
M
kI

V
H

yb
ri

d
T

ec
hn

ol
og

y

{}
()
()
{}
()
()
()
{}
<>
<><>
<>
()
()
()
<>
()
<>
{}
<>

{}
<>
<>
{}
<>
()
{}
{}
()
<>
()
()
<>
{}
<>
{}
{}
<>
()
()

()
<>
()
<>
{}
<>
{}
{}
()
{}
()
{}
<>
()
<>
{}
()
<>
<>
()

<>
()
()
<>
{}
()
<>
{}
{}
<>
<>
{}
()
{}
{}
<>
<>
<>
<>
{}

<>
<>
{}
<>
{}
()
<>
()
{}
()
{}
()
{}
{}
<>
()
()
{}
{}
()

()
<>
{}
<>
{}
<>
()
()
<>
{}
()
()
<><>
()
()
()
{}
()
{}

()
()
<>
{}
()
{}
()
<>
{}
()
<>
()
<><>
{}
()
<>
<>
<>
{}

{}
<>
{}
<>
()
{}
{}
<>
{}
<>
{}
<>
<><><>
<>
()
<>
()
<>

MkIV Hybrid Technology
Hybridní technologie MkIV

Hans Hagen

Abstract: The paper presents development, new features and tools of
LuaTEX and ConTEXtMkIV.

Key words: LuaTEX, ConTEXtMkIV, Mark II, Mark IV.

Abstrakt: Příspěvek představuje rozvoj, nové vlastnosti a nástroje LuaTEXu
a formátu ConTEXt Mark IV.

Klíčová slova: LuaTEX, ConTEXtMkIV, Mark II, Mark IV.

References
[1] LuaTEXhome page. Available at URL: http://www.luatex.org/
[2] The Programming Language Lua. Home page.

Available at URL: http://www.lua.org/

pragma (at) wxs (dot) nl
PRAGMA ADE, Ridderstraat 27

8061GH Hasselt, The Netherlands

182 doi: 10.5300/2011-2-4/182

174 174

174 174

76 Bibliographies

tag hagen:tb25-1-108
author Hans Hagen
title The TEX Live 2004 collection

tag hagen:tb19-3-304
author Hans Hagen
title The Calculator Demo, Integrating TEX, MP, JavaScript and PDF

tag hagen:tb19-3-311
author Hans Hagen
title Visual Debugging in TEX, Part 1: The Story

tag hagen:tb23-1-49
author Hans Hagen
title ConTEXt, XML and TEX: State of the art?

tag hagen:tb26-2-152
author Hans Hagen
title LuaTEX: Howling to the moon

tag hoekwater:tb25-1-105
author Taco Hoekwater
title MetaPost developments

tag hagen:tb25-1-48
author Hans Hagen
title The state of ConTEXt

tag hagen:tb22-3-136
author Hans Hagen
title Using TEX for high end typesetting

tag hagen:tb22-3-118
author Hans Hagen
title Where will the odyssey bring us?

tag hagen:tb22-1-58
author Hans Hagen
title The status quo of the nts project

tag berdnikov:tb21-2-129
author Alexander Berdnikov and Hans Hagen and Taco Hoekwater and Bo-

gusław Jackowski
title Even more MetaFun with MP: A request for permission

174

257

175 175

175 175

Bibliographies 77

tag hagen:tb19-3-317
author Hans Hagen
title Visual Debugging in TEX, Part 2: The Macros

tag hagen:tb22-3-160
author Hans Hagen
title Using TEX to enhance your presentations

If this is the first time you see MkIV's xmlin action you might be confused by
what happens here. When we apply the bibtex setup (the second argument),
we expand a predefined setup that looks as follows:

\startxmlsetups bibtex

\xmlregistereddocumentsetups{#1}{}

\xmlsetsetup{#1}{bibtex|entry|field}{bibtex:*}

\xmlmain{#1}

\stopxmlsetups

Here #1 represents the root node of current database. Three elements are
mappedt to their own name, prefixed by bibtex:. In the previous examples we
defined the bibtex:bibtex one, which will be applied to the root.

Here are a few more predefined setups:

\startxmlsetups bibtex:format

\par

\edef\currentbibxmlnode{#1}

\xmlcommand{#1}{.}{bibtex:\currentbibtexformat:\xmlatt{#1}{category}}

\par

\stopxmlsetups

\startxmlsetups bibtex:list

\xmlfilter{#1}{/bibtex/entry/command(bibtex:format)}

\stopxmlsetups

\startxmlsetups bibtex:bibtex

\xmlfilter{#1}{/entry/command(bibtex:format)}

\stopxmlsetups

The first one apply a setup to the current node (indicated by the period).

bibtex:apa:article

Such setups are defined elsewhere and you can imagine that they look more

175

258

176 176

176 176

78 Bibliographies

complex than what we've seen sofar. But you seldom have to deal with that.

The second and third setups applie the format to an entry. However, there is a
subtle difference. The second one is called as follows:

\applytobibtexsession[somebibtex][bibtex:list]

As bibtex:list is a stand-alone setup, it will get the document root passed,
and therefore we need to explicitly add that root, although the following two
calls give the same results (watch the forward slashes):

\xmlfilter{#1}{/bibtex/entry/command(bibtex:format)}

\xmlfilter{#1}{entry/command(bibtex:format)}

The bibtex:bibtex setup however, is using an indirect approach and only
comes into action via the already mentioned bibtex setup. In that setup the
\xmlmain command will expand the root element and when it sees the bibtex
element, it will call the associated bibtex:bibtex setup. So here we need to
call the bibtex setup.

\applytobibtexsession[somebibtex][bibtex]

Let's summarize what is needed to typeset a whole database:

\definebibtexsession [somebibtex]

\registerbibtexfile [somebibtex] [tugboat.bib]

\preparebibtexsession [somebibtex] [convert,strip]

\applytobibtexsession [somebibtex] [bibtex:list]

Here we use the predefined bibtex:list filter. Of course you need to define
commands that are uses in the database.

8.3 The batabase
The xml database is quite simple and has the form (we omitted some fields):

<bibtex>

<entry tag="hagen:tb19-3-311" category="article">

<field name="number">3</field>

<field name="bibdate">Fri Jul 13 10:24:20 MDT 2007</field>

<field name="author">Hans Hagen</field>

<field name="journal">TUGboat</field>

<field name="title">{Visual Debugging in \TeX, Part 1: The Story}</field>

<field name="ISSN">0896-3207</field>

176

259

172 172

172 172

74 Bibliographies

8 Bibliographies
8.1 Introduction
Already early in the history of ConTEXt Taco Hoekwater wrote a module that
dealt with bibTEX databases in a ConTEXt like way. Personally I never had to
use a bibliography so I'm far from aan expert in this area. However, going from
some text database format to something typeset is generic enough for me to be
involved.

The involvement started when MkIV showed up. Because quite some core
mechanisms have been reimplemented, also some that the module used, a
dedicated MkIV variant had to be made. This was not that hard to do as it
mostly meant stripping code and replacing the specific reference mechanism
by one using lists. That way we got a few bonus features but in general we can
say that the module is downward compatible.

Already a while ago Taco and I discussed supporting bibliographies that use
xml as format and although we have not settled on some standard it makes
sense to explore the possibilities. The advantage of using xml is that we can
use the built in subsystem for filtering and manipulating entries.

This chapter is dedicated to Thomas Schmitz who not only use bibTEX but also
has used MkIV xml right from the start and provides valuable feedback on both
subsystems.

Keep in mind that eventually we will provide a high level interface so that users
won't notice much of a difference unless they want to go beyond what they use
now.

8.2 Sessions
As usual in ConTEXt, we organize the featureset in such a way that we can
group them and use several such sets in one documents without interference.
It all starts by defining a session:

\definebibtexsession [somebibtex]

Next we register a couple of databases (from the beebe collection on TEXlive:

\registerbibtexfile [somebibtex] [tugboat.bib]

\registerbibtexfile [somebibtex] [komoedie.bib]

The files are loaded immediately and you can check this by looking at the log

172

177 177

177 177

Bibliographies 79

<field name="year">1998</field>

<field name="pages">311--317</field>

<field name="volume">19</field>

</entry>

</bibtex>

It is good to keep in mind that we lowercase the name and category attributes.

By default there are no setups for the one character elements but if you need
then you have to use the bibtex namespace, e.g.:

\startxmlsetups bibtex:field

\xmlflushcontext{#1}

\stopxmlsetups

8.4 Sorting
maybe also per session

We can sort entries. For that we need to define a sort setup. First we create a
sort vector based on some fields. The first argument (bibtex) is the sort vector.

\startxmlsetups bibtex:entry:getkeys

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='author']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='year']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlatt{#1}{tag}}

\stopxmlsetups

In the next setup we see this sorter being initialized. After that we filter some
entries and add them to the to list of keys. Then we sort that list and flush it
afterwards.

\startxmlsetups bibtex:entry:getkeys

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='author']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlfilter{#1}{/field[@name='year']/text()}}

\xmladdsortentry{bibtex}{#1}

{\xmlatt{#1}{tag}}

\stopxmlsetups

177

260

178 178

178 178

80 Bibliographies

The flusher simply shows some fields. You can do anything you want here with
the content.

\startxmlsetups bibtex:entry:flush

\xmlfilter{#1}{/field[@name='author']/context()} / %

\xmlfilter{#1}{/field[@name='year']/context()} / %

\xmlatt{#1}{tag}\par

\stopxmlsetups

The setup that brings this all together is applied to the whole tree with the
following command.

\xmlsetup{bibtex:somebibtex}{xml:bibtex:sorter}

The result is:

Don Knuth / 1984 / knuth:tb5-1-67
Donald E. Knuth / 1984 / knuth:tb5-1-4
Donald E. Knuth / 1984 / knuth:tb5-2-105
Donald E. Knuth / 1985 / knuth:tb6-1-36
Donald E. Knuth / 1986 / knuth:tb7-2-101
Donald E. Knuth / 1987 / knuth:tb8-2-135
Donald E. Knuth / 1987 / knuth:tb8-3-309
Donald E. Knuth / 1988 / knuth:tb9-2-152
Donald E. Knuth / 1989 / knuth:tb10-3-325
Donald E. Knuth / 1989 / knuth:tb10-4-529
Donald E. Knuth / 1990 / knuth:tb11-4-489
Donald E. Knuth / 1993 / knuth:tb14-4-387
Donald E. Knuth / 1996 / knuth:tb17-1-29
Donald Knuth and Pierre MacKay / 1987 / knuth:tb8-1-14
Donald Knuth / 1981 / knuth:tb2-3-5
Donald Knuth / 1982 / knuth:tb3-1-10
Donald Knuth / 1983 / knuth:tb4-2-64
Donald Knuth / 1986 / knuth:tb7-2-95
Donald Knuth / 1987 / knuth:tb8-1-6
Donald Knuth / 1987 / knuth:tb8-1-73
Donald Knuth / 1987 / knuth:tb8-2-210
Donald Knuth / 1987 / knuth:tb8-2-217
Donald Knuth / 1989 / knuth:tb10-1-8
Donald Knuth / 1989 / knuth:tb10-1-31
Donald Knuth / 1990 / knuth:tb11-1-13
Donald Knuth / 1990 / knuth:tb11-2-165
Donald Knuth / 1990 / knuth:tb11-4-497
Donald Knuth / 1990 / knuth:tb11-4-499

178

261

179 179

179 179

Bibliographies 81

Donald Knuth / 1991 / knuth:tb12-2-313

You can call up the list of keys with

\xmlshowsorter{bibtex}

In our case this gives:

n id entry 1 entry 2 entry 3

1 324 Donald Knuth 1991 knuth:tb12-2-313

2 1397 Donald Knuth 1983 knuth:tb4-2-64

3 4173 Donald Knuth 1981 knuth:tb2-3-5

4 5247 Donald Knuth 1987 knuth:tb8-1-6

5 5943 Donald Knuth and 1987 knuth:tb8-1-14

Pierre MacKay

6 7773 Donald Knuth 1989 knuth:tb10-1-8

7 10665 Donald Knuth 1990 knuth:tb11-1-13

8 10871 Donald Knuth 1986 knuth:tb7-2-95

9 11248 Donald E. Knuth 1990 knuth:tb11-4-489

10 12236 Donald Knuth 1990 knuth:tb11-4-497

11 12535 Donald E. Knuth 1984 knuth:tb5-2-105

12 12665 Donald E. Knuth 1993 knuth:tb14-4-387

13 12925 Donald E. Knuth 1988 knuth:tb9-2-152

14 14902 Donald E. Knuth 1987 knuth:tb8-2-135

15 15161 Donald Knuth 1987 knuth:tb8-2-217

16 21952 Donald Knuth 1990 knuth:tb11-4-499

17 23934 Donald Knuth 1987 knuth:tb8-2-210

18 24128 Donald Knuth 1987 knuth:tb8-1-73

19 26859 Donald E. Knuth 1989 knuth:tb10-4-529

20 28026 Donald Knuth 1989 knuth:tb10-1-31

21 28091 Donald E. Knuth 1996 knuth:tb17-1-29

22 28572 Donald E. Knuth 1986 knuth:tb7-2-101

23 28624 Donald E. Knuth 1984 knuth:tb5-1-4

24 31473 Donald E. Knuth 1985 knuth:tb6-1-36

25 34586 Donald E. Knuth 1987 knuth:tb8-3-309

26 34911 Don Knuth 1984 knuth:tb5-1-67

27 34950 Donald Knuth 1990 knuth:tb11-2-165

28 34976 Donald Knuth 1982 knuth:tb3-1-10

29 35196 Donald E. Knuth 1989 knuth:tb10-3-325

8.5 Encodings
It is a sure bet that many existing databases will use the traditional TEX accent

179

262

180 180

180 180

82 Bibliographies

building commands. As in MkIV we live in an Unicode universe, such com-
mands are translated into utf sequences when the database is loaded. When
we pass the convert options to the preparation command, the entries will be
cleaned up and accent commands will be replaced by proper utf sequences.
This helps the sorter.

8.6 Messed up entries
As the bibTEX fields contains TEX code we need to process the content as TEX.
This is why in the previous examples we applied the context() finalizer. The
fact that we have TEX code means that such databases are rather bound to
some macro package. For our purpose we had to define a few macros:

\startsetups bibtex-commands

\def\MF {MF}

\def\MP {MP}

\def\TUB {TUGboat}

\def\Mc {Mac}

\def\sltt{\tt}

\let\acro\firstofoneargument

\stopsetups

You can best do this grouped is that there is no interference with existing code.
You can collect definitions in a setup or buffer and flush that one inside the
group.

However, we also provide another method. A second argument to the prepara-
tion command gives options. Examples of options are convert, which converts
entries to proper utf, and strip which converts commands and strips redun-
dant braces.

\preparebibtexsession [somebibtex] [convert,strip]

All commands are mapped onto \bibtexcommand which defaults to using pre-
defined local commands. You predefine such a local command with:

\defbibtexcommand\MF {MF}

\defbibtexcommand\MP {MP}

\defbibtexcommand\TUB {TUGboat}

\defbibtexcommand\Mc {Mac}

\defbibtexcommand\sltt {\tt}

\defbibtexcommand\acro#1{#1}

If you use a database like tugboat.bib you will need quite some more defini-

180

263

181 181

181 181

Bibliographies 83

tions. Unknown commands are reported on the console. When a command is
available in ConTEXt it will be used unless a specific one is defined.

Here's a setup that shows what goes on inside:

\startxmlsetups bibtex:show

\xmlshow{#1}

\stopxmlsetups

\applytobibtexsession[somebibtex][bibtex:show]

8.7 Traditional usage
In this section we will describe how you can use this approach as a drop in for
the traditional, pure TEX based one.

181

264

182 182

182 182

84 Building paragraphs

9 Building paragraphs
9.1 Introduction
You enter the den of the Lion when you start messing around with the par-
builder. Actually, as TEX does a pretty good job on breaking paragrphs into
lines I never really looked in the code that does it all. However, the Oriental
TEX project kind of forced it upon me. In the chapter about font goodies an
optimizer is described that works per line. This method is somewhat simular
to expansion level one support in the sense that it acts independent of the par
builder: the split off (best) lines are postprocessed. Where expansion involves
horizontal scaling, the goodies approach does with (Arabic) words what the
original HZ approach does with glyphs.

It would be quite some challenge (at least for me) to come up with solutions
that looks at the whole paragraph and as the per-line approach works quite
well, there is no real need for an alternative. However, in September 2008,
when we were exploring solutions for Arabic par building, Taco converted the
parbuilder into Lua code and stripped away all code related to hyphenation,
protrusion, expansion, last line fitting, and some more. As we had enough on
our plate at that time, we never came to really testing it. There was even less
reason to explore this route because in the Oriental TEX project we decided to
follow the “use advanced OpenType features” route which in turn lead to the
‘replace words in lines by narrower of wider variants’ appeoach.

However, as the code was laying around and as we want to explore futher I
decided to pick up the parbuilder thread. In this chapter some experiences wil
be discussed. The following story is as much Taco's as mine.

9.2 Cleaning up
In retrospect, we should not have been too surprised that the first approxi-
mation was broken in many places, and for good reason. The first version of
the code was a conversion of the C code that in turn was a conversion from
the original interwoven Pascal code. That first conversion still looked quite C--
ish and carried interesting bit and pieces of C--macros, C--like pointer tests,
interesting magic constants and more.

When I took the code and Lua-fied it nearly every line was changed and it took
Taco and me a bit of reverse engineering to sort out all problems (thank you
Skype). Why was it not an easy task? There are good reasons for this.

• The parbuilder (and related hpacking) code is derived from traditional TEX
and has bits of pdfTEX, Aleph (Omega), and of course LuaTEX.

182

265

183 183

183 183

Building paragraphs 85

• The advocated approach to extending TEX has been to use change files which
means that a coder does not see the whole picture.

• Originally the code is programmed in the literate way which means that
the resulting functions are build stepwise. However, the final functions can
(and have) become quite large. Because LuaTEX uses the woven (merged)
code indeed we have large functions. Of course this relates to the fact that
succesive TEX engines have added functionality. Eventually the source will
be webbed again, but in a more sequential way.

• This is normally no big deal, but the Aleph (Omega) code has added a level
of complexity due to directional processing and additional begin and end
related boxes.

• Also the 𝜀-TEX extension that deals with last line fitting is interwoven and
uses goto's for the control flow. Fortunately the extensions are driven by
parameters which makes the related code sections easy to recognize.

• The pdfTEX protrusion extension adds code to glyph handling and discre-
tionary handling. The expansion feature does that too and in addition also
messes around with kerns. Extra parameters are introduced (and adapted)
that influence the decisions for breaking lines. There is also code originat-
ing in pdfTEX which deals with poor mans grid snapping although that is
quite isolated and not interwoven.

• Because it uses a slightly different way to deal with hyphenation, LuaTEX
itself also adds some code.

• Tracing is sort of interwoven in the code. As it uses goto's to share code
instead of functions, one needs to keep a good eye on what gets skipped or
not.

I'm pretty sure that the code that we started with looks quite different from
the original TEX code if it had been trasnslated into C. Actually in modern TEX
compiling involves a translation into C first but the intermediate form is not
meant for human eyes. As the LuaTEX project started from that merged code,
Taco and Hartmut already spend quite some time on making it more readable.
Of course the original comments are still there.

Cleaning up such code takes a while. Because both languages are similar but
also quite different it took some time to get compatible output. Because the C
code uses macros, careful checking was needed. Of course Lua's table model
and local variables brought some work as well. And still the code looks a bit
C--ish. We could not divert too much from the original model simply because

183

266

184 184

184 184

86 Building paragraphs

it's well documented.

When moving around code redundant tests and orphan code has been re-
moved. Future versions (or variants) might as well look much different as
I want more hooks, clearly split stages, and convert some linked list based
mechanism to Lua tables. On the other hand, as already much code has been
written for ConTEXt MkIV, making it all reasonable fast was no big deal.

9.3 Expansion
The original C--code related to protrusion and expansion is not that efficient
as many (redundant) function calls take place in the linebreaker and packer.
As most work related to fonts is done in the backend, we can simply stick to
width calculations here. Also, it is no problem at all that we use floating point
calculations (as Lua has only floats). The final result will look okay as the
original hpack routine will nicely compensate for rounding errors as it will nor-
mally distribute the content well enough. We are currently compatible with the
regular par builder and protrusion code, but expansion gives different results
(actually not worse).

The Lua hpacker follows a different approach. And let's admit it: most TEXies
won't see the difference anyway. As long as we're cross platform compatible it's
fine.

It is a well known fact that character expansion slows down the parbuilder.
There are good reasons for this in the pdfTEX approach. Each glyph and in-
tercharacter kern is checked a few times for stretch or shrink using a function
call. Also each font reference is checked. This is a side effect of the way pdfTEX
backend works as there each variant has its own font. However, in LuaTEX, we
scale inline and therefore don't really need the fonts. Even better, we can get
rid of all that testing and only need to pass the eventual expansion_ratio so
that the backend can do the right scaling. We will prototype this in the Lua
version12 and we feel confident about this approach it will be backported into
the C code base. So eventually the C might become a bit more readable and
efficient.

Intercharacter kerning is dealt with somewhat strange. When a kern of subtype
zero is seen, and when it's neighbours are glyphs from the same font, the kern
gets replaced by a scaled one looked up in the font's kerning table. In the
parbuilder no real replacement takes place but as each line ends up in the
hpack routine (where all work is simply duplicated and done again) it really

12
For this Hartmuts has adapted the backend code has to honour this field in the glyph and
kern nodes.

184

267

185 185

185 185

Building paragraphs 87

gets replaced there. When discussing the current aproach we decided that
manipulating intercharacter kerns while leaving regular spacing untouched is
not really a good idea so there will be an extra level of configuration added to
LuaTEX:13

0 no character and kern expansion
1 character and kern expansion applied to complete lines
2 character and kern expansion as part of the par builder
3 only character expansion as part of the par builder (new)

You might wonder what happens when you unbox such a list: the original font
references have been replaced as are the kerns. However, when repackaged
again, the kerns are replaced again. In traditional TEX, indeed rekerning might
happen when a paragraph is repackaged (as different hyphenation points might
be chosen and ligature rebuilding etc. has taken place) but in LuaTEX we have
clearly separated stages. An interesting side effect of the conversion is if that
we really have to wonder what certain code does and if it's still needed.

9.4 Performance
We had already noticed that the Lua variant was not that slow so after the first
cleanup it was time to do some tests. We used our regular tufte.tex test file.
This happens to be a worst case example because each broken line ends with
a comma or hyphen and these will hang into the margin when protruding is
enabled. So the solution space is rather large (an example will be shown later).

Here are some timings of the March 26, 2010 version. The test is typeset in a
box so no shipout takes place. We're talking of 1000 typeset paragraphs. The
times are in seconds an between parentheses the speed relative to the regular
parbuilder is mentioned.

native lua lua + hpack
normal 1.6 8.4 (5.3) 9.8 (6.1)
protruding 1.7 14.2 (8.4) 15.6 (9.2)
expansion 2.3 11.4 (5.0) 13.3 (5.8)
both 2.9 19.1 (6.6) 21.5 (7.4)

For a regular paragraph the Lua variant (currently) is 5 times slower and about
6 times when we use the Lua hpacker, which is not that bad given that it's in-
terpreted code and that each access to a field in a node involves a function
call. Actually, we can make a dedicated hpacker as soem code can be omitted,

13
As I more and more run into books typeset (not by TEX) with a combination of character expan-
sion and additional intercharacter kerning I've been seriously thinking of removing support for
expansion from ConTEXt MkIV. Not all is progress especially if it can be abused.

185

268

186 186

186 186

88 Building paragraphs

The reason why the protruding is relative slow is that we have quite some pro-
truding characters in the test text (many commas and potential hyphens) and
therefore we have quite some lookups and calculations. In the C variant much
of that is inlined by macros.

Will things get faster? I'm sure that I can boost the protrusion code and proba-
bly the rest as well but it will always be slower than the built in function. This
is no problem as we will only use the Lua variant for experiments and special
purposes. For that reason more MkIV like tracing will be added (some is al-
ready present) and more hooks will be provides once that the builder is more
compartimized. Also, future versions of LuaTEX will pass around paragrapgh
related parameters differently so that will have impact on the code as well.

9.5 Usage
The basic parbuilder is enabled and disabled as follows:14

\definefontfeature[example][default][protrusion=pure]

\definedfont[Serif*example]

\setupalign[hanging]

\startparbuilder[basic]

\startcolor[blue]

\input tufte

\stopcolor

\stopparbuilder

This results in:

We thrive in information--thick worlds because of our marvelous and everyday
capacity to select, edit, single out, structure, highlight, group, pair, merge, har-
monize, synthesize, focus, organize, condense, reduce, boil down, choose, cate-
gorize, catalog, classify, list, abstract, scan, look into, idealize, isolate, discrim-
inate, distinguish, screen, pigeonhole, pick over, sort, integrate, blend, inspect,
filter, lump, skip, smooth, chunk, average, approximate, cluster, aggregate, out-
line, summarize, itemize, review, dip into, flip through, browse, glance into, leaf
through, skim, refine, enumerate, glean, synopsize, winnow the wheat from the
chaff and separate the sheep from the goats.

There are a few tracing options in the parbuilders namespace but these are
not stable yet.

14
I'm not sure yet if the parbuilder has to do automatic grouping.

186

269

187 187

187 187

Building paragraphs 89

9.6 Conclusion
The module started working quiet well around the time that Peter Gabriels
“Scratch My Back” ended up in my Squeezecenter: modern classical interpre-
tations of some of his favourite songs. I must admit that I scratched the back
of my head a couple of times when looking at the code below. It made me
realize that a new implementation of a known problem indeed can come out
quite different but at the same time has much in common. As with music it's
a matter of taste which variant a user likes most.

At the time of this writing there is still work to do. For instance the large
functions need to be broken into smaller steps. And of course more testing is
needed.

187

270

188 188

188 188

90 Tagged PDF

10 Tagged PDF
10.1 Introduction
Occasionally users asked me if ConTEXt can produce tagged pdf and the answer
to that has been: I'll implement it when I need it. However, users tell me that
publishers more and more demand tagged pdf files, although one might wonder
what for, maybe except for accessibility. Another reason for not having spent
too much time on it before is that the specification was not that inviting.

Anyhow, when I saw Ross Moore15 presenting tagged math at TUG 2010, I
decided to look up the spec once more and see if I could get into the mood
to implement tagging. Before I started it was already clear that there were a
couple of boundary conditions:

• Tagging should not put a burden on the user but users should be able to
tag themselves.

• Tagging should not slow down a run too much; this is no big deal as one
can postpone tagging till the last run.

• Tagging should in no way interfere with typesetting, so no funny nodes
should be injected.

• Tagging should not make the code look worse, neither the document source,
not the low level ConTEXt code.

And of course implementing it should not take more than a few days work,
certainly not in an exceptional hot summer.

You can ‘google’ for one of Ross's documents (like DML_002-2009-1_12.pdf) to
see how a document source looks at his end using a special version of pdfTEX.
However, the version on my machine didn't support the shown primitives, so
I could not see what was happing under the hood. Unfortunately it is quite
hard to find a proper tagged document so we have only the reference manual
as starting point. As the pdfTEX approach didn't look that pleasing anyway, I
just started from scratch.

Tags can help Acrobat Reader when reading out the text loud. But you can-
not browse the structure in this free program and as not all users have the
professional version of Acrobat, the fact that a document has structure can go
unnoticed. Add to that the fact that the overhead in terms of bytes is quite
large as many more objects are generated, and you will understand why this
feature is not enabled by default.

15
He is often exploring the boundaries of pdf, Unicode and evolving techniques related to math
publishing so you'd best not miss his presentations when you are around.

188

271

189 189

189 189

Tagged PDF 91

10.2 Implementation
So, what does tagging boil down to? We can best look at how tagged information
is shown in Acrobat. Figure 10.1 shows the content tree that has been added
(automatically) to a document while figure 10.2 shows a different view.

Figure 10.2 Acrobat showing the tag order.

In order to get that far, we have to do the following:

• Carry information with (typeset) text.
• Analyse this information when shipping out pages.
• Add a structure tree to the page.
• Add relevant information to the document.

That first activity is rather independent of the other three and we can use
that information for other purposes as well, like identifying where we are in
the document. We carry the information around using attributes. The last
three activities took a bit of experimenting mostly using the “Example of Logical
Structure” from the pdf standard 32000-1:2008.

189

272

190 190

190 190

92 Tagged PDF

Figure 10.1 A tag list in Acrobat.

190

273

191 191

191 191

Tagged PDF 93

This resulted in tagging framework that uses explicit tags. In that the user is
responsible for the tagging:

\setupstructure[state=start,method=none]

\starttext

\startelement[document]

\startelement[chapter]

\startelement[p] \input davis \stopelement \par

\stopelement

\startelement[chapter]

\startelement[p] \input zapf \stopelement \par

\startelement[whatever]

\startelement[p] \input tufte \stopelement \par

\startelement[p] \input knuth \stopelement \par

\stopelement

\stopelement

\startelement[chapter]

oeps

\startelement[p] \input ward \stopelement \par

\stopelement

\stopelement

\stoptext

However, this is not much fun so we also provide an automated variant. In the
previous example we explicitly turned of automated tagging by setting method

to none. By default it has the value auto.

\setupstructure[state=start] % method=auto is default

\definedescription[whatever]

\starttext

\startfrontmatter

\startchapter[title=One]

\startparagraph \input tufte \stopparagraph

\startitemize

191

274

192 192

192 192

94 Tagged PDF

\startitem first \stopitem

\startitem second \stopitem

\stopitemize

\startparagraph \input ward \stopparagraph

\startwhatever {Herman Zapf} \input zapf \stopwhatever

\stopchapter

\stopfrontmatter

\startbodymatter

..................

If you use commands like \chapter you will not get the desired results. Of
course these can be supported but there is no real reason for it, as in MkIV we
advise to use the start-stop variant.

It will be clear that this kind of automated tagging brings with it a couple of
extra commands deep down in ConTEXt and there (of course) we use symbolic
names for tags, so that one can overload the built in mapping.

\setuptaglabeltext[en][document=text]

As with other features inspired by viewer functionality, the implementation of
tagging is independent of the backend. For instance, we can tag a document
and access tagging information at the TEX end. The backend drivers code
maps tags to relevant pdf constructs. First of all, we just map the tags used
at the ConTEXt end onto themselves. But, as validators expect certain names,
we use the pdf rolemap feature to map them to (less interesting) names. The
next list shows the currently used internal names with the pdf ones between
parentheses.

construct (Span) delimited (Quote) delimitedblock (BlockQuote) description (Div)
descriptioncontent (Div) descriptionsymbol (Span) descriptiontag (Div) division
(Div) document (Div) float (Div) floatcaption (Caption) floatcontent (P) floattag
(Span) floattext (Span) formula (Div) formulacontent (P) formulaset (Div) for-
mulatag (Span) image (P) item (Li) itemcontent (LBody) itemgroup (L) itemtag
(Lbl) link (Link) list (TOC) listcontent (P) listdata (P) listitem (TOCI) listpage
(Reference) listtag (Lbl) margintext (Span) margintextblock (Span) math (Div)
merror (Span) mfrac (Span) mi (Span) mn (Span) mo (Span) mover (Span) mp-
graphic (P) mroot (Span) mrow (Span) ms (Span) msqrt (Span) msub (Span)
msubsup (Span) msup (Span) mtext (Span) munder (Span) munderover (Span)
paragraph (P) register (Div) registerentries (Div) registerentry (Span) register-
page (Span) registerpages (Span) registersection (Div) registersee (Span) regis-

192

275

193 193

193 193

Tagged PDF 95

tertag (Span) section (Sect) sectioncontent (Div) sectionnumber (H) sectiontitle
(H) subformula (Div) subsentence (Span) table (Table) tablecell (TD) tablerow
(TR) tabulate (Table) tabulatecell (TD) tabulaterow (TR) verbatim (Code) verba-
timblock (Code) verbatimline (Code)

So, the internal ones show up in the tag trees as shown in the examples but
applications might use the rolemap which normally has less detail.

Because we keep track of where we are, we can also use that information for
making decisions.

\doifinelementelse{structure:section} {yes} {no}

\doifinelementelse{structure:chapter} {yes} {no}

\doifinelementelse{division:*-structure:chapter} {yes} {no}

\doifinelementelse{division:*-structure:*} {yes} {no}

You can use the * as wildcard. The elements are separated by a -. If you don't
know what tags are used, you can always enable the tag related tracker:

\enabletrackers[structure.tags]

This tracker reports the identified element chains to the console and log.

10.3 Special care
Of course there are a few complications. First of all the tagging model sort of
contradicts the concept of a nicely typeset document where structure and out-
come are not always related. Most TEX users are aware of the fact that TEX does
not have spaces and does a great job on kerning and hyphenation. The tagging
machinery on the other hand uses a rather dumb model of strings separated by
spaces.16 But anyhow we could trick TEX into providing the right information
to the backend so that words get nicely separated. The non-optimized function
that does this looks as follows:

function injectspaces(head)

local p

for n in node.traverse(head) do

local id = n.id

if id == node.id("glue") then

if p and p.id == node.id("glyph") then

local g = node.copy(p)

local s = node.copy(n.spec)

16
The search engine on the other hand is rather clever on recognizing words.

193

276

194 194

194 194

96 Tagged PDF

g.char, n.spec = 32, s

p.next, g.prev = g, p

g.next, n.prev = n, g

s.width = s.width - g.width

end

elseif id == node.id("hlist") or id == node.id("vlist") then

injectspaces(n.list,attribute)

end

p = n

end

end

Here we squeeze in a space (given that it is in the font which it normally is
when you use ConTEXt) and compensate the glue. Given that your page sits in
box 255, you can do this just before shipping the page out:

injectspaces(tex.box[255].list)

Then there are the so called suspects: things on the page that are not related
to structure at all. One is supposed to tag these specially so that the built-in
reading equipment is not confused. So far we could get around them simply
because they don't get tagged at all and therefore are not seen anyway. This
might as well be enough of a precaution.

Of course we need to deal with mathematics. Fortunately the presentation
MathML model is rather close to TEX and so we can map onto that. After all we
don't need to care too much about back-mapping here. The currently present
code is rather experimental and might get extended or thrown out in favour of
inline mathml. Figure 10.3 demonstrates that a first approach does not even
look that bad. In future versions we might deal with table like math constructs,
like matrices.

This is a typical case where more energy has to be spent on driving the voice
of Acrobat but I will do that when we find a good reason.

As mentioned, it will take a while before all relevant constructs in ConTEXt
support tagging, but support is already quite complete. Some screen dumps
are included as example at the end.

10.4 Conclusion
Surprisingly implementing all this didn't take that much work. Of course de-
tailed automated structure support from the complete ConTEXt kernel will take

194

277

195 195

195 195

Tagged PDF 97

Figure 10.3 Experimental math tagging.

some time to get completed, but that will be done on demand and when we run
into missing bits and pieces. It's still not decided to what extend alternate
representations and alternate texts will be supported. Experiments with the
reading loud machinery are not satisfying yet but maybe it just can't get any
better. It would be nice if we could get some tags being announced without
overloading the content, that is: without using ugly hacks.

And of course, code like this is never really finished if only because pdf evolves.
Also, it is yet another nice test case and torture test for LuaTEX and it helps us
to surface buglets and oversights.

10.5 Some more examples
In ConTEXt we have user definable verbatim environments. As with other user
definable environments we show the specific instance as comment next to the
structure component. See figure 10.4. Some examples of tables are shown in
figure 10.5. Future versions will have a bit more structure. Tables of contents
(see figure 10.6) and registers (see figure 10.7) are also tagged. One might
wonder what the use is of this. In Figure 10.8 we see some examples of floats.
External images as well as METAPOST graphics are tagged as such. This exam-
ple also shows an example of a user environment, in this case:

195

278

196 196

196 196

98 Tagged PDF

\definestartstop[notabene][style=\bf]

In a similar fashion footnotes end up in the structure tree, but in the typeset
document they move around (normally forward when there is no room).

Figure 10.4 Verbatim, including dedicated instances.

196

279

197 197

197 197

Tagged PDF 99

Figure 10.5 Natural tables as well as
the tabulate mechanism is supported.

197

198 198

198 198

100 Tagged PDF

Figure 10.6 Tables of content with specific entries tagged.

198

280

199 199

199 199

Tagged PDF 101

Figure 10.7 A detailed
view of registered is provided.

199

200 200

200 200

102 Tagged PDF

Figure 10.8 Floats tags end up in text stream. Watch the user defined construct.

200

281

201 201

201 201

Tagged PDF 103

Figure 10.9 Footnotes are shown at the place in the input (flow).

201

282

202 202

202 202

104 Including pages

11 Including pages
11.1 Introduction
It is tempting to add more and more features to the backend code of the engine
but it is not really needed. Of course there are features that can best be sup-
ported natively, like including images. In order to include pdf images in LuaTEX
the backend uses a library (xpdf or poppler) that can load an page from a file
and embed that page into the final pdf, including all relevant (indirect) objects
needed for rendering. In LuaTEX an experimental interface to this library is
included, tagged as epdf. In this chapter I will spend a few words on my first
attempt to use this new library.

11.2 The library
The interface is rather low level. I got the following example from Hartmut (who
is responsible for the LuaTEX backend code and this library).

local doc = epdf.open("luatexref-t.pdf")

local cat = doc:getCatalog()

local pag = cat:getPage(3)

local box = pag:getMediaBox()

local w = pag:getMediaWidth()

local h = pag:getMediaHeight()

local n = cat:getNumPages()

local m = cat:readMetadata()

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", box.x1, box.x2, box.y1, box.y2)

As you see, there are accessors for each interesting property of the file. Of
course such an interface needs to be extended when the pdf standard evolves.
However, once we have access to the so called catalog, we can use regular
accessors to the dictionaries, arrays and other data structures. So, in fact we
don't need a full interface and can draw the line somewhere.

There are a couple of things that you normally does not want to deal with. A
pdf file is in fact just a collections of objects that form a tree and each object
can be reached by an index using a table that links the index to a position in
the file. You don't want to be bothered with that kind of housekeeping indeed.
Some data in the file, like page objects and annotations are organized in a

202

283

203 203

203 203

Including pages 105

tree form that one does not want to access in that form, so again we have
something that benefits from an interface. But the majority of the objects are
simple dictionaries and arrays. Streams (these hold the document content,
image data, etc.) are normally not of much interest, but the library provides
an interface as you can bet on needing it someday. The library also provides
ways to extend the loaded pdf file. I will not discuss that here.

Because in ConTEXt we already have the lpdf library for creating pdf structures,
it makes sense to define a similar interface for accessing pdf. For that I wrote
a wrapper that will be extended in due time (read: depending on needs). The
previous code now looks as follows:

local doc = epdf.open("luatexref-t.pdf")

local cat = doc.Catalog

local pag = cat.Pages[3]

local box = pag.MediaBox

local llx, lly, urx, ury = box[1], box[2] box[3], box[4]

local w = urx - llx -- or: box.width

local h = ury - lly -- or: box.height

local n = cat.Pages.size

local m = cat.Metadata.stream

print("nofpages: ", n)

print("metadata: ", m)

print("pagesize: ", w .. " * " .. h)

print("mediabox: ", llx, lly, urx, ury)

If we write code this way we are less dependent on the exact api, especially
because the epdf library uses methods to access the data and we cannot easily
overload method names in there. When you look at the box, you will see that
the natural way to access entries is using a number. As a bonus we also provide
the width and height entries.

11.3 Merging links
It has always been on my agenda to add the possibility to carry the (link) anno-
tations with an included page from a document. This is not that much needed
in regular document, but it can be handy when you use ConTEXt to assemble
documents. In any case, such a merge has to happen in such a way that it
does not interfere with other links in the parent document. Supporting this
in the engine is no option as each macro package follows its own approach to
referencing and interactivity. Also, demands might differ and one would end

203

284

204 204

204 204

106 Including pages

up with a lot of (error prone) configurability. Of course we want scaled pages
to behave well too.

Implementing the merge took about a day and most of that time was spent on
experimenting with the epdf library and making the first version of the wrapper.
I definitely had expected to waste more time on it. So, this is yet another
example of extensions that are quite doable in the Lua-TEX mix. Of course it
helps that the ConTEXt graphic inclusion code provides enough information
to integrate such a feature. The merge is controlled by the interaction key, as
shown here:

\externalfigure[somefile.pdf][page=1,scale=700,interaction=yes]

\externalfigure[somefile.pdf][page=2,scale=600,interaction=yes]

\externalfigure[somefile.pdf][page=3,scale=500,interaction=yes]

You can finetune the merge by providing a list of options to the interaction
key but that's still somewhat experimental. As a start the following links are
supported.

• internal references by name (often structure related)
• internal references by page (like on tables of contents)
• external references by file (optionally by name and page)
• references to uri's (normally used for webpages)

When users like this functionality (or when I really need it myself) more types of
annotations can be added although support for JavaScript and widgets doesn't
make much sense. On the other hand, support for destinations is currently
somewhat simplified but at some point we will support the relevant zoom op-
tions.

The implementation is not that complex:

• check if the included page has annotations
• loop over the list of annotations and determine if an annotation is supported

(currently links)
• analyze the annotation and overlay a button using the destination that be-

longs to the annotation

Now, the reason why we can keep the implementation so simple is that we just
map onto existing ConTEXt functionality. And, as we have a rather integrated
support for interactive actions, only a few basic commands are involved. Al-
though we could do that all in Lua, we delegate this to TEX. We create a layer
that we put on top of the image. Links are put onto this layer using the equiv-
alent of:

204

285

205 205

205 205

Including pages 107

\setlayer

[epdflinks]

[x=...,y=...,preset=leftbottom]

{\button

[width=...,height=...,offset=overlay,frame=off]

{}% no content

[...]}}

The \button command is one of those interaction related commands that ac-
cepts any action related directive. In this first implementation we see the fol-
lowing destinations show up:

somelocation

url(http://www.pragma-ade.com)

file(somefile)

somefile::somelocation

somefile::page(10)

References to pages become named destinations and are later resolved to page
destinations again, depending on the configuration of the main document. The
links within an included file get their own namespace so (hopefully) they will
not clash with other links.

We could use lower level code which is faster but we're not talking of time
critical code here. At some point I might optimize the code a bit but for the
moment this variant gives us some tracing options for free. Now, the nice
thing about using this approach is that the already existing cross referencing
mechanisms deal with the details. Each included page gets a unique reference
so references to not included pages are ignored simply because they cannot be
resolved. We can even consider overloading certain types of links or ignoring
named destinations that match a specific pattern. Nothing is hard coded in
the engine so we have complete freedom of doing that.

11.4 Merging layers
When including graphics from other applications it might be that they have
their content organized in layers (that then can be turned on or off). So it
will be no surprise that on the agenda is merging layer information: first a
straightforward inclusion of optional content dictionaries, but it might make
sense to parse the content stream and replace references to layers by those
that are relevant in the main document. Especially when graphics come from
different sources and layer names are inconsistent some manipulation might
be needed so maybe we need more detailed control. Implementing this is is no

205

206 206

206 206

108 Including pages

big deal and mostly a matter of figuring out a clean and simple user interface.

206

286

207 207

207 207

Exporting XML 109

12 Exporting XML
12.1 Introduction
Every now and then on the the mailing list users ask if ConTEXt can produce
html instead of for instance pdf, and the answer has always been unsatisfying.
In this chapter I will present the MkIV way of doing this.

12.2 The clumsy way
My favourite answer to the question about how to produce html (or more general
xml as it can be transformed) has always been: “I'd just typeset it!”. Take:

\def\MyChapterCommand#1#2{<h1>#2</h1>}

\setuphead[chapter][command=\MyChapterCommand]

Here \chapter{Hello World} will produce:

<h1>Hello World</h1>

Now imagine that you hook such commands into all relevant environment and
that you use a style with no header and footer lines. You use a large page (A2)
and a small monospaced font (4pt) so that page breaks will not interfere too
much. If you want columns, fine, just hook in some code that typesets the
final columns as tables. In the end you will have an ugly looking pdf file but
by feeding it into pdftotext you will get a nicely formatted html file.

For some languages of course encoding issues would show up and there can
be all kind of interferences, so eventually the amount of code dealing with it
would have accumulated. This is why we don't follow that route.

An alternative is to use tex4ht which does an impressive job for LATEX, and sup-
ports ConTEXt to some extend as well. As far as I know it overloads some code
deep down in the kernel which is something ‘not done’ in the ConTEXt universe
if only because we cannot keep control over side effects. It also complicates
maintainance of both systems.

In MkIV however, we do have the ability to export the document to a verbose
structured so let's have a look at that.

12.3 Structure
The ability to export to some more verbose format depends on the availability
of structural information. As we already tag elements for the sake of tagged

207

287

208 208

208 208

110 Exporting XML

pdf, it was tempting to see how well we could use those tags for exporting to
xml. In principle it is possible to use Acrobat Professional to export the content
using tags but you can imagine that we get a better quality if we stay within
the scope of the producing machinery.

\setupbackend[export=yes]

This is all you need unless you want to fine tune the resulting xml file. If you
are familiar with tagged pdf support in ConTEXt, you will recognize the result.
When you process the following file:

\setupbackend[export=yes]

\starttext

\startchapter[title=Test]

A paragraph.\par Another paragraph.

\stopchapter

\stoptext

You will get a file with the suffix export that looks as follows:17

<?xml standalone='yes' encoding='utf-8' ?>

<!-- input filename : exported-001 -->

<!-- processing date : 09/08/10 01:00:22 -->

<!-- context version : 2010.09.05 16:30 -->

<!-- exporter version : 0.10 -->

<document language='en'>

<section detail='chapter'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Test</sectiontitle>

<sectioncontent>

A paragraph.

<break/>

Another paragraph.

</sectioncontent>

</section>

</document>

17
We will omit the topmost lines in following examples.

208

288

209 209

209 209

Exporting XML 111

It's no big deal to postprocess such a file. In that case one can for instance
ignore the chapter number or combine the number and the title. Of course
rendering information is lost here. However, sometime it makes sense to export
some more details. Take the following table:

\starttext

\bTABLE

\bTR \bTD test 1.1 \eTD \bTD[ny=2] test 1.2 \eTD \eTR

\bTR \bTD test 2.1 \eTD \eTR

\bTR \bTD test 3.1 \eTD \bTD test 3.2 \eTD \eTR

\bTR \bTD test 4.1 \eTD \bTD \eTD \eTR

\bTR \bTD[nx=2,align=flushright] test 5.1 \eTD \eTR

\eTABLE

\stoptext

Here we need to preserve the span related information as well as cell specific
alignments as for tables this is an essential part of the structure.

<document language='en'>

<table>

<tablerow>

<tablecell align='flushleft'>test 1.1 </tablecell>

<tablecell align='flushleft' rows='2'>test 1.2 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 2.1 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 3.1 </tablecell>

<tablecell align='flushleft'>test 3.2 </tablecell>

</tablerow>

<tablerow>

<tablecell align='flushleft'>test 4.1 </tablecell>

<tablecell></tablecell>

</tablerow>

<tablerow>

<tablecell align='flushright' columns='2'>test 5.1 </tablecell>

</tablerow>

</table>

</document>

The tabulate mechanism is quite handy for regular text especially when the

209

289

210 210

210 210

112 Exporting XML

content of cells has to be split over pages. As each line in paragraph in a
tabulate becomes a cell, we need to reconstruct the paragraphs.

\starttext

\starttabulate[|l|p|r|]

\NC zero \NC line one \par line two \par line three \NC 0 \NC \NR

% \NC one \NC \input zapf \par \input zapf \NC 1 \NC \NR

\NC two \NC before \type {connect} \par after \NC 2 \NC \NR

\NC three \NC before \type {connect} after \NC 3 \NC \NR

\NC four \NC before \break inbetween \par after \NC 4 \NC \NR

\stoptabulate

\stoptext

This becomes:

<document language='en'>

<tabulate>

<tabulaterow>

<tabulatecell align='flushleft'>zero</tabulatecell>

<tabulatecell>line one

<break/>

line two

<break/>

line three</tabulatecell>

<tabulatecell align='flushright'>0</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>two</tabulatecell>

<tabulatecell>before <verbatim>connect</verbatim>

<break/>

after</tabulatecell>

<tabulatecell align='flushright'>2</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>three</tabulatecell>

<tabulatecell>before <verbatim>connect</verbatim> after</tabulatecell>

<tabulatecell align='flushright'>3</tabulatecell>

</tabulaterow>

<tabulaterow>

<tabulatecell align='flushleft'>four</tabulatecell>

<tabulatecell>before inbetween

<break/>

210

290

211 211

211 211

Exporting XML 113

after</tabulatecell>

<tabulatecell align='flushright'>4</tabulatecell>

</tabulaterow>

</tabulate>

</document>

The <break/> elements are injected automatically between paragraphs. We
could tag each paragraph individually but that does not work that well when
we have for instance a quotation that spans multiple paragraphs (and maybe
starts in the middle of one). An empty element is not sensitive for this and is
still a signal that vertical spacing is supposed to be applied.

12.4 The implementation
We implement tagging using attributes. The advantage of this is that it does not
interfere with typesetting, but a disadvantage is that not all parent elements
are visible. When we encounter some content, we're in the innermost element
so if we want to do something special, we need to deduce the structure from
the current child. This is no big deal as we have that information available at
each child.

The first implementation just flushed the xml on the fly (i.e. when traversing
the node list) but when I figured out that collapsing was needed for special
cases like tabulated paragraphs this approach was no longer valid. So, after
some experiments I decided to build a complete structure tree in memory18.
This permits us to handle situations like the following:

\starttext

\startitemize[n]

\startitem one \stopitem

\startitem two \stopitem

\stopitemize

\startitemize[packed,a]

\startitem \quote{one} \stopitem

\startitem \quote{two} \stopitem

\stopitemize

\stoptext

Here we get:

18
We will see if this tree will be used for other purposes in the future.

211

291

212 212

212 212

114 Exporting XML

<document language='en'>

<itemgroup detail='itemize' symbol='n'>

<item>

<itemtag>1.</itemtag>

<itemcontent>one</itemcontent>

</item>

<item>

<itemtag>2.</itemtag>

<itemcontent>two</itemcontent>

</item>

</itemgroup>

<itemgroup detail='itemize' packed='yes' symbol='a'>

<item>

<itemtag>a.</itemtag>

<itemcontent><delimited detail='quote'>‘one’</delimited></itemcontent>

</item>

<item>

<itemtag>b.</itemtag>

<itemcontent><delimited detail='quote'>‘two’</delimited></itemcontent>

</item>

</itemgroup>

</document>

The symbol and packed attributes are first seen at the itemcontent level (the
innermost element) so when we flush the itemgroup element's attributes we
need to look at the child elements (content) that actually carries the attribute.19

I already mentioned collapsing. As paragraphs in a tabulate get split in cells,
we encounter a mixture that cannot be flushed sequentially. However, as each
cell is tagged unique we can append the lines within a cell. Also, as each
paragraph gets a unique number, we can add breaks before a new paragraph
starts. Collapsing and adding breakpoints is done at the end, and not per page,
as paragraphs can cross pages. Again, thanks to the fact that we have a tree,
we can investigate content and do this kind of manipulations.

Moving data like footnotes are somewhat special. When notes are put on the
page (contrary to for instance end notes) the so called ‘insert’ mechanism is
used where their content is kept with the line where it is defined. As a result
we see them end up instream which is not that bad a coincidence. However,
as in MkIV notes are built on top of (enumerated) descriptions, we need to
distinguish them somehow so that we can cross reference them in the export.

19
Only glyph nodes are investigated for structure.

212

292

213 213

213 213

Exporting XML 115

\starttext

\startchapter[title=Notes]

test \footnote[a]{note a}

test \footnote[b]{note b}

\stopchapter

\stoptext

Currently this will end up as follows:

<document language='en'>

<section detail='chapter'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Notes</sectiontitle>

<sectioncontent>

test<descriptionsymbol detail='footnote' insert='1'>1</descriptionsymbol>

test<descriptionsymbol detail='footnote' insert='2'>2</descriptionsymbol>

<description detail='footnote'>

<descriptiontag insert='1'>1 </descriptiontag>

<descriptioncontent>note a</descriptioncontent>

</description>

<description detail='footnote'>

<descriptiontag insert='2'>2 </descriptiontag>

<descriptioncontent>note b</descriptioncontent>

</description>

</sectioncontent>

</section>

</document>

Graphics are also tagged and the image element reflects the included image.

\starttext

\placefigure

[here] [fig:cow]

{It looks like a cow.}

{\externalfigure[cow.pdf]}

\stoptext

213

293

214 214

214 214

116 Exporting XML

If the image sits on another path then that path shows up in an attribute and
when a page other than 1 is taken from the (pdf) image, it gets mentioned as
well.

<document language='en'>

<float detail='figure' reference='fig:cow'>

<floatcontent><image name='cow.pdf'></image></floatcontent>

<floatcaption>

<floattag>Figure 1</floattag>

<floattext>It looks like a cow.</floattext>

</floatcaption>

</float>

</document>

Cross references are another relevant aspect of an export. In due time we will
export them all. It's not so much complicated because all information is there
but we need to hook some code into the right spot and making examples for
those cases takes a while as well.

\setupinteraction[state=start]

\starttext

\startchapter[title=One,reference=alpha]

In \in{chapter}[beta] ...

\stopchapter

\startchapter[title=Two,reference=beta]

In \in{chapter}[alpha] ...

\stopchapter

\stoptext

We export references in the the ConTEXt specific way, so no interpretation takes
place.

<document language='en'>

<section detail='chapter' reference='alpha'>

<sectionnumber>1</sectionnumber>

<sectiontitle>One</sectiontitle>

<sectioncontent>

In <link reference='beta' location='aut:2'>chapter 2</link> ...

</sectioncontent>

</section>

214

294

215 215

215 215

Exporting XML 117

<section detail='chapter' reference='beta'>

<sectionnumber>2</sectionnumber>

<sectiontitle>Two</sectiontitle>

<sectioncontent>

In <link reference='alpha' location='aut:1'>chapter 1</link> ...

</sectioncontent>

</section>

</document>

As ConTEXt has an integrated referencing system that deals with internal as
well as external references, url's, special interactive actions like controlling
wigets and navigations, etc. and we export the raw reference specification as
well as additional attributes that provide some detail.

\setupinteraction[state=start]

\useurl [pragma] [www.pragma-ade.com]

\starttext

\startparagraph

You can visit \goto{pragma}[url(www.pragma-ade.com)].

\stopparagraph

\startparagraph

You can visit \goto{pragma}[url(pragma)].

\stopparagraph

\stoptext

Of course, when postprocessing the exported data, you need to take these vari-
ants into account.

<document language='en'>

<paragraph>You can visit <link reference='url(www.pragma-ade.com)' url='www.pragma-ade.com'>pragma</link>.</paragraph>

<paragraph>You can visit <link reference='url(pragma)' url='www.pragma-ade.com'>pragma</link>.</paragraph>

</document>

12.5 Math
Of course there are limitations. For instance TEXies doing math might wonder
if we can export formulas. To some extend the export works quite well.

215

295

216 216

216 216

118 Exporting XML

\starttext

Is it $ e = mc^2 $ maybe:

\startformula

m = \frac{\sqrt{e}}{c}

\stopformula

\stoptext

This results in the usual rather verbose presentation MathML:

<document language='en'>

Is it

<math>

<mrow>

<mi></mi>

<mo>=</mo>

<mi></mi>

<msup>

<mi></mi>

<mn>2</mn>

</msup>

</mrow>

</math>

maybe:

<formula>

<formulacontent>

<math>

<mrow>

<mi> </mi>

<mo>=</mo>

<mrow>

<mfrac>

<mrow>

<mrow>

<mo>√ </mo>

<mroot>

<mi></mi>

</mroot>

</mrow>

</mrow>

<mrow>

216

296

217 217

217 217

Exporting XML 119

<mi> </mi>

</mrow>

</mfrac>

</mrow>

</mrow>

</math>

</formulacontent>

</formula>

</document>

More complex math (like matrices) will be dealt with in due time as for this and
Aditya and I have to take tagging into account when we revision the relevant
code as part of the MkIV cleanup and extensions. It's not that complex but it
makes no sense to come up with intermediate solutions.

Display verbatim is also supported. In this case we tag individual lines.

\starttext

\starttyping

line one

line two

\stoptyping

\stoptext

The export is not that spectacular:

<document language='en'>

<verbatimblock detail='typing'>

<verbatimline>

line one

</verbatimline>

<verbatimline>

line two

</verbatimline>

</verbatimblock>

</document>

A rather special case are marginal notes. We do tag them because they often
contain usefull information.

\starttext

217

297

218 218

218 218

120 Exporting XML

\startparagraph

test \inleft{left 1} test

\stopparagraph

\margintitle{left 2}

\startparagraph

test test

\stopparagraph

\startparagraph

\inrightmargin{\slanted{right 1}}test

\stopparagraph

\stoptext

The output is currently as follows:

<document language='en'>

<paragraph><margintextblock detail='left'>left 1</margintextblock> test

test</paragraph>

<paragraph>test test</paragraph>

<paragraph><margintext detail='inrightmargin'> right 1</margintext> test</paragraph>

</document>

However, this might change in future versions.

12.6 Formatting
The output is somewhat formatted. The extra run time needed for this (actu-
ally, quite some of the code is related to this) is compensated by the fact that
inspecting the result becomes more convenient. Each environment has one
of the properties inline, mixed, and display. A display environment gets new-
lines around it and an inline environment none at all. The mixed variant does
something in between. In the following example we tag some user elements,
but you can as well influence the built in ones.

\setelementnature[display][display]

\setelementnature[inline] [inline]

\setelementnature[mixed] [mixed]

\starttext

218

298

</paragraph></document>

219 219

219 219

Exporting XML 121

\startelement[display]

\startelement[inline]

test

\startelement[display]

test

\stopelement

test

\stopelement

\stopelement

\stoptext

This results in:

<document language='en'>

<display>

<inline>test <display> test test</display></inline>

</display>

</document>

Keep in mind that elements have no influence on the typeset result apart from
introducing spaces when used used this way (this is not different from other
TEX commands). In due time the formatting might improve a bit but at least
we have less change ending up with those megabyte long one--liners that some
applications produce.

12.7 A word of advise
In (for instance) html class attributes are used to control rendering driven by
stylesheets. In ConTEXt you can often define derived environments and their
names will show up in the detail attribute. So, if you want control at that level
in the export, you'd better use the structure related options built in ConTEXt,
for instance:

\definehead[specialsection][section]

\starttext

\startsection[title=Normal section]

normal

\stopsection

219

299

220 220

220 220

122 Exporting XML

\startspecialsection[title=Special section]

special

\stopspecialsection

\stoptext

This gives two different sections:

<document language='en'>

<section detail='section'>

<sectionnumber>1</sectionnumber>

<sectiontitle>Normal section</sectiontitle>

<sectioncontent>

normal

</sectioncontent>

</section>

<section detail='specialsection'>

<sectionnumber>2</sectionnumber>

<sectiontitle>Special section</sectiontitle>

<sectioncontent>

special

</sectioncontent>

</section>

</document>

12.8 Conclusion
It is an open question if such an export is useful. Personally I never needed a
feature like this and there are several reasons for this. First of all, most of my
work involves going from (often complex) xml to pdf and if you has xml as input,
you can also produce html from it. For documents that relate to ConTEXt I
don't need it either because manuals are somewhat special in the sense that
they often depend on showing something that ends up on paper (or its screen
counterpart) anyway. Loosing the makeup also renders the content somewhat
obsolete. But this feature is still a nice proof of concept anyway.

220

300

