
34 MAPS 42 Luigi Scarso

Extending ConTEXt MKiV with PARI/GP
Abstract
This paper shows how to build a binding to PARI GP, the
well known computer algebra system, for ConTEXt MKiV,
showing also some examples on how to solve some common
basic algebraic problems.

Keywords
LuaTeX, ConTeXt MARKIV, binding, PARI/GP

Introduction
PARI/GP[1] is a relatively small computer algebra sys-
tem that comes as C library (libpari) and an interpreter
(gp) for its own language (GP) built on upon the same li-
brary. Although it has discrete capabilities on symbolic
manipulations, it has an extensive algebraic number
theory module and hence it can do, due to the highly
optimised C library, complex numeric calculations very
quickly and accurately. In this paper we will show
a way to ‘extend’ ConTEXt MKiV with PARI/GP and
some examples on how to use this powerful library.
PARI stands for ‘Pascal ARIthmétique’ (the very first
choice was the Pascal language, dropped soon for C),
while GP originally was GPC for ‘Great Programmable
Calculator’, but the C was dropped for unknown reason.
The current stable version is 2.3.4.

Build the Lua binding
It's well known that ConTEXt MKiV uses LuaTEX as
a typesetting engine, but maybe it's little known to
the tex-user that Lua itself is used either as embedded
language to enhance an application with a simple but
powerful high level language (e.g. to build plug-ins) or
as glue language to ‘connect’ several libraries, mostly
written in C\C++ — exactly the same as in Sage[2],
where the glue language is Python. In the latter case
Lua is extended with the new libraries that become
practically Lua modules (i.e. modules written in native
Lua language) and they can be built in into the lua
interpreter at compile time (as in the GSL Shell[3]
program) or loaded at runtime, which is the case of the
extension of this paper.

Most often it's necessary to write some C code that
acts as an interface between the library and Lua: this
process is called ‘build the Lua binding for the library’

and it's where the developer decides which symbols of
the library (i.e. functions, classes, variables and con-
stants) export to Lua and how they are seen from the
Lua side (under which name, for example). This is a
delicate phase, because onemust know the conventions
of the lua library on which the Lua language relies
(the ‘lua Application Program Interface’ or API), the
API of the target library and write the appropriate C
code for each symbol to export: for the C language
these APIs are usually organized in so-called header
files (with suffix ".h") that contain the declarations
of each function, variable or constant that the library
exposes — but not always all of them can be exported:
the developer must consult the documentation to know
which set of admissible symbols to export).

Luckily the lua API are completely listed in the Lua
book[4] and they describe a simple and robust mecha-
nism: basically every C function that wants to interact
with the Lua interpreter uses a stack (a LIFO queue)
to exchange data. The stack is modified by a relatively
small set of functions that act on the Lua state, a global
data structure that also keeps track of unused objects
and calls the garbage collector when necessary. Hence
every C function of the binding must only take care
of calling the right function of the target library with
the right arguments and to use the stack to exchange
the in (input to the function) and/or out (output to the
Lua interpreter) values. If the target library has many
functions this is a long and tedious work, because most
of the time the functions follow few common patterns
and most of the binding code can be cut-and-pasted
with few modifications, but on average the headers of
the target library are difficult to read.

This is where SWIG enters the play. SWIG (Simplified
Wrapper and Interface Generator, see[5]) is a program
to help the developer to build bindings and, for some
libraries, it can almost automatically build a binding by
merely reading all headers files. SWIG reads a driver
file, the so-called interface file ".i", and it executes
its instructions. For libpari the instructions in the
interface file pari.i are quite simple: basically ‘read the
headers and produce the binding’. This is for example
the role of the %include "pari/paritype.h"; instruc-
tion, that just says ‘read the header paritype.h which is
in the pari folder and write the binding code’; but we
can also map some libpari functions into something
else, as in

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 35

GEN uti_mael2(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

where the libpari macro mael2 is wrapped into the C
function uti_meal2 for sake of simplicity.

The binding is then built with
swig -lua pari.i

This is the complete interface file pari.i used under
Linux 32 bit: the header files are in the sub-folder pari
of the folder that contains the build script.
%module pari

%{

#include "pari.h"

ulong overflow;

%}

%ignore gp_variable(char *s);

%ignore setseriesprecision(long n);

%ignore killfile(pariFILE *f);

%include "pari/paritype.h";

%include "pari/parisys.h";

%include "pari/parigen.h";

%include "pari/paricast.h";

%include "pari/paristio.h";

%include "pari/paricom.h";

%include "pari/parierr.h";

%include "pari/paridecl.h";

%include "pari/paritune.h";

%include "pari/pariinl.h";

%inline %{

GEN uti_mael2(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

GEN uti_mael3(GEN m,long x1,long x2,long x3)

{return mael3(m,x1,x2,x3);}

GEN uti_mael4(GEN m,long x1,long x2,long x3,

long x4)

{return mael4(m,x1,x2,x3,x4);}

GEN uti_mael5(GEN m,long x1,long x2,long x3,

long x4,long x5)

{return mael5(m,x1,x2,x3,x4,x5);}

GEN uti_mael(GEN m,long x1,long x2)

{return mael2(m,x1,x2);}

GEN uti_gmael1(GEN m,long x1)

{return gmael1(m,x1);}

GEN uti_gmael2(GEN m,long x1,long x2)

{return gmael2(m,x1,x2);}

GEN uti_gmael3(GEN m,long x1,long x2,long x3)

{return gmael3(m,x1,x2,x3);}

GEN uti_gmael4(GEN m,long x1,long x2,long x3,

long x4)

{return gmael4(m,x1,x2,x3,x4);}

GEN uti_gmael5(GEN m,long x1,long x2,long x3,

long x4,long x5)

{return gmael5(m,x1,x2,x3,x4,x5);}

GEN uti_gmael(GEN m,long x1,long x2)

{return gmael2(m,x1,x2);}

GEN uti_gel(GEN m,long x1)

{return gmael1(m,x1);}

GEN uti_gcoeff(GEN a,long i,long j)

{return gcoeff(a,i,j);}

GEN uti_coeff(GEN a,long i,long j)

{return coeff(a,i,j);}

%};

The binding is quite straightforward: almost every
symbol of libpari has a counterpart in Lua with
the same name; the symbols ‘private’ are exposed in
paripriv.h which is not listed in pari.i — they aren't
exported and hence they are not reachable from Lua.

The build script (for Linux) assumes the latest SWIG
and PARI/GP installed under /opt/swig-2.0.2:
/opt/swig-2.0.2/bin/swig -lua pari.i

gcc -ansi \

-I./pari -I/opt/swig-2.0.2/include \

-c pari_wrap.c -o pari_wrap.o

gcc -Wall -ansi -shared -I./pari \

-I/opt/swig-2.0.2/include -L./ \

-L/opt/swig-2.0.2/lib pari_wrap.o \

-lpari -lm -o pari.so

Once compiled, the pari.so is suitable to be loaded as
Lua module with require("pari").

As a final note for this section, the same steps can
be followed under Windows using MinGW[6] or with
GUB[7] to cross-compile the library in a host system
(Linux) for a target system (Windows) — as is the case
of this paper, where the examples use a cross-compiled
dll libpari.

Examples
Summations
As we said briefly in the introduction, PARI/GP has its
own language GP, with more than 450 functions, and
its interpreter, the gp program. Most of the time these
functions are one-to-one with the functions exported
by the library libpari, but sometimes there are some
‘sugar syntactic’ constructs for the sake of simplic-
ity. In any case, libpari has the gp_read_str(char *)
function that evaluates a GP sentence and returns the
result, so that on the Lua side it's possible to use both
the library and the GP language. The library is usually
quicker thanGP and it has a finer grain control —which
usually also means that it's necessary to write more
code.

In this first example, we will see how to cal-
culate exactly a summation. The GP function is

sum(X,a,b,expr,start) that stands for
b

∑
X=a

expr(X, ⋅),

where start is the initial value of expr(X, ⋅) :

36 MAPS 42 Luigi Scarso

\startluacode

require("pari")

pari.pari_init(4000000,500000)

document = document or {}

document.lscarso= document.lscarso or {}

local function sum(X,a,b,expr,start)

local avma = pari.avma

local start = start or '0.'

local res =

pari.gp_read_str(string.format(

"sum(%s=%s,%s,%s,%s)",X,a,b,expr,start))

res = pari.GENtoTeXstr(res)

pari.avma = avma

return res

end

document.lscarso.sum = sum

\stopluacode

\starttext

\startTEXpage

\startformula

\sum_{k=0}^{30}\frac{4(-1)^k}{2k+1}=

\ctxlua{context(document.lscarso.sum(

"k",0,30,"4*(-1)^k/(2*k+1)","0"))}

\stopformula

\stopTEXpage

\stoptext

that gives

30∑
k=0

4(−1)k

2k + 1
= 58630135791001973169852284

18472920064106597929865025

Let's explain the code step by step. First we need
to load the module with require("pari") — assuming
that the library is in the standard path or in the current
folder (cfr. CLUAINPUTS in [8] for more details).

Next, we must avoid conflicts with other Lua
functions. A common solution is to define a name-
space (document.lscarso in this case), a local function
(sum(X,a,b,expr,start)) and expose it with the name-
space (document.lscarso.sum= sum). This is a general
issue when one defines its own module, not only for
PARI/GP — it's the same problem of redefining TEX
macros.

There is another issue with PARI/GP. Like Lua,
PARI/GP also uses a stack but it has not a garbage
collector, and every time it makes a calculation the
result is not deleted; after a while the stack is full
and the process aborts. Luckily it's easy to clear the
stack: at the beginning of every function it's suffi-
cient to record the initial position on the stack with
local avma=pari.avma and then reset the stack with
pari.avma=avma just before the return statement of the
function. This is an issue with libpari, because most of
GP functions manage the stack correctly.

After these notes, calling the GP sum function is
a matter of calling gp_read_str(char *) with the
right formatted string which is trivial thanks to
string.format, a standard LuaTEX function. Last but
not least is pari.GENtoTeXstr(GEN), a libpari function
that translates a pari object (e.g a fraction) into a TEX
expression. It's important to note that the result is exact
because we have imposed with start=0 that all the
values are in𝐐: if we want an approximated value just
use start=0. and the result is

30∑
k=0

4(−1)k

2k + 1
= 3.173842337190749408690224140

But we can do things a bit better. First, we want to
control the precision of the result, i.e. how many digits
to show. This is quite simple: the GP default(.,.)
function can be used to get/set some internal constants
and realprecision is what we need:
local function set_precision(prec)

local avma = pari.avma

local prec = math.floor(prec+0.5) or 28

local res = pari.gp_read_str(

string.format("default(realprecision,%s)",

prec))

res = pari.GENtostr(pari.gp_read_str(

"default(realprecision)"))

pari.avma = avma

return res

end

local function get_precision(prec)

local avma = pari.avma

local res = pari.GENtostr(

pari.gp_read_str(

"default(realprecision)"))

pari.avma = avma

return res

end

Once we have the notion of precision, we can extend
the summation to ‘infinity’, i.e. until the partial sums
are stable within the precision. Of course this depends
on the character of the series — in our case it's an
alternating series. For this kind of series GP has the
sumalt(X=a,expr) function that does the job:
local function sum_alternate(X,a,expr,prec)

local avma = pari.avma

local gp = document.lscarso.get_precision

local oldprec = gp(prec)

document.lscarso.set_precision(prec)

local res=pari.GENtostr(pari.gp_read_str(

string.format("sumalt(%s=%s,%s)",

X,a,expr)))

document.lscarso.set_precision(oldprec)

pari.avma = avma

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 37

res=string.gsub(res,"(%d)","%1\\hskip0sp")

return res

end

We can hence try to calculate the series with a precision
of 800 digits:
\startformula

\sum_{k=0}^{\infty}\frac{4(-1)^k}{2k+1}=

\stopformula

\ctxlua{context(

document.lscarso.sum_alternate(

"k",0,"4*(-1)^k/(2*k+1)",800))}

Given that the result is quite long (see fig.1) with
string.gsub(res,"(%d)","%1\\hskip0sp") we insert
an invisible skip to help TEX to break the expression.

∞∑
k=0

4(−1)k

2k + 1
≈

3.141592653589793238462643383279502884197
1693993751058209749445923078164062862089
9862803482534211706798214808651328230664
7093844609550582231725359408128481117450
2841027019385211055596446229489549303819
6442881097566593344612847564823378678316
5271201909145648566923460348610454326648
2133936072602491412737245870066063155881
7488152092096282925409171536436789259036
0011330530548820466521384146951941511609
4330572703657595919530921861173819326117
9310511854807446237996274956735188575272
4891227938183011949129833673362440656643
0860213949463952247371907021798609437027
7053921717629317675238467481846766940513
2000568127145263560827785771342757789609
1736371787214684409012249534301465495853
7105079227968925892354201995611212902196
0864034418159813629774771309960518707211
3499999983729780499510597317328160963186

Figure 1. Evaluation of an alternating
series with 800 digit precision.

Of course this is a well known series: from arctan(1) =
π
4 one can calculate the Taylor expansion of arctan(x)
around x = 0 with taylor(expr,x):
local function taylor(expr,x)

local avma = pari.avma

local res = pari.gp_read_str(

string.format("taylor(%s,%s)",expr,x))

res = pari.GENtoTeXstr(res)

pari.avma = avma

return res

end

$\mathrm{arctan}(x)=$

\startformula

\ctxlua{context(document.lscarso.taylor(

"atan(x)","x"))}

\stopformula

i.e.
arctan(x) =

x − 1
3

x3 + 1
5

x5 − 1
7

x7 + 1
9

x9 − 1
11

x11 + 1
13

x13 − 1
15

x15 + O(x16)

The series is convergent in x = 1 (there are several
proofs about this, e.g. see [9]), hence

4
∞

∑
k=0

(−1)k

2k + 1 =
∞

∑
k=0

4(−1)k

2k + 1 = 4
π
4 = π .

It's important to note that theoretically this series has
a slow convergence to π (it's hence a bad choice to
calculate π) but practically it can be used with PARI/GP
to give quickly an high precision result — this is the
power of the library.

Before continuing, let's consider this summation:
\startformula

\sum_{k=0}^{3}\frac{1}{x^2+k}=

\ctxlua{context(document.lscarso.sum(

"k",0,3,"1/(x^2+k)","0"))}

\stopformula

that gives
3∑

k=0

1
x2 + k

= 4x6 + 18x4 + 22x2 + 6
x8 + 6x6 + 11x4 + 6x2

PARI/GP is also capable of some symbolic calcula-
tions — it's not only a numeric library.

Continued fractions
A simple finite (canonical) continued fraction is a ratio-
nal number q given by

q = a0 +
1

a1 +
1

a2 +
1

⋱ + 1
an

where a0 is an integer and aj,j>0 are strictly positive
integers. Every rational number can be expressed with
a finite continued fraction; if we consider a succession
of finite continued fractions for n → ∞we have an infi-
nite (canonical) continued fraction, and every irrational
number has an unique infinite continued fraction. For
a finite c.f. [a0,a1,a2, …, an] the rational number given

38 MAPS 42 Luigi Scarso

by calculating all the intermediate fractions is usually
termed as pn/qn i.e. [a0,a1,a2, …, an] =

pn
qn

. For exam-

ple [0,3] = 1
3 and it's possible to show that pn/qn is the

fraction in lowest terms. The GF contfrac function cal-
culates (the vector of) the continued fraction of a ratio-
nal number, while contfracpnqn given a (finite vector
of) continued fraction returns pn, qn but the interesting
point here is to use, given a real number with a fixed
precision, the continued fraction to find its best rational
approximation. The libpari bestappr(x,A) function
calculates exactly what we need:
local function bestappr(x,A)

local avma = pari.avma

local x = tostring(x) or nil

local A = math.floor(A+0.5)

local res, bestx

if x == nil then return nil,nil end

bestx = pari.bestappr(pari.geval(

pari.strtoGENstr(x)),

pari.geval(

pari.strtoGENstr(tostring(A))))

res = {}

res[1] = pari.GENtostr(bestx)

res[2] = pari.GENtostr(

pari.uti_gel(bestx,1))

res[3] = pari.GENtostr(

pari.uti_gel(bestx,2))

pari.avma = avma

return res[1],res[2],res[3]

end

Note that the return value is an array with 3 compo-
nents, namely pn/qn, pn, qn.We also use pari.uti_gel,
the wrapped version of libpari gel function, to access
an array by components.

Instead of an arbitrary real number, we choose π
because the libpari mppi(long) function gives πwith the
required precision .
\startluacode

local collect = {}

local avma = pari.avma

local prec = 800

document.lscarso.set_precision(prec)

avma = pari.avma

local pi = pari.mppi(prec)

local pi_str = pari.GENtostr(pi)

pari.avma = avma

--print("=====>pi:",pi_str)

for d = 4,50000,1 do

res,num,den =

document.lscarso.bestappr(pi_str,d)

collect[res] = {num,den,d}

end

context("\\starttabulate[|l|l|]")

context("\\HL")

context(string.format(

"\\NC %s \\NC %s \\NC\\NR",

"fraction","approx. value"))

context("\\HL")

for k,v in pairs(collect) do

print(k, v[1]/v[2],v[3])

-- context(k, v[1]/v[2],v[3])

context(string.format(

"\\NC %s \\NC %s \\NC\\NR",k,v[1]/v[2]))

end

context("\\stoptabulate")

\stopluacode

Note that we use pn,qn as a key for the dictionary
collect, so we have just the set of results – i.e. we
drop the same best approximations for different de-
nominators. For a precision of 800 digits and a range
of denominators between 4 and 50000 we have hence:

fraction approx. value
333/106 3.1415094339623
104348/33215 3.1415926539214
16/5 3.2
13/4 3.25
22/7 3.1428571428571
355/113 3.141592920354
19/6 3.1666666666667
103993/33102 3.1415926530119

where the approx. values are due to the Lua floating
point math.

Equations
Solving numeric equations in PARI/GP required more
attention than other packages. The solve(X=a,b,expr)
GP function implements a very good algorithm but it
works with one variable only and it fails if expr is not
defined in [a,b] and it hasn't a variation in [a,b]. This
Lua wrapper solve tries to ensure that at in [a,b] there
is a variation evaluating the sign of expr(a)*expr(b):
function solve(expr,X,a,b,prec)

local av = pari.avma

pari.gp_read_str(

string.format(

"default(realprecision,%s)",prec))

local tr,res

pari.gp_read_str(string.format("f(%s)=%s",

X,expr))

tr = pari.gp_read_str(

string.format(

"if(f(%s)*f(%s)<0,1,0)",a,b))

tr = pari.GENtostr(tr)

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 39

tr = tonumber(tr)

res = nil

if (tr==1) then

local expr=string.format(

"solve(%s=%s,%s,%s)",X,a,b,expr)

res = pari.gp_read_str(expr)

res = pari.GENtostr(res)

end

return res,

pari.GENtoTeXstr(

pari.strtoGENstr(expr))

end

The next code tries to solve

x5 + x3arctan(x) + 2x2 + x + 1 = 0

for x ∈ [−100,100] with a precision of 12 digits:
\startluacode

local solve = document.lscarso.solve

for a=-100,99,1 do

local res,TeX,aa,bb =

solve('x^5+atan(x)*x^3+2*x^2+x+1',

"x",a,(a+1),12)

if res ~= nil then

context(string.format(

"$%s\\approx 0$ \\crlf

for $x\\approx%s$\\par",

TeX,res))

else

-- print("TeX="..TeX)

end

end

\stopluacode

We have hence:
x5 + atan(x) ∗ x3 + 2 ∗ x2 + x + 1 ≈ 0
for x ≈ −1.47704735548

PARI/GP has a rich set of functions for polynomials,
and solve is not necessarily the best choice to find the
roots of multivariate polynomials; the next example
will show how to draw the real roots of P[X,Y] with a
given precision in a square region [a,b] × [a,b]. First of
all, we need to understand that with a fixed precision
there is also an associated zero: with precision=12 then
zero=1E-96. Next,PARI/GP finds the complex roots of a
univariate polynomial, sowe need a get_valuewrapper
to evaluate P(x,y) for y ∈ [a,b] (with a given precision),
so we have an expression in the x variable that we will
consider as a polynomial P[X]:
local function get_value(expr,X,a,prec)

local avma = pari.avma

pari.gp_read_str(string.format(

"default(realprecision,%s)",prec))

pari.gp_read_str(string.format(

"%s=%s",X,a))

local res = pari.gp_read_str(

string.format("eval(%s)",expr))

res = pari.GENtostr(res)

pari.avma = avma

return res

end

The polroots function evaluates the roots and returns
an array of roots where each root is separated into the
real and complex components:
local function polroots(poly,prec)

local avma = pari.avma

pari.gp_read_str(string.format(

"default(realprecision,%s)",prec))

local poly = tostring(poly)

local prec = tonumber(prec)

local degree = pari.degree(

pari.geval(pari.strtoGENstr(poly)))

local roots = pari.roots(

pari.geval(pari.strtoGENstr(poly)),prec)

local res ={}

for i=1,degree do

local real_part,im_part =

pari.GENtostr(pari.uti_gel(

pari.uti_gel(roots,i),1)),

pari.GENtostr(pari.uti_gel(

pari.uti_gel(roots,i),2))

res[#res+1]={real_part,im_part}

end

pari.avma = avma

return res

end

Last we need to iterate y over [a,b] and find the roots
of P[X]. Instead of producing a table, we plot the value
by a MetaPost page:
\startluacode

local poly = "x^3-x-y^2"

local step= 1/2^6

local results = {}

local limit = 5

local zero = '0.E-96'

local prec = 12

get_value = document.lscarso.get_value

polroots = document.lscarso.polroots

context("\\startMPpage")

context("pickup pencircle scaled 0.1pt;")

context(string.format("draw (-%s,0)--(%s,0);",

limit,limit))

context(string.format("draw (0,-%s)--(0,%s);",

limit,limit))

context("pickup pencircle scaled 0.2pt;")

for y=-limit,limit,step do

local poly_x = get_value(poly,'y',y,prec)

-- print("poly_x="..poly_x,y)

40 MAPS 42 Luigi Scarso

local roots = polroots(poly_x,prec)

for _,root in pairs(roots) do

local real,imag = root[1],root[2]

-- print("real="..real,"imag="..imag)

if imag == zero then

if real == zero then real = '0' end

--print(string.format("(%s,%s)",real,y))

context(string.format("draw (%s,%s);",

real,y))

end

end

end

context("\\stopMPpage")

\stopluacode

With a precision of 12 digits and a square region of
[−5,5] we have then :

Implicitization of a cubic bezier curve
The next and last example will show how to find,
given 𝐩,𝐜𭟏,𝐜𭟐,𝐪 the points of a cubic Bezier curve in
parametric form (𝐩 start point, 𝐜𝟏 and 𝐜𝟐 control points
and 𝐪 end point), a polynomial P[X,Y] that is the implicit
form of the curve. Given the parametric form of a cubic
Bezier 𝒞 ∈ 𝐐

𝒞 ={ (1 − t)
3𝐩 + 3(1 − t)2t𝐜𭟏 + 3(1 − t)t2𝐜𭟐 + t3𝐪,

t ∈ [0, 1] }

for a point (xt,yt) ∈ 𝒞 we have

xt = a3t3 + a2t2 + a1t + a0 = a(t)

yt = b3t3 + b2t2 + b1t + b0 = b(t)

Following Sederberg([10], chap. "Algebraic Geometry
for CAGD"), let

f = f(t, x) = a(t) − x

g = g(t, y) = b(t) − y

and

h1(t, x, y) = (a3g − b3f)

h2(t, x, y) = (a3t + a2)g − (b3t + b2)f

h3(t, x, y) = (a3t2 + a2t + a1)g − (b3t2 + b2t + b1)f

In PARI/GP every indeterminate has an order and the
first indeterminate is x, so it's better rename (t,x,y) →
(x,X,Y) so that each ℎj can be seen as a polynomial
(ℎj[X,Y])[x] with at most degree 2 with respect to x. If
we are able to find ℎ1[x] = ℎ2[x] = ℎ3[x] = 0 (the null
polynomial of 𝐐[𝐱]) then we have found the implicit
form of our curve. It can be demonstrated that, if ℎj,n
is the coefficient of xn of ℎj,

⎛⎜
⎝

ℎ1,2[X,Y] ℎ1,1[X,Y] ℎ1,0[X,Y]
ℎ2,2[X,Y] ℎ2,1[X,Y] ℎ2,0[X,Y]
ℎ3,2[X,Y] ℎ3,1[X,Y] ℎ3,0[X,Y]

⎞⎟
⎠

⎛
⎝

x2
x
1
⎞
⎠
= ⎛
⎝

0
0
0
⎞
⎠

if and only if

|

ℎ1,2[X,Y] ℎ1,1[X,Y] ℎ1,0[X,Y]
ℎ2,2[X,Y] ℎ2,1[X,Y] ℎ2,0[X,Y]
ℎ3,2[X,Y] ℎ3,1[X,Y] ℎ3,0[X,Y] |

= 0

and hence this determinant is our P[X,Y].

The code is quite long, but not complicated:
local function bezier_impl(p,c1,c2,q)

local avma = pari.avma

local f = string.format(

"(1-t)^3*%s+3*(1-t)^2*t*%s+3*(1-t)*t^2*%s+t^3*%s",

p[1], c1[1], c2[1], q[1])

local g = string.format(

"(1-t)^3*%s+3*(1-t)^2*t*%s+3*(1-t)*t^2*%s+t^3*%s",

p[2], c1[2], c2[2], q[2])

local fx =

pari.gp_read_str(string.format("X-Pol(%s,x)", f))

local gx =

pari.gp_read_str(string.format("Y-Pol(%s,x)", g))

fx = pari.GENtostr(fx)

gx = pari.GENtostr(gx)

local coeff_f_str =

Extending ConTEXt MKiV with PARI/GP VOORJAAR 2011 41

string.format("A=Vec(%s);B=if(poldegree(%s)==3,

A,if(poldegree(%s)==2,[0,A[1],A[2],A[3]],

if(poldegree(%s)==1,[0,0,A[1],A[2]],

if(poldegree(%s)==0,[0,0,0,A[1]],[0,0,0,0]))));B",

fx,fx,fx,fx,fx)

local coeff_g_str =

string.format("A=Vec(%s);B=if(poldegree(%s)==3,

A,if(poldegree(%s)==2,[0,A[1],A[2],A[3]],

if(poldegree(%s)==1,[0,0,A[1],A[2]],

if(poldegree(%s)==0,[0,0,0,A[1]],[0,0,0,0]))));B",

gx,gx,gx,gx,gx)

local coeff_f = pari.gp_read_str(coeff_f_str)

local coeff_g = pari.gp_read_str(coeff_g_str)

local a3,a2,a1 =

pari.uti_gel(coeff_f,1), pari.uti_gel(coeff_f,2),

pari.uti_gel(coeff_f,3)

local b3,b2,b1 =

pari.uti_gel(coeff_g,1), pari.uti_gel(coeff_g,2),

pari.uti_gel(coeff_g,3)

local h1 =

pari.gp_read_str(string.format("%s*(%s)-%s*(%s)",

pari.GENtostr(a3), gx, pari.GENtostr(b3),fx))

local h2 =

pari.gp_read_str(

string.format("(%s*x+%s)*(%s)-(%s*x+%s)*(%s)",

pari.GENtostr(a3), pari.GENtostr(a2), gx,

pari.GENtostr(b3), pari.GENtostr(b2), fx))

local h3 =

pari.gp_read_str(string.format(

"(%s*x^2+%s*x+%s)*(%s)-(%s*x^2+%s*x+%s)*(%s)",

pari.GENtostr(a3), pari.GENtostr(a2),

pari.GENtostr(a1),gx, pari.GENtostr(b3),

pari.GENtostr(b2), pari.GENtostr(b1),fx))

local h1_v = pari.gtovec(h1)

local h2_v = pari.gtovec(h2)

local h3_v = pari.gtovec(h3)

local idmat= pari.gp_read_str("idmat=matid(3)")

pari.gp_read_str(string.format("idmat[1,]=%s",

pari.GENtostr(h1_v)))

pari.gp_read_str(string.format("idmat[2,]=%s",

pari.GENtostr(h2_v)))

pari.gp_read_str(string.format("idmat[3,]=%s",

pari.GENtostr(h3_v)))

idmat = pari.gp_read_str("idmat")

idmat_det = pari.gp_read_str("matdet(idmat)")

local PXY = pari.GENtostr(idmat_det)

local PxY =

pari.gp_read_str(string.format("subst(%s,X,x)",PXY))

local Pxy =

pari.gp_read_str(string.format("subst(%s,Y,y)",

pari.GENtostr(PxY)))

local res = pari.GENtostr(Pxy)

local resTeX = pari.GENtoTeXstr(Pxy)

pari.avma = avma

return res,resTeX

end

For a curve 𝒞 with 𝐩 = (1,1), 𝐜𭟏 = (10,10), 𝐜𭟐 =
(−10,10), 𝐪 = (−15,5) we have

P[X, Y] = − 64X3 + (2112Y + 312360)X2 +

(−23232Y2 − 67920Y + 4711200)X +

(85184Y3 − 4440Y2 − 5383200Y + 368000)

It's easy to plot 𝒞 with MetaPost (it's just draw (1,1)
.. controls(10,10) and (-10,10) .. (-15,5)) so the
next picture shows the MetaPost curve (thick, color
gray) and the roots of P[X,Y] for −15 <= x <=
15,−15 <= y <= 15 (thin, color black).

Conclusion
One of the main beneficts of ConTEXt MKiV is the clear
separation between Lua code and TEX code, and in this
case it's a good thing that we can import a pari-lua
script into ConTEXt MKiV without too much work to
adapt it to the ConTEXt MKiVmachinery — i.e. we have
an high degree of code reuse. PARI/GP has also a nice
TEX formatter, even if in some situations things are a
bit raw. On the other side, solving numerical problems
always requires some amount of theoretical analysis
before doing the computation, as in the case of solve
— in some circumstances PARI/GP abruptly aborts if
it finds an error. Some computations can require a
long time to finish, and given that ConTEXt MKiV is
a multipass system a caching mechanism should be
provided to solve these situations. Numeric results can
(but they shouldn't) depend on the compiler and/or
platform, but from this point of view it seems that
PARI/GP is platform-independent.

42 MAPS 42 Luigi Scarso

Bibliography

[1] http://pari.math.u-bordeaux.fr.
[2] http://sagemath.org.
[3] http://www.nongnu.org/gsl-shell.
[4] http://www.inf.puc-rio.br/~roberto/pil2.
[5] http://swig.org.

[6] http://www.mingw.org.
[7] http://www.lilypond.org/gub.
[8] http://www.luatex.org/svn/trunk/manual/luatexref-t.pdf.
[9] http://en.wikipedia.org/wiki/Leibniz_formula_for_pi.
[10] tom.cs.byu.edu/~557/text/cagd.pdf

Luigi Scarso

