het heeft niet de bedoeling
om een volledig overzicht te geven.

Keywords
TEX, LaTEX, packages, CTAN, bibliografie, biber,
biblatex.

Inleiding

In juli 2010 is een nieuwe TgXLive 2010 distributie uit-
gekomen. Ik zit momenteel in Bolivia, waar ik geen
TgXLive DVD’s krijg. Ik heb hem (in de vorm van een
MacTgX installer voor mijn MacBook) gedownload over
een 256kbps internetverbinding. Als ik me goed herin-
ner deed hij er meer dan 24 uur over. Gelukkig is de
download herstartbaar waarbij hij verder gaat op het
punt waar hij gebleven is, anders zou het niet gelukt
zijn.

De TgXLive installaties hebben tegenwoordig een
programma om pakketten automatisch te updaten, net
als MiKTEX dat heeft. Helaas was het niet mogelijk om
automatisch te updaten van TgXLive 2009 naar TgXLive
2010. Hopelijk komt dit ook een keer in een toekomstige
versie. Als je namelijk je installatie regelmatig laat
updaten heb je natuurlijk bij de volgende versie een
groot gedeelte al geinstalleerd.

In dit licht is het eigenlijk niet zo interessant om
een lijst van nieuwe of bijgewerkte pakketten te geven.
Daarom beperk ik me maar tot het beschrijven van inte-
ressante ontwikkelingen. De meeste van de hieronder
beschreven pakketten zijn onderdeel van de TgXLive en
MiKTgX distributies.

Biblatex

Biblatex is een pakket dat de functionaliteit van BibTgX
voor het grootste gedeelte implementeert in LaTgX. Het
maken van BibTEX stijlen is erg lastig omdat BibTgX een
programmeertaaltje gebruikt dat gebaseerd is op opera-

ties op een stack, een techniek die de meeste mensen
niet beheersen, en die bovendien gemakkelijk tot fouten
leidt. Het implementeren van deze stijlen in LaTgX zou
gemakkelijker moeten zijn. Bij het gebruik van biblatex
wordt BibTEX nog steeds gebruikt maar alleen voor het
sorteren en het genereren van labels. Voor de rest, het
formatteren van de bibliografische items worden LaTgX
macro’s gebruikt. Hierdoor zou het voor meer men-
sen mogelijk moeten zijn om bibliografische stijlen te
ontwikkelen. Misschien is het ontwikkelen van een
compleet nieuwe stijl niet voor iedereen weggelegd, het
aanpassen van een stijl zal in ieder geval een stuk mak-
kelijker zijn. Ook alle commando’s voor citaties kunnen
gemakkelijk worden aangepast.

Biblatex is niet compatibel met een groot aantal pak-
ketten die iets met bibliografieén doen, zoals babelbib,
bibtopic, bibunits, chapterbib, multibib en meer. Maar
de functionaliteit van de hier genoemde pakketten is
in biblatex aanwezig. In ieder geval ondersteunt bib-
latex opgesplitste bibliografieén (bijvoorbeeld op topic),
meerdere bibliografieén in een document, bibliografieén
per hoofdstuk, sectie en dergelijke.

Ook is biblatex niet compatibel met het pakket ucs,
zodat gebruikers van een aantal talen met een niet-
latijns schrift helaas dit niet kunnen gebruiken, tenzij
ze gebruik maken van XeTgX. Overigens is het gebruik
van BibTEX met dit soort schriften ook problematisch.
Verder is biblatex wel gelocaliseerd (dat wil zeggen dat
het verschillende talen ondersteunt) en kan het gebruik
maken van het babel pakket.

Jurabib en natbib zijn ook incompatibel met biblatex
en de functionaliteit van deze pakketten is slechts ge-
deeltelijk aanwezig in biblatex zelf (maar zie ook ver-
derop).

Hierbij een voorbeeld waarbij ik eerst een document
met natbib en de klassieke BibTgX oplossing geef en
daarna de oplossing met biblatex. De BibTEX entry is:

@Book{Date2003,
author = {Date, C. J.},
title = {An Introduction to Database Systems},
publisher =

{Addison-Wesley Publishing Company Inc.},
year = {2003},
address = {Reading, Massachusetts},



10 MAPS 41

edition = {8}
}

Het input-document, gevolgd door de output:

\documentclass{article}
\pagestyle{empty}
\setlength{\textwidth}{220pt}
\usepackage [round] {natbib}
\begin{document}

This is a very short article.

It cites the classical databases book
\cite{Date2003}.

\bibliographystyle{plainnat}
\bibliography{bibfile}
\end{document}

This is a very short article. It cites the classical
databases book Date (2003).

References

C. J. Date. An Introduction to Database Sys-
tems. Addison-Wesley Publishing Company Inc.,
Reading, Massachusetts, 8 edition, 2003.

En dan nu de biblatex-versie:

\documentclass{article}

\pagestyle{empty}

\setlength{\textwidth}{220pt}

\usepackage [natbib, style=authoryear]{biblatex}
\bibliography{bibfile}

\begin{document}

This is a very short article.

It cites the classical databases book
\cite{Date2003}.

\printbibliography
\end{document}

This is a very short article. It cites the classical
databases book Date, 2003.

References

Date, C. J. (2003). An Introduction to Database
Systems. 8th ed. Reading, Massachusetts:
Addison-Wesley Publishing Company Inc.

Er zijn een paar verschillen te constateren:

Piet van Oostrum

O Ten eerste: in de LalgX-input staat het
\bibliography-commando in de preamble en
niet meer op de plaats waar de bibliografie komt.
Op die plaats staat het \printbibliography-
commando.

O Eris geen \bibliographystyle meer. Inplaats
daarvan worden er opties van het biblatex-pakket
gebruikt.

O In de citatie ontbreken de haakjes om het jaartal.
Dit is op te lossen door in plaats van \cite het
commando \textcite te gebruiken.

O Het jaartal in de bibliografie staat op een andere
plaats.

Het omzetten van \cite in \textcite is vervelend.
Misschien zijn er nog opties te vinden om de layout
meer zoals in natbib te krijgen. Het aantal opties in bib-
latex is echter gigantisch en dat zal dus nog wel wat ex-
tra zoekwerk kosten. Hier is de versie met \textcite:

\documentclass{article}

\pagestyle{empty}

\setlength{\textwidth}{220pt}

\usepackage [natbib, style=authoryear]{biblatex}
\bibliography{bibfile}

\begin{document}

This is a very short article.

It cites the classical databases book
\textcite{Date2003}.

\printbibliography
\end{document}

This is a very short article. It cites the classical
databases book Date (2003).

References

Date, C. J. (2003). An Introduction to Database
Systems. 8th ed. Reading, Massachusetts:
Addison-Wesley Publishing Company Inc.

Biblatex heeft voor het functioneren €TEX nodig maar
dit is tegenwoordig meestal de standaard TgX machine
die gebruikt wordt.

Biblatex is nu op versie 1.0, de vorige versies waren
allemaal 0.x, dus we mogen aannemen dat het een ze-
kere volwassenheid heeft bereikt. Het is geschreven
door Philipp Lehman, bekend van de handleiding voor
het installeren van LaTgX fonts. De handleiding van
biblatex is zeer uitgebreid: ongeveer 200 pagina’s. Het
zou wel handig zijn als er een mini-handleiding zou
zijn voor mensen die alleen maar een bibliografie wil-



Nieuws van CTAN

len gebruiken en niet zelf bibliografische stijlen willen
ontwikkelen.

Er zijn ook een aantal uitbreidingspakketten voor
biblatex. Deze worden niet met \usepackage gebruikt
maar door middel van opties in biblatex.

biblatex-dw
Biblatex-dw is een pakket geschreven door Dominik
Wassenhoven, in eerste instantie voor eigen gebruik.
Het implementeert de citatie-stijl die gebruikelijk is in
de humaniora. In feite zijn er twee stijlen in verwerkt:
Een stijl speciaal voor verwijzingen in voetnoten
(footnote-dw). Hierbij wordt de referentie als voetnoot
gezet met dezelfde informatie die ook in de bibliografie
staat.

\usepackage [style=footnote-dw]{biblatex}

NAJAAR 2010

hoort. Hiervoor moet wel het commando \autocite
gebruikt worden in plaats van \cite, anders wordt het
nummer tussen vierkante haken gezet. Het pakket is
ook geschreven door Joseph Wright.

\documentclass{article}

\pagestyle{empty}

\setlength{\textwidth}{220pt}

\usepackage [natbib=true, style=nature]{biblatex}
\bibliography{bibfile}

\begin{document}

This is a very short article.

It cites the classical databases book
\autocite{Date2003}.

\printbibliography
\end{document}

1C. J. Date: An Introduction to Database Systems,
8th ed., Reading, Massachusetts 2003.

Auteur-titel-stijl (authortitle-dw).
\usepackage [style=authortitle-dw]{biblatex}
Zie het voorbeeld hierna.

This is a very short article. It cites the classical
databases book Date: An Introduction to Database
Systems.

References

Date, C. J.: An Introduction to Database Systems,
8th ed., Reading, Massachusetts 2003.

Beide stijlen zijn ook mogelijk met het basispakket
biblatex, maar biblatex-dw heeft veel meer opties.

biblatex-chem
Biblatex-chem bevat 4 stijlen voor chemici, namelijk

chem-acs: American Chemical Society
chem-angew: Angewandte Chemie
chem-biochem: Biochemistry
chem-rsc: Royal Society of Chemistry

ooog

Maar ook andere chemische publicaties vallen hieronder.
Het pakket is geschreven door Joseph Wright.

biblatex-nature

Dit pakket implementeert de citatiestijl voor het tijd-
schrift Nature. Hierbij worden superscripts gebruikt
voor de citatie, echter zonder dat er een voetnoot bij-

This is a very short article. It cites the classical
databases book!.

References

1. Date, C. J. An Introduction to Database
Systems 8th ed. (Addison-Wesley Publishing
Company Inc., 2003).

biblatex-science

Het begint een beetje saai te worden maar voor het
tijdschrift Science is er het pakket biblatex-science, even-
eens door Joseph Wright. Citaties worden als nummers
met ronde haakjes afgedrukt.

biblatex-apa

Biblex-apa implementeert de citatie- en bibliografiestijl
voor de APA (American Psychological Association). De
implementator, Philip Kime, schrijft dat het nogal een
klus was omdat de layoutregels van de APA zo’n 60
pagina’s beslaan en het hem niet gelukt is om ze alle-
maal te implementeren. Er zijn ook een groot aantal
localisaties aanwezig voor degenen in andere landen die
een vergelijkbare stijl moeten gebruiken. Alleen werkt
deze stijl op dit moment niet met de nieuwste versie
van biblatex.

biblatex-chicago

Biblatex-chicago bevat stijlen volgens het beroemde
‘Chicago Manual of Style’. Deze kent twee stijlen: een
auteur-datum-stijl voor gebruik in de natuurweten-
schappen en een voetnoot-stijl voor gebruik in de hu-
maniora. Het pakket is geschreven door David Fussner.
Het verkeert nog in het bétastadium maar is al erg uit-

11



12 MAPS 41

gebreid. De handleiding beslaat 95 pagina’s.
Bij dit pakket is het mogelijk om in plaats van de

\usepackage [biblatex]

met de nodige opties het pakket zelf aan te roepen door
middel van:

\usepackage [authordate]{biblatex-chicago}
of:
\usepackage [notes] {biblatex-chicago}

Op deze manier worden meer opties automatisch gezet
dan met de aanroep van het pakket biblatex.

De optie ‘authordate’ heeft nog het meeste weg van
wat we in het eerste voorbeeld met natbib en de tradi-
tionele BibTgX route hebben geproduceerd. Er is zelfs
een optie ‘natbib’ die meegegeven kan worden. De optie
‘notes’ lijkt nog het meest op de stijl footnote-dw die
we eerder gezien hebben.

Er zijn ook localisaties voor Duits en Frans.

\documentclass{article}

\pagestyle{empty}

\setlength{\textwidth}{220pt}

\usepackage [natbib,authordate] {biblatex-chicago}
\bibliography{bibfile}

\begin{document}

This is a very short article.

It cites the classical databases book
\textcite{Date2003}.

\printbibliography
\end{document}

This is a very short article. It cites the classical
databases book Date (2003).

References

Date, C. J. 2003. An introduction to database
systems. 8th ed. Reading, Massachusetts:
Addison-Wesley Publishing Company Inc.

biblatex-historian
Deze stijl, geschreven door Sander Glibof, is een aange-
paste versie van de chicago stijl voor historici, omdat
deze vaak voetnoten gebruiken om te refereren, niet
alleen naar boeken en artikelen maar ook naar her-
drukken, correspondentie, archieven, ongepubliceerde
manuscripten en dergelijke. Het wordt voornamelijk
gebruikt met voetnoten als referenties maar er zijn ook
speciale commando’s om referenties in voetnoten te
gebruiken.

De stijl wordt beschreven in het boek van Kate L.

Piet van Oostrum

Turabian, ‘A Manual for Writers of Research Papers, The-
ses, and Dissertations: Chicago Style for Students and
Researchers, 7th ed. (Chicago and London: University
of Chicago Press, 2007)’. De stijl is erg uitgebreid, de
handleiding heeft 84 pagina’s waarvan een groot deel
bestaat uit de bespreking van de verschillende soorten
documenten waarnaar gerefereerd kan worden.

biblatex-philosophy

Deze stijl van Ivan Valbusa is voor referenties in het vak-
gebed filosofie. Helaas is de handleiding in het Italiaans
met slechts een korte README tekst in het Engels. Er
zijn 3 stijlen: klassiek, modern en verbose. Citaties zijn
door middel van voetnoten. De eerste twee stijlen zijn
gebaseerd op auteur-jaar stijl (de voetnoot bevat auteur
en jaar). Bij ‘verbose’ worden alle bibliografische gege-
vens opgenomen in de voetnoot. Met de optie ‘backref’
worden in de bibliografie bij een document terugverwij-
zingen geplaatst naar de plaatsen in de tekst waar het
document geciteerd wordt. Het pakket wordt gebruikt
door middel van een van de volgende commando’s:

\usepackage [style=philosophy-classic]{biblatex}
\usepackage [style=philosophy-modern] {biblatex}
\usepackage [style=philosophy-verbose]{biblatex}

Het bijzondere van dit pakket is dat er voorzieningen
zijn om vertalingen van werken of herdrukken tegelijk
met het origineel op te nemen in de referenties. Er
zijn voorzieningen voor Engels en Italiaans waarbij het
gemakkelijk is om andere talen toe te voegen.

biblatex-mla

Het pakket biblatex-mla van James Clawson onder-
steunt citaties volgens de richtlijnen van de Modern
Language Association (MLA). Het bijzondere van deze
stijl is dat alleen auteur en paginanummers gerefereerd
worden, tenzij er van een auteur meerdere werken ge-
citeerd worden. In dat geval wordt ook de titel erbij
gevoegd.

Biblatex-mla is echter nog niet aangepast aan de
nieuwste versie van biblatex. Het is ook geen onderdeel
van TgXLive, maar wel van MiKTgX. Het is te vinden
op http://konx.net/biblatex-mla/ en op CTAN
in macros/latex/contrib/biblatex-contrib/
biblatex-mla.zip.

biblatex-jura

Een stijl van Ben E. Hard voor de Duitse juridische
stijl van citeren volgens voorschriften van de uitgever
Nomos. Ook dit pakket is geen onderdeel van TgXLive,
maar wel van MiKTEX. De documentatie bestaat slechts
uit een README file. Hieruit is wel duidelijk dat dit
geen vervanging is van het uitgebreide jurabib pakket
voor het normale BibTgX gebruik. Het pakket wordt
gebruikt door middel van het commando:



Nieuws van CTAN

\usepackage [style=biblatex-jura] {biblatex}

Opmerkelijk dat de stijl hier ‘biblatex-jura’ heet, terwijl
de andere stijlen het gedeelte ‘biblatex-’ weglaten. Ci-
taties worden met \footcite gedaan inplaats van met
\cite.

Bibfile wijzigingen
Sommige opties van biblatex of een van de stijlen wer-
ken pas optimaal als de bibfile aangepast wordt.

Programma

Biber
Biber is een alternatief voor BibTgX voor gebruik bij
biblatex. Het is geschreven in Perl en kan op machines
waarop Perl aanwezig is redelijk gemakkelijk geinstal-
leerd worden. Op de site http://biblatex-biber.
sourceforge.net/ zijn bovendien executables te
downloaden voor Linux, Mac OS X en Windows. Het is
niet opgenomen in TgXLive en MiKTgX. Bij gebruik
van biber in plaats van BibTEX moet de extra optie
‘backend=biber’ meegegeven worden aan het biblatex-
pakket. De voordelen van biber zijn dat het Unicode on-
dersteunt, geen kunstmatige limieten heeft zoals BibTEX,
en dat het opgesplitste en meervoudige bibliografieén
in één keer kan verwerken.

Het programma is geschreven door Francois Charette
and Philip Kime.

CTAN: biblio/biber/

Piet van Oostrum
http://www.pietvanoostrum.com
piet@vanoostrum.org

NAJAAR 2010 13



14 MAPS 41

Up to ConTXt MKkVI

Introduction

No, this is not a typo: MkVI is the name of upcoming
functionality but with an experimental character. It is
also a playground. Therefore this is not the final story.

Defining macros

When you define macros in TgX, you use the # to
indicate variables. So, you code can end up with the
following;:

\def\MyTest#1#2#3#4%
{\dontleavehmode
\dostepwiserecurse{#1}{#2}{#3}
{\ifnum\recurselevel>#1 \space, \fi
\recurselevel: #4\space}%
.\par}

This macro is called with 4 arguments:

\MyTest{3}{8}{1}{Hi}

However, using numbers as variable identifiers might
not have your preference. It makes perfect sense if
you keep in mind that TgX supports delimited argu-
ments using arbitrary characters. But in practice, and
especially in ConTEXt we use only a few well defined
variants. This is why you can also imagine:

\def\MyTest#first#last#step#texth
{\dontleavehmode
\dostepwiserecurse{#first}{#last}{#step}
{\ifnum\recurselevel>#first \space,\fi
\recurselevel: #text}%
.\par}

In order for this to work, you need to give your file the
suffix mkvi or you need to put a directive on the first
line:

% macros=mkvi

You can of course use delimited arguments as well,
given that the delimiters are not letters.

\def\TestOne[#1]1%
{this is: #1}

\def\TestTwo#some%

Hans Hagen

{this is: #some}

\def\TestThree[#whatever][#morel%
{this is: #more and #whatever}

\def\TestFour[#onel#two%
{\def\TestFive[#alphal[#onel%
{#one, #two, #alpha}}

You can also use the following variant which is already
present for a while but not that much advertised. This
method ignores all spaces in definitions so if you need
one, you have to use \space.

\starttexdefinition TestSix #oeps
here: #oeps

\stoptexdefinition

These commands work as expected:

\startlines
\TestOne [one]
\TestTwo {one}
\TestThree[one][two]
\TestFour [onel{two}
\TestFive [one][two]
\TestSix {one}

\stoplines

this is: one

this is: one

this is: two and one
two, two, one

here: one

You can use buffers to collect definitions. In that
case you can force preprocessing of the buffer with
\mkvibuffer[name].

Implementation

This functionality is not hard coded in the LuaTgX
engine as this is not needed at all. We just preprocess
the file before it gets loaded and this is something that
is relatively easy to implement. Already early in the
development of LuaTgX we have decided that instead of
hard coding solutions, opening up makes more sense.

One of the first mechanisms that were opened up was



Up to ConTEXt MkVI

file I0. This means that when a file is opened, you
can decide to intercept lines and process them before
passing them to the traditional built in input parser.
The user can be completely unaware of this. In fact,
as LuaTgX only accepts UTF-8, preprocessing will likely
happen already when other input encodings are used.
The following helper functions are available:

local result = resolvers.macros.preprocessed(str)

This function returns a string with all named parame-
ters replaced.

resolvers.macros.convertfile(oldname, newname)
This function converts a file into a new one.

local result =
resolvers.macros.processmkvi(str,filename)

This function converts the string but only if the suffix of
the filename is mkvi or when the first line of the string is
a comment line containing macros=mkvi. Otherwise the
original string is returned. The filename is optional.

A few details

Imagine that you want to do this:
\def\test#1{before#lafter}

When we use names this could look like:
\def\test#inbetween{before#inbetweenafter?}

and that is not going to work out well. We could be
more liberal with spaces, like

\def\test #inbetween {before #inbetween after}

but then getting spaces in the output before or after
variables would get more complex. However, there is
a way out:

\def\test#inbetween{before#{inbetween}after}

As the sequence #{ has a rather low probablility of
showing up in a TgX source file, this kind of escaping is
part of the game. So, all the following cases are valid:

\def\test#oeps{... #oeps ...}
\def\test#oeps{... #{oeps} ...}
\def\test#{main:oeps}{... #{main:oeps} ...}
\def\test#{oeps:1}{... #{oeps:1} ...}
\def\test#{oeps}{... #oeps ...}

When you use the braced variant, all characters except
braces are acceptable as name, optherwise only lower-
case and uppercase characters are permitted.
Normally LuaTgX uses a couple of special tokens like *
and _. In a macro definition file you can avoid these by
using primitives:

NAJAAR 2010

& \aligntab

# \alignmark

*  \Usuperscript
\Usubscript

$ \Ustartmath

$ \Ustopmath

$$ \Ustartdisplaymath
$$ \Ustopdisplaymath

Especially the alignmark is worth noticing: using that
one directly in a macro definition can result in un-
wanted replacements, depending on whether a match
can be found. In practice the following works out well

\def\test#oeps{test:#oeps
\halign{##\cr #oeps\cr}}

You can use UTF-8 characters as well. For practical
reasons this is only possible with the braced variant.

\def\bla#{bla}{bla:#{bla}}

There will probably be more features in future versions
but each of them needs careful consideration in order
to prevent interferences.

Utilities

There is currently one utility (or in fact an option to an
existing utility):

mtxrun --script interface
--preprocess whatever.mkvi

This will convert the given file(s) to new ones, with the
default suffix tex. Existing files will not be overwritten
unless ---force is given. You can also force another
suffix:

mtxrun --script interface
--preprocess whatever.mkvi
--suffix=mkiv

A rather plain module luatex-preprocessor. luais pro-
vided for other usage. That variant provides a some-
what simplified version.

Given that you have a luatex-plain format you can
run:

luatex --fmt=luatex-plain
luatex-preprocessor-test. tex

Such a plain format can be made with:
luatex --ini luatex-plain
You probably need to move the format to a proper

location in your TgX tree.

Hans Hagen

15



16 MAPS 41 Hans Hagen

if not modules then modules = { } end modules ['luat-mac’'] = {

version = 1.001,

comment = "companion to luat-lib.mkiv",

author = "Hans Hagen, PRAGMA-ADE, Hasselt NL",
copyright = "PRAGMA ADE / ConTeXt Development Team”,
license = "see context related readme files”

}

local P, VvV, S, R, C, Cs, Cmt = lpeg.P, 1lpeg.V, lpeg.S, lpeg.R, lpeg.C, lpeg.Cs, lpeg.Cmt
local lpegmatch, patterns = lpeg.match, lpeg.patterns

local insert, remove = table.insert, table.remove
local rep, sub = string.rep, string.sub
local setmetatable = setmetatable

local report_macros = logs.new("macros"”)
local stack, top, n, hashes = { }, nil, @, { }

local function set(s)
if top then
n=n+1
if n > 9 then
report_macros("number of arguments > 9, ignoring %s",s)
else
local ns = #stack
local h = hashes[ns]
if not h then
h = rep("#",ns)
hashes[ns] = h
end
m=h..n
top[s] = m
return m
end
end
end

local function get(s)
local m = top and top[s] or s
return m

end

local function push()
top = { }
n==o
local s = stack[#stack]
if s then
setmetatable(top,{ __index = s })
end
insert(stack, top)
end

local function pop()
top = remove(stack)
end

local leftbrace

"{M -- will be in patterns
local rightbrace )



Up to ConTEXt MkVI NAJAAR 2010 17

local escape = P("\\")

local space = patterns.space

local spaces = space”1l

local newline = patterns.newline

local nobrace = 1 - leftbrace - rightbrace

local longleft = leftbrace -- P("(")

local longright = rightbrace -- P(")")

local nolong = 1 - longleft - longright

local name = R("AZ","az")*1 -- @?! -- utf?

local longname = (longleft/"") = (nolong*1) * (longright/"")
local variable = P("#") x Cs(name + longname)

local escapedname = escape * name

local definer = escape * (P("def"”) + P("egdx") * P("def"))
local startcode = P("\\starttexdefinition")

local stopcode = P("\\stoptexdefinition”)

local anything = patterns.anything

local always = patterns.alwaysmatched

local pushlocal = always / push

local poplocal = always / pop

local declaration = variable / set
local identifier = variable / get

local function matcherror(str,pos)
report_macros(”runaway definition at: %s",sub(str,pos-30,pos))
end

"converter"”,
pushlocal
startcode
spaces
name
spaces
(declaration + (1 - newline - space))*0
V("texbody")
stopcode
poplocal,
(  V("definition")
+ identifier
+ V("braced")
+ (1 - stopcode)
)"e,
definition = pushlocal
definer
escapedname
(declaration + (1-leftbrace))”o
V("braced")
poplocal,
leftbrace
* ( V("definition")
identifier
V("texcode")
V("braced")
nobrace

local grammar =
texcode

X% % X X %X %X 3 Il ™M

texbody

X% % % X%

braced

S + + + +



18 MAPS 41 Hans Hagen

-- % rightbrace*-1, -- the -1 catches errors
(rightbrace + Cmt(always,matcherror)),

*

pattern = V("definition") + V("texcode") + anything,

converter = V("pattern”)*1,

}
local parser = Cs(grammar)

local checker = P("%") *x (1 - newline - P("macros”))"0
* P("macros”) * space”@ x P("=") * space”@ * C(patterns.letter”1)

-- maybe namespace
local macros = { } resolvers.macros = macros

function macros.preprocessed(str)
return lpegmatch(parser,str)
end

function macros.convertfile(oldname,newname) -- beware, no testing on oldname == newname
local data = resolvers.loadtexfile(oldname)
data = interfaces.preprocessed(data) or ""
io.savedata(newname,data)

end

function macros.version(data)
return lpegmatch(checker,data)
end

function macros.processmkvi(str,filename)
if (filename and file.suffix(filename) == "mkvi") or lpegmatch(checker,str) == "mkvi" then
return lpegmatch(parser,str) or str
else
return str
end
end

if resolvers.schemes then

local function handler(protocol,name,cachename)
local hashed = url.hashed(name)
local path = hashed.path
if path and path ~= "" then
local data = resolvers.loadtexfile(path)
data = lpegmatch(parser,data) or ""
io.savedata(cachename,data)

end
return cachename
end
resolvers.schemes.install('mkvi',handler,1) -- this will cache !

utilities.sequencers.appendaction(resolvers.openers.helpers.textfileactions,

n on

"system”,"resolvers.macros.processmkvi")

end



Taco Hoekwater & Hartmut Henkel NAJAAR 2010 19

LuaTgEX 0.60

Abstract

TeXLive 2010 will contain LuaTEX 0.60. This article gives an overview of the changes be-
tween this version and the version on last year's TEXLive.

Highlights of this release: cweb code base, dynamic loading of lua modules, various font sub-
system improvements including support for Apple .dfont font collection files, braced input
file names, extended pdf Lua table, and access to the line breaking algorithm from Lua code.

General changes

Some of the changes can be organised into sections, but not all. So first, here are the
changes that are more or less standalone.

o Many of the source files have been converted into cweb. Early versions of LuaTgX
were based on Pascal web, but by 0.40 all code was hand-converted to C. The
literate programming comments were kept, and the relevant sources have now
been converted back into cweb, reinstating the literate documentation.

This change does not make LuaTgX a literate program in the traditional sense
because the typical C source code layout with pairs of header & implementation
files has been kept and no code reshuffling takes place. But it does mean that it is
now much easier to keep the source documentation up-to-date, and it is possible
to create nicely typeset program listings with indices.

o There are now source repository revision numbers in the banner again, which is
a useful thing to have while tracking down bugs. For example, the LuaTEX binary
being used to write this article starts up with:

This is LuaTeX, Version beta-0.60.1-2010042817 (rev 3659)

o The horizontal nodes that are added during line breaking now inherit the attrib-
utes from the nodes inside the created line.

Previously, these nodes (\leftskip and \rightskip in particular) inherited the
attributes in effect at the end of the (partial) paragraph because that is where line
breaking takes place.

o All Lua errors now report file and line numbers to aid in debugging, even if the
error happens inside a callback.

o LuaTgX can now use the embedded kpathsea library to find Lua require() files,
and will do so by default if the kpathsea library is enabled by the format (as is the
case in plain LuaTEX and the various LuaLaTEX formats).

o The print precision for small numbers in Lua code (the return value of tostring())
has been improved.

o Of course there were lots of code cleanups and improvements to the reference
manual.

Embedded libraries and other third-party inclusions

The following are changes to third-party code that for the most part should not need
much explanation.



20 MAPS 41

o oo ag

Taco Hoekwater & Hartmut Henkel

MetaPost is now at version 1.211.

Libpng is now at version 1.2.40.

New synctex code is imported from TgXLive.

The Lua source file from the luamd5 library (which provides the md5 . hexsuma func-
tion) is now embedded in the executable. In older versions of LuaTgX, this file was
missing completely.

The Lua co-routine patch (coco) is now disabled on linux powerpc because it
caused crashes on that platform due to a bad upstream implementation.

Dynamic loading of lua modules
LuaTgX now has support for dynamic loading of external compiled Lua libraries.

As with other require() files, LuaTgX can and will use kpathsea if the format

allows it to do so. For this purpose, kpathsea has been extended with a new file type:
clua. The associated texmf.cnf variable is defined like this by default:

CLUAINPUTS=. : $SELFAUTOLOC/1ib/{$progname, $engine, }/1lua//

which means that if your LuaTgX binary lives in

/opt/tex/texmf-linux-64/bin/

then your compiled Lua modules should go into the local directory, or in a tree below

/opt/tex/texmf-1linux-64/bin/1ib/1lua

Be warned that not all available Lua modules will work. LuaTgX is a command line
program, and on some platforms that makes it near impossible to use GUI-based
extensions.

Font related

Lots of small changes have taken place in the font processing.

[m}

The backend message
cannot open Type 1 font file for reading

now reports the name of the Typel font file it was looking for.

It is no longer possible for fonts from included pdf files to be replaced by / merged
with the document fonts of the enveloping pdf.

Support for Type3 .pgc files has been removed. This is just for the .pgc format
invented by Han Thé Thanh, bitmapped pk files still work.

For TrueType font collections (. ttc files), now the used sub-font name and its
index id are printed to the terminal, and if the backend cannot find the font in the
collection, the run is aborted.

It is now possible to use Apple .dfont font collection files. Unfortunately, in Snow
Leopard (a.k.a. MacOSX 10.6) Apple switched to a .ttc format that is not quite
compatible with the Microsoft version of . ttc. As a result, the system fonts from
Snow Leopard cannot be used in LuaTgX 0.60 yet.

The loading speed of large fonts via the fontloader library, and the inclusion speed
for sub-setting in the backend have both been improved.

Two new MathConstants entries have been added. Suppose the Lua math font
loading code produces a Lua table named f, then in that table, you can set

f.MathConstants.FractionDelimiterSize



LuaTEX 0.60 NAJAAR 2010 21

f.Mathconstants.FractionDelimiterDisplayStyleSize

These new fields allow proper setting of the size parameters for LuaTgX's
...withdelims math primitives, for which there is no ready replacement in the
OpenType MATH table.

o Artificially slanted or extended fonts now work via the pdf text matrix so that
this now also works for non-Typel fonts. In other words: the Lua f.slant and
f.extend font keys are now obeyed in all cases.

o There is another new allowed key: f.psname. When set, this value should be the
original PostScript font name of the font. In the pdf generation backend, fonts
inside .dfont and . ttc collections are fetched from the archive using this field, so
in those cases the key is required.

o A related change is made to the font name discovery used by the backend for
storage into the pdf file structure: now it tries f.psname first, as that is much less
likely to contain spaces than f.fontname (which the field that 0.40 used). If there
is no f.psname, it falls back to the old behaviour.

o Finally, Lua-loaded fonts now support a f.nomath key to speed up loading the Lua
table in the normal case of fonts that do not provide OpenType MATH data.

‘TEX’-side extensions and changes

LuaTgX is not actually TgX even though it uses an input language that is very similar,
hence the quotes in this section's title. Some of the following items are new LuaTgX
extensions, others are adjustments to pre-existing pdfTEX or Aleph functionality.

o The primitives \input and \openin now accept braced file names, removing the
need for double quote escapes in case of files with spaces in their name.

o The \endlinechar can now be set to any value between 0 and 127.

o The new primitives \aligntab and \alignmark are aliases for the characters with
the category codes of & and # in alignments, respectively.

o \lateluais now allowed inside leaders. To be used with care, because the lua code
will be executed once for each generated leader item.

o The new primitive \gleaders provides ‘globally aligned’ leaders. These leaders are
aligned on one side of the main output box instead of to the side of the immediately
enclosing box.

o From now on LuaTgX handles only 4 direction specifiers:

TLT (latin),
TRT (arabic),
RTT (cjk), and
LTL (mongolian).
Other direction specifiers generate an error.

o The \pdfcompresslevel is now effectively fixed as soon as any output to the pdf
file has occurred.

o \pdfobj has gained an extra optional keyword: uncompressed. This forces the ob-
ject to be written to the pdf in plain text, which is needed for certain objects con-
taining meta data.

o Two new token lists are provided: \pdfxformresources and \pdfxformattr, as an
alternative to \pdfxform keywords.

o The new syntax

\pdfrefxform [width <dimen>] [height <dimen>] [depth <dimen>] <formref>

scales a single form object; using similar principle as with \pdfximage: depth alone
doesn't scale, it shifts vertically.



22  MAPS 41 Taco Hoekwater & Hartmut Henkel

o Similarly,
\pdfrefximage [width <dimen>] [height <dimen>] [depth <dimen>] <imageref>

overrules settings from \pdfximage for this image only.

o The following obsolete pdfTgX primitives have been removed:
\pdfoptionalwaysusepdfpagebox
\pdfoptionpdfinclusionerrorlevel
\pdfforcepagebox
\pdfmovechars
These were already deprecated in pdfTEX itself.

Lua table extensions

In most of the Lua tables that LuaTgX provides, only small changes have taken place,
so they do not deserve their own subsections.

o There is a new callback: process_output_buffer, for post-processing of \write
text to a file.

o The callbacks hpack_filter, vpack_filter and pre_output_filter pass on an ex-
tra string argument for the current direction.

o fontloader.open() previously cleared some of the font name strings during load
that it should not do.

o The new function font.id(”tenrm") returns the internal id number for that font.
It takes a bare control sequence name as argument.

o The os.name variable now knows about cygwin and kfreebsd.

o 1fs.readlink("file") returns the content of a symbolic link (unix only). This
extension is intended for use in texlua scripts.

o 1fs.shortname("file”) returns the short (FAT) name of a file (windows only).
This extension is intended for use in texlua scripts.

o kpse.version() returns the kpathsea version string.

o kpse.lookup({...}) offers a search interface similar to the kpsewhich program,
an example call looks like this:

kpse.set_program_name('luatex')
print(kpse.lookup ('plain.tex’,
{ ["format"] = "tex",
["all"] = true,
["must-exist”] = true }))

The ‘node’ table
In the verbatim code below, n stands for a userdata node object.

o node.vpack(n) packs a list into a vlist node, like \vbox.

o node.protrusion_skippable(n) returns true if this node can be skipped for the
purpose of protrusion discovery.
This is useful if you want to (re)calculate protrusion in pure Lua.

o node.dimensions(n) returns the natural width, height and depth of a (horizontal)
node list.

O node.tail(n) returns the tail node of a node list.

o Each glyph node now has three new virtual read-only fields: width, height, and
depth. The values are the number of scaled points.

o glue_spec nodes now have an extra boolean read-only field: writable.
Some glue specifications can be altered directly, but certain key glue specifications
are shared among many nodes. Altering the values of those is prohibited because



LuaTgX 0.60 NAJAAR 2010 23

it would have unpredictable side-effects. For those cases, a copy must be made and
assigned to the parent node.

o hlist nodes now have a subtype to distinguish between hlists generated by the
paragraph breaking, explicit \hbox commands, and other sources.

o node.copy_list(n) now allows a second argument. This argument can be used to
copy only part of a node list.

o node.hpack(n) now accepts cal_expand_ratio and subst_ex_font modifiers.
This feature helps the implementation of font expansion in a pure Lua paragraph
breaking code.

o node.hpack(n) and node.vpack(n) now also return the ‘badness’ of the created
box, and accept an optional direction argument.

The ‘pdf’ table

o The new functions pdf.mapfile(”...") and pdf.mapline("”...") are aliases for
the corresponding pdfTEX primitives.

o pdf.registerannot() reserves a pdf object number and returns it.

o The functions pdf.obj(...), pdf.immediateobj(...), and pdf.reserveobj(...)
are similar to the corresponding pdfTEX primitives. Full syntax details can be read
in the LuaTgX reference manual.

o New read-write string keys:

pdf.catalog string goes into the Catalog dictionary.

pdf.info string goes into the Info dictionary.

pdf.names string goes into the Names dictionary. referenced by the Catalog
object.

pdf.trailer string goes into the Trailer dictionary.

pdf.pageattributes string goes into the Page dictionary.
pdf.pageresources string goes into the Resources dictionary referenced by
the Page object.

pdf.pagesattributes string goes into the Pages dictionary.

The ‘tex’ table
Finally, there are some extensions to the tex table that are worth mentioning.

o tex.badness(f,s) interfaces to the ‘badness’ internal function.

Accidentally, this disables access to the \badness internal parameter. This will be
corrected in a future LuaTgX version.

tex.sp(”1in") converts Lua-style string units to scaled points.
tex.tprint({...3},{...}) is like a sequence of tex.sprint(...) calls.
tex.shipout(n) ships out a constructed box.

tex.nest[] and tex.nest.ptr together allow read-write access to the semantic
nest (mode nesting).

For example, this prints the equivalent of \prevdepth at the current mode nesting
level.

oo oo

print (tex.nest[tex.nest.ptr].prevdepth)

tex.nest.ptr is the current level, and lower numbers are enclosing modes.
Each of the items in the tex.nest array represents a mode nesting level and has a
set of virtual keys that be accessed both for reading and writing, but you cannot



24 MAPS 41

Taco Hoekwater & Hartmut Henkel

change the actual tex.nest array itself. The possible keys are listed in the LuaTgX
reference manual.

o tex.linebreak(n, {...}) allows running the paragraph breaker from pure Lua.

The second argument specifies a (potentially large) table of line breaking parame-
ters: the parameters that are not passed on explicitly are taken from the current
typesetter state.

The exact keys in the table are documented in the reference manual, but here is a
simple, but complete example how to run line breaking on the content of \boxe:

\setbox@=\hbox to \hsize{\input knuth }
\startluacode
local n = node.copy_list(tex.box[@].1list)
local t = node.tail(n)
local final = node.new(node.id('glue’))
final.spec = node.new(node.id('glue_spec'))
final.spec.stretch_order = 2
final.spec.stretch = 1
node.insert_after(n,t, final)
local m = tex.linebreak(n,

{ hangafter = 2, hangindent = tex.sp("2em")3})
local g = node.vpack(m)
node.write(q)
\stopluacode

The result is:

Thus, I came to the conclusion that the designer of a new system must not only

be the implementer and first large—scale user; the designer should also write the
first user manual. The separation of any of these four components would
have hurt TgX significantly. If I had not participated fully in all these ac-
tivities, literally hundreds of improvements would never have been made,
because I would never have thought of them or perceived why they were im-
portant. But a system cannot be successful if it is too strongly influenced by
a single person. Once the initial design is complete and fairly robust, the real
test begins as people with many different viewpoints undertake their own
experiments.

Summary

All in all, there are not that many incompatible changes compared to LuaTEX 0.40,
and the LuaTgX project is progressing nicely.

LuaTgX beta 0.70 will be released in the autumn of 2010. Our current plans for
that release are: access to the actual pdf structures of included pdf images; a partial
redesign of the mixed direction model; even more access to the LuaTgX internals
from Lua; and probably some more ...

Taco Hoekwater & Hartmut Henkel



Pawet Jackowski

NAJAAR 2010

Luna—my side of the moon

Perhaps everyone knows this pleasant feeling when
a long lasting project is finally done. A few years
ago, just when I was almost happy with my pdfTgX
environment, I saw LuaTgX for the first time. Instead
of enjoying a relief, I had to take a deep breath and
started moving the world to the Moon. The state of
weightlessness resulted in that now, I am not able to
walk on the ‘normal’ ground anymore. But I don’t
even think about going back. Although I still haven’t
settled down for good, the adventure is delightful. To
domesticate a new environment I gave it a name—Luna.

First thoughts

My first thought after meeting LuaTgX was ‘wow!’.
Scripting with a neat programming language, access to
TgX lists, the ability to hook some deep mechanisms via
callbacks, font loader library on hand, integrated Meta-
Post library and more. All this was tempting and I had
no doubts I wanted to go for it. At the first approach
I'was thinking of migrating my workflows step-by-step,
replacing some core mechanisms with those provided
by LuaTgX. But not only the macros needed to change.
It was considering “TgX’ a programming language that
needed to change. In LuaTgX I rather treat TgX as
a paragraph and page building machine to which I can
talk in a real programming language.

There were a lot of things I had to face before I was
able to typeset anything, at least UTF-8 regime and a
new TgX font representation. A lot of work that I never
wanted to do myself. So just after ‘wow!” also ‘ooops...’
has come. In this article I focus on things rather tightly
related to pdf graphics, as I find that part the most
interesting, at least in a sense of taking advantage of
Lua and LuaTgX functionalities.

\ pdfliteral retires

TgX concentrates on texts, providing only a raw mech-
anism for document graphics features, such as colors,
transparencies or geometry transformations. pdfTgX
goes a little bit further providing some concept of
a graphic state accessible for the user. But the tools
for the graphic control remain the same. We have only
specials in several variants.

What’s wrong with them? The things they do behind
the scenes may be harmful.

\def\flip#1{%
\pdfliteral{q -1 @ @ -1 20 6 cm}%
\hbox to@pt{#1\hss}%
\pdfliteral{Q}\hbox to2@bp{\hss}}
\def\red#1{%
\pdfliteral page{q @ 1 1 @ k}%
#1\pdfliteral page{Q}}

The first macro applies a transformation to a 3%X9}
object, the second applies a . If used separately,
they work just fine. If used as \flip{\red{text}}, it’s
still ok: . Now try to say \red{\flip{text}}. The
text is transformed and colored as expected. But all
the rest of the page is broken, as its content is com-
pletely displaced! And now try \red{\flip{text}?}
(with a question mark at the end of a parameter text).
Everything is perfectly ok again:

Here is what happens. When \pdfliteral occurs,
pdfTEX outputs a whatsit. This whatsit will cause writ-
ing the data into the output pdf content stream at the
shipout time. If the literal was used in a default mode
(with no direct or page keywords) pdfTgX first writes
a transformation from lower-left corner of the page to
the current position, then prints the user data, then
writes another transformation from the current posi-
tion back to the pdf page origin. Actually the transform
restoration is not performed immediately after writing
the user data, but on the beginning of the very next
textual node. So in the case of several subsequent literal
whatsit nodes, the transform may occur not where the
naive user expects it. Simplifying the actual pdf output,
we expected something like

go110k % save, set color
100180750 cm % shift to TeX pos
g-100-1206 cm% save, transform
BT ... ET % put text

Q % restore transform
1001 -80 -750 cm % shift (redundant)
Q % restore color
but we got

g2110k

1001 80 750 cm

q-100-1206cm

25



26 MAPS 41

BT ... ET
Q

Q
1001 -80 -750 cm

In general, the behavior of \pdfliterals depends on
the surrounding node list. There are reasons behind it.
Nevertheless, one can hardly control lists in pdfTgX, so
it’s hard to avoid surprises.

Does LualgX provide something better then
\pdfliterals? It provides \latelua. Very much like
\pdfliteral, a \latelua instruction inserts a whatsit.
At the time of shipout, LuaTgX executes the Lua code
provided as an argument to \latelua. The code may call
the standard pdf.print() function, which writes a raw
data into a pdf content stream. So what’s the difference?
The difference is that in \1atelua chunks we know the
current position on the page, it is accessible through
pdf.h and pdf.v fields. We can therefore use the po-
sition coordinates explicitly in the literal content. To
simulate the behavior of \pdfliteral one can say

\latelua{
local bp = 65781
local cm = function(x, y)
return string.format(
"1 0 0 1 \%.4f \%.4f cm\string\n",
x/bp, y/bp
)
end

pdf.print(”"page”, cm(pdf.h, pdf.v))

% special contents

pdf.print("page”, cm(-pdf.h, -pdf.v))
3

Having the \latelua mechanism and the pdf.print()
function, I don’t need and don’t use \pdfliterals any
longer.

Graphic state

Obviously writing raw pdf data is supposed to be
covered by lower level functions. Here is an example
of how I set up graphic features in the higher level
interface:

\pdfstate{
local cmyk = color.cmyk
cmyk.orange =

(0.8xcmyk.red+cmyk.yellow)/2

fillcolor = cs.orange
opacity = 30
linewidth = '1.5pt’
rotate(30)

Pawet Jackowski

}

The definition of \pdfstate is something like

\long\def\pdfstate#1{%
\latelua{setfenv(1, pdf) #13}}

The parameter text is Lua code. setfenv() call simply
allows me to omit the ‘pdf.’ prefix before variables.
Without that I would need

\latelua{
pdf.fillcolor =
pdf.opacity = 30
pdf.linewidth =
pdf.rotate(30)

pdf.color.cmyk.orange

"1.5pt’

}

pdf is a standard LuaTgX library. I extend its function-
ality, so that every access to special fields causes an as-
sociated function call. Every such function updates the
internal representation of a graphic state and keeps the
output pdf graphic state synchronized by writing out
the appropriate content stream data. But whatever goes
on behind the scenes, on top I have just key=value pairs.
I’'m glad I no longer need to think about obscure TgX
interfaces for that. The Lua language is the interface.

I expect graphic features to behave more or less like
the basic text properties, such as font and size. They
should obey grouping and they should remain active
across page breaks. The first requirement can be satis-
fied simply by using \aftergroup in conjunction with
\currentgrouplevel. A simple grouping-wise graphic
state could be made as follows:

\newcount\gstatelevel
\def\pdfsave{\latelua{
pdf.print(”"page”, "q\string\n")}}
\def\pdfrestore{\latelua{
pdf.print(”"page”, "Q\string\n")3}}
\def\pdflocal#1{
\ifnum\currentgrouplevel=\gstatelevel
\else
\gstatelevel=\currentgrouplevel
\pdfsave \aftergroup\pdfrestore
\fi \latelua{pdf.print"#1\string\n"}}

\begingroup \pdflocal{0.5 g}
this is gray

\endgroup

this is black

Passing the graphic state through page breaks is rel-



Luna—my side of the moon

atively difficult due to the fact that we usually don’t
know where TgX thinks the best place to break is. In
my earth-life I was abusing marks for that purpose or,
when a more robust mechanism was needed, I used
\writes at the price of another TgX run and auxil-
iary file analysis. And here is another advantage of
using \latelua: since Lua chunks are executed during
shipout, we don’t need to worry about the page break
because it has already happened. If every graphic state
setup is a Lua statement performed in order during
shipout and every such statement keeps the output pdf
state in sync through pdf.print() calls, then after the
shipout the graphic state is exactly what should be
passed on to the next page.

In a well structured pdf document every page should
refer only to those resources, which were actually used
on that page. The pdfTEX engine guarantees that for
fonts and images, the \latelua mechanism makes it
straightforward for other resource types.

Note a little drawback of that late graphic state
concept: before shipout one can only access the state
at the beginning of the page, because recent \latelua
calls that should update the current state have not
happened yet. I thought this might be a problem and
made a mechanism that updates a pending-graphic
state for early usage, but, so far, I never needed to use
it in practice.

PDF data structures

When digging deeper, we have to face creating custom
pdf objects for various purposes. Due to the lack of com-
posite data structures, in pdfTgX one was condemned
to strings. Here is an example of pdf object creation in
pdfTgX.

\immediate\pdfobj{<<

/FunctionType 2

/Range [01010101]

/Domain [@ 1] /N 1

/Co [0 0 0 0] /C1 [0 .4 1 @]

>>}

\pdfobj{
[/Separation /Spot /DeviceCMYK
\the\pdflastobj\space @ R]

H\pdfrefobj\pdflastobj

In LuaTEX one can use Lua structures to represent pdf
structures. Although it involves some heuristics, I find
it convenient to build pdf objects from clean Lua types,
like in this example:

\pdfstate{create
{"Separation”,"Spot", "DeviceCMYK",
dict.ref{

NAJAAR 2010

FunctionType =
Range = {0,1,0,1,0,1,
Domain = {@,1}, N =1,
Co = {0,0,0,0}, C1 = {0,.4,1,0}

2!
1

3

Usually, I don’t need to create an independent represen-
tation of a pdf object in Lua. I rather operate on more
abstract constructs, which may have a pdf-independent
implementation and may work completely outside of
LuaTgX. For color representation and transformations
I use my color library, which has no knowledge about
pdf at all. An additional LuaTgX-dependent binder ex-
tends that library with extra skills necessary for the pdf
graphic subsystem.

Here is an example of a somewhat complex colorspa-
ce, a palette of duotone colors, each consisting of two
spot components with lab equivalent (the pdf structure
representation for this is much too long to be shown

here):

\pdfstate{
local lab = colorspace.lab{
reference = "D65"
3
local duotone = colorspace.poly{
{name = "Black"”, lab.black},
{name = "Gold", 1lab.yellow},
}
local palette = colorspace.trans{
duotone(@,100), duotone(100,0),
n = 256
}
fillcolor = palette(101)
}

On the last line, the color object (simple Lua table) is
set in a graphic state (Lua dictionary), and its color-
space (another Lua dictionary) is registered in a page
resources dictionary (yet another Lua dictionary). The
graphic state object takes care of updating a pdf content
stream, and finally the resources dictionary ‘knows’
how to become a pdf dictionary.

It’s never to late

When talking about pdf objects construction I've
concealed one sticky difficulty. If I want to handle
graphic setup using \latelua, I need to be able to
create pdf objects during shipout. Generally, \latelua
provides no legal mechanism for that. There is the
pdf.obj() standard function, a LuaTgX equivalent of
the \pdfobj primitive, but it only obtains an allo-

27



28 MAPS 41

cated pdf object number. What actually ensures writ-
ing the object into the output is a whatsit node in-
serted by the \pdfrefobj<number> instruction. But in
\latelua it is too late to use it. Also, don’t try to
use pdf.immediateobj() variant within \latelua, as it
writes the object into the page content stream, resulting
in an invalid pdf document.

So what can one do? LuaTgX allows one to create an
object reference whatsit by hand. If we know the tail
of the list currently written out (or any list node not
yet swallowed by a shipout procedure), we can create
this whatsit and put it into the list on our own (risk),
without the use of \pdfrefobj.

\def\shipout{%
\setbox256=\box\voidb@x
\afterassignment\doshipout\setbox256=}
\def\doshipout{%
\ifvoid256 \expandafter\aftergroup \fi
\lunashipout}
\def\lunashipout{\directlua{
luna = luna or {}
luna.tail =
node.tail (tex.box[256].1list)
tex.shipout(256)
13

\latelua{
local data = "<< /The /Object >>"
local ref = node.new(
node.id "whatsit”,
node.subtype "pdf_refobj"

)
ref.objnum = pdf.obj(data)
local tail = luna.tail

tail.next = ref ref.prev = tail
luna.tail = ref % for other lateluas

}

In this example, before every \shipout the very last
item of the page list is saved in luna.tail. During
shipout all code snippets from late_lua whatsits may
create a pdf_refobj node and insert it just after the page
tail which ensures that the LuaTgX engine will write
them out.

Self-conscious \latelua

If every \latelua code chunk may access the page
list tail, why not to give it access to the late_lua
whatsit node to which this code is linked? Here is the
conceptual representation of a whatsit that contains
Lua code that can access the whatsit itself:

\def\lateluna#1{\directlua{

Pawet Jackowski

local self = node.new(
node.id "whatsit”,
node.subtype "late_lua”

)
self.data = "\luaescapestring{#1}"
luna.this = self
node.write(self)
1}

\lateluna{print(luna.this.data)?}

Beyond the page builder

A self-printing Lua code is obviously not what I use this
mechanism for. It is worthwhile to note that if we can
make a self-aware late_lua whatsit, we can also access
the list following this whatsit. It is too late to change
previous nodes, as they were already eaten by shipout
and written to the output, but one can freely (which
doesn’t mean safely!) modify the nodes that follow the
whatsit.
Let’s start with a more general self-conscious late_lua

whatsit:

\long\def\lateluna#1{\directlua{
node.write(
luna.node("\luaescapestring{#1}")
)
33
\directlua{
luna.node = function(data)
local self = node.new(
node.id "whatsit”,
node.subtype "late_lua”
)
local n = \string#luna+1
lunaln] self
self.data =
"luna.this =
return self
end

}

lunal”..n.."] "..data

Here is a function that takes a text string, font identifier
and absolute position as arguments and returns a hori-
zontal list of glyph nodes:

local string = unicode.utf8

function luna.text(s, font_id, x, y)
local head = node.new(node.id "glyph")
head.char = string.byte(s, 1)
head.font = font_id
head.xoffset = -pdf.h+tex.sp(x)
head.yoffset = -pdf.v+tex.sp(y)
local this, that = head
for i=2, string.len(s) do



Luna—my side of the moon

that = node.copy(this)
that.char = string.byte(s, i)
this.next = that that.prev = this
this = that

end

head = node.hpack(head)

head.width = @

head.height = @

head.depth = @

return head

end

Now we can typeset texts even during shipout. The
code below results in typing the it is never too
late! text with a 10bp offset from the page origin.

\lateluna{
local this = luna.this
local text = luna.text(
"it is never too late!"”,
font.current(), '10bp', '10bp’
)
local next = this.next
this.next = text text.prev = this
if next then
text = node.tail(text)
text.next = next next.prev = text
end

}

Note that when mixing shipout-time typesetting (man-
ually generated lists) and graphic state setups (using
pdf.print() calls), one has to ensure that the placement
of things is in the correct order. Once a list of glyphs
is inserted after a late_lua whatsit, the embedded Lua
code should not print literals into the output. All literals
will effectively be placed before the text anyway. Here
is a funny mechanism to cope with that:

\lateluna{
luna.thread = coroutine.create(
function()
local this, next, text, tail
for i=0, 360, 10 do
% graphic setup
pdf.fillcolor =
pdf.color.hsb(i,100,100)
pdf.rotate(10)
% glyphs list
this = luna.this next = this.next
text = luna.text("!",
font.current(), 0, 0)
this.next = text text.prev = this
text = node.tail(text)
% luna tail

NAJAAR 2010

tail = luna.node
"coroutine.resume(luna.thread)”
text.next = tail tail.prev = text
if next then
tail.next = next next.prev = tail
end
coroutine.yield()
end
end)
coroutine.resume(luna.thread)
H\end

This is the output:

(@)

Once the page shipout starts, the list is almost empty.
It contains just a late_lua whatsit node. The code of
this whatsit creates a Lua coroutine that repeatedly sets
some color, some transformation and generates some
text (an exclamation mark) using an already known
method. The tail of the text is another late_lua node.
After inserting the newly created list fragment, the
thread function yields, effectively finishing the exe-
cution of the first late_lua chunk. Then the shipout
procedure swallows the recently generated portion of
text, writes it out and takes care of font embedding.
After the glyph list, the shipout spots the late_lua
whatsit with the Lua code that resumes the thread
and performs another loop iteration, creating a graphic
setup and generating text again. So the execution of the
coroutine starts in one whatsit, but ends in another, that
didn’t exist when the procedure started. Every list item
is created just before being processed by the shipout.

Reinventing the wheel

Have you ever tried to draw a circle or ellipse us-
ing \pdfliterals? It is very inconvenient, because the
pdf format provides no programming facilities and
painting operations are rather limited in comparison
with its PostScript ancestors. Here is an example of
some PostScript code and its output. The code uses
control structures, which are not available in pdf. It also

29



30 MAPS 41

takes advantage of the arc operator that approximates
arcs with Bézier curves. To obtain elliptical arcs, it uses
the fact that (unlike in pdf) transformations can be
applied between path construction operators.

/r 15 def

/dx 50 def /dy -50 def

/pos {day 7 mod dx mul week dy mul} def
/arx /arc load def

dx dy 4 mul neg translate
0.6 setgray 0.4 setlinewidth
1 setlinejoin 1 setlinecap
0127 ¢
/day exch def /week day 7 idiv def
/s day 360 mul 28 div cos def
day 14 eq {
/arx /arcn load def
A
gsave pos r 90 270 arx
day 7 eq day 21 eq or {
closepath
gsave 0 setgray stroke grestore
A
s 1 scale
pos exch s div exch r 270 90 arx
gsave 0 setgray initmatrix stroke

grestore
} ifelse
fill grestore
} ifelse
} for
U UV @ ¢
// 0 ‘//'/"7 ‘ '/ ' 4 /V //

DEDEDED R
PP OOGOOO

4

-

In LuaTEX one can hire MetaPost for drawings, obtain-
ing a lot of coding convenience. The above program
wouldn’t be much simpler, though. As for now Meta-
Post does not generate pdf, the data it outputs still needs
some postprocessing to include the graphic on-the-fly
into the main pdf document.

AsIdonot want to invent a completely new interface
for graphics, I decided to involve PostScript code into

Pawet Jackowski

the document creation. Just to explain how it may
pay off, after translating the example above into a pdf
content stream I obtain 30k bytes of code, which is quite
a lot in comparison with 500 bytes of PostScript input.

PostScript support sounds scary. Obviously I'm not
aiming to develop a fully featured PostScript machine
on the LuaTgX platform. The PostScript interpreter is
supposed to render the page on the output. In Luna
I just write the vector data into the pdf document
content, so what I actually need is a reasonable subset
of PostScript operators. The aim is to control my doc-
ument graphics with a mature language dedicated to
that purpose. The following two setups are equivalent,
as at the core level they both operate on the same Lua
representation of a graphic state.

\pdfstate{% lua interface
save()
fillcolor = color.cmyk(9,40,100,0)
restore()}

\pdfstate{% postscript interface
ps "gsave @ .4 1 @ setcmykcolor”

ps "grestore”

}

A very nice example of the benefit of joining typeset-
ting beyond the page builder and PostScript language
support is the 7-spiral submitted by Kees van der Laan:

993
Y8855 0
N, Q% 20064 6’0 O

NS Ty
AL LA
O)Oo ”)Oo'\/b{lf% 92?4; Uij\ouj d_)d)
s 200

< OOoomE Q;;wfégg;#goo:ooo
o RO
f %t}’% “\/’\«OQ’\) )
AROL
O QL
0k X0

(see www.gust.org.pl/projects/pearls/2010p)

Pawet Jackowski
GUST



Luigi Scarso

NAJAAR 2010

PDF/A-1a in ConTXt MKIV

Abstract

| present some considerations on electronic document
archiving and how ConTgXt MkIV supports the ISO
Standard 19500-1 Level A Conformance (PDF/A-1a:2005),
an 1SO standard for long-term document archiving.

Keywords
LuaTeX, ConTeXt MkIV, PDF/A, color, font.

Introduction

In this paper I will briefly talk about the ISO Standard
PDF/A-1 and how ConTgXt MKIV tries to adhere to its
requirements by showing some practical examples.
About the typographic style of this paper: I will follow
these simple rules: I will avoid footnotes and citations
on running text, and I will try to limit lists (e.g. only
itemize and enumerate) and figures; the last section
before the References one will collect all citations.

The PDF/A-1 I1SO Standard

Probably one of the best known PDF versions is PDF 1.4
(around 2001, almost ten years ago) maybe because the
companion Acrobat 5.0 was a robust program and the
PDF Reader was freely available for several platforms
both as a program and as plug in for browsers. We keep
having a huge amount of electronic documents that are
in PDF 1.4, hence we should not be surprised if Adobe
pushed it as reference for document archiving. What
follows is a verbatim copy from http://www.digitalp-
reservation.gov/formats/fdd/fdd000125.shtml and it's a
good description:

PDF/A-1 is a constrained form of Adobe PDF
version 1.4 intended to be suitable for long-term
preservation of page-oriented documents for
which PDF is already being used in practice. The
ISO standard [ISO 19005-1:2005] was developed by
a working group with representatives from gov-
ernment, industry, and academia and active sup-
port from Adobe Systems Incorporated. Part 2 of
ISO 19005 (as of September 2010, an ISO Draft In-
ternational Standard) extends the capabilities of
Part 1. It is based on PDF version 1.7 (as defined in

ISO 32000-1) rather than PDF version 1.4 (which is
used as the basis of ISO 19005-1).

PDF/A attempts to maximize device indepen-
dence, self-containment, self-documentation. The
constraints include: audio and video content are
forbidden, JavaScript and executable file launches
are prohibited, All fonts must be embedded and
also must be legally embeddable for unlimited,
universal rendering, colorspaces specified in a
device-independent manner, encryption is disal-
lowed, use of standards-based metadata is man-
dated.

The PDF/A-1 standard defines two levels of con-
formance: conformance level A satisfies all re-
quirements in the specification; level B is a lower
level of conformance, ‘encompassing the require-
ments of this part of ISO 19005 regarding the vi-
sual appearance of electronic documents, but not
their structural or semantic properties’.

In essence the standard wants to ensure that every
typographic element, from the low level character to
the high level logical structure is unambiguously de-
fined and unchangeable — and it does, it achieves
its purpose: every character must be identified by a
Unicode id, which is an international standard, every
color must be device independent by means of a color
profile or output intent, there must be precise meta data
informations for classifications and the document must
have a logical structure described by a (possible ad-hoc)
markup language.

Unfortunately the PDF version 1.4 is quite old: an-
imations and 3D pictures cannot be embedded, the
font format cannot be OpenType, JavaScript programs
are not permitted at all, even if they don't modify the
document in any way as, for example, a calculator. Ten
years ago it was very important to guarantee that the
document would always be printed as intended, nowa-
days screen is slowly replacing paper and animations
play a fundamental role: PDF/A-1 is good for paper but
less than optimal for ‘electronic paper’.

PDF/A-1a in ConTgXt MkIV
Given that it is still under heavy development, ConTEXt

31



32 MAPS 41

MKIV has the opportunity to be developed on two
fronts: the ‘low level’ luaTgX (CWEB code and Lua
primitives) and the ‘high level’ macros that build the
format itself. One of this year's results is the implemen-
tation of ‘tagged PDF’, the Adobe document markup
language for PDF documents, and the development of
color macros for the PDF/X specifications. As a conse-
quence, it was possible to use these results to test some
real code for producing PDF/A-1a compliant documents.
Let's start with an example explained step-by-step.

%% Debug
\enabletrackers[backend. format,
backend.variables]

%% For PDF/A

\setupbackend[

format={pdf/a-1a:2005},

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

intent={%

ISO coated v2 300\letterpercent\space (ECI)}

1

%% Tagged PDF

%% method=auto ==> default tags by Adobe

\setupstructure[state=start,method=auto]

\definecolor[Cyan][c=1.0,m=0.0,y=0.0,k=0.0]

\starttext

\startchapter[title={Test}]

\startparagraph

\input tufte

%% Some ConTeXt env. are already mapped:

%% colors

\color[red]{OK}

\color[Cyan]{OK}

%% figures

\externalfigure[rgb-icc-srgb. jpgl
[width=0.4\textwidth]

\stopparagraph

%% Natural tables

\bTABLE

\bTR\bTD 1 \eTD \bTD 2 \eTD \eTR

\bTR \bTD[nx=2] 3 \eTD\eTR

\eTABLE

\stopchapter

\stoptext

As usual the file is processed with
#>context test.tex

and it doesn't hurt to enable some debug information
with

\enabletrackers[backend. format,

Luigi Scarso

backend.variables]

Enable the PDF/A-1a

To enable PDF/A-1a we must setup the backend with the
appropriate variant of PDF/A. From the very beginning
ConTgXt has had a backend system that permits to
use almost the same macro-format for different outputs
(i.e. DVI and PDF), and with luaTgX this system is
increasingly enhanced, as we'll see later on.

With

format={pdf/a-1a:2005}

we select the 1a variant of PDF/A standard and the label
is mandatory because it also puts some default meta
data into the output (see 1pdf-pda.xml; a complete list
of formats is currently in 1pdf-fmt.lua and also as a
Lua table 1pdf.formats).

Next comes the colors part, and we must pay atten-
tion here. The key concept is:

every color must be independent of any device.
Usually in a PDF we have two sources for colors:
the colors specified by the author, e.g. something
like \definecolor[orange]l[r=1.0,g=0.5,b=0.0], and
the images. The most used color spaces DeviceGray,
DeviceRGB, DeviceCMYK are device dependent because
the reproduction of a color from these color spaces
depends on the particular output device, and the real
output devices are all different due both to the different
nature (screen vs. printer, for example) and different
technologies (CRT vs. LCD screen, or inkjet vs laser
printer, for example). Every device can be classified
by means of a color profile which maps an input color
(rgb, cmyk or gray) to an independent color space: such
maps ensure that each device will correctly reproduce
the color, and also the independent color space permits
to compare colors from different color spaces.

With

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

we associate all the document colors with the corre-
sponding color profile by mean of a filename (the file
colorprofiles.xml has a list of predefined profiles).
Be careful here: it's wrong to associate a rgb color
space with a cmyk profile, and not all profiles are
good, especially those for printing. Moreover PDF/A-1a
allows only profiles having version 3 or below.

There is a second way to specify colors, and it's a
bit complicated. We must specify that all the colors
without profile are intended to be used with a common
output profile, i.e. we must impose an output intent:
this is the meaning of



PDF/A-1a in ConTEXt MkIV

intent={%
ISO coated v2 300\letterpercent\space (ECI)}

which is a cmyk profile for coated paper. Note that we

are using a name and not a filename to avoid clashing

with the values of the profile key.

By doing so we accept these implicit limitations and

color space conversions:

o if the output intent is a cmyk profile then the docu-
ment can have only cmyk and gray colors;

o if the output intent is a rgb profile then the docu-
ment can have only rgb and gray colors;

o if the output intent is a gray profile then the docu-
ment can have only gray colors.

They are reasonable: in general we cannot use a rgb
color with a cmyk profile because there are rgb col-
ors without equivalent cmyk ones (that is to say that
screens display more colors than printers). We can
convert a gray color to rgb or cmyk because usually
gray color spaces are a subset of the former (otherwise
we have a really poor device). It's not an error if we
specify both profiles and output intent: at least if all
color spaces have their own profiles, as in the example,
then the output intent is simply ignored by a PDF/A
compliant PDF reader.

Finally the images: we must be sure that every image
has its color profile — and this can be a bit complicated.

In the following example, rgb-noprofile.jpg is a
jpeg image with a RGB color space and without a color
profile:

\setupbackend[
format={pdf/a-1a:2005},%level=0,
profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},
]
\setupstructure[state=start]
\starttext
\startchapter[title={Test}]
\startparagraph
\externalfigurel[rgb-noprofile. jpg]
[width=0.4\textwidth]
\stopchapter
\stoptext

The luatex program loads the image, it wraps it in a
/XObject, and sets its ColorSpace to DeviceRGB:

<<

/Type /XObject
/Subtype /Image
/Width 640

/Height 400
/BitsPerComponent 8

NAJAAR 2010

/Length 13238
/ColorSpace /DeviceRGB
/Filter /DCTDecode

>>

stream. . .endstream

This is a valid PDF/A-1a document, but if we delete the
default_rgb.icc profile

profile={default_cmyk.icc,default_gray.icc},

then the resulting PDF is an invalid PDF/A. We should
not be surprised: there is color space which is device
dependent and hence we cannot guarantee the correct
reproduction of the colors.

In the next example we use a rgb image with a valid
color profile:

\setupbackend[
format={pdf/a-1a:20053},%level=0,
rofile={default_cmyk.icc,default_gray.icc}]

\setupstructure[state=start]

\starttext

\startchapter[title={Test}]

\startparagraph

\externalfigure[rgb-icc-srgb. jpg]

[width=0.4\textwidth]

\stopchapter

\stoptext

For the same reason seen before, this PDF is still an
invalid PDF/A: the image is again wrapped in a /XObject
with a /DeviceRGB color space — but this time it's not
correct: the image has its own profile and hence its
colors are device independent. If we add a rgb profile
we have again a valid PDF/A:

profile={default_cmyk.icc,
default_rgb.icc,default_gray.icc},

but this is dangerous because we don't know if it's
correct for the image and also in this way all the rgb
color spaces of others images are associated to this
specific profile.

To remedy this situation, I present here a practical
solution that relies on the MagickWand suite which is
available for free for Windows, Linux and Mac plat-
forms. The first step is to verify if the image has a
profile:

#>gm identify -verbose rgb-icc-srgb.jpg

Profile-color: 3144 bytes

33



34 WMAPS 41

The second step is to save the profile:

#>gm convert rgb-icc-sRGB_v4_ICC.jpg sRGB.icc
and the last step is to build a /XObject with the appro-
priate color space. This is a bit tricky, but fundamen-
tally we mimic the behavior of luatex with ConTgXt
MKIV. I will show only an example for a jpeg image
with a /DeviceRGB color space:

%% rgb-icc-srgb.pdf

\pdfminorversion4

\starttext\startTEXpage%

\startluacode

local a=img.scan{filename="rgb-icc-srgb.jpg"}

tex.sprint(tex.ctxcatcodes,
string.format(
"\\startfoundexternalfigure{\%ssp}{\%ssp}"”,
a.width,a.height))
local icc_ref = pdf.immediateobj("streamfile”,
"srgb.icc”,
" /Alternate /DeviceRGB\n" ..
"/Filter /FlateDecode\n/N 3")

local icc_dict_ref = pdf.immediateobj(
string.format("[ /ICCBased \%d @ R 1\n",
icc_ref) )

a=img.new{filename="rgb-icc-srgb. jpg",
colorspace=icc_dict_ref}

a=img.immediatewrite(a)
node.write(img.node(a))

tex.sprint(tex.ctxcatcodes,
"\\stopfoundexternalfigure")

\stopluacode%

\stopTEXpage\stoptext

As we can see the XObject has now an ICCBased color
space:

15 @ obj

<<

/Alternate /DeviceRGB
/Filter /FlateDecode
/N 3

/Length 3144

>>
stream. . .endstream
16 @ obj

[ /ICCBased 15 @ R ]
endobj

17 @ obj

<<

/Type /XObject

Luigi Scarso

/Subtype /Image
/Width 640

/Height 400
/BitsPerComponent 8
/Length 9948
/ColorSpace 16 @ R
/Filter /DCTDecode
>>
stream. . .endstream

Once the image with the correct color space is wrapped
in a PDF file (rgb-icc-srgb. pdf in this case), we can use
it in our documents:

\'setupbackend[
format=[{pdf/a-1a:2005},%level=0,
profile={default_cmyk.icc,default_gray.icc},
]
\setupstructure[state=start]
\starttext
\startchapter[title={Test}]
\startparagraph
\externalfigure[rgbh-icc-srgb.pdf]
[width=0.4\textwidth]
\stopchapter
\stoptext

which is again a valid PDF/A.

Tagged PDF

Next we must enable the tagging system with
\setupstructure[state=start,method=auto]

ConTEXt MKIV permits the author to define his own
document markup language (the tags used inside the
PDF document) but of course we also need the associ-
ated TgX macros. This naturally needs to start with a
sort of XML document:

\setupstructure[state=start,method=none]
\starttext

\startelement[document]
\startelement[chapter]

opes

\startelement[p]\input ward\stopelement \par
\stopelement

\stopelement

\stoptext

The internal tag names are <document>, <chapter> and
<p> as we see in fig. 1 from Acrobat 9.0, but we still
need to put the appropriate typographic elements into
the PDF.

In the context of PDF/A, a validation program ex-
pected the tags as defined by Adobe and this leads to
some ‘syntactic sugar’ macros, i.e instead of



PDF/A-1a in ConTEXt MkIV

= Tags
=<7 <document>
=47 <chapter>
B¢ opes
E|<j <p>
¥# The Earth, as a habitat for animal life, is in old ...

Figure 1 The tags structure of a simple document

\startelement[chapter]...\stopelement
it's better to use
\startchapter[title={Test}]...\stopchapter

which puts the correct tags and also typesets the chap-
ter title Test as expected.

=] @ Tags
=<7 <document>
=4 <section> chapter
E|<3 <sectionnumbers>
=
B <sectiontitle>
B Test
El O <sectioncontent>
E|<j <paragraph>
¢ We thrive in information--thick worldsbecauseof ...
E<7 <image»
B¢ XObject: Image wib40 hi400
B <table>
E|<j <tablerow:
B <tablecell>
¢ 1PathPathPathPath
B4 <tablecell>
¢ 2PathPathPathPath
E-7 <tablerows
B <tablecell>
¢ 3PathPathPathPath

Figure 2 The tag structure of complex document

The complete list of tags can be found in strc-tag.mkiv
and of course ConTgXt MKIV permits to redefine the
default mapping. In fig. 2 our document shows that
ConTgXt MKIV had already mapped some predefined
typographic objects like figures and tables to the ap-
propriate tags.

We can use this mechanism to embed an XML doc-
ument into a tagged PDF document, which opens quite
interesting perspectives, but we can also start from a
‘structured TgX’ document and end into an XML one,

NAJAAR 2010

and this is more interesting because it's a matter of
backend only — and because it's already implemented:

\setupbackend[export=yes]
\setupstructure[state=start,method=none]
\starttext

\startelement[document]
\startelement[chapter][title=Test]

opes

\startelement[p]\input ward\stopelement \par
\stopelement

\stopelement

\stoptext

produces a <tex-file>.export like this (original XML
spaces are not preserved in this listing)

<?xml version='1.0' standalone='yes' ?>

<!-- input filename : test-2 -—>
<!-- processing date 10/09/10 15:28:48 -->
<!-- context version : 2010.09.24 11:40 -->
<!-- exporter version : 0.10 -—>

<document language='en'
file="test-2' date='10/09/10 15:29:04'
context='2010.09.24 11:40'
version='0.10'>
<chapter title="Test">opes
<p>
The Earth, as a habitat for animal life, is
in old age and has a fatal illness. Several,
in fact. It would be happening whether humans
had ever evolved or not. But our presence is
like the effect of an old-age patient who
smokes many packs of cigarettes per day
—————— and we humans are the cigarettes.
</p>
</chapter>
</document>

Fonts and encoding

In the previous subsection we have seen that with
simple macros we can have a valid (i.e validated by
Acrobat 9.0) PDF/A-1a PDF document. We still didn't
talk about fonts.

The default fonts used by ConTgXt MKIV are the
OpenType version of LatinModern, and, as of now, they
cannot be embedded into PDF/A documents because
OpenType isn't supported in version 1.4; this is not a
problem because, in essence, ConTgXt MKIV strips the
OpenType part and embeds a valid Typel or TrueType
font. Given an OpenType font, ConTgXt MKIV is also
able to map each glyph to its Unicode id, so even this
side is not problematic.

Unfortunately, it's already known that typesetting
mathematics with the Computer Modern and Latin

35



36 MAPS 41

Modern fonts easily leads to invalid PDF/A documents
due to misleading dimensional information of some
fonts. As widely noted by C. Beccari, just the simple
$a\not=b$ invalidates the whole document, due the
wrong dimension of the \not sign (it has Bounding-
Box=(139,139,-960,775) hence a width equal to zero).
What are the solutions? There are two of them, both
unsatisfactory:
1. choose another (valid) math family;
2. make a high resolution (more than 300dpi) bitmap
of each invalid formula.

Of course it's possible to edit the fonts, but it's not a
general solution: there are limitations due to copyright
and we should embed a modified copy of the font that
differs from the original version — an error prone situ-
ation because modifications of PDF/A-1a document are
permitted, and an editor can use the system fonts. The
problem remains even if ConTgXt MKIV can patch the
font on the fly. A way out is the complete embedding of
the patched fonts, so that the editor uses the document
fonts, but it's not a robust solution — some editors can
still use the original system fonts.

Conclusion

The PDF/A-1a is a good standard for document archiv-
ing: it's a complete Page Description Language, it relies
on Unicode which is also a good Character Language
and on Typel and TrueType as digital typography for-
mal language; it has also a good Document Markup
Language. The binary electronic format and the digital
signature for detection and prevention of document
modifications complete the picture. The restrictions
(e.g. profiles for colors) together with a freely available
PDF/A-1a PDF reader lead to a concrete self-containment
format.

PDF/A-1a support in ConTgXt MKIV is still experi-
mental: it needs more tests, but programming in luaTgX
is simpler than in pdfTEX, and the 1.4 is a well known
PDF version. The color management can probably be
improved by permitting to specify a color and its profile
for a specific object and not for the whole document, as

Luigi Scarso

it currently is.

On the other hand, the model of PDF/A-1 is the
traditional paper. Omitting animations and 3D pictures
is questionable and perhaps also scripting languages
should be permitted if they don't modify the document.

The ISO standard is not freely available and the
PDF/A-1a validators are complex to implement and usu-
ally expensive commercial products; this is an obstacle
for the diffusion of PDF/A.

Notes on References

For the first section, some informations on PDF/A-1 are
at Wikipedia [1], the techdoc at [2], and [4]. Very useful
are also the references of C. Beccari's paper at [9]. An
interesting use of JavaScript in PDF is [3].

For the second section, the ConTgXt wiki [6] has
some terse informations, because the code is the ulti-
mate reference. Tagged PDF is described in the version
of hybrid.pdf [7] that is part of ‘Proceedings of the 4th
ConTgXt meeting’ [8](to be published). For ICC profiles
a good starting point is [5]; the problems about fonts
are described by C. Beccari in [9] and [10].

References
All links were verified between 2010.10.19 and 2010.10.22.

[1] http://en.wikipedia.org/wiki/PDF/A.

[2] http://www.pdfa.org/doku.php?id=pdfa:en:techdoc

[3] www.tug.org/applications/pdftex/calculat.pdf.

[4] http://www.digitalpreservation.gov/formats/fdd/fdd000125
.shtml.

[5] http://en.wikipedia.org/wiki/ICC_profile.

[6] http://wiki.contextgarden.net/PDFX.

[7] http://www.pragma-ade.com/general/manuals/hybrid.pdf
[8] http://meeting.contextgarden.net/2010/talks/

[9] http://www.guit.sssup.it/downloads/Beccari_Pdf_archiviabile
pdf

[10] http://dw.tug.org/pracjourn/2010-1/beccari

Luigi Scarso



Paul Isambert

NAJAAR 2010

Three things you can do with LuaTgX that
would be extremely painful otherwise’

Introduction

LuaTgX has made some typographic operations so easy
one might wonder why it wasn't invented thirty years
ago (probably because Lua didn't exist then).?

Here I'm going to describe three simple features
that would require advanced wizardry to do the same
with any other engine. LuaTgX allows you to explore
some of TgX's most intimate parts with a rather easy
programming language, and the result is you can quite
readily access things that were unreachable before. The
three issues I'm going to address are:

o Turning lines into rules whose color depends on
the line's original stretch or shrink.

o Underlining.

o Margin notes that align properly with the text.

I'll try to explain some of LuaTgX's basic functionality
as we encounter these issues, but two of them are worth
mentioning right now: callbacks and nodes.

First, we can control TgX's operations at various
stages thanks to callbacks. These are points at which we
can insert Lua code to modify or enhance TgX's process-
ing. Callbacks range from processing TgX's input buffer
(e.g. to accommodate a special encoding) to rewriting
the paragraph builder and loading OpenType fonts.

Second, we can manipulate lists of nodes. To put it
simply, nodes are the atoms that TgX uses to create
pages: boxes, glyphs, glues, but also penalties, what-
sits, etc. A list of nodes is a sequence of such atoms
linked together. A simple paragraph, for instance, is
a list made of horizontal boxes (the lines), penalties
and glues. The boxes themselves are lists containing
mostly glyph and glue nodes. Nodes are linked together
like beads on a string, and the prev field of a node
points to the preceding node in the list, whereas the
next field returns the one that follows (there is an
understandable exception for the first and last nodes
of a list, whose prev and last fields respectively return
nil). An important point to keep in mind is that when

you query the content of, say, an \hbox, which in TgX's
internal is a horizontal list, what you get is the first
node of that list; you access the rest by sliding from
next to next.

Nodes also have several other fields, depending on
their types. These types are recorded as a number in
their id field, a numeric value. For instance, a glue node
has id 10, whereas a glyph node has id 37. As long as
LuaTgX hasn't reached version 1, though, such values
might change. So, in order for our code to last, we must
use the following workaround: the node. id() function,
when fed a string denoting a node type, returns the
associated id number. For instance, node.id("glue")
returns 10. Thus, when using symbolic names, we can
get the right id value, regardless of changes in ver-
sions of LuaTgX. Another important field for nodes is
subtype, which distinguishes between nodes with the
same id. It's a numeric value, and for whatsits (which
are numerous), one should use node.subtype() like
node.id().

Symbolic names won't change; they are listed in
the LuaTgX reference manual, in the chapter called
Nodes, available from the LuaTgX web site; they're
also listed in the tables returned by node. types() and
node.whatsits(). It's simpler to define variables be-
forehand rather than call node.id and node.subtype
each time we need them. That's what we'll do here: the
following declarations should start any file containing
our code; it can also be made global by removing the
local prefix and thus used anywhere once declared, but
local variables are faster and safer. I use uppercase to
mark their status.

local HLIST = node.id("hlist")
local RULE = node.id("rule")

1. First published in TUGboat 31:3 (2010), pp. 184-190.

2. Author's note: I'm not a member of the LuaTgX team and
this paper has no kind of official authority—it's just the
result of experimentation by a LuaTgX user. Any error or
misconception is mine.



38 MAPS 41

local GLUE = node.id("glue")

local KERN = node.id("kern”)

local WHAT = node.id("whatsit")

local COL = node.subtype("pdf_colorstack")

The color of a page

Typographers speak of a page's color. While the color
itself depends on several factors, its evenness depends
on how lines are justified: loose lines make the page
uneven in color, because large interword space creates
holes in the overall greyness.

The code that follows takes the metaphor literally: it
turns a page's color into a real color pattern. The idea is
to replace each line with a rule of the same height and
width, and whose color depends on the line's badness. If
we take 0 as black and 1 as white, then a good line gets
.5, tight lines approach 0 (which represents an overfull
line) and loose lines tend to 1 (an underfull line). Now
we have paragraphs and pages made of grey bars; the
less contrast between them, the better the page.

To do this, we retrieve the horizontal boxes cre-
ated by the paragraph builder, check the badness of
each, then replace the box with the desired rule. This
is easy to do in LuaTgX: we register a function in
the post_linebreak_filter callback. This callback ac-
cesses the list of nodes output by the paragraph builder,
i.e. the lines of text interspersed with interline penalties
and glues, plus perhaps other things (whatsits, inserts,
...) that we'll ignore. Among these nodes we retrieve
the ones we want, namely the lines of text, and replace
them as described.

The code that follows, as all Lua code, should be fed
to \directlua or stored in a . lua file.

local color_push = node.new(WHAT, COL)
local color_pop = node.new(WHAT, COL)
color_push.stack = 0

color_pop.stack
color_push.cmd
color_pop.cmd

0
1
2

Here we have created two new whatsit nodes iden-
tified by their subtype as the Lua equivalents of
\pdfcolorstack. They both modify stack 0 and
color_push adds code to the stack while color_pop
removes it. We'll use them to set the color of each line,
with the exact content of the code added by color_push
to be specified each time.

textcolor = function (head)
for line in node.traverse_id(HLIST, head) do
local glue_ratio = 0@
if line.glue_order == @ then

Paul Isambert

if line.glue_sign == 1 then
glue_ratio = .5 * math.min(line.glue_set,
D)
else
glue_ratio = -.5 x line.glue_set
end

end
color_push.data =

" n

.5 + glue_ratio .. g

Here's the beginning of our main function. It takes
a node as its argument: it will be the first node of
the list returned by the paragraph builder. That node,
remember, denotes the entire list. We retrieve each line
of text in this list, i.e. each node with id HLIST, and
check its glue_order field; if it is 0, then the line has
been justified with finite glue and we want to know
how bad it is (if the line uses infinite glue then it is
good by definition, as far as glue setting is concerned).
We access glue_sign to know whether stretching or
shrinking was used and glue_set to know the ratio (1
means the stretch/shrink was fully used; glues can also
be overstretched, but we don't allow more than 1 in
order to remain in the color range).

The last line sets the color of the line as the code
to color_push, i.e. ‘' g', where n is a number between
0 and 1 and g a pdf operator setting the color in the
grey model. In the rest of the loop we replace the line's
content with a sequence of three nodes: color_push, a
rule, and color_pop:

local rule = node.new(RULE)
rule.width = line.width
local p = line.list
line.list = node.copy(color_push)
node. flush_list(p)
node.insert_after(line.list,
line.list, rule)
node.insert_after(line.list,
node.tail(line.list),
node. copy(color_pop))

end

What is done here is: first, we create a rule whose width
is the same as the original line's (we could have created
this rule beforehand with a width equal to \hsize, but
this way we accommodate changing line widths). Then
we set the line's list as a copy of color_push (we use a
copy since we need that node for each line), and then
we insert the rule node and a copy of color_pop. The
first argument to node. insert_after is the list (denoted
by its first node!) where we perform the insertion, the
second one is the node in that list after which the
insertion is performed, and the last one is the inserted
node; node. tail returns the last node of its argument,



Three things you can do with LuaTgX ...

so the third node. insert_after inserts at the end of the
list.

The story with p is this: we retrieve the line's con-
tent before replacing it, so we can erase it from TgX's
memory; it has no effect on the output.

Finally, and most importantly, we return the mu-
tated list for TgX to continue its operations, and close
the function.

return head
end

Now, to use the function, we register it in the
post_linebreak_filter callback:

\directlua{%
callback.register("post_linebreak_filter"”,
textcolor)}

Note that we could improve this code for the first
and last lines of a paragraph, taking the indent and
\parfillskip into account to create more faithful im-
ages of those lines. I leave it as an exercise to the reader,
as is customary.

Underlining

The previous code was (hopefully) fun but not terribly
useful (well, who knows?); let's do something (hope-
fully) more useful and no less fun.

Everybody knows that underlining is in bad typo-
graphic taste. That said, it may have its uses, and any-
way allows us to investigate LuaTgX further. Underlin-
ing has been done in TgX (see Donald Arseneau's ulem,
for instance); it requires great wizardry and has some
limitations. With LuaTgX, it's (almost) child's play.

The problem with underlining in TgX is that you
have to add the underline before the paragraph is built,
and this hinders hyphenation. In LuaTgX we can do
it after hyphenation is done: we retrieve the nodes to
underline in the typeset lines. But how do we spot
them? The answer lies with another basic LuaTgX func-
tionality, namely attributes. These are very simple yet
very powerful. An attribute is like a count register in
that it holds a number. The difference with a count
register is that nodes retain the values of all attributes
in force when they were created. Thus, we can set an
attribute to some value, input some text, and then reset
the attribute; the text will have the value attached to it
for the rest of TgX's processing.

This leads to the first definition:

\def\underline#1{%
\quitvmode \attributel00 = 1 #1%
\attributel10@ = -"7FFFFFFF

NAJAAR 2010

\directlua{callback.register(
"post_linebreak_filter"”, get_lines)}%
}

It's important to use \quitvmode so that the indentation
box is inserted before the attribute is set and not be
underlined (in case the underlined text is the beginning
of a paragraph).

An attribute is “set' if it has any value but -"7FFFFFFF.
So setting it to 1 here would be the same thing as setting
it to —45 (see the end of this section for an example
of use for different values). Now all nodes produced
by the argument to underline have the value 1 for
attribute 100—which was arbitrarily chosen. Attribute
458 would have been equally good. Actually, one should
use attributes with greater care, i.e. they should be
allocated with macros like \newcount, so that one never
uses the same attribute for different tasks.

The last action performed by \underline is to regis-
ter a function in the post_linebreak_filter callback.
It does so because the Lua function used to underline
clears the callback (as we'll see), so that it is called only
on those paragraphs where it is required. It could be
called on all paragraphs, but it'd waste TgX's time.

Let's now turn to the Lua functions:

get_lines = function (head)
for line in node.traverse_id(HLIST, head) do
underline(line.list, line.glue_order,
line.glue_set, line.glue_sign)
end
callback.register
("post_linebreak_filter"”, nil)
return head
end

This first function retrieves all lines in the paragraph
and feeds their content to the underline function along
with information about glue setting. It then clears the
callback and returns the head. This part is nothing we
haven't seen in the previous code.

Some nodes might have inherited the attribute's
value, although we don't want to underline them:
\leftskip, \rightskip, and \parfillskip. These are
glue nodes and their subtypes are 8, 9 and 15, respec-
tively. The following function is meant to filter them
out. (Note: versions prior to v0.62 had a bug where
\leftskip and \rightskip were not properly identified,
so item.subtype == 7 should be added to the or condi-
tional below. Both TgX Live 2010 and MikTEX 2.9 uses
v0.60, so they are affected.)

local good_item = function (item)
if item.id == GLUE and
(item.subtype == 8 or item.subtype ==

39



40 MAPS 41

or item.subtype == 15) then
return false
else
return true
end
end

Now, here's how the underline Lua function starts:

underline =
function (head, order, ratio, sign)
local item = head

while item do
if node.has_attribute(item,100)
and good_item(item) then
local item_line = node.new(RULE)
item_line.depth = tex.sp("1.4pt")
item_line.height = tex.sp("-1pt")

The while loop is basically the same thing as traversing
the list, but we'll sometimes want to skip nodes, so we'll
set the next one by hand. We scan nodes, and once
we've found one with the right value for the attribute
(and which is not one of the glues above), we create our
rule (with arbitrary dimensions). tex. sp turns a dimen-
sion (expressed as a string) into scaled points, the native
measure for Lua code. How wide should the rule be?
The length of the material starting at the current node
up to the last node with the right attribute. To find this
last node, we use the following loop, and then retrieve
the length of that material via node.dimensions, which
returns the material's length when it is typeset with the
text line's glue setting. We use end_node.next because
the function actually measures up to its last argument's
prev node.

local end_node = item

while end_node.next and
good_item(end_node.next) and
node.has_attribute(end_node.next, 100) do
end_node = end_node.next

end

item_line.width = node.dimensions

(ratio, sign, order, item, end_node.next)

Finally we insert the line into the list. That's pretty
simple: we insert a negative kern (with subtype 1, i.e.a
handmade kern, not a font kern) as long as the line after
the last underlined node, followed by the line itself. This
is equivalent to using \11ap in plain TgX. The end of the
code sets the next node to be analyzed (including the
false part of the overall conditional).

local item_kern =
item_kern.kern =

node.new(KERN, 1)
-item_line.width

Paul Isambert

node.insert_after(head, end_node,

item_kern)
node.insert_after(head, item_kern,
item_line)
item = end_node.next
else
item = item.next
end
end
end

We could use different values of the attribute to distin-
guish different underlining styles. To do so, we would
still use node.has_attribute, since it returns the value
of the attribute, or nil if the attribute isn't set. That's
another exercise left to the reader.

Marginal notes

When a document has comfortable margins and notes
are infrequent and short, marginal notes are an elegant
and convenient alternative to footnotes. They are best
typeset with their first line level with the line in the
text to which they refer. However, such a rule cannot
be absolute. Suppose for instance that a note is called
on the last line of a page, and itself is made of more
than one line. If we follow the rule then the note will
invade the bottom margin and ruin the design of the
page. So it should be shifted up so that its last line is
level with the last line of the page. Doing this is also an
improvement when the text doesn't fill the page, e.g. at
the end of a chapter, even though there might remain
space on the page to accommodate the note. The page
looks better that way: a note is a note and would be too
conspicuous if it were allowed to run without the main
text by its side. Ideally, a note should also be shifted up
if it runs along a section break, but I'll ignore that case,
to keep things simpler. (For an alternative approach in
KATEX, see Stephen Hicks' article in TUGboat 30:2.)

Generally marginal notes are typeset in a smaller
font size and on a smaller leading than the main text.
Since the leading is smaller, some lines of the notes
won't be level with the textblock's lines; however, there
should be some “cyclical synchronicity' between the
two blocks, so that for instance three lines of the main
text have the same height as four lines of the note (in
TgX terms it would mean, for instance, \baselineskip
at 12pt and 9pt respectively), and the following lines are
level again.

Here, however, I will typeset notes with the same
leading as the main text to avoid complications. Extra
calculations are required to achieve what's been previ-
ously described—nothing very complicated, though. I'll
simply use italics to distinguish the notes from the main
text.



Three things you can do with LuaTgX ...

Margin notes so numerous that they sometimes
overlap each other and must be shifted upward should
probably be converted to footnotes, all the more as
they'll require a number or symbol so the reader can
spot where in the main text they refer to—whereas
sparse notes don't need such a mark, since they're
supposed to start on the same line as the text they
comment, with the known exception we're investigat-
ing here. However, we can use the code below to shift
notes whatever the reason, so we'll leave esthetics
aside and shift all notes (the shift might go wrong if
there are stretchable vertical glues on the page, e.g.
\parskip; that can be amended, and it's left as yet
another exercise). We won't allow more than one note
per line, though, because that definitely doesn't make
sense.

Here's the TgX part of the code:

\newcount\notecount
\suppressoutererror=1
\def\note#1{%
\advance\notecount 1
\expandafter\newbox
\csname marginnote_\the\notecount\endcsname
\expandafter\setbox
\csname marginnote_\the\notecount\endcsname=
\vtop{\hsize=4cm
\rightskip=0pt plus 1fil
\noindent\it #13}%
\bgroup
\attribute100=\expandafter\the
\csname marginnote_\the\notecount\endcsname
\vadjust pre {\pdfliteral{}}%
\egroup
3

This might be somewhat unfamiliar, even to advanced
TgXies, because what we're doing is preparing the
ground for Lua code. First, we choose not to insert
the note directly in the paragraph (to be shifted later
if necessary). Instead, we store the note in a box. For
each note, we create a new box; that might seem
somewhat resource-consuming, but there are 65,536
available boxes in LuaTgX, so a shortage seems only a
distant possibility. Alternatively, we could store only
the source code for the note (in a macro), and typeset
it in a box only when we place notes on the page in
the output routine, but the asynchronicity between the
processing of the main text and the note might lead to
trouble.

So we create boxes instead, with proper settings
(mostly, a reduced \hsize). To allow \newbox to appear
inside a macro definition in plain TgX, we suppress the
outer error beforehand; then we set the note in its box
with a uniquely defined name (thanks to \newcount),

NAJAAR 2010 41

and most importantly we set an attribute to the value
of the box register and \vadjust a literal with that
attribute. This literal's only role is to mark the line it
comes from, so we'll be able to spot lines with margin
notes when needed, along with the box's number (the
value of the attribute).

The following Lua function, to be inserted in the
post_linebreak_filter callback, does exactly that: our
special \pdfliterals give their attributes to the lines
they come from, and are removed. Now, the reader
might have wondered why we used the pre version
of \vadjust instead of the default: it's because of a
bug in the actual version of LuaTgX (to be fixed in
v0.64, 1 am told): some prev fields are sometimes wrong,
as would be the case here, and we couldn't link each
literal to its line if the latter was before the former.
So we use next instead. Note that we can't just take
for granted that the first next node is the line, first
because ‘pre-\vadjusted' material is inserted before
the baselineskip glue, and because there might be more
adjusted material between the literal and the line. So we
recurse over next fields until we find a line (i.e. a node
id HLIST).

mark_lines = function (head)
for mark in node.traverse_id(WHAT, head) do

local attr = node.has_attribute(mark, 100)
if attr then
local item = mark.next

while item do
if item.id == HLIST then
node.set_attribute(item, 100, attr)

item = nil
else
item = item.next
end
end
head = node.remove(head, mark)
end
end
return head
end

The following function scans the content of a verti-
cal list, probably box 255, finds the lines that have
attribute 100 set to some value, and adds the margin
notes to those lines. Remember that our goal is to
avoid margin notes running into the space below the
textblock (either the bottom margin or the vacant space
at the end of a chapter). So we must compute how much
space remains to accommodate the note. To do so, we
scan the box (the page), starting at the bottom, and
accumulate the height and depth of lines and the width
of kerns and glues—except kerns and glues that might
appear before the last line, i.e. space filling the page. To



42 MAPS 41

do so, we have a first boolean that is true as long as
a line hasn't been found and prevents adding the width
of glues and kerns. With node.slide we grasp the last
node of the list, since we're reading it backward.

process_marginalia = function (head)
local remainingheight, first, item =
@, true, node.slide(head)
while item do
if node.has_field(item, "kern") then
if not first then
remainingheight = remainingheight
+ item.kern
end
elseif node.has_field(item, "spec”) then
if not first then
remainingheight = remainingheight
+ item.spec.width
end

Now, if we find a line, we add its depth if and only if
it's not the first one we encounter (i.e. the last one on
the page), because in that case its depth belongs to the
bottom margin. Its height is added later, if and only if
the line doesn't take a note.

elseif node.has_field(item, "height"”) then
if first then
first = false
else
remainingheight = remainingheight
+ item.depth
end

If attribute 100 is set to some value, then the line takes
a note. In that case, we retrieve the box, measure its
depth, and compare it to the remaining height. Note
that the depth of the box is all its material barring the
height of its first line (since we used a \vtop), which
is exactly what we want: its first line can't go wrong,
since it's level with the main text's line from whence it
came. We also remove the depth of the last line, since
its going into the bottom margin is perfectly ok.

local attr = node.has_attribute(item, 100)
if attr then
local note = node.copy(tex.box[attr])

local upward = note.depth
- node.tail(note.list).depth
if upward > remainingheight then
upward = remainingheight - upward
else
upward = 0
end

Paul Isambert

Now we insert the note box after the line: first, we add
a negative vertical kern to account for the upward shift
(possibly 0), plus the line's depth and the note's height
(i.e. the height of its first line), so it is level with the
line. We then set the note's height and depth to 0, so
it doesn't take up space on the page. (Since the kern
becomes the head of the list, we have to explicitly set
note.list to it, otherwise TgX still thinks the previous
head is the good one.)

local kern = node.new(KERN, 1)
kern.kern = upward - note.height
- item.depth

node.insert_before(note.list,
note.list, kern)

note.list = kern

note.height, note.depth = 0, @

Finally, we insert the note and set its horizontal shift
(here it goes into the right margin, but this should
depend on whether the page is even or odd), and reset
first and remainingheight, the latter to upward so the
vertical shift of the current note (if any) is taken into
account for the following one. The rest of the code is the
end of the attr conditional (false, so we add the line's
height to the remainingheight) and the end of the main
loop.

node.insert_after(head, item, note)
note.shift = tex.hsize + tex.sp("lem")
first = true

remainingheight = upward
else
remainingheight = remainingheight
+ item.height
end
end
item = item.prev
end
end

When a page is found good, before we ship it out (and
before we add inserts too), we feed it to the function,
so notes are added. For instance, a very simple output
routine would be:

\output{%
\directlua{%
process_marginalia(tex.box[255].1ist)
3%
\shipout\box255}

The important part is, of course, the Lua code.



Three things you can do with LuaTgX ...

Conclusion

LuaTgX has much to offer: utf-8 encoding, non-tfm
fonts, a comfortable programming language, ... Access
to TgX's internals is, to me, one of its most valuable
features: it enables the user to do things that were
previously unthinkable, and gives such control over ty-
pography that the software's limitations almost vanish,
as if we were working on a hand press—except we don't
manipulate metal, but nodes.

A final note: in this paper, functions have been
added to callbacks with LuaTgX's bare mechanism. If
two functions are added to the same callback this way,
the second erases the first. To do this properly, the
luatexbase package can be used for plain TgX and
KYTEX, and it is taken care of in ConTEXt.

NAJAAR 2010 43

The next page shows examples of our three programs.
First comes the page color, displaying a typeset text
and its translation to shades of grey; the second text
uses font expansion to show the resulting improvement
in justification. Then are examples of underlining and
marginal notes. The text used is the first page of Robert
Coover's novel The Adventures of Lucky Pierre.

Paul Isambert

Université de la Sorbonne Nouvelle
France

zappathustra (at) free dot fr



44  MAPS 41 Paul Isambert

In the darkness, softly. A whisper becom-
ing a tone, the echo of a tone. Doleful, incip-
ient lament blowing in the night like a wind,
like the echo of a wind, a plainsong wafting
silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred
by light, plying its fricatives like a persistent
woeful wind, the echo of woe, affanato, pi-
angevole, a piangevole wind rising in the flut-
tering night through its perfect primes, lament-J§
ing the beautiful princess become an unclean
widow, an emergence from C, a titular C, ten-
tative and parenthetical, the widow then, weep-}i
ing sore in the night, the candle searching the
pale expanse for form, for the suggestion of
form, a balm for the anxious eye, weeping she
weepeth.

In the darkness, softly. A whisper be-
coming a tone, the echo of a tone. Doleful,
incipient lament blowing in the night like a
wind, like the echo of a wind, a plainsong waft-
ing silently through the windy chambers of the
night, wafting unisonously through the spaced
chambers of the bitter night, alas, the solitary
city, she that was full of people, thus a dis-
tant and hollow epiodion laced with sibilants
bewailing the solitary city.

And now, the flickering of a light, a pallor
emerging from the darkness as though lit by a
candle, a candle guttering in the cold wind, a
forgotten candle, hid and found again, casting
its doubtful luster on this faint white plane,
now visible, now lost again in the tenebrous
absences behind the eye.

And still the hushing plaint, undeterred by
light, plying its fricatives like a persistent woe-
ful wind, the echo of woe, affanato, piangevole,
a piangevole wind rising in the fluttering night
through its perfect primes, lamenting the beau-
tiful princess become an unclean widow, an
emergence from C, a titular C, tentative and
parenthetical, the widow then, weeping sore
in the night, the candle searching the pale ex-
panse for form, for the suggestion of form, a
balm for the anxious eye, weeping she weepeth.

And now, the flickering of a light, a pallor emerging from the
darkness as though lit by a candle, a candle guttering in the cold
wind, a forgotten candle, hid and found again, casting its doubtful
luster on this faint white plane, now visible, now lost again in the
tenebrous absences behind the eye.

And still the hushing plaint, undeterred by light, plying its ‘Affanato’ means
fricatives like a persistent woeful wind, the echo of woe, affanato, ‘anguished’
piangevole, a piangevole wind rising in the fluttering night through ‘Piangevole’ means
its perfect primes, lamenting the beautiful princess become an unclean ‘plaintive’
widow, an emergence from C, a titular C, tentative and parenthetical,
the widow then, weeping sore in the night, the candle searching the
pale expanse for form, for the suggestion of form, a balm for the ‘Weepeth’is an archaic
anxious eye, weeping she weepeth. form of ‘weeps’




Haltiwanger

Toward Subtext

NAJAAR 2010 45

A Mutable Translation Layer for Multi-Format Output

Abstract

The demands of typesetting have shifted significantly since
the original inception of TEX. Donald Knuth strove to de-
velop a platform that would prove stable enough to produce
the same output for the same input over time (assuming
the absence of bugs). Pure TEX is a purely formal language,
with no practical notion of the semantic characteristics of
the text it is typesetting. The popularity of IATEX is largely
related to its attempt to solve this problem. The flexibility
of ConTEXt lends it to a great diversity of workflows. How-
ever, document creation is not straight-forward enough to
lend itself to widespread adoption by a layman audience, nor
is it particularly flexible in relation to its translatability into
other important output formats such as HTML. Subtext is a
proposed system of generative typesetting designed for pro-
viding an easy to use abstraction for interfacing with TgX,
HTML, and other significant markup languages and output
formats. By providing a mutable translation layer in which
both syntax and the actual effects of translation are defined
within simple configuration files, the infinitely large set of
typographic workflows can be accomodated without being
known in advance. At the same time, once a workflow has
been designed within the Subtext system, it should enjoy
the same long-term stability found in the TEX system itself.
This article briefly explains the conditions, motivations, and
initial design of the emerging system.

Keywords
generative typesetting, multi-output, translation layer,
pre-format

Conditions for Subtext

Subtext arose as a practical conclusion during the writ-
ing of my masters thesis in New Media at the Uni-
versiteit van Amsterdam.'The initial impulse for the
thesis itself was to investigate what available media
theories existed that could articulate the dynamics of a
generative workflow pre-occupied with outputting itself
in multiple formats. In the case of the thesis, this meant
PDF and HTML. Having heard about the translation
software Pandoc,’l chose to utilize this software in my
quest to produce a thesis whose materiality spanned
not a single document but multiple files, programs, and
‘glue’ scripts. In other words, the thesis would not be a
product, set in proprietary software like MS Word, but a
process that could self-correct later in the future should

a new format come into existence.

The raw fact of text on the computer screen is that,
overall, the situation is awful. Screenic text can be
divided into three categories: semantic, formal, and
WYSIWYG. The semantic formats, for example HTML
and XML, are notoriously machine-readable. Text can
easily be highlighted, copied, pasted, processed, con-
verted, etc. Yet the largest “reading” software for se-
mantic formats is the web browser. Not a single web
browser seems to have bothered to address line-break-
ing with any sort of seriousness.’The ubiquity of
HTML, tied with its semantic processibility, means that
its importance cannot be ignored as an output format.
At this point, not producing an HTML version of a doc-
ument that one wishes to see widely read is tantamount
to removing such widespread reading as an achievable
goal. To top off the complexity of the situation, the
machine-readability of a semantic document is offset
by a distinct reduction of human readability. Asking
anyone to write a thesis directly in XML. for instance,
is going to be a non-starter.

The second class of text are those defined by their
formal nature. This is not referring to some but-
toned-down attitude, but rather to an opposite direc-
tionality in terms of how the text is presented. In
semantic markup, the format is not itself responsible
for how a display program arranges the text---rather,
the display program digests the text in light of its
semantic qualities and then lays that text out according
to algorithms that can and do vary between programs.
The easiest way to describe this approach is that it is
top-down.

Formal markup, on the other hand, is bottom-up. The
final display of text is defined by discrete instructions
to a program that assembles that text in a highly spe-
cific way. TgX is one obvious example of this. Like-
wise, PostScript and PDF are formal specifications for
typesetting text. The immediate drawbacks of formal
markups include an often byzantine syntax and a lack
of processibility into anything other than the output
formats that the formal system knows how to handle.
To this day, copy-pasting from a PDF document often
leads to awkward extra characters such as linebreaks in
the pasted text.



46 MAPS 41

The third class of screenic text system is WYSIWYG.
While WYSIWYG is first and foremost a user interface
design pattern (and thus can be used to output files in
both formal and semantic formats), it is also defines
the extremely pervasive Microsoft Word file formats.
By positioning the comfort of the user above all other
considerations, WYSIWYG finds its strengths in its ease
of use and its inherent predictability: whatever you se
on the screen should appear exactly that way on paper.
By privileging the human to such an extent, however,
both translatability and the typographic quality of the
text suffer. Since text is intended to always appear
exactly as it was input, MS Word can do no calculations
for line breaks other than on a per-line basis.“Worst of
all, WYSIWYG formats (especially those derived from
Microsoft products) are difficult to integrate into a
generative typesetting workflow which targets many
output formats.

Problematics Within Generative Typesetting
Generative typesetting itself emerges from a very spe-
cific set of problematics. A primary concern is a re-
duction in syntax complexity. This is solved by the
introduction of a pre-format that provides sight-level
semantics for specifying desired outcomes in the output
formats. For example, the Markdown pre-format was
designed such that "a Markdown-formatted document
should be publishable as-is, as plain text, without look-
ing like it’s been marked up with tags or formatting
instructions."?

To demonstrate, while a top-level header in Mark-
down reads as

# My Header #
Once converted into HTML the above turns into
<h1>My Header</h1>

Sight-level semantics rely on visually distinct identi-
fiers. This stands in sharp contrast to both HTML/XML
and TgX, which rely on distinct tags combined with
reserved characters. In short, this approach to se-
mantic formatting relies on utilizing more reserved
characters than these other systems. Which charac-
ters are chosen and the nature of their organization
is an attempt to strike a balance between both read-
ability and processibility. Like WYSIWYG, sight-level
semantics represent a redistribution of agency be-
tween the human and the machine. Unlike WYSIWYG,
the utilization of Markdown implies an intention for
translating it into other formats.

The second problematic is an inevitable result of
the first: there is always an edge case. Take as an
example a variation on the code I've already shown. Say

Haltiwanger

that instead of converting to HTML, one would rather
generate a PDF using ConTgXt. Seems straight-forward
right?

# My Header #

The above should simply convert into the top-level
equivalent in ConTgXt. But wait.. That would be a
matter of what one was trying to accomplish, wouldn't
it?

After all, the above Markdown snippet could easily
refer to

\subject{My Header}
or

\section{My Header}
or

\chapter{My Header}
or even

\title{My Header}

What is the solution here? Should a reserved character
be adopted for each of these cases? Questions of how
to deal with such edge cases are intrinsically tied to the
translation layer itself: because all format translation
occurs within the translation layer, it is the decisions
which that layer makes that determine how edge cases
are handled.

Pandoc provides command-line switches for turning
on numbered sections and for determining the top-level
“section.” However, were one to desire that a custom
command or macro be used in place of any of the above,
a knowledge of Haskell is required to write scripts
or otherwise modify the way that Pandoc converts
its inputs. Other tricks can be employed, such as the
introduction of a ‘glue’ layer based in a script which
solves certain edge cases with regular expressions and
if statements. From the standpoint of a generative
typesetting workflow that does not require program-
ming expertise, these solutions for edge cases are far
from optimal.

One Mutable Interface to Produce Them All

Today the largest demands of digital publishing re-
volve around flexibility. The vast array of existing
and on-coming e-readers is but one example of this.
More general concerns include the necessity of both
machine-readable formats and typographically sound
documents. Currently this means HTML/XML and PDF.



Toward Subtext

Yet once e-readers are brought into the mix, the ePub
format becomes imperative.

Yet while ePub is the most accepted format for
e-reader publishing today, there is always the chance
(one might even say inevitability) that a new format
will become standard in the future. Future-proofing is a
significant advantage of a generative typesetting work-
flow, but the programming-required nature of edge
cases--and, indeed, any modification to the translation
layer--decreases the adoptability of generative typeset-
ting for non-technical fields such as the humanities.

The solution that Subtext proposes is to disengage
both the interface to the translation layer as well as the
effects of that layer. In this way Subtext can be seen as a
very thin layer, one that takes interface primitives from
a configuration file and translates them into an AST.
The effects of this AST are then interpreted according
to rules defined in a seperate configuration file. This file
explains what should literally appear in the output file
for any given AST element.

One immediately obvious benefit of this approach
is the capacity to internationalize the pre-format with
ease. For standard Markdown, Subtext would de-
fine the effect of American quotation marks (“x”) as
\quotation{x}. The interface file could be quickly mod-
ified to intepret double angle quotation marks (« x ») in
the same way (\quotation{x}).

The effects configuration can also incorporate
‘setup’ requirements. If a generative typesetting
workflow involved dealing with documents of either
English or French, then it would be known that
when double-angle quotation marks are used in the
pre-format that the resulting document should have
French style punctuation and spacing. The Subtext
interpreter would then add

\mainlanguage[french]
\setcharacterspacing[frenchpunctuation]

to the pre-amble of a ConTgXt document. Likewise,
specific character spacing settings could be added to the
CSS of an HTML or ePub output file.

The mutability of this system is its primary charac-
teristics. Specific text elements need not fit a pre-exist-
ing notion, as new rules can be invented and interpreted
within configuration files. This capacity to ‘unlock’
the translation layer into an instrinsically customizable
tool not only guarantees future-proofing: it also allows
for highly specific workflows to be developed, as the
interface and effects can be custom-crafted according
to the requirements of the task.

Preliminary Thoughts on Implementation
There has yet to be a line of code committed to Sub-
text. At present it is a simple design impulse, with a

NAJAAR 2010 47

variety of expectations and desires tied into a proposed
means of accomplishing a more fluid and responsive
generative typesetting workflow. This does not mean,
however, that there has yet to be any thought put into
the platforms that will underpin Subtext.

The first choice is the programming language. Con-
sidering the importance of parsing, grammar, and
metaprogramming functionality to the implementa-
tion of a mutable translation layer, my first impulse
is to write Subtext in Perl 6. This might come as a
slight shock, but that shock should not last beyond
an exploration into the power of Perl 6 grammars.°A
robust, rules-based grammar engine was one of the
top details for which Perl 6 was designed. Combined
with features such as multi-method dispatch and other
metaprogramming conveniences, Perl 6 is primed to
host Subtext. Barriers to entry include a lack of docu-
mentation, but at the same time the “scene” around the
programming language is small and extremely helpful.
Another downside is the current speed of the language,
though that is an aspect which is addressed with each
monthly release. In general, the idea of Perl 6 is that it
presents a mutable interface to its own programming
capacities. The sympatico between the two projects is
thus too significant to deny.

The configuration files themselves present a slight
complication, as they need to be highly parse-able
despite potentially containing every reserved charac-
ter known to any programming language or syntax
currently known. Thankfully, there have been many
attempts to achieve this robustness. One that fits par-
ticularly well into the generative typesetting mind-
set which Subtext exemplifies is YAML (Yet Another
Markup Language®). YAML is intended to facilitate
everything from configuration files to object persis-
tence through a human-friendly syntax. The flexibility
of such a system will no doubt provide a solid founda-
tion for implementing Subtext.

Additionally, there will be a standard syntax for
Subtext. That is, there will be a defined pre-format that
ships with the system. This standard syntax will include
bibliographic functionality that is currently limited or
non-existent in most multi-output workflows.

Longer-term goals include a web interface for deal-
ing with the input files. Such a system would likely
integrate the newly-open sourced Etherpad software
for online editing. This would be tied to a version
control interface based on git that would fill in the
functionality that MS Word's ‘Track Changes’ system
currently provides. Ideally, integrated into this system
would be a real-time parser such as exhibited in the
AJAX-ified interface of the WMD’editor, which renders
the HTML output of Markdown text in real-time within
the same browser window. This functionality is likely
constrained by the speed of the Rakudo Perl 6 imple-



48 MAPS 41

mentation. However, it is conceivable that the standard
Subtext syntax can be parsed in JavaScript. This means
that highly customized workflows would not be able to
enjoy a real-time feedback interface in the near-term
future. This seems to be a small trade-off for the kind of
flexibility this system can enable in generative typeset-
ting, and could easily find itself solved over the course
of the continuance of Moore's Law.

Request For Comments

Though Subtext aims to be useful for dealing with
n+1 different output formats, initial development will
concern itself with simply HTML and ConTgXt outputs.
Together these two encompass the primary formats of
concern. KTgX, ePub, and others can easily be added by
simply defining a new set of effects.

The standard syntax has yet to be designed. Any
comments or suggestions in this regard (or concerning
any of what has been discussed) will be very useful.
At this early conceptual stage where nothing is locked
down except for the core ideas, there is a great poten-
tial for shaping the eventual system without worrying
about any legacy functionality. Please do not hesitate
to send me your thoughts!

Notes
1. The thesis, titled Grammars of Process: Agency, Collective

Haltiwanger

Becoming, and the Organization of Software is available at
http://mastersofmedia.hum.uva.nl/2010/09/17/grammars-of
-process-agency-collective-becoming-and-the-organization
-of-software-2/.

2. Pandoc is the only text format translation tool that cur-
rently translates into CONTEXT. It is written by John MacFar-
lene and is available at http://johnmacfarlane.net/pandoc/.

3. For an easy example of this, just set text-align: justify;
in the CSS for <p> tags in an HTML document.

4. A clearly notable exception to this is Adobe InDesign
and other WYSIWYG Desktop Publishing tools, in which
line-breaking must be taken more seriously. In terms of
“end-user” level document creation, however, the statement
that linebreaking is lacking in WYSIWYG stands.

5. Markdown: http://daringfireball.net/projects/markdown/.
6. Perl 6: http://perl6.org. For an example of Perl 6 gram-
mars, see http://perl6advent.wordpress.com/2009/12/21/day
-21-grammars-and-actions/ from the Perl 6 Advent Calen-
dar,” a great place to start learning about the potentials of this
language.

7. WMD - The WYSIYWM Markdown Editor: http://wmd
-editor.com/.

8. YAML: http://yaml.org.

John C. Haltiwanger
john.haltiwanger@gmail.com



Hans Hagen NAJAAR 2010 49

Typesetting in Lua using LuaTgX

Introduction

Sometimes you hear folks complain about the TgX input language, i.e. the back-
slashed commands that determine your output. Of course, when alternatives are be-
ing discussed every one has a favourite programming language. In practice coding a
document in each of them triggers similar sentiments with regards to coding as TgX
itself does.

So, just for fun, I added a couple of commands to ConTgXt MKIV that permit coding
adocument in Lua. In retrospect it has been surprisingly easy to implement a feature
like this using metatables. Of course it’s a bit slower than using TgX as input language
but sometimes the Lua interface is more readable given the problem at hand.

After a while I decided to use that interface in non-critical core ConTgXt code and
in styles (modules) and solutions for projects. Using the Lua approach is sometimes
more convenient, especially if the code mostly manipulates data. For instance, if you
process xml files of database output you can use the interface that is available at the
TgX end, or you can use Lua code to do the work, or you can use a combination.
So, from now on, in ConTEXt you can code your style and document source in (a
mixture of) TgX, xml, MetaPost and in Lua.

In this article I will introduce typesetting in Lua, but as we rely on ConTgXt it is
unavoidable that some regular ConTgXt code shows up. The fact that you can ignore
backslashes does not mean that you can do without knowledge of the underlying
system. I assume the user is somewhat familiar with this macro package.

Some basics

To start with, I assume that you have either the so called ConTgXt minimals installed
or TgXLive. You only need LuaTgX and can forget about installing pdfTgX or XFIEX,
which saves you some megabytes and hassle. Now, from the user’s perspective a
ConTgXt run goes like:

context yourfile

and by default a file with suffix tex will be processed. There are however a few other
options:

context yourfile.xml
context yourfile.rlx --forcexml
context yourfile.lua
context yourfile.pgr --forcelua
context yourfile.cld
context yourfile.xyz --forcecld

When processing a Lua file the given file is loaded and just processed. This option
will seldom be used as it is way more efficient to let mtxrun process that file. However,
the last two variants are what we will discuss here. The suffix cld is a shortcut for
ConTEXt Lua Document.



50 MAPS 41

Hans Hagen

A simple c1d file looks like this:

context.starttext()
context.chapter("Hello There!")
context.stoptext()

So yes, you need to know the ConTgXt commands in order to use this mechanism.
In spite of what you might expect, the codebase involved in this interface is not that
large. If you know ConTgXt, and if you know how to call commands, you basically
can use this Lua method.

The examples that I will give are either (sort of) standalone, that is, they are dealt
with from Lua, or they are run within this document. Therefore you will see two
patterns. If you want to make your own documentation, then you can use this vari-
ant:

\startbuffer
context(”"See this!")
\stopbuffer

\typebuffer \ctxluabuffer

I use anonymous buffers here but you can also use named ones. The other variant
is:

\startluacode
context("See this!")
\stopluacode

This will process the code directly. Of course we could have encoded this document
completely in Lua but that is not much fun for a manual.

The main command

There are a few rules that you need to be aware of. First of all no syntax checking
is done. Second you need to know what the given commands expects in terms of
arguments. Third, the type of your arguments matters:

nothing : just the command, no arguments
string : an argument with curly braces
array : alist between square backets (sometimes optional)
hash : an assignment list between square brackets
boolean : when true a newline is inserted

: when false, omit braces for the next argument

In the code above you have seen examples of this but here are some more:
context.chapter(”"Some title")

context.chapter({ "first” }, "Some title")

context.startchapter({ title = "Some title"”, label = "first" })
This blob of code is equivalent to:

\chapter{Some title}

\chapter[first]{Some title}
\startchapter[title={Some title},label=first]



Typesetting in Lua using LuaTEX NAJAAR 2010

You can simplify the third line of the Lua code to:

context.startchapter { title = "Some title”, label = "first” }

In case you wonder what the distinction is between square brackets and curly braces:
the first category of arguments concerns settings or lists of options or names of
instances while the second category normally concerns some text to be typeset.
Strings are interpreted as TgX input, so:

context.mathematics(”"\\sqrt{23}")

or, if you don’t want to escape:

context.mathematics([[\sqrt{2733}11)

is okay. As TgX math is a language in its own and a de-facto standard way of in-
putting math this is quite natural, even at the Lua end.

Spaces and Lines

In a regular TgX file, spaces and newline characters are collapsed into one space.
At the Lua end the same happens. Compare the following examples. First we omit
spaces:

context("left")

context("middle")
context("right")

leftmiddleright

Next we add spaces:

context("left")

context(” middle ")

context("right")

left middle right

We can also add more spaces:

context("left ")

context(” middle ")

context(” right")

left middle right

In principle all content becomes a stream and after that the TgX parser will do its
normal work: collapse spaces unless configured to do otherwise. Now take the fol-
lowing code:

context ("before")

context("word 1")
context("word 2")

51



52  MAPS 41 Hans Hagen

context("word 3")
context("after")

beforeword 1word 2word 3after

Here we get no spaces between the words at all, which is what we expect. So, how
do we get lines (or paragraphs)?

context("before")
context.startlines()
context("line 1")
context("line 2")
context(”"line 3")
context.stoplines()
context("after"”)

before
line 1line 2line 3
after

This does not work out well, as again there are no lines seen at the TgX end. Newline
tokens are injected by passing true to the context command:

context("before™)
context.startlines()
context("line 1") context(true)
context(”line 2") context(true)
context(”line 3") context(true)
context.stoplines()
context("after")

before

line 1
line 2
line 3

after
Don’t confuse this with:

context("before”) context.par()
context(”line 1") context.par()
context(”"line 2") context.par()
context(”line 3") context.par()
context("after"”) context.par()

before
line 1
line 2
line 3
after



Typesetting in Lua using LuaTEX

There we use the regular \par command to finish the current paragraph and nor-
mally you will use that method. In that case, when set, whitespace will be added
between paragraphs.

Direct output

The ConTgXt user interface is rather consistent and the use of special input syntaxes
is discouraged. Therefore, the Lua interface using tables and strings works quite well.
However, imagine that you need to support some weird macro (or a primitive) that
does not expect its argument between curly braces or brackets. The way out is to
precede an argument by another one with the value false. We call this the direct
interface. This is demonstrated in the following example.

\unexpanded\def\bla#1{[#1]1}

\startluacode
context.bla(false, "#xx"
context.par()
context.bla("x*x"
\stopluacode

This results in:

[*] *%
[***]

Here, the first call results in three * being passed, and #1 picks up the first token.
The second call to bla gets {**x} passed so here #1 gets the triplet. In practice you
will seldom need the direct interface.

In ConTgXt for historical reasons, combinations have the following syntax:

\startcombination % optional specification, like [2%3]
{\framed{content one}} {caption one}
{\framed{content two}} {caption two}

\stopcombination

You can also say:

\startcombination
\combination {\framed{content one}} {caption one}
\combination {\framed{content two}} {caption two}
\stopcombination

When coded in Lua, we can feed the first variant as follows:

context.startcombination()
context.direct("one”, "two")
context.direct("one"”,"two")

context.stopcombination()

To give you an idea what this looks like, we render it:

one one

two two

NAJAAR 2010

53



54 MAPS 41

Hans Hagen

So, the direct function is basically a no-op and results in nothing by itself. Only
arguments are passed. Equivalent, but a bit more ugly looking, is:

context.startcombination()
context(false, "one”, "two")
context(false, "one”, "two")

context.stopcombination()

Catcodes
If you are familiar with TgX’s inner working, you will know that characters can have
special meanings. This meaning is determined by the characters catcode.

context("$x=1$")

This gives: x = 1 because the dollar tokens trigger inline math mode. If you think
that this is annoying, you can do the following:

context.pushcatcodes("text")
context("$x=1$")
context.popcatcodes()

Now we get: $x=1$. There are several catcode regimes of which only a few make
sense in the perspective of the cld interface.

ctx, ctxcatcodes, context  the normal ConTgXt catcode regime
prt, prtcatcodes, protect the ConTgXt protected regime, used for modules

tex, texcatcodes, plain the traditional (plain) TgX regime

txt, txtcatcodes, text the ConTgXt regime but with less special characters
vrb, vrbcatcodes, verbatim a regime specially meant for verbatim

xml, xmlcatcodes a regime specially meant for xml processing

In the second case you can still get math:

context.pushcatcodes("text")
context.mathematics("x=1")
context.popcatcodes()

When entering a lot of math you can also consider this:

context.startimath()
context("x")
context("=")
context("1")
context.stopimath()

Module writers of course can use unprotect and protect as they do at the TgX end.
As we’ve seen, a function call to context acts like a print, as in:

context("test ")
context.bold("me")

context(” first")

test me first



Typesetting in Lua using LuaTEX NAJAAR 2010

When more than one argument is given, the first argument is considered a format
conforming the string. format function.

context.startimath()
context("%s = %0.5f",utf.char(@x03C0),math.pi)
context.stopimath()

= 3.14159
This means that when you say:
context(a,b,c,d,e,f)

the variables b till f are passed to the format and when the format does not call for
them, they will not end up in your output.

context("%s %s %s",1,2,3)
context(1,2,3)

The first line results in the three numbers being typeset, but in the second case only
the number 1 is typeset.

Why we need functions

In a previous section we introduced functions as arguments. At first sight this feature
looks strange but you need to keep in mind that a call to a context function has no
direct consequences. It generates TgX code that is executed after the current Lua
chunk ends and control is passed back to TgX. Take the following code:

context.framed( {
frame = "on”,
offset = "5mm",
align = "middle”
+
context.input("knuth")
)

We call the function framed but before the function body is executed, the arguments
get evaluated. This means that input gets processed before framed gets done. As a
result there is no second argument to framed and no content gets passed: an error is
reported. This is why we need the indirect call:

context.framed( {

frame = "on",
align = "middle”
}!
function() context.input("knuth”) end

)

This way we get what we want:

55



56 MAPS 41

Hans Hagen

Thus, I came to the conclusion that the designer of a new
system must not only be the implementer and first large—scale
user; the designer should also write the first user manual.

The separation of any of these four components would have hurt TgX
significantly. If I had not participated fully in all these activities, literally
hundreds of improvements would never have been made, because I would
never have thought of them or perceived why they were important.

But a system cannot be successful if it is too strongly influenced by a single
person. Once the initial design is complete and fairly robust, the real test begins as
people with many different viewpoints undertake their own experiments.

The function is delayed till the framed command is executed. If your applications use
such calls a lot, you can of course encapsulate this ugliness:
mycommands = mycommands or { }

function mycommands.framed_input(filename)
context.framed( {

frame = "on",
align = "middle”
}7
function() context.input(filename) end
end

mycommands. framed_input ("knuth")
Of course you can nest function calls:

context.placefigure(

"caption”,
function()
context.framed( {
frame = "on",
align = "middle”
3,
function() context.input("knuth”) end
)
end

)
Or you can use a more indirect method:

function text()
context.framed( {

frame = "on",
align = "middle”
}!
function() context.input("knuth”) end
)
end

context.placefigure(
"none”,
function() text() end
)



Typesetting in Lua using LuaTEX NAJAAR 2010

You can develop your own style and libraries just like you do with regular Lua code.

How we can avoid them

As many nested functions can obscure the code rather quickly, there is an alternative.
In the following examples we use test:

\def\test#1{[#1]}

context.test("test 1",context(” test 2a "),"test 3")

This gives: test 2a [test 1]test 3. As you can see, the second argument is executed
before the encapsulating call to test. So, we should have packed it into a function
but here is an alternative:

context.test("test 1”,context.delayed(” test 2a "),"test 3")

Now we get: [test 1] test 2a test 3. We can also delay functions themselves, look at
this:

context.test("test 1",context.delayed.test(” test 2b "),"test 3")

The result is: [test 1][ test 2b ]test 3. This feature also conveniently permits the use
of temporary variables, as in:

local f = context.delayed.test(” test 2c ")
context("before”,f,"after")

Of course you can limit the amount of keystrokes even more by creating a shortcut:

local delayed = context.delayed
context.test("test 1",delayed.test(” test 2 "),"test 3")
context.test("test 4",delayed.test("” test 5 "),"test 6")

So, if you want you can produce rather readable code and readability of code is one
of the reasons why Lua was chosen in the first place.

There is also another mechanism available. In the next example the second argument
is actually a string.

local nested = context.nested

context.test("test 8",nested.test("test 9"),"test 10")

There is a pitfall here: a nested context command needs to be flushed explicitly, so
in the case of:

context.nested.test("test 9")

a string is created but nothing ends up at the TgX end. Flushing is up to you. Beware:
nested only works with the regular ConTgXt catcode regime.
Trial typesetting

Some typesetting mechanisms demand a preroll. For instance, when determining
the most optimal way to analyse and therefore typeset a table, it is necessary to

57



58 MAPS 41

Hans Hagen

typeset the content of cells first. Inside ConTgXt there is a state tagged ‘trial type-
setting’ which signals other mechanisms that for instance counters should not be
incremented more than once.

Normally you don’t need to worry about these issues, but when writing the code that
implements the Lua interface to ConTgXt, it definitely had to be taken into account
as we either or not can free cached (nested) functions.

You can influence this caching to some extend. If you say

function()
context("whatever")
end

the function will be removed from the cache when ConTgXt is not in the trial type-
setting state. You can prevent any removal of a function by returning true, as in:

function()
context("whatever")
return true

end

Whenever you run into a situation that you don’t get the outcome that you expect,
you can consider returning true. However, keep in mind that it will take more mem-
ory, something that only matters on big runs. You can force flushing the whole cache
by:

context.restart()

An example of an occasion where you need to keep the function available is in re-
peated content, for instance in headers and footers.

context.setupheadertexts {
function()
context.pagenumber ()
return true
end

3
Of course it is not needed when you use the following method:
context.pagenumber ("pagenumber")

Because here ConTgXt itself deals with the content driven by the keyword
pagenumber.

Variables

Normally it makes most sense to use the English version of ConTgXt. The advantage
is that you can use English keywords, as in:

context.framed( {
frame = "on",

}’

"some text"



Typesetting in Lua using LuaTEX

If you use the Dutch interface it looks like this:

context.omlijnd( {
kader = "aan",

}7
"wat tekst”

)
A rather neutral way is:

context.framed( {
frame = interfaces.variables.on,

}’

"some text"”

)

But as said, normally you will use the English user interface so you can forget about
these matters. However, in the ConTgXt core code you will often see the variables
being used this way because there we need to support all user interfaces.

Modes

Context carries a concept of modes. You can use modes to create conditional sections
in your style (and/or content). You can control modes in your styles or you can set
them at the command line or in job control files. When a mode test has to be done
at processing time, then you need constructs like the following:

context.doifmodeelse( "screen",

function()

. -- mode == screen
end,
function()

. -— mode ~= screen
end

)

However, often a mode does not change during a run, and then we can use the

following method:
if tex.modes["screen”] then
else

end

Watch how the modes table lives in the tex namespace. We also have systemmodes. At
the TgX end these are mode names preceded by a *, so the following code is similar:

if tex.modes["*mymode”] then
-- this is the same

elseif tex.systemmodes["mymode”] then
-- test as this

else
-- but not this

end

NAJAAR 2010

59



60 MAPS 41

Hans Hagen

Inside ConTgXt we also have so called constants, and again these can be consulted
at the Lua end:

if tex.constants["”someconstant”] then
else
end

But you will hardly need these and, as they are often not public, their meaning can
change, unless of course they are documented as public.

Token lists

There is normally no need to mess around with nodes and tokens at the Lua end
yourself. However, if you do, then you might want to flush them as well. Say that at
the TgX end we have said:

\toks® = {Don’t get \inframed{framed}!}

Then at the Lua end you can say:

context(tex.toks[0])

and get: Don’t get ! In fact, token registers are exposed as strings so here,
register zero has type string and is treated as such.

context ("< %s >", tex.toks[@])

This gives: < Don’t get ! >. But beware, if you go the reverse way, you don’t
get what you might expect:

tex.toks[@] = [[\framed{oeps}]]

If we now say \the\toks@ we will get Don’t get ! as all tokens are consid-
ered to be letters.

Node lists

If you’re not deep into TgX you will never feel the need to manipulate nodelists
yourself, but you might want to flush boxes. As an example we put something in
box zero (one of the scratch boxes).

\setbox® = \hbox{Don’t get \inframed{framed}!}

At the TgX end you can flush this box (\box@) or take a copy (\copy®@). At the Lua end
you would do:

context.copy()
context.direct(0)

or:

context.copy(false,0)



Typesetting in Lua using LuaTEX NAJAAR 2010 61

but this works as well:

context(node.copy_list(tex.box[0]1))

So we get: Don’t get ! If you do:

context (tex.box[0])

you also need to make sure that the box is freed but let’s not go into those details
now.

Styles
Say that you want to typeset a word in a bold font. You can do that this way:

context("This is ")
context.bold("important™)
context("!")

Now imagine that you want this important word to be in red too. As we have a
nested command, we end up with a nested call:

context("This is ")
context.bold(function() context.color( { "red"” }, "important”) end)
context("!")

or

context("This is ")
context.bold(context.delayed.color( { "red” }, "important"))
context("!")

In that case it’s good to know that there is a command that combines both features:

context("This is ")
context.style( { style = "bold”, color = "red” }, "important”)
context("!")

But that is still not convenient when we have to do that often. So, you can wrap the
style switch in a function.

local function mycommands.important(str)
context.style( { style = "bold”, color = "red” }, str )
end

context("This is ")

mycommands. important( "important™)
context(”, and ")

mycommands. important( "this")
context(” too !")



62 MAPS 41

Hans Hagen

Or you can setup a named style:

context.setupstyle( { "important” }, { style = "bold"”, color = "red"” } )

context("This is ")

context.style( { "important” }, "important")
context(”, and ")

context.style( { "important” }, "this")
context(” too !")

Or even define one:

context.definestyle( { "important” 3}, { style = "bold"”, color = "red” } )

context("This is ")
context.important(”important”)
context(”, and ")
context.important(”this")
context(” too !")

This last solution is especially handy for more complex cases:

context.definestyle( { "important” 3}, { style = "bold"”, color = "red” } )

context("This is ")
context.startimportant()
context.inframed("”important”)
context.stopimportant()
context(”, and ")
context.important(”this")
context(” too !")

This is , and this too !

A complete example

One day my 6 year old niece Lorien was at the office and wanted to know what
I was doing. As I knew she was practicing calculus at school I wrote a quick and
dirty script to generate sheets with exercises. The most impressive part was that the
answers were included. It was a rather braindead bit of Lua, written in a few minutes,
but the weeks after I ended up running it a few more times, for her and her friends,
every time a bit more difficult and also using different calculus. It was that script that
made me decide to extend the basic cld manual into this more extensive document.
We generate three columns of exercises. Each exercise is a row in a table. The last
argument to the function determines if answers are shown.

local random = math.random

local function ForLorien(n,maxa,maxb,answers)

context.startcolumns { n = 3 }

context.starttabulate { "|r|c|r|c|r|" }

for i=1,n do
local sign = random(@,1) > 0.5
local a, b = random(1,maxa or 99), random(1,max or maxb or 99)
if b > a and not sign then a, b = b, a end
context.NC()
context(a)



Typesetting in Lua using LuaTEX

context.NC()
context.mathematics(sign and "+" or "-")
context.NC()
context(b)
context.NC()
context("=")
context.NC()
context(answers and (sign and atb or a-b))
context.NC()
context.NR()
end
context.stoptabulate()
context.stopcolumns()
context.page()
end

This is a typical example of where it’s more convenient to write the code in Lua that
in TgX’s macro language. As a consequence setting up the page also happens in Lua:

context.setupbodyfont {

"palatino”,
"14pt”

3

context.setuplayout {
backspace = "2cm",
topspace = "2cm”,
header = "lcm”,
footer = "@cm",
height = "middle”,
width = "middle",

3

At this point, we need to generate the document. There is a pitfall here: we need to
use the same random number for the exercises and the answers, so we freeze and
defrost it. Functions in the commands namespace implement functionality that is used
at the TgX end but better can be done in Lua than in TgX macro code. Of course these
functions can also be used at the Lua end.

context.starttext()
local n = 120
commands. freezerandomseed()

ForLorien(n,10,10)
ForLorien(n,20,20)
ForLorien(n,30,30)
ForLorien(n,40,40)
ForLorien(n,50,50)

commands . defrostrandomseed()

ForLorien(n,10,10, true)
ForLorien(n, 20,20, true)
ForLorien(n, 30,30, true)
ForLorien(n, 40,40, true)
ForLorien(n, 50,50, true)

context.stoptext()

NAJAAR 2010

63



64 MAPS 41 Hans Hagen

1 6
8 - 5 = 0 - 4= 9+ 10 = 8 - 5= 3 0 - 4= 6 9+ 10 = 19
44 2= 5 - 1= 7 - 3= 44 2= 6 5- 1= 4 7 - 3= 4
8 - 2 = 10+ 8 = 5 - 4= 8§ - 2= 6 10+ 8 = 18 5 - 4= 1
4+ 7 = 9+ 8 = 5+ 4 = 4+ 7 =1 9+ 8 =17 5+ 4= 9
54 1 = 9 - 3 = 8+ 9 = 54+ 1= 6 9 - 3= 6 8+ 9 =17
9 - 8 = 5 - 1= 54 6 = 9 - 8 =1 5- 1= 4 54 6 =11
8+ 3 = 6 - 1= 8+ 4 = 8§+ 3 =11 6 - 1= 5 8+ 4 =12
6 - 6 = 74 7 = 2 -1 = 6 - 6= 0 74+ 7 =14 2 - 1= 1
7 - 4= 6 - 5 = 0 - 6 = 7 - 4= 3 6 - 5= 1 0 - 6= 4
7 - 2= 7 4 3= 0 - 3 = 7 - 2=5 74+ 3 =10 0 - 3= 7
7 - 1= 4- 2= 6+ 6 = 7 - 1= 6 4- 2= 2 6+ 6 =12
7 - 4= 34+ 7 = 1+ 07 = 7 - 4= 3 3+ 7 =10 1+ 07 =08
6 - 3 = 0 - 3= 5 - 3= 6 - 3 3 0 - 3= 7 5- 3= 2
5 - 1= 3 - 2= 9+ 10 = 5 - 1= 4 3 - 2= 1 9+ 10 = 19
8 - 2 = 9 - 4 = 0 - 7 = 8 - 2= 6 9 - 4= 5 0 - 7= 3
34 2= 8+ 5 = 9+ 6 = 34 2= 5 8+ 5 =13 9+ 6 =15
74 7 = 8 - 6 = 0 - 3= 74+ 7 =14 8 - 6= 2 0 - 3= 7
5+ 8 = 4+ 5 = 0+ 8 = 5+ 8 =13 4+ 5= 9 0 + 8 =18
0 - 1 = 6 - - 7 - 1= 0 - 1= 9 6 - 5= 1 7 - 1= 6
0 - 6 = 8 - 1 = 74 3= 0 - 6= 4 8 - 1= 7 74 3 =10
8 - 2 = 24 6 = 9+ 10 = 8 - 2= 6 2+ 6= 8 9+ 10 = 19
8 + 8 = 4- 3= 3 - 2= 8+ 8 =16 4 - 3= 1 3 - 2= 1
6+ 4 = 4401 = 1+ 1= 6+ 4 =10 44 1= 5 1+ 1= 2
0+ 7 = 6 - 1= 54 3 = 0+ 7 =17 6 - 1= 5 54 3= 8
1+ 7 = 1+ 05 = 8+ 4 = 1+ 7= 8 1+ 5= 6 8+ 4 =12
74 7 = 3+ 5 = 0 - 4 = 74+ 7 =14 3+ 5= 8 0 - 4= 6
8 - 2 = 0+ 7 = 5 - 4= 8 - 2= 6 10+ 7 =17 5 - 4= 1
8 - 6 = 44 03 = 9 - 1= 8 - 6= 2 44 3= 7 9 - 1= 8
0 - 6 = 4 - 2= 6+ 9 = 0 - 6= 4 4 - 2= 2 6+ 9 =15
8 - 1 = 74 6 = 6+ 9 = 8 - 1= 7 74+ 6 =13 6+ 9 =15
6+ 4 = 7 - 3= 54 2 = 6+ 4=10 7 - 3= 4 54 2= 7
3+ 01 = 54 2 = 1+ 1= 3+ 1= 4 54 2= 7 1+ 1= 2
4+ 6 = 8 - 5 = 1+ 7 = 4+ 6 =10 8 - 5= 3 1+ 7 = 8
0+ 7 = 6 - 5 = 54 9 = 10+ 7 =17 6 - 5= 1 54 9 =14
14+ 10 = 34 10 = 6 - 4 = 1410 = 11 3410 = 13 6 - 4= 2
0+ 3 = 6 - 3 = 4+ 03 = 10+ 3 =13 6 - 3= 3 4+ 3= 7
0 - 7 = 6+ 4 = 4+ 08 = 0 - 7= 3 6+ 4 =10 4+ 08 =12
7 4 3= 34 4= 1+ 10 = 74 3=10 34+ 4= 7 1+ 10 =11
24 9 = 6+ 6 = 54 1= 24+ 9 =11 6+ 6 =12 54 1= 6
8 - 5 = 5 - 4= 5 - 1 = 8 - 5= 3 5 - 4= 1 5 - 1= 4
€Xercises answers

Figure 1 Lorien’s challenge.

A few pages of the result are shown in figure 1. In the ConTgXt distribution more
advanced version can be found in s-edu-01.cld as I was also asked to generate mul-
tiplication and table exercises. I also had to make sure that there were no duplicates
on a page as she complained that was not good. There a set of sheets is generated
with:

moduledata.educational.calculus.generate {

name = "Bram Otten”,
fontsize = "12pt",
columns = 2,
run ={
{ method = "bin_add_and_subtract”, maxa = 8, maxb = 8 },
{ method = "bin_add_and_subtract”, maxa = 16, maxb = 16 },
{ method = "bin_add_and_subtract”, maxa = 32, maxb = 32 },
{ method = "bin_add_and_subtract”, maxa = 64, maxb = 64 },
{ method = "bin_add_and_subtract”, maxa = 128, maxb = 128 },
+
3
Graphics

If you are familiar with ConTEXt, which by now probably is the case, you will have
noticed that it integrates the MetaPost graphic subsystem. Drawing a graphic is not
that complex:

context.startMPcode()
context [[
draw
fullcircle scaled 1cm
withpen pencircle scaled Tmm
withcolor .5white



Typesetting in Lua using LuaTEX NAJAAR 2010 65

dashed dashpattern (on 2mm off 2mm) ;

11
context.stopMPcode()

We get a gray dashed circle rendered with an one millimeter thick line:

-8
’ 7y
\\ _
So, we just use the regular commands and pass the drawing code as strings. Although
MetaPost is a rather normal language and therefore offers loops and conditions and
the lot, you might want to use Lua for anything else than the drawing commands.
Of course this is much less efficient, but it could be that you don’t care about speed.
The next example demonstrates the interface for building graphics piecewise.

context.resetMPdrawing()

context.startMPdrawing()
context([[fill fullcircle scaled 5cm withcolor (0,0,.5) ;11)
context.stopMPdrawing()

"

context.MPdrawing("pickup pencircle scaled .5mm ;
context.MPdrawing("drawoptions(withcolor white) ;")

for i=0,50,5 do
context.startMPdrawing()

context("draw fullcircle scaled %smm ;" ,i)
context.stopMPdrawing()
end

for i=0,50,5 do
context.MPdrawing("draw fullsquare scaled " .. i .. "mm ;
end

n

context.MPdrawingdonetrue()

context.getMPdrawing()

This gives:

I the first loop we can use the format options associated with the simple context call.
This will not work in the second case. Even worse, passing more than one argument
will definitely give a faulty graphic definition. This is why we have a special interface
for MetaFun. The code above can also be written as:

local metafun = context.metafun



66 MAPS 41 Hans Hagen

metafun.start()

”

metafun(”fill fullcircle scaled 5cm withcolor %s ;",
metafun.color("darkblue"))

n

metafun("pickup pencircle scaled .5mm ;
metafun("drawoptions(withcolor white) ;")

for i=0,50,5 do
metafun(”draw fullcircle scaled %smm ;",i)
end

for i=0,50,5 do
metafun(”draw fullsquare scaled %smm ;" i)
end

metafun.stop()

Watch the call to color, this will pass definitions at the TgX end to MetaPost. Of
course you really need to ask yourself “Do I want to use MetaPost this way?” Using
Lua loops instead of MetaPost ones makes much more sense in the following case:

local metafun = context.metafun

function metafun.barchart(t)
metafun.start()
local t = t.data
for i=1,#t do
metafun(”draw unitsquare xyscaled(%s,%s) shifted (%s,0);",
10, t[ilx10, i*10)

end

metafun.stop()
end
local one = { 1, 4, 6, 2, 3, }
local two ={ 8, 1, 3, 5, 9, }

context.startcombination()
context.combination(metafun.delayed.barchart { data
context.combination(metafun.delayed.barchart { data
context.stopcombination()

one }, "one")
two 3}, "two")

We get two barcharts alongside:

one two

local template = [[
path p, q ; color c[] ;
cl \MPcolor{darkblue} ;
c2 := \MPcolor{darkred} ;
p := fullcircle scaled 50 ;



Typesetting in Lua using LuaTEX

1 := length p ;

n :=%s ;

g := subpath (0,%s/nx1) of p ;

draw q withcolor c2 withpen pencircle scaled 1 ;

fill fullcircle scaled 5 shifted point length q of g withcolor c1 ;
setbounds currentpicture to unitsquare shifted (-0.5,-0.5) scaled 60 ;
draw boundingbox currentpicture withcolor c1 ;

currentpicture := currentpicture xsized(lcm) ;

1

local function steps(n)
for i=0,n do
context.metafun.start()
context.metafun(template,n,i)
context.metafun.stop()
if i < n then
context.quad()

end
end
end

context.hbox(function() steps(8) end)

\\”\f\(\C\CQ

To some extent we fool ourselves with this kind of Luafication of MetaPost code. Of
course we can make a nice MetaPost library and put the code in a macro instead. In
that sense, doing this in ConTgXt directly often gives better and more efficient code.
Of course you can use all relevant commands in the Lua interface, like:

context.startMPpage()
context(”"draw origin")
for i=0,100,10 do
context("..{down}(%d,0)",1i)
end
context(” withcolor \\MPcolor{darkred} ;")
context.stopMPpage()

to get a graphic that has its own page. Don’t use the metafun namespace here, as it
will not work here. This drawing looks like:

(VA AV a Ve Ve Ve e e e b

Hans Hagen

NAJAAR 2010

67



68 MAPS 41

Jean-Michel Hufflen

Processing “Computed” Texts

Abstract

This article is a comparison of methods that may be
used to derive texts to be typeset by a word processor.
By ‘derive’, we mean that such texts are extracted from
a larger structure, which can be viewed as a database.
The present standard for such a structure uses an
XML-like format, and we give an overview of the
available tools for this derivation task.

Keywords

Typesetting computed texts, TEX, LaTEX, ConTEXt,
X3TEX, LuaTeX, XML, XSLT, character maps, XQuery,
XSL-FO.

Introduction

Formats based on the TgX typesetting engine—e.g., Plain
TeX [27], or LaTgX [30], or ConTEXt [8], or LuaTEX [9]—
are known as wonderful tools to get high-quality print
outputs. Of course, they have been initially designed to
typeset texts directly written by end-users. But other
texts may be generated dynamically, in the sense that
they result from some computation applied to more data,
in particular, items belonging to databases. A very sim-
ple example is given by a bill computed by means of
a spreadsheet program like Microsoft Excel: the mas-
ter file is an .xls or .xIsx file—that is, all information
about data is centralised into this file—but we may wish
such a bill to be typeset nicely using a word processor
comparable with LaTgX!.

We personally experienced a more significant exam-
ple: at the University of Franche-Comté, we manage
the projects proposed to Computer Science students in
several degrees, this curriculum being located at Besan-
con, in the East of France. That is, we collect projects’
proposals, control the assignment of student groups to
projects. Then, at the semester’s end, we organise the
projects’ oral defences, and rate students from informa-
tion transmitted by jurys. During projects, information
is transmitted to students and projects’ supervisors ei-
ther on the Web, or by means of printed documents.
Managing only a list of project specifications and en-
riching it progressively is insufficient: it is better for
oral defences’ announcement to be shown with respect
to defences’ chronological order, and this order is un-
known when projects are proposed. Likewise, we may

wish to present the grades received by students accord-
ing to the decreasing order of these grades, or according
to students’ alphabetical order, other criteria being pos-
sible, too. In these cases, we have to perform a sort
operation before typesetting the result. These examples
are not limitative: other operations related to ‘classical’
programming may be needed if we are only interested
in a subset of the information concerning projects, for
example, extracting projects proposed by companies,
not by people working at our university.

It is well-known that TgX’s language is not very suit-
able for tasks directly related to programming?. A better
idea is to use a format suitable for information man-
agement, with interface tools serving several purposes.
Database formats could be used, but presently, the in-
disputable standard to model such formats is XML3, pro-
viding a rich toolbox for this kind of task. In particular,
this toolbox provides the XPath language [38], this lan-
guage’s expressions allow parts of an XML document
to be addressed precisely. But these tools related to
XML have advantages and drawbacks: we are going
thoroughly into these points in this article, which is a
revised, updated, and extended version of [19]. Reading
this article requires only basic knowledge about ()X
and the tools related to XML.

A simple example

The examples given in the introduction are ‘real’ appli-
cations and belong to our framework: Microsoft Excel
can generate XML files4, and we personally manage stu-
dents’ projects by means of a master file using XML-like
syntax. However, for sake of simplicity, we consider
an easier example for the present article, pictured in
Figure 1. This XML text—a file ds.xml—describes some
items of a series of stories—Doc Savage—first published
as pulps in the 1930’s, then republished as pocket books
in the 1960’s>. As it can be noticed in the given exam-
ple, the original publication order—for pulps—was not
followed by the series of pocket books®. In addition,
some stories were unpublished as pulps (e.g., The Red
Spider) or retitled when published as pocket books (e.g.,
The Deadly Dwarf, previously entitled Repel), in which
case, the pulp’s title is given as the pulp element’s con-
tents’. More precisely, if a pulp element’s contents is
empty, this means that the pulp’s title was the same as



Processing “Computed” Texts

<story-list>

<story>
<title>The Deadly Dwarf</title>
<pulp nb="56">Repel</pulp>
<pocket-book nb="28"/>

</story>

<story>
<title>The Land of Terror</title>
<pulp nb="2"/>
<pocket-book nb="8"/>

</story>

<story>
<title>The Lost Oasis</title>
<pulp nb="7"/>
<pocket-book nb="6"/>

</story>

<story>
<title>The Man of Bronze</title>
<pulp nb="1"/>
<pocket-book nb="1"/>

</story>

<story>
<title>The Red Spider</title>
<pocket-book nb="95"/>

</story>

<story>
<title>World&apos;s Fair Goblin</title>
<pulp nb="T74"/>
<pocket-book nb="39"/>

</story>

</story-list>

Figure 1. Master file using XML-like syntax.

the pocket book’s. Fig. 2 gives the schema modelling
our taxonomy®, written using XML Schema [42]. Let
us recall that this language provides a datatype library:
for example, ‘xsd:string’ for strings, the prefix ‘xsl1:’
allows us to get access to XML Schema’s constructs®.

Now we propose to search the information given in
Fig. 1, extract the items published as pulps, sort them
according to the publication order!?. The title given is
the pulp’s; if the corresponding pocket book has been
retitled, a footnote must give the ‘new’ title. Of course,
we wish the result to be typeset nicely, as LalgX or
ConTgXt is able to do. To be more precise, a good
solution processable by Plain TgX could look like the
source text given in Fig. 3. As mentioned above, a TgX-
based solution:

\story-list{%
\story{\title{...H\pulp{...}...}%

A

}

could use TgX commands for dealing with the elements

story-list, story, title, pulp, and pocket-book,

but would lead to complicated programming.

NAJAAR 2010

<xsd:schema

xmlns:xsd="http://wuw.w3.org/2001/XMLSchema">
<xsd:element name="story-list">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="story"
max0Occurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="title"
type="xsd:string"/>
<xsd:element name="pulp"
minOccurs="0">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension
base="xsd:string">
<xsd:attribute
ref="nb"
use="required"/>
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="pocket-book">
<xsd:complexType>
<xsd:attribute
ref="nb"
use="required"/>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:attribute name="nb"
type="xsd:positiveIlnteger"/>
</xsd:schema>

Figure 2. Our organisation expressed in XML Schema.

Using tools related to XML

XSLT producing TEX sources

XSLT!! [41] is the language designed for transforma-
tions of XML texts. By ‘transformations’, we mean that
we can build printed documents as well as online docu-
ments to be put on the Web from the source file. ‘Simple’
texts are possible, too. We also can perform some com-
putation from data stored in the original XML file. Let us
come to our example, the text of a stylesheet that may be
used to get Fig. 3 from Fig. 1 is given in extenso in Fig. 4.
This stylesheet takes as much advantage as possible
of the features introduced by XPath’s and XSLT’s new
version!? (2.0): for example, we have made precise the
types of the used variables, by means of as attributes,

69



70 MAPS 41

\item{1} The Man of Bronze

\item{2} The Land of Terror

\item{7} The Lost Oasis

\item{56} Repel\footnote*{Book’s title of pulp \#56:
The Deadly Dwarf}

\item{74} World’s Fair Goblin

\end

Figure 3. Stories' titles sorted by pulp numbers.

these types being provided by XML Schema’s library!3.
Likewise, we have made precise the types of templates’
results. As it can be noticed in Fig. 4, these types belong
to XML Schema’s namespace, whereas XSLT constructs
are prefixed by the namespace associated with ‘xs1:’.

Since we are interested in deriving texts processable
by ()TgX, an important new feature introduced by
XSLT 2.0 is the possible use of character maps [41, § 20.1].
In particular, they allow TgX’s special characters to be
replaced by commands producing them:

# — \# \ — $\backslash$l4

whenever they appear within a text node to be put
by XSLT. More precisely, a single character can be re-
placed by a string, as shown by the character map
some-special-characters given in Fig. 4. To dis-
tinguish an ‘actual’ backslash character, belonging to a
string, and a command’s beginning, a solution is to use a
character belonging to a private area of Unicode [34] for
the latter. For sake of readabiblity, we define this fictive
character by means of an entity!>—start-command—
[32, p. 48—49]. Introducing this entity leads us to put
a dummy DOCTYPE tag, since XSLT stylesheets do not
refer to a DTD. In other words, specifying these addi-
tional characters is a ‘trick’, but that allows us to process
strings extracted from the original XML file systemat-
ically. As shown in Fig. 4, the same technique can be
used for opening and closing a group: we use fictive
characters the character map transforms into braces.
The same for a delimited fragment in ()TgX’s math
mode. Another solution could be the direct generation
of Unicode texts and the use of a Unicode-compliant
TiX-like enginel®, e.g. XqIEX [26] or LuaTEX [9].

As abovementioned, XSLT is not limited to texts’ gen-
eration, the xsl:output element’s method attribute
may also be set to html or xhtml117 [41, § 20], in which
case it allows Web pages to be generated. Likewise,
this method attribute set to xml means that XML texts
are to be generated. Using these output methods pro-
vides a great advantage: since any XSLT stylesheet is an
XML text, an XSLT processor checks that the final docu-
ment is well-formed, in particular, opening and closing
tags must be balanced. The generation of () TgX texts
lacks an analogous check: an XSLT processor cannot

Jean-Michel Hufflen

ensure that opening and closing braces are balanced, as
in TgX; likewise, when LaTgX texts are generated, it is
impossible to ensure that environments like:

1)

are balanced. Since such errors are not detected stati-
cally, they just appear when generated texts are pro-
cessed. Let us notice that such a check would be
more difficult to apply to the texts generated for the
ConTgXt format, because the opening and closing com-
mands for ConTgXt’s environments are ‘\start...’
and ‘\stop. . .’, e.g., the equivalent formulation for (1)
in LaTEX is:

\begin{document} ... \end{document}

\starttext ... \stoptext

in ConTgXt. Concerning the delimiters of a com-
mand’s arguments, we can ensure that opening and
closing braces—more precisely, the two character enti-
ties start-group and end-group, before their replace-
ment by braces—are balanced by using only the XSLT
function ntg:make-group to build a TgX group from
a sequence of strings. Let us remark that XSLT func-
tions have been introduced in XSLT 2.0, so there is an
additional reason to use this version. Another solution
could be the use of an XML dialect whose architecture
would reflect TgX’s markup. From our point of view,
that would complicate the process since an additional
step—a translation from this dialect into ‘actual’ TgX-
like syntax—would be performed. In addition, some
versions of such dialects have already been proposed—
e.g., in [7, § A.1] for LaTgX—but it seems to us that none
is actually used.

XSLT producing XSL-FO texts

Since deriving XML texts by means of XSLT provides a
better check level about syntax, an alternative idea is
to get XSL-FO!8 [37] texts. Such texts use an XML-like
syntax that aims to describe high-quality print outputs.
As shown in [16], there is some similarity between
LaTgX and XSL-FO, the latter providing, of course, more
systematic markup!®. This language is verbose, but
it is not devoted to direct use: XSL-FO texts usually
result from applying an XSLT stylesheet. The use of
several namespaces—usually denoted by the prefixes
‘xsl:’ and ‘fo:’—clearly distinguish elements belong-
ing to XSLT and XSL-FO.

This approach’s advantage is clear: generated texts
are well-formed. However, XSL-FO lacks document
classes, as in LalgX. Some elements allow the descrip-
tion of page models, but end-users are entirely responsi-
ble for this definition. XSL-FO provides much expressive
power about placement of blocks?0, but is very basic
on other points. For example, let us consider footnotes,
end-users are responsible of choosing each footnote



Processing “Computed” Texts NAJAAR 2010

<!DOCTYPE stylesheet [<!ENTITY start-command "&#xE000;"> <!ENTITY start-group "&#xEO0O1;">

<!ENTITY end-group "&#xE002;">]>

<xsl:stylesheet version="2.0" id="pulps-plus" xmlns:maps="http://www.ntg.nl"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"
xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
extension-element-prefixes="xsd">

<xsl:output method="text" encoding="IS0-8859-1" use-character-maps="some-special-characters"/>
<xsl:strip-space elements="x"/>

<xsl:character-map name="some-special-characters">

<xsl:output-character character="#" string="\#"/>
<xsl:output-character character="J" string="\}"/>
<xsl:output-character character="$" string="\$"/>
<xsl:output-character character="&amp;" string="\&"/> <!-- & Plain TgX’s commands  -->
<xsl:output-character character="\" string="$\backslash$"/> <!-- “\{ and\} areonly -->
<xsl:output-character character="{" string="$\{$"/> <!-- usable in math mode -->
<xsl:output-character character="}" string="$\}$"/> <!-- (cf [27, Exercise 16.12]). -—>
<xsl:output-character character=""" string="{\char’7E}"/> <!-- Using hexadecimal code. -->
<xsl:output-character character="&start-command;" string="\"/>
<xsl:output-character character="&start-group;" string="{"/>
<xsl:output-character character="&end-group;" string="1}"/>

</xsl:character-map>

<xsl:variable name="eol" select="’&#xA;’" as="xsd:string"/> <!-- (End-Of-Line character.) -=>

<xsl:template match="story-list" as="xsd:string">
<xsl:variable name="pulps" as="xsd:string+">
<xsl:apply-templates select="story[pulp]">
<xsl:sort select="xsd:integer (pulp/@nb)"/>
</xsl:apply-templates>
</xsl:variable>
<xsl:value-of select="$pulps,$eol, ’&start-command;end’,$eol" separator=""/>
</xsl:template>

<!--  Numerical sort. -=>

<xsl:template match="story" as="xsd:string">
<xsl:variable name="pulp-0" select="pulp" as="element (pulp)"/>
<xsl:variable name="pulp-nb-0-string" select="xsd:string($pulp-0/@nb)" as="xsd:string"/>
<xsl:variable name="pulp-title-0" select="data(pulp-0)" as="xsd:string"/>
<xsl:variable name="title-processed" as="xsd:string">
<xsl:apply-templates select="title"/>
</xsl:variable>
<xsl:value-of select=’"&start-command;item",maps:mk-group($pulp-nb-0-string)," ",
if ($pulp-title-0) then
$pulp-title-0,"&start-command;footnotex",
maps :mk-group (("Book&apos;s title of pulp #",$pulp-nb-O-string,": ",
$title-processed)) else
$title-processed,
$eol’
separator=""/>
</xsl:template>

<xsl:template match="title" as="xsd:string"><xsl:apply-templates/></xsl:template>

<xsl:function name="maps:mk-group" as="xsd:string+">

<xsl:param name="string-seq" as="xsd:stringx"/>

<xsl:sequence select="’&start-group;’,$string-seq, ’&end-group;’"/>
</xsl:function>

</xsl:stylesheet>

Figure 4. Getting a source text for Plain TEX by means of an XSLT stylesheet.

71



72 MAPS 41

<fo:root xmlns:fo="http://www.w3.org/1999/XSL/Format">

<fo:layout-master-set>...</fo:layout-master-set>

Jean-Michel Hufflen

<fo:page-sequence master-reference="simple-page" font-family="serif" font-size="medium" text-align="left">

<fo:flow flow-name="xsl-region-body">

<fo:list-block provisional-distance-between-starts="20mm" provisional-label-separation="3mm">

<fo:list-item>

<fo:list-item-label start-indent="10mm" end-indent="label-end()">

<fo:block>56</fo:block>
</fo:list-item-label>

<fo:list-item-body start-indent="body-start()">

<fo:block>
Repel<fo:footnote>

<fo:inline font-size="x-small" vertical-align="super">*</fo:inline>

<fo:footnote-body>

<fo:block text-align-last="justify"><fo:leader leader-pattern="rule"/></fo:block>

<fo:block font-size="xx-small">

<fo:inline font-size="xx-small" vertical-align="super">*</fo:inline>Book’s title for

pulp #56:
</fo:block>
</fo:footnote-body>
</fo:footnote>
</fo:block>
</fo:list-item-body>
</fo:list-item>

The Deadly Dwarf

</fo:list-block>
</fo:flow>

</fo:page-sequence>

</fo:root>

Figure 5. How to put a footnote in XSL-FO (see the equivalent Plain TEX source text in Fig. 3).

mark. Fig. 5 provides the result of applying an XSLT
stylesheet providing an XSL-FO text for our example.
The first child of the fo:footnote element gives the
footnote reference, the second child is the actual foot-
note’s contents [37, § 6.12.3]. This fo:footnote ele-
ment seems to be low-level in comparison with LaTgX’s
\footnote command?!. Of course, if you want foot-
notes to be numbered automatically, XSLT addresses
this problem. However, another point seems to us to be
more debatable: end-users are responsible for putting
a leader separating footnotes from the text body?22 (we
show how to proceed in Fig. 5). So some footnotes may
be preceded by a leader, some may not. This point may
seem anecdotal, but for LaTgX users, some features of
XSL-FO can be viewed as low-level and be difficult to
handle since they are already programmed in LalgX
classes.

Last but not least, most current XSL-FO processors do
not implement the whole of this language, even if they
can successfully process most of XSL-FO texts used in
practice?3. So some features may be unusable, whereas
an equivalent construct will work in (B)TX. XSL-FO has
been designed to deal with the whole of Unicode, so it
shows how the Unicode bidirectional algorithm [35] is

put into action [18], but this point may also be observed
with XqIEX.

XQuery producing TEX sources

XQuery [40] is a query language for data stored in XML
form, as SQL%4 does for relational data bases25. XQuery
can be used to search documents and arrange the result,
as an XML structure or a simple text (possibly suitable
for a TgX-like engine). An XQuery program processing
our example in order to get Fig. 3’s text is given in Fig. 6.
Like XSLT 2.0, XQuery uses XPath 2.0 expressions and
the datatype library provided by XML Schema. As we
did in XSLT, we systematically put type declarations
using the as keyword, for sake of clarity and for taking
as much advantage as possible of XQuery’s type-checker.
Such programs, using FLWORZ26 expressions, are more
compact than equivalent ones in XSLT.

However, XQuery is suitable only for generating sim-
ple texts: advanced features like character maps in XSLT
are provided by some XQuery processors, but are not
portable. You have to use the replace function [39,
§ 7.6.3] to deal with TgX’s special characters:

replace($s," (#[%)","\\$1")

substitutes each occurrence of ‘#’ (resp. “%’) by “\#’



Processing “Computed” Texts NAJAAR 2010

declare namespace maps = "http://www.ntg.nl" ;
declare namespace saxon = "http://saxon.sf.net/" ;
declare namespace xsd = "http://www.w3.org/2001/XMLSchema" ;

declare option saxon:output "omit-xml-declaration=yes" ;

variable $eol as xsd:string := "&#xA;" ;
variable $filename as xsd:string external ;

declare
declare

declare function maps:mk-group($string-seq as xsd:string*) as xsd:string+ {

n{u s $string—seq, n}u
Y

if (doc-available($filename)) then

string-join((for $story-0 as element(story) in doc($filename)/story-list/story[pulp]

let $pulp-nb-0 as xsd:untypedAtomic
$pulp-nb-0-int as xsd:integer
$pulp-nb-0-string as xsd:string :=
$pulp-title-0 as xsd:string :

$story-title-0 as xsd:string
order by $pulp-nb-0-int

:= data($story-0/pulp/@nb),

:= xsd:integer ($pulp-nb-0),

xsd:string($pulp-nb-0),
xsd:string(data($story-0/pulp)),

:= xsd:string(data($story-0/title))

return ("\item",maps:mk-group($pulp-nb-0-string)," ",

if ($pulp-title-0) then

$pulp-title-0,"\footnote*",
maps ::mk-group (("Book’s title of pulp \#",$pulp-nb-O-string,": ",
$story-title-0)) else

$story-title-0,%e0l),
$eo0l,"\end",$eo0l),
n u) else

O

Figure 6. Getting a source text for Plain TEX by means of XQuery.

(resp. ‘\%’) within the string $s. Let us come back to
implementation-dependent features, a simple example
is given in Fig. 6: we declare that the result is not an
XML text by a non-portable option, saxon:output?’.
Of course, if XQuery is used to generate XML texts, they
are well-formed, but no analogous check can be done
about texts generated for a TgX-like engine. In other
words, XQuery has the same drawback as XSLT.

A curiosity: DSSSL

DSSSL28 [21] was initially designed as the stylesheet
language for displaying SGML2? texts. DSSSL includes a
core expression language that is a side-effect free subset
of the Scheme programming language [25]. XML being
a subset of SGML, stylesheets written using DSSSL can be
applied to XML texts. DSSSL is rarely used now, but the
example we cite illustrates how a functional program-
ming language can be suitable for our requirements.
Fig. 7 gives a stylesheet that produces a result equiv-
alent to Fig. 3. In fact, end-users do not write () TEX
commands when they develop a stylesheet, the jade30
program can generate TpX-like texts31:

jade -d pulps.dsl -t tex ds.sgml

—we have to specify a predefined backend, here ‘tex’—

the typesetting engine usable to process jade’s results
being JadeTgX [7, § 7.5.2]. Deriving texts directly pro-
cessable by LaTEX or ConTEXt is impossible.

As shown in Fig. 7, processing a name element uses
pattern-matching:

(element name E)

the E expression consists of assembling literals by
means of the make form, using types predefined in
DSSSL: paragraph, sequence, ... The generic type of
such results is called sosofo32 w.r.t. DSSSL’s terminology.

Enriched TEX engines

If we go back to programs based on TgX-like typesetting
engines, there are two other possible methods, based
on TgX-engines ‘enriched’ by using a ‘more classical’
programming language. In both cases, XML texts are pre-
processed by procedures belonging to a programming
language, and the result is sent to a TgX-engine. Of
course, such a modus operandi is suitable only if we want
to generate () TgX texts, it would be of little interest to
get XML texts or pages written using (X)HTML33.
PyTgEX [6] is written using Python [28] and uses TgX
as a daemon. Getting the components of a ‘computed’

73



74 MAPS 41 Jean-Michel Hufflen

<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN">

<style-sheet>
<style-specification id="pulps-plus">
<style-specification-body>
(declare-flow-object-class page-footnote
"UNREGISTERED: : Sebastian Rahtz//Flow Object Class::page-footnote")

(root (let ((margin-size 1in))
(make simple-page-sequence
page-width: 210mm page-height: 297mm left-margin: margin-size right-margin: margin-size
top-margin: margin-size bottom-margin: margin-size header-margin: margin-size
footer-margin: 12mm center-footer: (page-number-sosofo)
(process-children))))
(element story-list-sgml
(make sequence
(let ((get-pulp (lambda (node-list) (select-elements (children node-list) "pulp"))))
(process-node-list
(apply node-list
(list-stable-sort
(node-list->list (node-list-filter (lambda (node-list)
(not (node-list-empty? (get-pulp node-list))))

(children (current-node))))
<

(lambda (story-node-list)
(string->number (attribute-string "nb" (get-pulp story-node-list))))))))))
(element story
(let* ((story-indent 20pt)
(current-children (children (current-node)))
(pulp-node-list (select-elements current-children "pulp"))
(pulp-processed (process-node-list pulp-node-list))
(pulp-title-string (data pulp-node-list))
(title-processed (process-node-list (select-elements current-children "title"))))
(make paragraph
first-line-start-indent: (- story-indent) font-size: 12pt space-before: 10pt
start-indent: story-indent pulp-processed space-literal
(if (string-null? pulp-title-string)
title-processed
(let* ((footnote-marker-sosofo (literal "*"))
(footnotemark-sosofo (make-superscript footnote-marker-sosofo)))
(make sequence
(literal pulp-title-string) footnotemark-sosofo
(make page-footnote
footnotemark-sosofo (literal "Book’s title of pulp #") pulp-processed (literal ": ")
title-processed)))))))
(element title (process-children-trim))
(element pulp (literal (attribute-string "nb")))
(define space-literal (literal " "))
(define make-superscript
(let ((shift-factor 0.4)
(size-factor 0.6))
(lambda (sosofo-0)
(make sequence
font-size: (* (inherited-font-size) size-factor)
position-point-shift: (* (inherited-font-size) shift-factor)
sosofo-0))))

(define (string-null? string-0) ...)
(define (list-stable-sort list-0 rel-27 key-f1)
;3 Sorts 1ist-0 according to the order relation rel-27. The argument key-£1 gives a key for each element.
)
</style-specification-body>
</style-specification>
</style-sheet>

Figure 7. DSSSL stylesheet generating a text to be printed.




Processing “Computed” Texts

text is left to the Python functions dealing with XML
texts and successive results are sent to TgX, in turn.

LuaTgX [9] is able to call functions written using
Lua [20]. On another point, this TgX-engine can pro-
cess texts using XML-like syntax, as shown in [10].
Fig. 8 gives an implementation of our example in
ConTgXt MKIV: it uses Lua to define an interface with
sorting functions, the other functionalities being put
into action using TgX-like commands. As in ConTgXt,
the layout is controlled by set-up commands:

\start...setup \stop...setup

—for example, title elements’ contents are just dis-
played, processing pulp elements displays the num-
ber or the title, depending on a mode—then our
XML file is processed ‘atomically’, by means of the
\xmlprocessfile command. This approach is promis-
ing, but let us recall that LuaTgX and ConTgXt MKIV
have not yet reached stable state: that is planned for
the year 2012. Another important drawback: as shown
by the examples using the \xmlfilter command in
Fig. 8, this command uses path expressions, very close
to XPath expressions, but not identical. For example,
command—used to connect a selected item to the set-up
command that processes it—obviously does not belong
to XPath. On the contrary, some XPath expressions
are not recognised, even if ‘simple’ paths are processed.
Some tricks may be used as workarounds, but we per-
sonally think that complete compatibility with XPath
should be attained.

Conclusion

If we sum up the approaches shown throughout this
article, those that seem suitable are XQuery for sim-
ple examples, XSLT for more ambitious ones, provided
that Version 2.0 is used. The use of LuaTEX could be
interesting in a near future, too.

However, we think that there are two directions that
should be explored. The first would be a modern imple-
mentation of XSL-FO using a TgX-like typesetting engine.
Such an implementation has begun: Passive TEX [4],
but this project is presently stalled. We think that pro-
cessing XSL-FO could re-use the experience accumulated
by (IWTeX developers, even if syntaxes are very differ-
ent34. The second direction would be the definition and
implementation of an output mode of XSLT suitable for
(IWTEX; some additional services could be performed:
for example, checking that braces and environments are
balanced. Such an output mode already exists in nbst3>,
the language of bibliography styles close to XSLT and
used by MIBIBTEX3¢ [11], but it concerns only the way
to process LalgX’s special characters. If the method
attribute of the nbst:output element is set to text,
the result of:

NAJAAR 2010

\enablemode [ds:pulp]

\startxmlsetups xml:ds:base
\xmlsetsetup{#1}{/
story-list|story|title|pulpl|pocket-book}{%
xml:ds:*}
\stopxmlsetups

\xmlregisterdocumentsetup{ds}{xml:ds:base}

\startxmlsetups xml:ds:story-list
\xmlresetsorter{story}
\xmlfilter{#1}{/

/story/command (xml:story-list:getkeys)}
\subject{sortkeys}
\xmlshowsorter{story}\blank
\xmlsortentries{story}
\xmlflushsorter{story}{xml:story-list:flush}

\stopxmlsetups

\startxmlsetups xml:story-list:getkeys
\xmladdsortentry{story}t{#1}{/%
\xmlattribute{#1}{/pulp}{nb}}
\stopxmlsetups

\startxmlsetups xml:story-list:flush
\startitemize\xmlfirst{#1}{.}\stopitemize
\stopxmlsetups

\startxmlsetups xml:ds:story
\sym{\xmlfirst{#1}{pulp}}
\xmldoifelsetext{#1}{pulpH{

{\disablemode[ds:pulp] \xmlfirst{#1}{pulp}
\footnoted{’,
Book’s title: \xmlfirst{#1}{title}}}{%
\xmlfirst{#1}{title}}
\stopxmlsetups

\startxmlsetups xml:ds:title
\xmlflush{#1}
\stopxmlsetups

\startxmlsetups xml:ds:pulp
\doifmodeelse{ds:pulp}{\xmlatt{#1}{nb}}{%
\xmlflush{#1}}
\stopxmlsetups

\starttext
\xmlprocessfile{ds}{ds.xml}{}
\stoptext

Figure 8. Processing a master file with ConTEXt Mk IV.

<nbst:text>#60 The Maji</mbst:text>

is ‘#60 The Maji’. If this attribute is set to LaTeX, the
result is “\#60 The Maji’.

Acknowledgements

I wish to thank Hans Hagen who greatly helped me
debug and improve LuaTgX source texts. Thanks also

to Karl Berry, who clarified some terminology notions.

75



76 MAPS 41

Last but not least, thanks to Taco Hoekwater for his
patience when he was waiting for this final version.

References

(1]
(2]

[14]

[15]

[16]

Apache FOP. November 2010. http://
xmlgraphics.apache.org/fop/.

Frédéric BOULANGER : « LaTgX au pays des
tableurs ». Cahiers GUTenberg, Vol. 39-40,

p- 7-16. In Actes du Congrés GUTenberg 2001,
Metz. Mai 2001.

Neil BRADLEY: The Concise SGML Companion.
Addison-Wesley. 1997.

David CARLISLE, Michel GOOSSENS et Sebastian
RAHTZ : « De XML a PDF avec xmltex, XSLT et
PassiveTgX ». Cahiers GUTenberg, Vol. 35-36,
p- 79-114. In Actes du congrés GUTenberg 2000,
Toulouse. Mai 2000.

James CLARK et al.: Relax NG. http://wuw.
oasis-open.org/committees/relax-ng/.
2002.

Jonathan FINE: “TgX Forever!”. In: Proc. EuroTgX
2005, pp. 150-158. Pont-a Mousson, France.
March 2005.

Michel Goossens and Sebastian RaHTz, with
Eitan M. GURrARI, Ross MOORE and Robert S.
Sutor: The LalgX Web Companion. Addison-
Wesley Longman, Inc., Reading, Massachusetts.
May 1999.

Hans HAGEN: ConTgXt, the Manual. Novem-
ber 2001. http://www.pragma-ade.com/
general/manuals/cont-enp.pdf.

Hans HaGeN: “The Luafication of TgX and
ConTgXt”. In: Proc. BachoTEX 2008 Conference,
pp. 114-123. April 2008.

Hans HAGEN: “Dealing with XML in ConTgXt
MKIV”. MAPS, Vol. 37, pp. 25-39. 2008.

Jean-Michel HurrLEN: “MIBIBIEX’s Version 1.3”.

TUGboat, Vol. 24, no. 2, pp. 249-262. July 2003.
Jean-Michel HUuFFLEN: “Introduction to XSLT”.
Biuletyn GUST, Vol. 22, pp. 64. In BachoIgX 2005
conference. April 2005.

Jean-Michel HurrLEN: “Advanced Techniques
in XSLT”. Biuletyn GUST, Vol. 23, pp. 69-75. In
BachoTgX 2006 conference. April 2006.
Jean-Michel HUFFLEN: “Introducing LaTEX users

to XSL-FO”. TUGboat, Vol. 29, no. 1, pp. 118-124.

EuroBachoTgX 2007 proceedings. 2007.
Jean-Michel HUFFLEN: “XSLT 2.0 vs XSLT 1.0”.
In: Proc. BachoIgX 2008 Conference, pp. 67-77.
April 2008.

Jean-Michel HUFFLEN : « Passer de LaTgX a
XSL-FO ». Cahiers GUTenberg, Vol. 51, p. 77-99.
Octobre 2008.

[17]

[18]

[23]

[24]

[30]

Jean-Michel Hufflen

Jean-Michel HUurrLEN: “Introduction to XQuery”.
In: Tomasz PrRzECHLEWSKI, Karl BERRY and
Jerzy B. LupwicHOWSKI, eds., TEX: at a Turning
Point, or at the Crossroads? Proc. BachoTEX 2009
Conference, pp. 17-25. April 2009.

Jean-Michel HurrLEN: “Multidirectional Type-
setting in XSL-FO”. In: Tomasz PRZECHLEWSKI,
Karl BERRY and Jerzy B. LUDWICHOWSKI, eds.,
TgX: at a Turning Point, or at the Crossroads?
Proc. BachoTgX 2009 Conference, pp. 37-40. April
2009.

Jean-Michel HUFFLEN: “Processing ‘Computed’
Texts”. ArsTgXnica, Vol. 8, pp. 102-109. In GUIT
2009 meeting. October 20009.

Roberto IERUSALIMSCHY: Programming in Lua.
2nd edition. Lua.org. March 2006.
International Standard ISO/IEC 10179:1996(E):
DSSSL. 1996.

ISO/IEC 19757: The Schematron. An XML
Structure Validation Language Using Pat-
terns in Trees. http://www.ascc.net/xml/
resource/schematron/schematron.html.
June 2003.

Michael H. Kay: XSLT 2.0 Programmer’s Ref-
erence. 3rd edition. Wiley Publishing, Inc.
2004.

Michael H. Kay: Saxon. The XSLT and XQuery
Processor. October 2010. http://saxon.
sourceforge.net.

Richard KeLsey, William D. CLINGER, and
Jonathan A. Regs, with Harold ABELSON,
Norman I. Apawms 1v, David H. BARTLEY, Gary
Brooks, R. Kent DyBvIG, Daniel P. FRIEDMAN,
Robert HALSTEAD, Chris HaNsoN, Christopher T.
Haynes, Eugene Edmund KOHLBECKER, JR,
Donald OxLEY, Kent M. PITMAN, Guillermo J.
Rozas, Guy Lewis STEELE, Jr, Gerald Jay
SussmaN and Mitchell WaND: “Revised® Report
on the Algorithmic Language Scheme”. HOSC,
Vol. 11, no. 1, pp. 7-105. August 1998.
Jonathan Kew: “X{IEX in TgX Live and be-
yond”. TUGboat, Vol. 29, no. 1, pp. 146—-150.
EuroBachoTgX 2007 proceedings. 2007.

Donald Ervin KNnuth: Computers & Typesetting.
Vol. A: The TgXbook. Addison-Wesley Publishing
Company, Reading, Massachusetts. 1984.
Alex MARTELLI: Python in a Nutshell.
edition. O’Reilly. July 2006.

Jim MELTON and Alan R. Simon: Understanding
the new SQL. Morgan Kaufmann. 1993.

Frank MiTTELBACH and Michel GoosseNs, with
Johannes Braams, David CARLISLE, Chris A.
RowLEY, Christine DETIG and Joachim SCHROD:
The LalgX Companion. 2nd edition. Addison-
Wesley Publishing Company, Reading, Mas-

2nd



Processing “Computed” Texts

sachusetts. August 2004.

[31] Chuck Musciano and Bill KENNEDY: HTML
& XHTML: The Definitive Guide. 5th edition.
O’Reilly & Associates, Inc. August 2002.

[32] Erik T. Ray: Learning XML. O’Reilly & Asso-

ciates, Inc. January 2001.

[33] Denis B. ROEGEL : « Anatomie d’une macro ».
Cahiers GUTenberg, Vol. 31, p. 19-27. Décembre
1998.

[34] Tue Unicope ConsorTiUM: The Unicode Stan-

dard Version 5.0. Addison-Wesley. November
2006.

The UnicoDE CONSORTIUM, http://unicode.
org/reports/tr9/: Unicode Bidirectional
Algorithm. Unicode Standard Annex #9. March
2008.

Eric VAN DER ViisT: Comparing XML Schema
Languages. http://www.xml.com/pub/a/
2001/12/12/schemacompare.html. Decem-
ber 2001.

W3C: Extensible Stylesheet Language (XSL).
Version 1.1. W3C Recommendation. Edited by

Anders Berglund. December 2006. http://www.

w3.org/TR/2006/REC-xs111-20061205/.
W3C: XML Path Language (XPath) 2.0. W3C
Recommendation Draft. Edited by Anders
Berglund, Scott Boag, Don Chamberlin, Mary F.
Fernandez, Michael H. Kay, Jonathan Robie and

Jéréme Siméon. January 2007. http://www.w3.

org/TR/2007 /WD-xpath20-20070123.

W3C: XQuery 1.0 and XPath 2.0 Functions
and Operators. W3C Recommendation. Edited
by Ashok Malhotra, Jim Melton, and Norman
Walsh. January 2007. http://www.w3.org/
TR/2007/REC-xpath-functions-20070123.
W3C: XQuery 1.0: an XML Query Language.
W3C Recommendation. Edited by Scott Boag,
Don Chamberlin, Mary F. Fernandez, Daniela
Florescu, Jonathan Robie and Jérome Siméon.
January 2007. http://www.w3.org/TR/
xquery.

W3C: XSL Transformations (XSLT). Version 2.0.
W3C Recommendation. Edited by Michael H.
Kay. January 2007. http://www.w3.org/TR/
2007/WD-xs1t20-20070123.

W3C: XML Schema. December 2008. http:
//www.w3.org/XML/Schema.

[39]

[43] Larry WipeN and Chris MIRACLE: Doc Sav-
age: Arch Enemy of Evil. Fantasticon Press,
Milwaukee, Wisconsin. 1993.

Notes

1. Let us mention that [2] shows—in French—how to use
LaTgX to put spreadsheets’ functionalities into action.

NAJAAR 2010 77

2. As an example of using TgX’s language for programming
purposes, readers interested in putting a sort procedure into
action can refer to [33]: this modus operandi may be viewed as
a worthwhile exercise, but is unusable in practice, especially
when it is not trivial to obtain sort keys from items to be
sorted.

3. eXtensible Markup Language. Readers interested in a gen-
eral introductory book to this formalism can refer to [32].

4. The XML format used by Microsoft Excel is OOXML (Office
Open XML).

5. All the source texts mentioned throughout [19] and this
article—including new versions realised for this present arti-
cle, in which case the corresponding file names are suffixed
with ‘-plus’—can be downloaded in extenso from the Web
page http://lifc.univ-fcomte.fr/home/~ jmhufflen/
texts/guit-2009/.

6. If you are interested in the story of Doc Savage series and
its successive editions, you can find more information in [43].
7. When several titles have been used, such a story is more
commonly known under the pocket book’s title, because
pocket books are easier to get than pulps, which are very
rare. That is why our title elements always refer to pocket
books’, the contents of pocket-book elements being always
empty.

8. Schemas allow specifiers to define document types, which
can be viewed as some taxonomy common to a family of XML
texts. There exist several schema languages, and the Web
page abovementioned gives several versions, using a DTD
(Document Type Definition) [32, Ch. 5], XML Schema [42],
Relax NG (New Generation) [5], and Schematron [22]. A
discussed comparison among these schema languages can be
found in [36].

9. Readers interested in more details about XML namespaces
can consult [32, pp. 41-45].

10. This example seems to us to be pertinent, because there is
no order ‘better’ than others: the original order is based on
pulps, but—as mentioned above—some stories are unpublished
as pulps, whereas sorting stories according to pocket books’
order allows us to sort all the stories, but this is not really
chronological.

11. eXtensible Stylesheet Language Transformations. Intro-
ductions to this language have been given in some BachoTgX
conferences, held in Poland: [12, 13, 15].

12. A study of XPath 2.0’s and XSLT 2.0’s new features, in
comparison with XPath 1.0 and XSLT 1.0, can be found in
[15].

13. In addition, let us mention that when an XML text is
processed by XSLT 2.0, the information put into a DTD or an
XML Schema text can be exploited [23, p. 58]. That is not
true about other schema languages.

14. In text mode, LaTgX 2¢’s modern versions provide the
\textbackslash command [30, Table 7.33].

15. If we name this character by introducing a variable
by means of an xsl:variable element—as we did in
Fig. 4 for the end-of-line character—we cannot use this
variable’s value within the character attribute of the
xsl:output-character element.

16. Engines are not formats: a format is a set of pre-loaded
definitions based on primitives of a TgX-like engine, whereas
an engine is TeX or is derived from TgX by adding or redefining



78 MAPS 41 Jean-Michel Hufflen

some primitives. Plain TgX and LaTgX are formats, XqIEX and
LuaTgX are engines.

17. (eXtensible) HyperText Markup Language. XHTML is a
reformulation of HTML—the original language of Web pages—
using XML conventions. [31] is a good introduction to these
languages.

18. eXtensible Stylesheet Language—Formatting Objects.

19. [16] is written in French. If you would like a similar text
in English, [14] is an abridged version.

20. Roughly speaking, a block in XSL-FO is analogous to a
minipage in LaTEX [16, § 1.2].

21. XSL-FO’s footnotes can be compared with Plain TgX's
\footnote command, as shown in Fig. 3.

22. That is done in standard LaTEX class, but not universal: as
an example related to TgX’s community, the arstexnica class,
used for articles of the ArsTgXnica journal—published by Gt
(Gruppo Utilizzatori Italiani di TgX), the Italian-speaking TgX
users group—does not put leaders just above footnotes.

23. We personally use Apache FOP (Formatting Objects
Processor) [1]:

fop pulps-result.fo pulps-result.pdf

generates a PDF (Portable Document Format) file from a
source text in XSL-FO.

24. Structured Query Language. A good introductory book
about it is [29].

25. A short introduction to XQuery is given in [17].

26. ‘For, Let, Where, Order by, Return’, the keywords used
throughout such expressions.

27. The XQuery processor we have used for this example is
Saxon [24]. Fig. 6’s text can be processed by:

java net.sf.saxon.Query pulps-plus.xq \
filename="ds.xml"

We also use Saxon as an XSLT 2.0 processor and the stylesheet
of Fig. 4 can be processed by:

java net.sf.saxon.Transform -s:ds.xml \
-xsl:pulps-plus.xsl

28. Document Style Semantics Specification Language.

29. Standard Generalised Markup Language. Now it is only of
a historical interest. Readers interested in this metalanguage
can refer to [3].

30. James Clark’s Awesome DSSSL Engine.

31. We use a different file and a different name for the root
element (story-list-sgml) because of syntactic reasons:
empty tags’ syntax was different in SGML [3, p. 259].

32. Specification Of a Sequence Of Flow Objects.

33. Unless a converter to (X)HTML is used, of course.

34. Besides, it is well-known that TgX recognises only its own
formats, which complicates cooperation between TgX and
other programs.

35. New Bibliography STyles.

36. MultiLingual BIBTEX.

Jean-Michel Hufflen

LIFC (EA CNRS 4157),

University of Franche-Comté, 16, route de Gray,
25030 Besancon Cedex, France



Kees van der Laan NAJAAR 2010

a la Mondrian

Abstract

Mondriaan has worked most of his live as an abstract painter, influenced by the magic real-
ism of Jan Toorop, and by Cubism and Pointillism. He was member of De Stijl and has lived
in Paris and in New York. Some of his work seems to have been composed randomly, though
he was very precise, as witnessed by the overpainting of various squares in his Victory Boo-
gie-Woogie. Mondriaan's “random’ work Composition in Line 1916, is emulated and varied
in MetaPost and PostScript, in color, with the lines (position and size) randomly chosen. He
was the first painter to frame work by Lozenges. Division of the sides of his Lozenge with

2 lines is near to the golden ratio. Emulated Lozenges obeying the golden ratio have been
included. The variations look nevertheless Mondriaan-esque.

Keywords
Art, color, cubism, De Stijl, golden ratio, Mondrian, pointillism, pseudo-random numbers,
MetaPost, PostScript, Toorop

Introduction

My applied math professor Hans Lauwerier' published in 1987, long after I fin-
ished my math education, Fractals—meetkundige figuren in eindeloze herhaling. It
contained the following picture, which he called ‘a la Mondriaan’?

Lauwerier used this picture to illustrate a very simple algorithm? for generating
a pseudo-random number sequence in BASIC

“... start with a four digit number, the seed, square it and delete the first and
last two numbers, and repeat the process of squaring and deleting ...”

He randomly positioned (place, horizontally or vertically) the line pieces of random
length. I'll improve on his picture with the use of a shade of color, and variation in
line thickness. Moreover, I'll cadre by different frames.

79



80 MAPS 41

Kees van der Laan

Mondriaan

Mondriaan was born in 1872 at Amersfoort and started drawing a la nature.

Meisje 1890 Winterswijk 1895

Jan Toorop has influenced Mondriaan by his new realism. Mondriaan was often a
guest at Toorop's in Zeeland in the beginning of the 20" century; the (light at the)
seashore inspired Mondriaan.

Zeeland farmer 1909 Red Cloud 1907

Arum Lilies 1909 Lighthouse WC 1908/9



a la Mondrian

Mondriaan exercised an oval as a boundary, not as a frame. The Composition in
Oval 1913 reminds me of the work of George Braque.

Composition in Oval 1913

He has lived in Paris, 1919-1938, and was influenced by cubism and pointillism.

Blossoming Apple Tree 1912 Beach with one Pier 1909

I was familiar with some of Mondriaan's works from the ‘De Stijl’* period, where
he exercised the use of primary color panes and straight lines, which reminds me of
stained glass windows.

emulation: Large Composition with Red, Blue and Yellow 1928

NAJAAR 2010 81



82 MAPS 41 Kees van der Laan

His series of Lozenge's from the twenties, ended in a minimal one, given below at
the right.

Lozenge with 3 lines 1925 Lozenge with 2 lines 1931

I measured his Lozenges and was suprised that he missed the divison of the sides
by the golden ratio: his sides are divided in 3.9 : 5.6; the golden ratio ® does not hold,
ie 3.9:5.6 £ 5.6: 9.5. A tiny difference, but nonetheless.

¢ emulation & emulation

%Mondriaan-like Lozenge with 3 lines. Fall 2009 kisal@xs4all.nl
beginfig(@)

$=200;

z1=(0, .5s); z2=(.5s,s); z3=(s,.5s); z4=(.5s,0);
z5=0.618/1.618[z2,z3]; z6=0.618/1.618[z3,z4];
z7= 1/1.618[z3,z4]; 28=1/1.618[z4,2z11;
29=0.382/1.618[z1,z4]; 210=0.382/1.618[z1,22];
z11= (z5--z7) intersectionpoint (z6--z8);

path p; p = z1--z2--z3--z4--cycle;

pw=4; pickup pencircle scaled pw;

fill p withcolor .95white;

fill z1--z10--z9--cycle withcolor blue;

fill z7--z11--z6--cycle withcolor red+green;
fill z8--z11--z7--z4--cycle withcolor .85white;
draw z5--z7;

draw z6--z8;

draw z9--z10;

clip currentpicture to p;

draw p withcolor .97white;

endfig

end



a la Mondrian NAJAAR 2010 83

For the right Lozenge the main part of the above reads

fill p withcolor .95white;
draw z5--z7;
draw z6--z8;
clip currentpicture to p;
draw p withcolor .97white;

Remark. In contrast with PostScript we don't have to translate the origin in MetaPost
to somewhere in the middle.

For my last year's birthday Sveta and I composed the following a la Mondriaan invi-
tation starting from the left ®-Lozenge.

Not so long ago, I used one of his Apple trees, along with a little poetic proza, for
our local gardeners bulletin. It is about one of our Apple trees, which in every season
has something to offer:

spring, blossoming beauty

summer, healthy shade

autumn, fruits to enjoy

winter, beautiful silhouet a la Mondriaan.

oo oo



84 MAPS 41 Kees van der Laan

Appelweelde

Bruingetinte

het is november,
zeldzaam zacht.
De appelboom
majestueus,

met zijn takken
armen vol met
Wat een weelde.

bladeren op het gras
herfst, en

staat fier en
stevig geworteld.,
= als uitgespreide
appels.

wat een pracht!

Van de vroege, aangetaste appels heeft
deze reus zich al in juli en augustus ontdaan.
Nu hangen er nog een en al gave ponders,
tjokvol met sap.

Het is een rijkdom zo’n
appelboom op en ir ruime plek in de
tuin, een genoegen het hele
jaar door:

de lente,
- Zolmer,
. herfst, en

bloesempracht in
schaduw in de
oogst in de

een Mondriaan

silhouet in de winter.

His unfinished Victory Boogie-Woogie is shown on the cover of the biography about
Mondriaan.

Mondriaan has the reputation to be very precise, and I was curious whether some of
his works

“... could be generated randomly in color and nevertheless convey a Mondriaan
impression ...”

although at the time he did not use color for the ‘random’ pictures given on the next
page.



a la Mondrian

Composition in Line, 1916 Composition 10, 1915

Variation of Mondriaan’s ‘random’ art
Is it random?

As far as I understand it, his work was composed precisely, very precisely, as
witnessed by his unfinished Victory Boogie-Woogie, where several squares have
been painted over.

Square, Oval and Lozenge cadres. 1 generated an abstract picture of lines, with a
spread in size, thickness and with a color shade, such that the impression is blue-like,
green-like,...

I intended these pictures as presents to my friends. Made them unique by using
the date of birth (month and day) as seed for the pseudo-random number generator
in MetaPost.’ Colored the frame with their favorite color, which also biases the color
shade.

Below is Sveta's one in pink, with 1007 as seed for the pseudo-random number
generator.

cgl okt09

How to?

First, we have to decide on the size of the rectangle. Next the number of randoms.
I chose 500, but that can be adjusted at will. The lines are drawn within a rectangle
of 180 by 180 - 1.618, obeying the golden ratio. For the position in the rectangle the

NAJAAR 2010

85



86 MAPS 41

Kees van der Laan

random number generator must generate numbers between 0 0 180 ~291, conform
PostScript's BoundingBox convention to denote a rectangle.

uniformdeviate delivers a number between 0 and its argument. We have the in-
tervals (0, u) and (0,v), so the invokes for the (x, y)-position read

hx:= uniformdeviate u; hy:= uniformdeviate v;

I alternate between vertical and horizontal lines, where the lines have maximum
length size=10, and maximum (pen)width pw=5pt. The actual size, horizontally as
well as vertically, is determined by an invoke of uniformdeviate

draw (hx, hy)--(hx + uniformdeviate size, hy) withcolor rgb%vertical line
Line thickness is varied as follows:
pickup pencircle scaled ((uniformdeviate 1)*pw);

The most difficult part is the color, which I let vary a little around the chosen value,
in order to generate a shade but ... gives the main color impression. I chose a multi-
plicative factor uniformdeviate 2 and called this spread.

To finish it up, I clip and border first to the rectangle, next to the oval, and finally
to the diamond; all border increasingly the same pattern.

%Mondriaan-alike. Fall 2009 CGL
if scantokens(mpversion) > 1.005: outputtemplate :=
else: filenametemplate
fi "%j.eps";
prologues:=3;
beginfig(@)
u:=180; %rectangle u x v, golden ratio proportion
v:=1.618u;
size=10; pw=5;
n=500; %number of randoms
path p.r, %»rectangle
p.o, %oval
p.d; %diamond
picture pic.r, pic.o, pic.d, signature;
defaultfont:="ptmr8r";
label.rt("cgl okt@9"”, (2.75u+4pw, 2pw));%seed may be shown instead
signature:=currentpicture; currentpicture:=nullpicture;
%
color rgb, colorofchoice;
%parameters for Sveta
randomseed:=1007; colorofchoice:= .8*red +.2xgreen .7*xblue;%roze
%
for j=0 upto n:
pickup pencircle scaled ((uniformdeviate 1)*pwxpt); linecap:=squared;
hx:= uniformdeviate u; hy:= uniformdeviate v;
rgb:= .8*(uniformdeviate 2)*red + .2x(uniformdeviate 2)*green
+ .7%(uniformdeviate 2)*blue;
draw (hx,hy)--(hx,hy+ uniformdeviate size) withcolor rgb;
hx:= uniformdeviate u; hy:= uniformdeviate v;
rgb:= .8%(uniformdeviate 2)*red + .2x(uniformdeviate 2)*green
+ .7%(uniformdeviate 2)*blue;



a la Mondrian

draw (hx,hy)--(hxtuniformdeviate size, hy) withcolor rgb;

endfor;

p.r= ((0, v)--(u,v)--(u,0)--(0,0)--cycle) shifted (2pw,2pw);

p.o= ((.5u,v){right}...(u,.5v){down}...(.5u,0@){left}...(Q,.5v){up}
...cycle) shifted (u+4pw,2pw);

p.d= ((.5u,v)--(u,.5v)--(.5u,0)--(0@,.5v)--cycle) shifted (2u+6pw,2pw);

currentpicture:=currentpicture shifted (2pw,pw);

clip currentpicture to p.r;

pic.o:=currentpicture shifted (u+4pw,0);

clip pic.o to p.o;%clip more

pic.d:= currentpicture shifted (2u+6pw,Q);

clip pic.d to p.d;%clip even more

addto currentpicture also pic.o;%add shifted pictures

addto currentpicture also pic.d;

%

pickup pencircle scaled pw; linecap:=rounded;

drawoptions (withcolor .8*red +.2*green .7%blue);

draw p.r; draw p.o; draw p.d;

addto currentpicture also signature;

endfig end

I reused this program for generating personalized presents several times, but I am
happier with the PostScript operator given below. When the picture was for a man,
I copied the Square or the Lozenge, and when it is for a woman I copied the Oval.®
Frame the picture in a physical frame and ready it is, apart from a wrap-around
paper.

Note that all three frames have the same pattern: the pattern is clipped by frame
variations. Subtle is the printing of the signature outside the clipping area.

PostScript operator variant
Why a PostScript variant of the MetaPost program?

allows larger numbers (seed eg 22121943)
more convenient clipping

operator (library)

no invoke of MP

easier experimenting with color shade
improved code.

O oooo g

In this variant I generate only one framed picture triggered by the value 0, 1, or 2 for
the last parameter on the stack, where 0=Square 1=Oval 2=Lozenge. The size is 420
by 420 - 1.618 and positioned with the lower left corner at

100 50 translate

for a centered result. The complete birthday date, ddmmyyyy, can be supplied. The
code is not a direct translation, because of the language differences and because I
matured in coding and was after a library operator. The thickness of the strokes are

obtained as follows

/w  {maxwidth unifrmdev} def
. w setlinewidth

The line pieces are positioned symmetrically

NAJAAR 2010

87



88 MAPS 41

Kees van der Laan

/laux 1 2 div def
xaux laux sub yaux moveto xaux laux add yaux lineto w setlinewidth
color setrgbcolor stroke%h-line

The spread in color has been implemented as: if an rgb-value = 0, it is changed into
eps=0.1 and the resulting value c.q. the original non-zero value is multiplied by the
spread factor.

/spread {2 unifrmdev mul }def%interval (@, 2)
/color{r @ eq {eps}{r} ifelse spread

g 0 eq {eps}{g} ifelse spread

b @ eq {eps}{b} ifelse spread} def

The strokes are in a shade of the desired color. The rgb-values are printed at the
top, and the birthday date, the seed for the pseudo-random number generator, at the
bottom.

The most Mondrian-like is maybe the Easter Egg.

RGB:1109

- - I ——
1 Ry i
| Ii L LA R
1 . ] = I -
10 . -
- o= a :
R T o B
plig | ;
= T TR
e -l k1 ) |
I 1 1" ==
™ T - -

i Seed: 4042010

/Mondrian

%birthday: ddmmyyyy, a number as seed for srand

%three numbers from the closed interval [0, 1], for the rgb-color values:
% red green blue

%number for the kind of frame (@=Square 1=Oval 2=Lozenge}: 0, 1 or 2;
%h==>

%generated Mondrian-alike

{0 begin gsave %savety for not changing the graphics state outside
/form exch def

/b exch def /g exch def /r exch def /date exch def

date srand% start random generator with (birthday date) seed

100 50 translate

%wired-in parameters

/u 420 def /v u 1.618 mul def /hu u 2 div def

/hv v 2 div def% @ @ u v BB of rectangle



a la Mondrian NAJAAR 2010

/maxrandom 500 def /maxlength 20 def /maxwidth 3 def /eps 0.1 def
/hx  {u unifrmdev} def
/hy  {v unifrmdev} def
/1 {maxlength unifrmdev}def
/w  {maxwidth unifrmdev} def
/spread {2 unifrmdev mul }def %0, 2)
%/spread {2 unifrmdev 1 add 2 div mul }def%(@.5, 1.5)
%/spread {2 unifrmdev 3 add 4 div mul }def%(0.75, 1.25)
/color{r @ eq {eps}{r} ifelse spread
g 0 eq {eps}{g} ifelse spread
b @ eq {eps}{b} ifelse spread} def
form @ eq {/contour
{0 @ moveto u @ lineto u v lineto @ v lineto closepath} def} if %Square
form 1 eq {/contour
{hu hv hu hv 0 360 ellipse} def} if %0val
form 2 eq {/contour
{hu @ moveto u hv lineto hu v lineto @ hv lineto closepath}
def} if %Lozenge
%
gsave contour clip%random pattern will only show up in (is clipped to)
contour maxrandom{%draw pattern in loop confined to contour
/xaux hx def /yaux hy def%position in u x v rectangle
/laux 1 2 div def
xaux laux sub yaux moveto xaux laux add yaux lineto w setlinewidth
color setrgbcolor stroke%h-line
/xaux hx def /yaux hy def/laux 1 2 div def
Xxaux yaux laux sub moveto xaux yaux laux add lineto w setlinewidth
color setrgbcolor stroke%v-line
}Yrepeat
grestore %end clipping path
contour 7 setlinewidth r g b setrgbcolor stroke%original color od choice
H12pt setfont /nstr 8 string def
u 85 sub v 10 add moveto (RGB: ) show
r nstr cvs show ( ) show
g nstr cvs show ( ) show
b nstr cvs show
u 85 sub @ moveto (Seed: ) show date nstr cvs show
grestore end}def%end Mondrian
/Mondrian load @ 26 dict put

A variant suited for cmyk-color values, also some 50 lines, took me about 10 min-
utesje . When k = 0 I did not let it contribute to the spread. A brainfag is that cyan
absorbs red, etc, an approach different from the rgb-model.

Example of use.

%! 1PS Mondriaan-achtig. CGL April 2010
%BoundingBox: @ @ 620 790
(C:\\PS1ib\\PSlib.eps) run
22121943 1 © @ 0@ Mondrian showpage

22121943 @ 1 0 1 Mondrian showpage
22121943 @ © 1 2 Mondrian showpage
22121943 .5 .5 .5 2 Mondrian showpage

%%EOF

89



90 MAPS 41

Kees van der Laan

No invoke of the MetaPost preprocessor is needed, just the use of distiller (as part of
Adobe's Acrobat) or the ps2pdf batch program, or ... will yield the visual result.

Acknowledgements

Thank you Hans Lauwerier for your inspiring material, and thank you Piet Mondri-
aan for your great art.

For a discussion of the differences in color on various devices, I refer to the LaTgX
Graphics Companion or to Siep Kroonenberg's Color in professional print production,
MAPS 20, spring 1998.

Thank you Jos Winnink for your suggestion to reorder the material.

Conclusion

Mondriaan was undoubtedly precise, but some of his ‘random’-like works can be
created by the use of a pseudo-random number generator and yield nevertheless a
Mondriaan impression.

The positioning of the lines in his Lozenge with 2 lines and Lozenge with 3
lines is also precise, but ... division of the sides by the golden ratio ® yields
equally-well artistic results.

I have input his Victory Boogie-Woogie in MetaPost, tedious work, and also
scanned the picture. Don't have any use for it as yet.

My case rests, have fun and all the best.

Notes

1. For a survey of biographies of Dutch mathematicians http://bwnw.cwi-incubator.nl/cgi-bin
/uncgi/alf.

2. Born as Piet Mondriaan. At the end of his live, in the USA, he used to call himself Mondrian.
3. Which obeys statistical tests for randomness.

4. A Dutch art movement which began in 1917. Its characteristics are the use of straight lines
and primary colors. The artists were generally after utmost simplicity and abstraction. Main
representatives were Theo van Doesburg, Piet Mondriaan, Bart van der Leck, Gerrit Rietveld,
and JJ.P. Oud, active in various art forms, among others architecture.

5. Adding the year exceeds MetaPost number capacity for the moment.

6. This extra work is superfluous in the PostScript variant.

Kees van der Laan

March 2010

Hunzeweg 57, 9893PB, Garnwerd, NL
kisal©@xs4all.nl



NAJAAR 2010

NTG Najaarsbijeenkomst 2010

Tijdens een van haar presentaties op de ConTgXt
meeting in Brejlov dit jaar vertelde de Finse Mari
Voipio dat ze altijd wat waardevols oppikt tijdens
TgX-conferenties. “Veel van wat er wordt verteld gaat
langs me heen of het vliegt hoog boven mijn hoofd
voorbij, maar er is ook altijd iets wat mijn ogen opent,
een ontdekking waarmee ik rijker naar huis terugkeer.”

Ik verheug me ook altijd op een ntg-dag. TgX gebrui-
kers onder elkaar, die geinteresseerd zijn in zoveel dat
direct of zijdelings te maken heeft met het typesetten
van tekst, en die daarover wat te vertellen hebben.

De lokaties waar we bijeenkomen zijn vaak de moei-
te waard. Plekken waar je anders niet komt. Een mooie
zaal van een restaurant in een klein stadje, een verga-
derkamer van een kerk, een statige kamer in een voor-
malige watertoren. En dankzij uitstekende contacten bij
Defensie zijn we met zekere regelmaat onder dak bij het
leger. Dit keer op het terrein van het Kasteel van Breda
waar sinds 1826 de Koninklijke Militaire Academie is
gevestigd. Mooie gebouwen en zelfs een onderaardse
gang. Het terrein is slechts een dag per jaar toegankelijk
voor het publiek.

Als ik voorbij de slagbomen ben waar mijn paspoort
is gecontroleerd, denk ik dat ik op afstand kan zien wie
militair is (atletische stap) en wie van de ntg.

Binnen zijn de eersten bezig met de beamer die wel
aan staat maar niet wil luisteren naar onze laptops.
Gelukkig heeft Hans zijn eigen beamer mee, een klein
dapper ding in een handzaam koffertje.

John Haltiwanger

John Haltiwanger zou als eerste spreken maar hij heeft
zijn paspoort niet bij zich en moet dus terug naar
Amsterdam om die te halen ...’Middags geeft hij zijn
presentatie over een manier om poézie te typesetten.
Samen met een Spaanse vriend maakt hij muziek, de
een rapt in het Engels en de ander in het Spaans en in
het boekje bij hun cd moeten beide talen correct naast
elkaar komen te staan. Omdat je vandaag de dag als
beginnende musicus je muziek zowat weg moet geven
om publiek te werven, moet je drukwerk goed verzorgd
zijn om net die extra aandachtswaarde te bereiken,
vertelt hij.

Tijdens zijn demonstratie gaat er wat mis op zijn
computer en zo’n moment vind ik erg spannend. Ieder-
een reageert anders. Ik heb eens een van de sprekers
zich zien verliezen in kalme concentratie. In serene rust
ging ze haar setup na tot alles werkte en de zaal wachtte
het in stilte af.

Arthur Reutenauer

“Thave to kill it, I guess” zegt later in de middag Arthur
Reutenauer tijdens zijn live demonstratie van een TgX
applicatie op de iPad. Een van de processen is uit de
hand gelopen en het systeem heeft te kampen met een
reusachtig lek aan geheugenruimte. Hoe dan ook is het
indrukwekkend om te zien dat het in principe mogelijk
is een TgX document te typen en te compileren op de
iPad. Logischer zou het zijn, vertelt Arthur, als je zo'n
tablet online kon gebruiken als invoer voor een TgX
server elders op internet, waarna je de pdf zou kunnen
downloaden of laten afdrukken.

91



92 MAPS 41

De ‘verplichte’ groepsfoto

Hans Hagen vertelt (ook tijdens de lunch) over het ty-
pesetten van tekst die anders dan wij gewend zijn van
rechts naar links loopt of van boven naar beneden op
het papier. De techniek gaat me ver boven de pet maar
ik vind het altijd interessant om Hans zijn manier van
redeneren te volgen, zijn nuchtere aanpak te zien.

Taco Hoekwater, Hans van der Meer, en Hans Hagen

Willi, die veel weet van typografie maar ook van ma-
chines, beschrijft enthousiast wat hij zag op een druk-
kerij van bijbels waar twee katernen tegelijk werden
geproduceerd. Het dunne papier wordt door de grote
machines ongelooflijk snel gedrukt, gevouwen en ge-
naaid, wat vooral mogelijk is doordat het papier zich zo

soepel laat verwerken, ‘lebendig’ is zoals men in Zwit-
serland zegt.

Willi Egger

Willi Egger besluit de dag met een demonstratie van
een manier die hij ontwikkelde om een A4-tje zo te
printen en te vouwen dat je meteen een katern hebt.
Dat vind ik een prachtige vondst. Op A4 kan het, maar
het kan ook groter en als ik een betaalbare A3 printer
koop, kan ik op die manier simpel een originele presen-
tatie maken van tekst en fotografie. Mijn ‘vondst van de
dag’ om thuis wat mee te gaan doen!

Frans Goddijn



