
Thomas A. Schmitz VOORJAAR 2011 57

Using ConTEXt with Databases

Accessing and typesetting information that is stored in databases is a common task.
There are large-scale commercial solutions, and a number of database engines allow
formatted output. In this article, I will show you one particular example: how I use
ConTEXt MkIV to typeset material from a database. For my classes in Greek and
Latin grammar, I have accumulated a large collection of exercises and examples from
which I produce exercise sheets for my students. For a long time, I have relied on
good old copy-and-paste to make new exercises and reuse some old material every
year. But then I decided to do things in a more structuredmanner: I am in the process
of putting all my examples into some sort of database from which the single exercise
sheets will retrieve the exercises. This makes it easier to keep track of the material,
make additions, and reuse elements in different ways without being too repetitive.
In this article, I will demonstrate how ConTEXt can be applied to use such a database.
There are two parts: in the first, you will see the newMkIV xml system in action; this
new approach to processing xml from within ConTEXt makes it easy to access and
manipulate parts of xml files. The second part will show away to use sql databases as
input for ConTEXt. I hope these examples can be useful for others who have similar
needs.

The xml Database
The structure of our database is pretty simple: it has chapters covering single gram-
matical topics; every chapter has different examples. Every example has a unique
identifier (expressed with an xml attribute "id"). There are two types of examples:

1. Normal examples have three elements: the “problem” (an English sentence or
passage which is a translation of a Latin original), the “solution” (the Latin orig-
inal), and the “origin” (the reference to the original, which is for my reference
only and will not be typeset).

2. Some grammatical phenomena, however, can better be shown with Latin exam-
ples. In this case, we only have a Latin “problem” and an “origin.” These prob-
lems receive an identifier in the form of an xml attribute type="latinonly".

Hence, a few examples from this database would look like this:

<examples>

<chapter id="moods">

<example id="deliberative1">

<problem type="latinonly">

quid ergo istius in iure dicundo libidinem et scelera demonstrem?

</problem>

<origin>

Cicero, Verr. 2.39

</origin>

</example>

<example id="indirect1">

<problem>

You do not see what he means.

58 MAPS 42 Thomas A. Schmitz

</problem>

<solution>

quid sentiat, non uidetis.

</solution>

<origin>

Cicero, fin. 2.21

</origin>

</example>

<example id="interdicere1">

<problem>

I have neither done it yet nor do I think it is forbidden to do it.

</problem>

<solution>

id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

</solution>

<origin>

Cicero fin. 1.7

</origin>

</example>

</chapter>

</examples>

The ConTEXt Environment
How can we make use of this xml database examples.xml in ConTEXt? We will use a
ConTEXt environment to set up xml processing and format the output to our needs;
this environment will be stored in a file compositionxmlstyle.tex. The first thing it
does is define our environment:

\startenvironment compositionstyle

\stopenvironment

All the following lines go into this environment. We will now go through the TEX
code step by step and seewhat it does.1Webegin by simply loading our xml database:

\xmlloadonly{grammar}{examples.xml}{}

This simply makes the content of the database available to ConTEXt and it reserves
the namespace grammar for this content.
We now have to process our database. There are two cases that we need to consider:
the first is the “Problems” section. We want to be able to pick single problems, de-
pending on their id attribute. Our first macro does just that: it extracts (“filters”) a
particular example:

\def\MyExample#1%

{\xmlfilter{grammar}

{/examples/chapter/example[@id=='#1']/command(xml:choose)}}

This macro is an instructive example of what the newMkIV xml mechanism can do.2

As you see, it takes one argument, which it transfers to the command \xmlfilter.
This command selects (or “filters”) the content of our xml file (which is available
under the name grammar). It traverses the structure of our xml file and picks the
element <example>whose id corresponds to the argument of our macro; it then takes
the content of the <example> element and transmits it to the command xml:choose.

Using ConTEXt with Databases VOORJAAR 2011 59

Hence, this macro could be used in the form \MyExample{deliberative1} to pick the
first example in our database.

\startxmlsetups xml:choose

\doifelse {\xmlattribute{#1}{/problem}{type}} {latinonly}

{\startitem[\xmlatt{#1}{id}]

{\language[latin]\xmlstripped{#1}{problem}}

\stopitem}

{\startitem[\xmlatt{#1}{id}]

\xmlstripped{#1}{problem}

\stopitem}

\stopxmlsetups

When we “choose” our examples, we distinguish two cases: if the problem is of the
"latinonly" type, it is a Latin phrase; otherwise, it is an English phrase. So we use
the command \doifelse to distinguish between these two cases. This macro takes
four arguments: the first two arguments are two strings that will be compared. If
they are equal, the third argument will be executed; if they are not equal, the fourth.
In our case, then:

The command \doifelse looks at the attribute type of the sub-element prob-
lem of the current xml node (that's what \xmlattribute{#1}{/problem}{type}
expands to).
If the type attribute is equal to "latinonly", the first branch is executed:
we produce an \item; its reference (in square brackets) is the id attribute
(\startitem[\xmlatt{#1}{id}]). For the text of the \item, we switch to the Latin
language (to get proper hyphenation). \xmlstripped takes the value of the xml
element and strips leading and trailing spaces, so the text in the problem subele-
ment is typeset as the content of the item.
If we have a “normal” example, with a solution subelement, we do the same
thing, but we do not switch to Latin (because the sentence is English).

So now our “problems” are wrapped up as ConTEXt items, ready to be processed
in a \startitemize environment. Next, we look at the solutions. We write a similar
macro that filters examples; this time, it passes their content to a different command:

\def\MySolution#1%

{\xmlfilter{grammar}

{/examples/chapter/example[@id=='#1']/command(xml:solution)}}

This macro works exactly like the \MyExample macro. Next, we define the command
xml:solution. Again, we will use ConTEXt's conditional mechanism: The \doifnot
macro only processes examples that do not have a problem subelement of the "lati-
nonly" type (remember, only these have a solution):

\startxmlsetups xml:solution

\doifnot {\xmlattribute{#1}{/problem}{type}} {latinonly}

{\SolutionMargin{\in[\xmlatt{#1}{id}]}

{\language[latin]\xmlstripped{#1}{solution}}

\par\blank[line]}

\stopxmlsetups

Every problem was converted into an item which had its id attribute as a reference.
The second example from our database would thus be processed by ConTEXt as

60 MAPS 42 Thomas A. Schmitz

\startitem[indirect1]

You do not see what he means.

\stopitem

Our xml:solution command now picks up this reference (\in[\xmlatt{#1}{id}]
will expand to \in[indirect1]) and wraps it into a ConTEXt macro \SolutionMargin
(which we will define shortly). It then switches to Latin, gets rid of unwanted spaces,
and typesets the text of the solution subelement, followed by a paragraph and an
empty line.
Now, we prepare the look of our exercise sheets. We want problems and solutions
to look exactly like the same. In both cases, we want the numbers to appear in the
margin, in bold. So we first define \SolutionMargin as a margintext which will be
typeset in the left margin:

\defineinmargin [SolutionMargin] [left] [normal] [style=bold]

Then, we define an itemgroup for our problemswhichwill also display its numbering
in the margin:

\defineitemgroup[MyExamples]

\setupitemgroup[MyExamples][n,inmargin]

\setupitemgroup[MyExamples][style=bold]

Now, the last macro we have to define; this is the one that we will really use in our
document. Since we are lazy and want to type as few words as possible when we
prepare our exercise sheets, this macro will do all the work for us:

\def\MyExercises[#1]%

{\startsubsection[title=Problems]

\startMyExamples

\processcommalist[#1] \MyExample \par

\stopMyExamples

\stopsubsection

\startsubsection[title=Solutions]

\processcommalist[#1] \MySolution \par

\stopsubsection}

Do you see what this macro does? It takes a comma-separated list as argument. It
then starts a subsection (with title “Problems”), and within this subsection, it starts
our itemgroup \MyExamples. It then processes our comma list and hands every ar-
gument over to the macro \MyExample, which in turn retrieves the examples from
our xml database. Since, as you remember, this macro calls the helper command
xml:choose, this will take the content of the problem and pass it to a \startitem,
with reference id. Then, the macro inserts a new subsection (with title “Solutions”),
processes our comma list again and typesets all the solutions as we defined in our
xml:solution command, viz., with the reference to the problem in the margin. This
guarantees that the numbering of problems and solutions will be consistent.

The User Interface
After all this hard work, we can finally reap the benefits: when we prepare our ex-
ercise sheets, we will only have to do a minimum of typing: we include our environ-
ment, we give some structure in the form of sections, and we include a comma-sep-
arated list of the examples from the xml database that we want typeset. All the rest
is done by the macros we defined. So our document will look like this

Using ConTEXt with Databases VOORJAAR 2011 61

\environment compositionstyle

\starttext

\startsection[title={Moods}]

\MyExercises[deliberative1,indirect1,interdicere1]

\stopsection

\stoptext

This will typeset exercise sheets, complete with examples and solutions. But wait:
what if you first want to give out exercises to the students without the solutions?
Of course, you could postprocess the resulting pdf file and pick only the pages with
the problems, but that would not be very elegant. A better solution is to build this
capability right into our environment. We will use ConTEXt modes. We modify our
main macro:

\def\MyExercises[#1]%

{\startsubsection[title=Problems]

\startMyExamples

\processcommalist[#1] \MyExample \par

\stopMyExamples

\stopsubsection

\startmode[solutions]

\startsubsection[title=Solutions]

\processcommalist[#1] \MySolution \par

\stopsubsection

\stopmode}

Now, the part of our macro which typesets the solutions will only be executed if
the mode solutions is set. You can either insert a line \enablemode[solutions] into
your file, or, even easier, you can set the mode when you call ConTEXt from the
command line. When you typeset your file and want to have the solutions as well,
the command is: context --mode=solutions; if you don't enable this mode, only the
problems will be typeset.

Further Elements
As an example of what else we can do, I'll show you how you can handle more xml
elements. Alas, students are not as fluent in Latin as they used to be a mere 450 years
ago, so they sometimes need a little bit of help. How can this be integrated into our
documents? First, let us look at the xml side. In order to give subtle hints, we just
invent a new xml element <hint>; here is an example:

<examples>

<chapter id="moods">

<example id="interdicere1">

<problem>

I have neither done it yet nor do I think it is forbidden

<hint>interdicere</hint> to do it.

</problem>

<solution>

id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

</solution>

<origin>

Cicero fin. 1.7

62 MAPS 42 Thomas A. Schmitz

</origin>

</example>

</chapter>

</examples>

Wewant these hints typeset in the text of the problems, between square brackets, in
italics. How do we do this? First, we have to “grab” these elements from our loaded
xml file and connect them with a setup command:

\xmlgrab{grammar}{hint}{xml:hint}

Then, we define our setup command:

\startxmlsetups xml:hint

\dontleavehmode[{\language[latin]\em \xmlflush{#1}}]

\stopxmlsetups

Which will take care of the <hint> elements, apply Latin hyphenation, and typeset
them as we want them.

Other Databases: sql
If you did not like the preceding paragraphs, I have something else to offer: you may
have been disappointed that the title of this article mentions “databases,” yet all it
talks about is xml. What if you want to use a “real” database format such as sql?
ConTEXt MkIV can also cope with sql databases – or, to be more precise: Lua can,
and so can ConTEXt with the luaTEX engine. I do not have the knowledge to make an
in-depth comparison of xml with sql. If you search the web, you will see that people
have (sometimes strong) preferences for one or the other. One advantage of xml is
that it's stored in simple text files, in a human readable form; you are thus sure that
your database will be usable for a long time. sql, on the other hand, has its advantages
when it comes to speed (though the speed of the lookups is relatively negligible
compared to the time it takes to typeset the document, so unless your database is
really huge, there should not be much of a difference). One rule of thumb seems
to be that xml is better for data which has a strong hierarchical structure, whereas
relational databases (such as sql) are better for large sets of weakly structured data.
When you look at our database of grammatical exercises, you will see that there is
not much hierarchical structure; what we really need is to retrieve single examples
by their ids, and this is something that sql is very good at. It is thus easy to think of
a way to represent our grammatical exercises as an sql database. The table will need
five columns (I abbreviate the text to make this representation easier to read):

id | type | problem | solution | origin

------------- | -------- | ----------- | ------------ | -------------------

deliberative1 | latin | quid... | | Cicero, Verr. 2.39

indirect1 | both | You do... | quid... | Cicero, fin. 2.21

interdicere1 | both | I have... | id neque... | Cicero, fin. 1.7

It is easy to see how this is (almost) identical to our xml file. We now have a column
type to distinguish between sets with and without a solution. The other columns
correspond exactly to our xml tags. (We lose the information about the grammatical
“chapter” to which every example belongs; if we wanted to, we could add another
column to our database carrying that information).
This is not the place to give an introduction to sql, so I will be very brief here: I chose
the sqlite3 database management system because it is leightweight, open source,

Using ConTEXt with Databases VOORJAAR 2011 63

available on many platforms, and does not rely on a server-client structure, hence it
is well adapted for managing local databases.3 sqlite3 may already be available on
your system, or else it can be installed quite easily. Creating such a database is easy.
From the command line, we first create an empty database file:

sqlite3 grammar.db

SQLite version 3.7.3

Enter ".help" for instructions

Enter SQL statements terminated with a ";"

sqlite>

We are now at the sqlite command prompt and can create our table:

CREATE TABLE examples (id TEXT PRIMARY KEY UNIQUE,

...> type TEXT,

...> problem TEXT,

...> solution TEXT,

...> origin TEXT);

This creates the structure (or “schema”) for our table, and we can now insert our
exercise problems; I give one example only:

INSERT INTO examples(id, type, problem, solution, origin)

...> VALUES('indirect1', 'both', 'You...', 'quid...', 'Cicero, fin. 2.21');

This will populate our table with our exercises, ready to be retrieved later.
How can we use an sql database in ConTEXt, then? Some years ago, Berend de Boer
published a paper on this topic in the EuroTEX 2001 conference; of course, this ap-
plied to ConTEXt MkII.4 He pointed out that it is fairly easy to insert xml tags or
even ConTEXt commands into the output of an sql query. So one could massage the
output and write it to a file, then call ConTEXt on that file. Berend proposed to do all
this in a perl wrapper script. This would still be a viable route – but how much fun
would that be? In MkIV, we can use a different approach: we can do the sql queries
directly from within our document and typeset the results with ConTEXt. However,
there are two caveats you will have to keep in mind when you read the remainder
of this article:

1. I am not a database programmer by any means, I just impersonate one for this
article. The code I will show you here does work for me, but it may be quite
naive or unsophisticated – you are welcome to improve it!

2. Unfortunately, what I have written in the first paragraph of this section is not
quite literally true: Lua can indeed deal with sql, but it needs additional modules
to do so. Unfortunately, I found the situation a bit confusing: there are (at least)
three different modules that allow Lua to work with sqlite databases.5 Even after
doing some research on the web, I could not quite figure out in which relation
these modules are – they are quite similar in their basic approach, but differ in
many aspects of the user interface.6 For this article, I use the Lua module
LUASQLite3,7 which appears to be the only one which is still actively maintained.
In another article in this issue, Taco Hoekwater explains how to install a Lua
module so that luaTEX and ConTEXt can actually use it.

With all this understood, let us set our specifications for what we want to achieve,
then. We want to keep exactly the same user interface in our ConTEXt file as in the
first part of this article when we were dealing with xml; i.e., we still want to use our

64 MAPS 42 Thomas A. Schmitz

macro \MyExercises[] with a comma list of examples; and we want to be able to
use modes to have our solutions typeset or not. Our aim is to produce a universal
macro that can be driven either by an sql database or by an xml file, without the user
having to worry about it.
So let us roll up our sleeves: our database grammar.db is in place; its table examples is
populated with our exercises; our luatex binary is able to find and use the lsqlite3
module. What would our new environment look like? Much of what we will do now
will be done in Lua, so we begin by writing our Lua code. I find it convenient to write
and test my Lua code first and wrap it into the proper \startluacode \stopluacode
environment later, but this is just a habit.
We could, of course, reuse some of the code we have written for handling the xml
file, especially the part where we used the neat \processcommalist macro, but since
we will be writing a Lua function anyway, I found it interesting to see how much
of this could be done in Lua. As you will see, it is possible to write the cimplet set
of processing and typesetting commands in Lua. This may sometimes appear a bit
convoluted, but it may inspire you when you want to write your own Lua functions,
so here we go: our Lua function (which will later be wrapped into a \ctxlua macro)
will take as its argument a comma-separated list of values. So the first thing we have
to do is split this list into its elements and make a table out of them; we use the lpeg
library for this.8 In the following code, the variable keywordlist designates what will
be the user input when we define our ConTEXt macro.

userdata = userdata or { }

userdata.sql = userdata.sql or { }

userdata.sql.sep = lpeg.P(",")

userdata.sql.mywords = lpeg.C((1 - userdata.sql.sep)^0)

userdata.sql.p = lpeg.Ct(userdata.sql.mywords *

(userdata.sql.sep * userdata.sql.mywords)^0)

userdata.sql.mytable = lpeg.match(userdata.sql.p, keywordlist)

This creates a Lua table userdata.sql.mytable with all the keywords in it. We will
later use this table to retrieve the single problems from our database. But let us first
look at the way we will be accessing the database itself.
The Lua function proper will query the database for entries whose id corresponds
to this element. Here is how this can be achieved:

require("lsqlite3")

userdata.sql.mygrammar = assert (sqlite3.open("grammar.db"))

function userdata.sql.getproblem(myid)

userdata.sql.myquery =

userdata.sql.mygrammar:prepare("SELECT problem FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myproblem = userdata.sql.myquery:get_value(0)

userdata.sql.myquery:step()

userdata.sql.myquery:finalize()

end

Let us have a brief look at this code. This is the part where Lua interacts with our
database. The first thing we have to do is load (“require”) the lsqlite3 module. We
use it to open our database and give a symbolic name to the resulting Lua structure.
We then run an sql SELECT query on the table examples in this database. This query
creates an object, to which we again assign a handle, userdata.sql.myquery. The
interesting part here is the end of the query: in WHERE id = ?, the question mark

Using ConTEXt with Databases VOORJAAR 2011 65

is a placeholder which we then “bind” to the argument of our Lua function, myid.
Our query selects the column problem from the database which is captured in the
function call userdata.sql.myquery:get_value(0) (if we wanted to retrieve n more
columns, these would be captured as userdata.sql.myquery:get_value(0+n)). We
assign a Lua variable to this result. The function call userdata.sql.myquery:step()
will actually apply our query to the next row of the database; the query is closed
with userdata.sql.myquery:finalize().
So all we have to do now is write a loop which will take the single elements of our
userdata.sql.mytable, make sure to get rid of all whitespace which users may put
into this comma list, pass the single values on to the userdata.sql.myquery function,
and then do something with the results we receive. Since we want the results to be
the same as with the xml example, we reuse the setups for our item lists and our
margin numbers:

\defineinmargin [SolutionMargin] [left] [normal] [style=bold]

\defineitemgroup[MyExamples]

\setupitemgroup[MyExamples][n,inmargin]

\setupitemgroup[MyExamples][style=bold]

And this is how we will use these definitions in our Lua loop:

context.startsubsection({ "title=Problems" })

context.startMyExamples()

for k, myid in ipairs(userdata.sql.mytable) do

myid = myid:gsub(" ", "")

userdata.sql.myquery =

userdata.sql.mygrammar:prepare("SELECT problem, type

FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myquery:step()

userdata.sql.myproblem = userdata.sql.myquery:get_value(0)

userdata.sql.mytype = userdata.sql.myquery:get_value(1)

userdata.sql.myquery:finalize()

context.startitem({ myid })

if userdata.sql.mytype == "latin" then

context.bgroup()

context.language({ "latin" })

context.delayed(userdata.sql.myproblem)

context.egroup()

else

context(myproblem)

end

context.stopitem()

end

context.stopMyExamples()

context.stopsubsection()

What you see here is ConTEXt code written in Lua. Every ConTEXt command has a
corresponding Lua equivalent. If you define an environment \MyExamples, the Lua
function call context.startMyExamples() is equivalent to \startMyExamples.9 As I
said before, we could have done most of this in ConTEXt itself; I just wanted to
demonstrate this Lua interface here.

66 MAPS 42 Thomas A. Schmitz

But there is more! Remember, we also wanted to typeset the solutions for problems
that were of type latinonly if the mode solutions was set. Here is how we can do
this in Lua:

if tex.modes["solutions"] then

context.startsubsection({ "title=Solutions" })

for k, myid in ipairs(userdata.sql.mytable) do

myid = myid:gsub(" ", "")

local userdata.sql.myquery = userdata.sql.mygrammar:prepare

("SELECT type, solution FROM examples WHERE id = ?")

userdata.sql.myquery:bind_values(myid)

userdata.sql.myquery:step()

userdata.sql.mytype = userdata.sql.myquery:get_value(0)

userdata.sql.mysolution = userdata.sql.myquery:get_value(1)

userdata.sql.myquery:finalize()

if userdata.sql.mytype == "both" then

context.SolutionMargin(context.delayed["in"]({ myid }))

context.bgroup()

context.language({ "latin" }, context.delayed(mysolution))

context.egroup()

context.par()

end

end

context.stopsubsection()

end

As you can see, we have to query the database a second time, to retrieve the solutions.
This time, we also need to retrieve the type column since only database entries with
type both do, in fact, have a solution, and we need to test this (otherwise, Lua will
complain because the instruction context(userdata.sql.mysolution) may result in
an empty argument). You will find it easy to recognize the other elements which we
have already done in the first part: we test whether the mode solutions is enabled;
if it is, we further test whether the type of the entry is both; if it is, we typeset it,
with its id as a reference to the item in the problem list.
So all we need to do now is wrap the entire Lua code in the proper environment (I
give just the beginning and the end) and define the command that we will use in our
file:

\startluacode

require("lsqlite3")

userdata.sql.sep = lpeg.P(",")

function userdata.sql.getexample(keywordlist)

...

end

\stopluacode

\def\MyExercises[#1]%

{\ctxlua{userdata.sql.getexample("#1")}}

As you see, in our sql environment, themacro \MyExercises passes its argument over
to our Lua function getexample, which will in turn split it into its single keywords,
query the database for them, and finally typeset the corresponding problems and
solutions. So we have achieved exactly what we wished: we have defined the same
macro which will now retrieve our exercises from an sql database!

Using ConTEXt with Databases VOORJAAR 2011 67

What about our special <hint> element? If you remember, we wanted these hints
typeset within brackets, and in italics. How can we integrate this into our sql ap-
proach? One solution would be to write the ConTEXt code which youwant evaluated
directly into the entry in the database, so the problem column of our example would
look like this:

... it is forbidden [{\language[latin]\em interdicere}] to do it.

If you are certain that you will never use your database with any other (necessarily
inferior) tools than ConTEXt, this would be a possible way, but it is not very ele-
gant. Better to keep the database as generic as possible and massage the data at the
ConTEXt end. So we have to think of a delimiter for our hints – this must be a pair
of characters that you will not use in any other way. In our case, square brackets are
used for nothing else but to include such hints, so our database simply contains:

... it is forbidden [interdicere] to do it.

When we retrieve the problems in our Lua code, we simply replace these brackets
with the code:

function userdata.sql.debracket(s)

p = string.sub(s,2,-2)

return p

end

userdata.sql.myproblem = userdata.sql.myproblem:gsub

("(%b[])", function(t) return "[{\\language[latin]\em"

.. userdata.sql.debrac(t) .. "}]"; end)

This operation on the string with Lua's gsub command will simply replace all strings
within balanced brackets (such as [interdicere]) in the output of our query with
[{\language[latin]\em interdicere}].

Conclusion
The actual output of our exercise sheets doesn't look very exciting yet (actually,
“Problems” and “Solutions” will be typeset on two different pages, but here I have
indicated the page break by a simple line).

Moods

Problems

1 quid ergo istius in iure dicundo libidinem et scelera demonstrem?
2 You do not see what he means.
3 I have neither done it yet nor do I think it is forbidden [interdicere] to do it.

Solutions

2 quid sentiat, non uidetis.
3 id neque feci adhuc nec mihi tamen ne faciam interdictum puto.

68 MAPS 42 Thomas A. Schmitz

But it is easy to add bells and whistles, color, different fonts and sizes, etc. It's all a
matter of adapting settings in your environment. The example I have shown here
may be a bit specialized, but it should allow you to appreciate the simplicity of the
underlying mechanism.

Footnotes

1. As always, I would not have been able to figure all this out myself. I gratefully acknowledge
the help of the ConTEXt community on the mailing list; in particular, Aditya Mahajan and
Peter Münster have provided valuable help. And, as always, none of this would have been
possible without Hans Hagen's kind support.
2. If you are curious and want to know more about xml in ConTEXt MkIV, you should
have a look at the manual which can be downloaded at http://www.pragma-ade.com/general
/manuals/xml-mkiv.pdf.
3. For more information, point your browser at http://sqlite.org/.
4. The paper is available at http://www.ntg.nl/eurotex/deboer.pdf.
5. See the somewhat terse wiki page at http://lua-users.org/wiki/LuaSqlite.
6. It is somewhat reassuring to see that other users feel confused, too; see the questions at
http://lua-users.org/lists/lua-l/2009-03/msg00405.html.
7. See http://luaforge.net/projects/luasqlite/.
8. The following code is adapted from the lpegwebsite at http://www.inf.puc-rio.br/~roberto
/lpeg/lpeg.html#ex.
9. For more information, see Hans Hagen's article “Typesetting in Lua using LuaTEX” in the
previous issue of MAPS and the manual at http://www.pragma-ade.com/general/manuals/cld
-mkiv.pdf.

Thomas A. Schmitz

