
Subtext: A Proposed Processual Grammar for a
Multi-Output Pre-Format
Subtext: návrh postupové gramatiky na předformát
určený pro různá výstupní zařízení

John Haltiwanger

Abstract: Academic publishing today faces a reality in which providing
multiple formats–generally HTML and PDF–is becoming a necessity. The
production of multiple outputs involves a workflow of generative type-
setting. Generative typesetting involves many constraints that resulting
from edge cases between formats which must be accounted for. Against
the backdrop of theory in the field of new media, a new approach to-
wards generative typesetting is proposed. A separation of translation from
effect, akin to the division of style and content in HTML/CSS, can effect
a transmutable translation layer in which syntax, effect, and even a pre-
format’s reserved characters can be defined in configuration files. This
transmutability is desirable because every generative typesetting wor-
kflow faces particular specificities which should be addressable without
the introduction of “glue.”

Keywords: typesetting, processual grammar, pre-format, multi-output.

Abstrakt: Článek přináší několik myšlenek a úvah na návrh gramatiky
pro předformát u vícenásobného výstupu z jednoho zdrojového kódu.

Klíčová slova: sazba, typografie, postupová gramatika, předformát, ví-
cenásobný výstup.

Introduction

Over the course of my recent work obtaining a master’s degree in New Media at
the Universiteit van Amsterdam, I had the opportunity to investigate the field
of generative design–and especially generative typesetting–in the context of a
thesis that interrogates existing media theories for their efficacy in describing
the dynamics involved in generative workflows.

The core impulse of my thesis began with the idea of a web application
which offers a simple means of ‘writing once, reading everywhere.’ In terms of

140 doi: 10.5300/2011-2-4/140



the practical problem domain (academic publishing of humanities texts), this
meant targetting two formats: HTML and PDF. There seemed to be interesting
questions of ‘materiality’ in any discussion of the envisioned workflow:

1. A pre-format in which the source document is written. (For my thesis, I
chose Markdown.) What material specificities does such a format exhibit?
From a less directed orientation, what does it mean to write in a format
whose sole purpose is to be translated into other formats?

2. A ‘wrapper’ (or translation layer) application. (For now, in terms of
ConTEXt, that means Pandoc.) What does it say about the ‘materiality’
of the final product when, indeed, the final “product” is a multitude of
output files (PDF for print, PDF for screen, HTML for browser, HTML
for handheld, etc.)?

3. The glue layer. This layer was recognized as inevitable from the outset due
to both personal conversations with people who have attempted cross-
format publishing and the knowledge that with (translation) software, it
will never Just Work Right. The ‘materiality’ of the outputs further spreads
out across code written to satisfy edge cases and account for inadequacies
in either of the other two layers.

The Interest in Materiality
Recently there has been a shift within the field of new media back towards
an adherence to Marshall McLuhan’s old motto: “the medium is the message.”
This shift has been very productive in its inspiration towards software studies,
medium-specific analysis, and a host of other approaches of examining media as
media. While quite productive in generating theory, this shift has not necessarily
been so productive in terms of deciphering the (often unasked) question: What
defines a medium?

The contemporary fixation with ‘materiality’ is a result of seeking the consti-
tution of media from inside themselves, a fact that belies a neglect in attention
to the shaping of media by processes external to themselves such as economics,
political climate (including legal structures), history, and imagination.

It’s All Process: A Shift to an Analytics of Becoming
There may be a better way to critically engage with media, one that can account
for and respond to the fragmentation that the concept of ‘medium’ has experi-
enced since the advent of the personal computer. Though relatively obscure in
English language discourse, Gilbert Simondon’s theory of ontogenesis is remar-
kably applicable for describing the unfolding of structures within the computer
metamedium.1

1Loosely translateable as a machine in which the available potential of the machine is
definable from within that machine itself, a feature that lets the computer “play host” to other
media.

141



Simondon’s ontogenesis transcends the traditional Western conundrum of
existence (“what am I? what does it mean that I am?”) by asking the question:
“How did I become? What am I becoming?”

This is a radical shift, as the disconnect between the conditions that shape
us and our current form is missing from many fields—the most obvious example
lying in the forms of economic analysis that refuse to integrate so-called “ex-
ternalities” such as vertical market dynamics, resource depletion, pollution, and
the general turmoil associated with extravagently rich men getting richer while
poor people get poorer. In the field of new media, specifically, it allows for a
process-oriented perspective through which the conditions of a given medium
can be integrated into our understanding of that medium. In a way it is not a
rejection of ‘looking into the medium’ for understanding: rather, it implores an
addtional looking around.

Source Code as a Site of Collective Agency

From the perspective of metamedia, where constraints are defined by program-
ming as much as by the physical properties of the machine, source code becomes
a site of agency: if one can rule the source, one can rule the metamedium.
Through an examination of the discussion between Hans Magnus Enzensber-
ger and Jean Baudrillard regarding a revolutionary theory of media, I position
FLoSS as a unique and potent site of agency within metamedia (especially the
still-dominant personal computer). FLoSS not only fits the seven categories of
emancipatory uses of media outlined by Enzensberger, it likewise operates in a
“reciprocal” (actively reflexive) way that restores the symbolic exchange relation
that Baudrillard deems necessary for any subversive potential of media.

Tied to the concept of ontogenesis, FLoSS becomes a vast site of collective
becoming within the computer metamedium. While many people are squeamish
about granting it this mantle, the truth remains that FLoSS, and only FLoSS,
carries within itself the potential for total and radical change of the metamedium.
Likewise, only FLoSS provides a means for hedging against the increasing lock-in
of metamedia that we find in devices such as the iPhone and the Kindle. These
features are significant and the stakes are real: metamedia could cease to be
metamedia if it becomes a common-place assumption that one is not intended
to program them on one’s own and without following strict rules of what can
be programmed and how. This is a dangerous path, yet the rapid adoption of
the iPhone and iPad—despite the valid criticism that the devices rigidly enforce
a crippled, consumerist take on computing—proves that this direction worth
examining as a very real potential road for the future of social understandings
of computing.

142



Processual Grammars Organize Process Hybridity

A very real problem in terms of ‘medium-specific analysis’ that we find when
dealing with computers is that there can be distinct specifities even between
different versions of the same program. Does each new or distinct version consti-
tute a specific medium? Just as the variety of typewriter makes and models do
not constitute individual media, it makes no sense to apply the ‘medium’ label
to every application on the computer. Yet there are distinct new capabilities and
processes embodied within computer programs, and it seems just as nonsensical
to render everything available on the computer as belonging to, or representing,
a single medium.

Through an analytics of becoming we are made aware of the various hybridi-
zations involved in the assembling of processes. Take, for example, the modern
command-line interface (CLI). The original roots of the CLI lie in the teletype
machines, which were quite literally the hybridization of typewriters and com-
puter feedback systems such as tape or punch cards, along with telephone and
modem technology. Today there are often other aspects in play: a framebuffer
(perhaps even a GUI, in the case of terminal emulators), along with libraries that
handle text not represented directly on the keyboard, as well as continuously
evolving shells and terminal emulators.

What I argue is that these various configurations—resulting from evolutio-
nary developments in and outside the CLI—represent distinct processual gram-
mars that organize various processes into distinct hybridities. Thus the differen-
ces between the bash and csh shells (or between GIMP and Photoshop) indicate
not the existence of a variety of separate media but rather divergent organizatio-
nal grammars of process that engender intentional specificities that are designed
to overcome or otherwise modify some real, existing constraint. In the case of
bash versus csh, the constraint was ease of programming and in the case of the
GIMP it was the lack of a free software alternative for hardcore raster image
manipulation. The significance of FLoSS in this light is that, thanks to the
availability of source code, we have the capacity to modify, extend, or replace
processual grammars at will. This is something ultimately familiar to the TEX
community, which has seen the steady progression of engines and patches inten-
ded to accomodate and account for overcoming constraints within the original
implementation. If TEX’s entire internals were proprietary and the source code
withheld, these efforts would require a completely different level of work.2

2This is also assuming that Donald Knuth had not been so forthright in his writings on the
topic due to proprietary concern for ‘trade secrets.’

143



The Problem Domain

Academic papers in the humanities are still written in WYSIWYG word proces-
sors, most often the proprietary Microsoft Word. This is pervasive to the extent
that editing jobs require the possession of this software. Yet the chief feature of
that software in this problem domain is the “Track Changes” mode—something
which version control systems handle seamlessly with regards to plain-text do-
cuments. The issue is not technical, then, but a question of interface. TEX is
a great system, but it is still a visually cumbersome programming language.
An abstraction into a pre-format for interfacing with typesetting could allow
the adoption of TEX-based workflows without the necessity of learning TEX (or
LATEX or ConTEXt). A new interface for version control based around the work-
flow demands of publishing and editing would likewise smooth a transition from
proprietary conditions.

Requiring proprietary software for academic publishing is a strange product
of history and economics. Both of these influences have been known to be over-
come through FLoSS. Indeed, history and economics were both overcome when
Richard Stallman made an institution and a legal hack around the considered-
obsolete institution of code sharing. It is possible to imagine a new system for
generative typesetting that outshines previous workflows of academic writing.3

Towards A New Processual Grammar for Typesetting

My thesis attempts an actively reflexive methodology: in order to investigate
generative design, a workflow based on generative typesetting was employed.
This workflow has already been outlined in the introduction to this piece: it is
composed of the pre-format, the translation layer, and the glue layer.

It seems to me that with the advent of LuaTEX we now have the opportunity
to integrate these three layers and, while doing so, modify them in order to
fulfill our expecations in a more efficacious manner. Since LuaTEX allows for the
utilization of Lua code, we can theoretically implement anything possible in Lua
as an add-on for LuaTEX.

The first stage of this is to re-think the pre-format. I define a pre-format
as a markup that is chiefly designed both for ease of writing and for transla-
tability. In other words, pre-formats exist to provide a drastic reductions in
learning-curve and syntatical verbosity. However, prominent pre-formats like
Markdown and reStructuredText were designed primarily by program-
mers for programmers. In other words, the factors involved in typesetting are
not always accounted for in these pre-formats. It is time to change this. We

3Even if the system outlined here is not ideal, I maintain that there has to be a better way
of dealing with publishing in the humanities.

144



need a pre-format that understands how to pass environment information so
that a paragraph, for example, can be marked as a member of an arbitrary en-
vironment (or class/id in HTML). Ideally all markup should be augmentable
with contextual specificities that then map into the outputs. A huge element of
this hybridization is delivering bibliographic/citation functionality that extends
to all outputs. Such a hybridization—not currently possible in Pandoc—would
elevate this processual grammar above the competition (for instance, BibLATEX
requires significant massaging just to out put the MLA format, a standard in the
humanities). Since the translation layer can be implemented in Lua, it is possi-
ble to develop a library for LuaTEX that processes this pre-format and output
the results in multiple other formats.4 By hybridizing the translation layer into
LuaTEX, beautiful typesetting into PDFs will become a first-order capability of
the pre-format. Perhaps the best way to phrase this concept to developers is that
it represents a recognition that a pre-format can be built as a domain-specific
language. To that extent, the syntax, it’s effects and even the reserved characters
can be specified through configuration files and metaprogroamming. This allows
for personally tailored workflows as well as defined and emergent standards of
operating.

Glue-Be-Gone

This could theoretically represent a point of transcendence of that final layer of
integration: the glue layer. An transmutable translation layer allows a new se-
paration of translation from implementation, something akin to the attempted
division of form and content vis a vis CSS and HTML. As mention, in this
scheme the exact effects of the pre-format syntax (i.e, what the translator out-
puts upon receiving a certain markup) can be defined on a per-project (or even
per-individual) basis. Pandoc, on the other hand, allows for scripting but only
in a way that involves writing Haskell code. While this may be fine in some ca-
ses, clearly the necessity of learning a new programming language simply to use
a translation wrapper is less-than-ideal. By loading rules in from configuration
files we can separate the workflow into subsystems that align to different degrees
of engagement with the workflow: users can easily interact within the specific
syntax of a project, yet they can just as easily begin to modify that syntax by
changing values in a configuration file. If they are interested in engaging the out-
puts more deeply, they can alter other configuration values in order substitute
their own values as effects of translation. The point is to allow multiple levels of
affecting how this gets changed into that.

The system need not necessarily be designed for inter-operability between
4Another option, worth investigating, is using the powerful grammar processing of Perl 6

in combination with the Parrot Virtual Machine and its native Lua implementation.

145



specific organizations of workflow. However, even that goal should be relatively
accessible if shared code works only on an abstract level and respects arguments
such as environments that have been passed from the pre-format. These argu-
ments will have a defined structure within the configuration files, so errors in
syntax can be reported when they are found during translation and even shared
code libraries can be written to take these structures into account. I am not
saying that edge cases will never occur, only that they should be adjustable on
a granular level that allows a single workflow to be optimized and just work.
(These adjustments will require engaging with environment setup through me-
chanisms such as CSS or ConTEXt macros). One could imagine a university
department developing a tailored pre-format that suits their field and generates
arbitrarily optimal PDFs and HTML files, something akin to the current preva-
lence of LATEX document classes in mathematics and science but with the ease
of use and translatibility offered by a pre-format.

This is not to say that “glue” will never be necessary, only that we should
recognize its perpetual existence in generative typesetting for multiple outputs.
As such, it makes sense to mitigate the source of glue, which can be found in
the edge cases that must be accounted for between output formats in any given
workflow. The uniqueness of every workflow means that the best solution lies
in a system sufficiently flexible enough to accomodate arbitrary demands and
inevitable weirdness. While adherence to a standard syntax is possible, there
should ultimately be as few constraints placed upon the executiopn of that wor-
kflow as possible. As long as the configuration files are available, the system
should be able to render any output formats according to the logic declared the-
rein. There is a distinct opportunity to provide a new alternative to academic
writing in the humanities. LuaTEX offers a significant site of agency for deli-
vering on this opportunity. While it is obvious that this proposal consists only
of theoretical speculation, I hope that the ideas outlined in this text provide a
thought-provoking outlook on conceive of this delivery.

john (dot) haltiwanger (at) gmail (dot) com
Amsterdam, The Netherlands

146


