Kees van der Laan

Pythagoras Trees in PostScript

Fractal Geometry 0

Abstract

Pythagoras Trees are drawn elegantly in PostScript, varied by randomness, colour and the
use of curves. Lindenmayer production rules for systematic PS program development are en-
riched by PS concepts.

Keywords

2.5D, Adobe, ALGOL, art, backtracking, BASIC, CWI, Deubert, EPSF, FIFO, fractal, fractal
geometry, IDE, Julia set, Lauwerier, Lévy, LIFO, Lindenmayer, minimal encapsulated Post-
Script, minimal plain TeX, Pascal triangle, Photoshop, production rule, Pythagoras Tree,
PSlib, self-similarity, Sierpinski sieve, sentinel, TEXworks, (adaptable) user space, Word

Contents

O Introduction (Definition, Origin, Properties, Production rule, Why)

O The PostScript program (To run the program)

O Variations (Oblique Tree, X-mas Tree, Simplified Trees, Trinary Tree, Tree with stem,
Deubert’s Tree)

O Pythagoras Art Trees from the WWW

02.5D Pythagoras Tree

O Annotated References

O Conclusions

0 Acknowledgements (IDE)

O Afterthoughts: Pondering about my languages and tools and what | use them for

O Appendix 0: Splines

O Appendix 1: Lauwerier's BASIC versions

O Appendix 2: My Metafont programs of old

Introduction

In the 70s, I was still a student, CWI treated its employees and relations on a calen-
dar — human-meets-plotter — with illustrations made by the Calcomp 565 plotter,
among others 3 Pythagoras Trees. At the time the Pythagoras Tree was a program-
ming challenge in ALGOL60/68, the programming languages in use at CWI1. With
Metafont’s path data structure in the 80s it was interesting to program the simpli-
fied Tree again. (The swapping of parts was very fast!) With PostScript (PS for short)
and its powerful adaptable User Space (US for short) functionality, I was curious
whether the Pythagoras Tree family could be programmed elegantly in PS as EPSF.

This note is about programming the Pythagoras Tree family recursively in PS with
the use of the so-called adaptable User Space facility of PS, biased by production
rules. It can be seen as an extension to my BachoTgX 2011 Pearl. In the footsteps of
Lauwerier, the reader is invited to experiment with the PS programs, of which defs
are supplied in my PSlib.eps library, which I'll send on request.

The word FRACTAL did not yet exist for us, although the spirit was all over, end-
lessly repeated geometric figures buzzed around, apparently, with BASIC programs
by Lauwerier(1987).

VOORJAAR 2013 27



28 MAPS 44 Kees van der Laan

A few of Lauwerier’s BASIC programs: BOOM3, SIER, PYTHB1, PYTHB3 have been
converted into PS defs; in the included BASIC programs I have omitted the screen
settings. Lauwerier’s program MONDRIAAN has been elaborated upon in my a la Mon-
driaan note, MAPS 41 p79-90.

Definition

The Pythagoras Tree is a plane fractal con- ] H
structed from squares. The Construction of [] [ ]
the Pythagoras tree begins with a square. L oara
Upon this square are constructed two squares,
each scaled by 1/v2, and rotated +45°. The oder=0 o1 order=2
same procedure is repeated on the two smaller

squares, ad infinitum. The accompanying illus-

tration shows the first few steps in the con-

struction process.

Origin Lauwerier(1987) mentions Bosman, A.E(1957) Het wondere onderzoekingsveld
van de vlakke meetkunde, as source of Pythagoras Trees. The name comes from the
Tree of order 1, which is used in the proof of the Pythagoras theorem a? + b? = c?:
the sum of the surfaces of the descendant squares equals the surface of the basic
square, which in terms of the sides of the spurious rectangular triangle is generally
formulated as: the square of the hypotenuse equals the sum of the squares of the

legs.

— Lévy C curve

Julia set —

Properties The sum of the surfaces of the squares — oo as does the circumference. The
kind of infinity is characterized by the fractal dimension notion.! The circumference
has fractal dimension 2, a local plane-filling curve.

If the largest square has a size of L x L, the entire Pythagoras tree fits snugly inside
a rectangle of size 6L x 4L. The finer details of the tree resemble the Lévy C curve.
Lauwerier(1988) calls the blossom a Julia set.

The production rule for a Pythagoras Tree of order n reads

_ 45 —45
P = D@0, RS 1 1 Pl 50 RS 0Pl
with P,, the Pythagoras Tree of order n, @ denotes splice op-
erator, means add properly, [ means store graphics state and
open a new one, ] means close current graphics state and re-
call previous, R*> means rotate US 45° in the PS sense, S a,b

(.58¢1.5s)

means scale USby aand b, T, , means translate US by a and b, ©9
[, means draw square with side s. In the Lindenmayer sys-
tem [ means start a new branch, remotely similar to a new
graphics state or recursion level. (0,0)

Why program the classical example in PS and share it? IMHO, it is an interesting
non-trivial example of (recursive) programming, and ... it demonstrates the power
of PS’s functionality to transform User Space. Moreover ... EPSF is a (plain) TgXies
graphics companion. PS abstracts from concrete printer devices, has useful program-
ming features and is maintained by Adobe, which entails continuity.



Pythagoras Trees in PostScript

Besides, I don’t know how to include elegantly the results of BASIC programs in
my publications.

On the WWW I did not find Algol nor PASCAL nor ... versions and only those
by John Deubert in PS. From Lauwerier’s books I picked up the Trees in BASIC. My
Algol68 program — lost alas, after so many years — was definitely not so elegant as
my current PS.

The PostScript program

The Tree is a collection of scaled and rotated squares placed such that each par-
ent square and its descendants enclose a rectangular triangle. The program is my
favourite, non-trivial example of translating and rotating user space in PS. All one
has to program is drawing a square and place it scaled and rotated at the right place,
repetitively. Backtracking and the bookkeeping of auxiliaries is implicit.

The above given production rule reads: the Tree of order n consists of the ba-
sic square and 2 Trees of 1 order lower, translated, scaled and rotated, adhering to
self-similarity.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Pythagoras Tree of squares

%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -125 -20 175 200

%%BeginSetup %crops to the prescribed BB
%%EndSetup %when processed by Acrobat Pro
%%BeginProlog %defs

/drawsquare{@ @ s s rectstroke}def %basic square
/pythagorastree{drawsquare %paint the square to the current page
1 sub dup @ gt %lower order on stack
{gsave 0 s translate 45 rotate .7071 dup scale%transform user space

pythagorastree %play it again, Sam

grestore

.5 smul 1.5 s mul translate
-45 rotate .7071 dup scale%transform user space

pythagorastree %play it again, Sam
}if 1 add %adjust order on stack
} bind def
%%EndProlog

%
%  Program ---the script---
%

/s 50 def %size of the side of the square
11 pythagorastree pop %order 11
showpage

%%EQOF

The order of traversal is given by the numbers in the squares in the lower Tree, and
shows that the (recursive) algorithm is a backtracking process.

To run the program store the file with extension .eps (or .ps), right-mouse click the
thumbnail of the file and choose the option convert to Adobe PDF in the pop-up
menu. That is all when you have installed Acrobat Pro. I also used Adobe Illustrator
and PSview. The latter just by double clicking the filename upon which the command
window opened and a little later PSview.2

Variations

The CWI calendar contains also the oblique tree and the alternating (Christmas) tree
as variations. Lauwerier(1987) mentions more realistic trees, as well as the simplified
tree where the square is reduced to a line or a pair of parallel lines.

VOORJAAR 2013 29




30 MAPS 44 Kees van der Laan

Realistic tree

Oblique tree Let the skewness be denoted by ¢ (60°, say). We have to translate, rotate
and scale before each recursive invoke. The left descendant is placed, as in the sym-
metrical case, at (0, s) with the user space rotated by ¢, and scaled by (cos ¢, cos ¢).
The right descendant is placed at s(cos? ¢, sin ¢ cos b+ 1) with the user space rotated
by ¢ — 90°, and scaled by (sin ¢, sin ¢). The tree is full of logarithmic spirals. The
self-similarity of logarithmic spirals captivated Bernoulli. His epitaph reads: eadem
mutata resurgo (hoewel veranderd zal ik als dezelfde herrijzen).

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Oblique Pythagoras Tree of squares
%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -135 @ 350 325
%%BeginSetup
%%EndSetup
%%BeginProlog
/drawsquare{@ @ s s rectstroke}def
/OPythagorastree{%on stack integer (order>=0) ==> Oblique Tree
%Global variables: s phi, and the def drawsquare
drawsquare
1 sub dup 0 gt
{gsave
@ s translate phi rotate phi cos dup scale OPythagorastree
grestore
s phi cos dup mul mul s phi sin phi cos mul mul s add translate
phi 90 sub rotate phi sin dup scale OPythagorastree
}if 1 add } bind def
%%Endprolog
%
%  Program ---the script---
%
/phi 60 def /s 75 def %globals
10 OPythagorastree pop%order 10
showpage
%%EOF

Christmas tree  Similar to the oblique tree, but at each level in the recursion the
current angle ¢ is changed into its complement at the beginning and at the end. Let
¢ = 60° at the start.



Pythagoras Trees in PostScript VOORJAAR 2013 31

%!PS-Adobe-3.0 EPSF-3.0
%%Title: (Pythagoras) X-mas Tree of squares
%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -235 -2 305 500
%%BeginSetup
%%ENdSetup
%%BeginProlog
/drawsquare{@ @ s s rectstroke}def
/Xmastree{%on stack integer (order>=0) ==> XmasTree
%Globals: s phi, and def drawsquare
drawsquare %draw the square
1 sub dup @ gt
{gsave /phi 90 phi sub def
0@ s translate phi rotate phi cos dup scale Xmastree
grestore
s phi cos dup mul mul s phi sin phi cos mul mul s add translate
phi 90 sub rotate phi sin dup scale Xmastree
/phi 90 phi sub def
}if 1 add } bind def
%%Endprolog
%
%  Program ---the script---
%
/phi 60 def /s 75 def %globals
10 Xmastree pop %order 10
showpage
%HEOF

Simplified Tree
We may simplify the tree by drawing a line instead of a square. This implies that the
translate — first adaptation of the User Space — is invoked at the beginning after
drawing the line. The rotation and scaling adaptations of the user space remain at
the same place.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Simplified Pythagoras Tree

%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -125 -20 175 200

%%BeginSetup
%%EndSetup
%%BeginProlog

/1ine{@ @ moveto @ s lineto stroke}def

/linetree{line @ s translate %draw the line and transform user space
1 sub dup @ gt %lower the order on the stack
{gsave 45 rotate .7071 dup scale %transform user space
linetree %play it again, Sam

grestore

-45 rotate .7071 dup scale %transform user space

linetree %play it again, Sam

}if 1 add %adjust the order on the stack
} bind def
%%EndProlog

%
%  Program ---the script---
%

/s 50 def %size of side
11 linetree pop %order 11
showpage

%%EQF



32 MAPS 44 Kees van der Laan

Simplified Tree with simplest green leaves (green lines) The end lines (leaves) can be
coloured (by a shade of) green.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Simplified Pythagoras Tree with green leaves
%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -125 -20 175 200

%%BeginSetup
%%EndSetup
%%BeginProlog
/1ine{@ @ moveto @ s lineto stroke}def
/linetree{line @ s translate %draw the line and transform user space
1 sub dup @ gt %lower the order on the stack
{gsave 45 rotate .7071 dup scale%transform user space
linetree %play it again, Sam
grestore
-45 rotate .7071 dup scale%transform user space
linetree %play it again, Sam
}if 1 add %adjust the order on the stack
gsave
@ 1 @ setrgbcolor line %green leaves (simple)
grestore} bind def
%%EndProlog
%
%  Program ---the script---
%
/s 50 def %size of side
11 linetree pop %order 11
showpage
%HEOF

Simplified randomized Tree We might transform the user space irregularly, by some
spread variation around 45°, and also with varying randomly the scale i.e. the length
s of the line. Because of the diminishing scale the branches become thinner, auto-
matically.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Randomized simplified Pythagoras Tree with green leaves
%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -125 -20 175 200
%%BeginSetup
%%EndSetup
%%BeginProlog
/maxint 2147483647 def %2°31-1
/1ine{@ @ moveto @ s lineto stroke}def
/spread{% value maxspread ==> new value
rand //maxint div .5 sub 2 mul mul 1 add mul } bind def

/ranlinetree{line @ s translate %draw the line and transform user space
1 sub dup @ gt %lower the order on the stack
{gsave 45 .5 spread rotate .7071 .1 spread dup scale %transfor user space
ranlinetree %play it again, Sam

grestore

-45 .5 spread rotate .7071 .1 spread dup scale %transformed user space

ranlinetree %play it again, Sam

}if 1 add %adjust the order on the stack

gsave @ 1 @ setrgbcolor line grestore %green leaves

} bind def
%%EndProlog

%
%  Program ---the script---
%

/s 50 def %initial size of line

22121943 srand %initialize random number sequence
11 ranlinetree pop %order 11

showpage

%HEQF



Pythagoras Trees in PostScript VOORJAAR 2013

Splined simplified randomized green Tree We might further vary by drawing a spread
of splines, see Appendix 1 about splines, instead of straight lines, and approximate
a real tree more closely.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Spline randomized Pythagoras Tree with green leaves
%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011
%%BoundingBox: -110 -20 110 150
%%BeginSetup
%%ENdSetup
%%BeginProlog
/maxint 2147483647 def%2731-1
/spline{@ @ moveto @ .1 s mul spread .33 s mul
@ .1 s mul spread .66 s mul
@ s curveto stroke} bind def
/spread{% value maxspread ==> new value
rand //maxint div .5 sub 2 mul mul add } bind def
/splinetree{spline @ s translate %draw the line and transform user space
1 sub dup @ gt
{gsave 45 15 spread rotate .7071 .2 spread dup scale %transform user space

splinetree %play it again, Sam
grestore
-45 15 spread rotate .7071 .2 spread dup scale %transform user space

splinetree %play it again, Sam

}if 1 add
gsave @ 1 @ setrgbcolor spline grestore %green leaves

} bind def
%%EndProlog

%
% Program ---the script---
%

/s 50 def %initial size of spline

22121943 srand %initialize random number sequence
12 splinetree pop %order 12

showpage

%HEQF

What if we don’t vary randomly but according to certain rules of growth? Maybe
the program can be adapted and simulate real trees, avoiding 3D and projection?

Trinary Trees
One might add another branch and create trinary trees, as John Deubert did (see
later) and vary more. Below the classical symmetrical trinary tree.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Trinary Tree

%%Author: Kees van der Laan, kisal@xs4all.nl, April 2011 A
%%BeginProlog A‘%&
/drawline{@ @ moveto @ s rlineto currentpoint stroke translate}def % ;&
/trinarytree{%order on stack; s size (global) ==> Trinary Tree
1 sub dup @ gt

{gsave drawline .475 dup scale %transform user space

trinarytree %play it again, Sam

grestore

gsave 120 rotate drawline .475 dup scale %transform user space

trinarytree %play it again, Sam

grestore

gsave 240 rotate drawline .475 dup scale %transform user space

trinarytree %play it again, Sam

grestore

}if 1 add } def
%%Endprolog



34 MAPS 44 Kees van der Laan

Lauwerier’s trinary tree, BOOM3, contains an error: in the LINEs the index k is used
instead of m.

Sierpiniski’s sieve is related to the trinary tree, and constructed by deleting the in-
ner "half-triangles’, which are obtained by connecting the midpoints of the sides,
recursively ad infinitum.

The idea behind the code below is to identify each triangle with a trinary num-
ber. Possibly because it was a side-step Lauwerier did not provide a more efficient
backtracking variant.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Sierpinski Sieve
%%Author: H.A. Lauwerier
%%Transcriptor: Kees van der Laan, kisal@xs4all.nl
%%Date: April 2011
%%BeginProlog
/sierpinski%p (order)==> Sierpinski triangle fractal
{/p exch def /t p 1 add array def /a 1.7320508 def
1.415 setmiterlimit
0 1 p{/m exch def
© 1 3 mexp 1 sub{/n exch def
/n1 n cvi def
@ 1 m 1 sub{/1 exch def
t 1 n1 3 mod put /n1 n1 3 idiv def
}for%l
/x @ def /y @ def
Q@ 1 m 1 sub{/k exch def
/x x 4t k get mul 1 add 30 mul cos 2 k exp div add def
/yy 4tk getmul 1 add 30 mul sin 2 k exp div add def
Yforkk
/ul x a2 m1 add exp div add def /u2 x a 2 m 1 add exp div sub def
/vy 1 2m1 add exp div sub def /v2 y 1 2 m exp div add def
ul s vl s moveto x s v2 s lineto u2 s vl s lineto ul s vl s lineto
}for¥n
}for%m
}bind def
%%EndProlog
%
% Program ---the script---
%
/s{100 mul }def % scaling
5 sierpinski stroke
aneg s 1 s moveto a s 1 s lineto @ -2 s lineto closepath stroke
showpage
%HEOF

A recursive variant is similar to the coding and production rule of the Pythagoras
Tree: draw a collection of isosceles triangles, properly placed and scaled. More con-
crete. The order 1 is an isosceles triangle with side s, of which I assumed the left
corner in (0,0). The order 2 is a triangle of order 1 where scaled triangles at the sides
are added. Repeat this process of placing scaled isosceles triangles for each new tri-
angle.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Sierpinski triangle recursive, Feb2012

%%Author: Kees van der Laan

%% Affiliation: kisal@xs4all.nl

%%BoundingBox:-26 -425 76 46

%%BeginSetup

%%ENdSetup



Pythagoras Trees in PostScript

%%BeginProlog

/y{3 sqrt 4 div s mul}def

/SierTri{%on stack order >=1 ==> Sierpinski triangle fractal ( s global)
1 sub dup @ ge

{gsave @ @ moveto s @ lineto s 2 div .869 s mul lineto closepath stroke grestore%order1
gsave s 4 div y neg translate .5 dup scale SierTri grestore
gsave s .75 mul y translate .5 dup scale SierTri grestore
gsave s -4 div y translate .5 dup scale SierTri grestore
}if 1 add

} def

%%EndProlog

%

%Program ---the script---

%

/s 50 def %size of line segment

1 SierTri pop

@ -1.5 s mul translate 2 SierTri pop

@ -2 s mul translate 3 SierTri pop

Q@ -2 s mul translate 4 SierTri pop

@ -2.1 s mul translate 5 SierTri pop

showpage

%HEOF

By iterated function system
A rather unusual way to generate the Sierpinski sieve is by the functions, L, R, T,
given below, each applied with equal probability, Lauwerier(1990, p34).

()36 D)) =) () oG D) ) (h) () # (o

%!PS-Adobe-3.0 EPSF-3.0
%%Name: reduction of squares: SQAURE1, Sierpinsky sieve
%%Author: HA Lauwerier(1990) Een wereld van Fractals.
%%BoundingBox: -200 -200 200 200
%%BeginSetup
%%ENdSetup
%%DocumentFonts: Helvetica
/scale{100 mul}def
/Helvetica 7 selectfont
/q1 715827882 def%2147483647/3 = maxint/3
/92 1431655764 def
/x @ def /y @ def
22121943 srand
11 10000 {/i exch def /r rand def
r gl 1t {/x x .5 mul -.5 add def
/y 'y .5 mul -.5 add def}

{r g2 1t {/x x .5 mul .5 add def
/y 'y .5 mul -.5 add def}
{/x x .5 mul def
/y'y .5 mul .5 add def}
ifelse}
ifelse

i 16 gt{x scale y scale moveto (.) show
X neg scale y scale moveto (.) show}if
}for
showpage
%HEOF

0
1

VOORJAAR 2013

T
A

J ()

0
1

).

35



36 MAPS 44 Kees van der Laan

Randomized Sierpinski triangle
Peitgen c.s.(2004) mentions the addition of randomness to the Sierpinski triangle.
Nice.

Pascal triangle and Sierpinski triangle
Pascal’s triangle gives the binomial coefficients for the sum representation of (1 +
) =30 (XK n > 0. In PWT(1995) for low n Pascal’s triangle was obtained

by TgX alone simply by.

$$\displaylines{1\cr !
1\quadi\cr yields T
1\quad2\quadi\cr 1 2 1
1\quad3\quad3\quadi\cr}$s$
1 3 3 1

For general order n the macro for the Pascal triangle were the entries are calculated
by the recursion (}) = (“;1) + (L‘j),n >k > 1, given in PWT reads

\newcount\n \newcount\rcnt \newcount\ccnt \newcount\tableentry \newcount\prev
%
\def\pascal#1{\n#1 \def\@{1} \ccntl
\loop\ea\xdef\csname\the\ccnt\endcsname{@} \ifnum\ccnt<\n
\advance\ccnt1\repeat %auxiliary sentinels
\rcnt® \ccnt@ \displaylines{\rows}}
%
\def\rows{\global\advance\rcnt1 \ifnum\rcnt>\n \swor\fi \nxtrow\rows} \def\swor#1\rows{\fi}
%
\def\nxtrow{1 \ccntl \prevl
\loop\ifnum\ccnt<\rcnt \tableentry\prev \prev\csname\the\ccnt\endcsname

\advance\tableentry\prev %recursive addition
\ea\xdef\csname\the\ccnt\endcsname{\the\tableentry}%store the new entry
\quad\the\tableentry \advance\ccnt1l %show the entry
\repeat\cr}

Peitgen c.s.(2004) mentions the relationship between the Sierpinski triangle and the
PASCAL triangle, when odd entries are blackened. Intriguing. Adaptation of the
above code for the purpose is not that difficult.

\newcount\n \newcount\rcnt \newcount\ccnt \newcount\tableentry \newcount\prev
\let\ea=\expandafter

%

\def\pascal#1{\n#1 \def\o{1} \ccntl
\loop\ea\xdef\csname\the\ccnt\endcsname{@} %auxiliary sentinel

\ifnum\ccnt<\n \advance\ccntl\repeat

\rcnt@ \ccnt@ \displaylines{\rows}}

%

\def\rows{\global\advance\rcnt1 \ifnum\rcnt>\n \swor\fi \nxtrow\rows}

\def\swor#1\rows{\fi}



Pythagoras Trees in PostScript

%

\def\nxtrow{\black \ccntl \previ

\loop\ifnum\ccnt<\rcnt \tableentry\prev \prev\csname\the\ccnt\endcsname
\advance\tableentry\prev %recursive addition
\ea\xdef\csname\the\ccnt\endcsname{\the\tableentry} %store the new entry
\quad\ifodd\tableentry\black\else\white\fi\advance\ccnt1 %black the entry
\repeat\cr}

\def\black{\vrule width1.lex height1.lex\relax}

\def\white{\hskiplex}

$$\pascal{32}$$

\bye

Tree with stem

Lauwerier shows Trees with a stem, which in my terminology translate into drawing
2 lines instead of a square. Lauwerier creates the oblique tree by drawing 2 lines of
unequal length, varied randomly, PYTHBS.

I did vary the angle randomly within a spread. The programming was more difficult
because I had to store the randomized angles explicitly in an array.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Pythagorean Tree of lines
%%Author: Kees van der Laan, kisal@xs4all.nl
%%BoundingBox: -110 -20 190 215
%%BeginSetup
%%EndSetup
%%BeginProlog
/maxint 2147483647 def%231-1
Q setgray -110 -20 300 235 rectfill %Mimics BoundingBox
/spread{% value maxspread ==> new value
rand maxint div .5 sub 2 mul mul add }def
/d+1{/depth depth 1 add def} def
/d-1{/depth depth 1 sub def} def
/lines {@ @ moveto @ 1 rlineto
s @ moveto @ 1 rlineto stroke} def
/pythstem{%Global variables: s 1 phi
%on stack integer (order>=0)
lines %draw the lines
1 sub dup @ gt
{gsave /phi phi 10 spread def aphi depth phi put

0 1 translate phi rotate phi cos dup scale d+1 pythstem d-1
grestore /phi aphi depth get def
gsave

s phi cos dup mul mul s phi sin phi cos mul mul 1 add translate
/phi aphi depth get def
phi 90 sub rotate phi sin dup scale d+1 pythstem d-1

grestore

}if 1 add

}def

%%Endprolog

%

% Program ---the script---

%

/phi 60 def /s 25 def /1 5@ def %globals

/depth @ def

VOORJAAR 2013

37



38 MAPS 44 Kees van der Laan

/aphi 25 array def

1 setgray 2 setlinewidth 1 setlinecap %oblique tree phi=60@
22121943 srand

@ @ moveto s @ rlineto stroke

15 pythstem pop

showpage

%HEOF

John Deubert’s Tree

John begins by discussing what recursion is and how to do this in PS. As (classical)
example of recursion he uses the calculation of n-factorial, also given in Adobe’s
BlueBook p.71. A tail recursion, with infix operators, which can easily be recasted
into a loop as shown below at right. The point is that we may encounter recursions
in the spirit of FIFO or in the spirit of LIFO. An example of this difference is the
determination of the binary digits of a number via LIFO or via FIFO (see my LIFO
and FIFO sing the Blues of old).

%!PS-Adobe-3.0 EPSF-3.0 %!PS-Adobe-3.0 EPSF-3.0

%%Title: Recursive calculation of N! %%Title: Non-Recursive calculation of N!
%%BeginProlog %%BeginProlog

/factorial{% n ===> n! /factorial{% n ===> n!

dup 1 gt {dup 1 sub factorial mul} if 1214 -1roll { mul } for

}def }def

/Helvetica 12 selectfont /Helvetica 12 selectfont

%%EndProlog %%EndProlog

@ @ moveto 5 factorial ( ) cvs show showpage @ @ moveto 5 factorial ( ) cvs show showpage
%%EOF %IEOF

Next he discusses what might limit recur-
sion: the sizes of the various stacks are finite,
especially the graphics state stack — pushed
by gsave and popped up by grestore — might
cause problems by too deep recursion. Adobe
implemented, since Languagelevel 2, flexi-
ble stacks, where the (stack) limits are in-
creased automatically, when the need arises.
In Acrobat Pro as interpreter I expect no stack
limit problems. I have modified John’s Branch
procedure by maintaining the recursion order
on the stack and adjusted the (repeated) scal-
ing to 1/V2, set Maxdepth = 6, and selected
yellow-brown.

Moreover, I stress that drawing a line in transformed User Space, is the essence
what has to be done at each invoke of branch. Document structuring conventions
have been included and the illustrations are cropped to the BoundingBox, when
processed by Acrobat Pro. For the source of John’s Tree, FractalTree4.ps (more than
a page, mainly because his leaves have size and are worked out in detail) consult
Acumen Journal 2003.

Art Trees from the WWW

Interesting and beautiful art variations are given on http://mathpaint.blogspot
.com/2007/03/pythagoras-tree.html of which I borrowed the following. At right a
sculpture by Koos Verhoeff(2007).



Pythagoras Trees in PostScript

2.5D Pythagoras Trees

Lauwerier(1990) mentions the work of Masaki Aono and Tosiyasu Kunii of 1984.
They simulated the trees Aucuba japonica and Gingko biloba. According to Lauw-
erier this comes down to a 2.5D bare Pythagoras Tree, i.e. prescribed in 3D and pro-
jected on 2D. Lauwerier(1990) contains PYT3DBT where a 3D Pythagoras Tree has
been programmed via backtracking according to the Japanese rules of growth, com-
plete in 3D with projection. A hard to read program.

It is easier for me to write anew recursive programs than to
transcribe Lauwerier’s backtracking programs. Moreover, limi-
tations of BASIC are not inherited and more readable program
without goto’s will emerge.
The growth rules are: from the stem branches have angle oy
and each branch has 2 subbranches with angles o, By; which
lie in a plane perpendicular to the plane formed by the stem and
the branch. Reduction factors are parameters.
For a 2.5D Tree I could modify the Line Tree program given earlier according to
the growth rules and incorporate 3D data and projection with viewing angles as
parameters. Maybe CAD software is to be preferred?

Annotated References

- An introductory survey: http://en.wikipedia.org/wiki/Pythagoras_tree.

- Adobe Red, Green and Blue Books. The musts for PS programmers. The simpli-
fied tree is a variant of FractArrow as given in the BLue Book p.74, which also
embodies the H-fractal. One only has to vary the rotation angle, as can be wit-
nessed from the enclosed example. Lauwerier(1987) gives BOOMH1, BOOMH2, BOOM2
which I transcribed, but did not include because of my general binary tree and
H-fractal backtracking recursive program in PS. Of BOOM3, trinary tree, the tran-
scripted program and illustration have been given earlier.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: H-fractal, 2011
%%Author: Kees van der Laan, kisal@xs4all.nl

VOORJAAR 2013

%%BoundingBox: -75 -2 75 100
%%BeginSetup

%%EndSetup

%%BeginProlog
/1line{@ @ moveto @ s lineto stroke}def

/Hfractal{line @ s translate %draw the line

1 sub dup 0 gt
{gsave 90 rotate .7071 dup scale %transformed user space

Frils (B Bl Bl
FL L B
Epel B B
B B B
Fril (B (Bl Bl
i g M o)
in il HEEiia Rl )
B L BB

Hfractal %play it again, Sam
grestore
-90 rotate .7071 dup scale %transformed user space
Hfractal %play it again, Sam
}if 1 add } def
%%EndProlog

/s 50 def 10 Hfractal pop showpage
%HEOF

39



40 MAPS 44 Kees van der Laan

- Biography of H.A. Lauwerier: http://bwnw.cwi-incubator.nl/cgi-bin/uncgi/alf.

- Deubert, J(2003, June): Acumen Journal.
http://www.planetpdf.com/planetpdf/pdfs/AcumenJournal_June2003.pdf
(Highly educative. This note is inspired by John Deubert’s variations, although
Lauwerier already touched upon them. I reconstructed his suggestions from
scratch.)

- Ernst, B(1985): Bomen van Pythagoras. Met illustraties van Jos de Mey. Aramith.
(Full of variations of Pythagoras Trees, such as the neomondriaan, second below,
where the spurious triangles have been blackened.)

- Gleisk, J(1987): CHAOS — making a new science. Penguin.

(An introduction to and survey of the world of nonlinearity, strange attractors
and fractals.)

- Goossens, M(2007, sec ed) et. al.: IXTEX Graphics Companion. ISBN 978 0 321
50892 8.

- Helmstedt, J(2011): A New Method of Constructing Fractals and Other Graphics.
The Mathematica Journal. (Nice examples of Lindenmayer systems, for which
Lauwerier’'s KRONKEL can be used.)

- Jackowski, B, P. Strelczyk, P. Pianowski(1995-2008): PSView5.12. WWW.
bop@bop . com. pl. (Extremely fast previewer for .eps among others, which allows
PSlib(rary) inclusion via the run command).

- Knuth, D.E, T. Larrabee, P.M. Roberts(1989): Mathematical Writing. MAA notes
14. The Mathematical Association of America.

- Knuth, D.E(1990, 10t" printing): The TgXbook. Addison-Wesley. ISBN
0-201-13447-0. (A must for plain TgXies.)

- Lauwerier, H.A(1987): FRACTALS — meetkundige figuren in eindeloze herhal-
ing. Aramith. (Contains programs in BASIC. Lauwerier H.A (1991): Fractals:
Endlessly Repeated Geometrical Figures, Translated by Sophia Gill-Hoffstadt,
Princeton University Press, Princeton NJ1. ISBN 0-691-08551-X, cloth. ISBN
0-691-02445-6 paperback. "This book has been written for a wide audience ... "
Includes sample BASIC programs in an appendix.)

- Lauwerier, H.A(1988): The Pythagoras Tree as Julia Set. CWI-Newsletter.

- Lauwerier, H.A(1989): Oneindigheid — een onbereikbaar ideaal. Aramith. ISBN
90 6834 055 7. (Audience: Instructors, (high-school) students, and the educated
layman.)

- Lauwerier, H.A(1990): Een wereld van FRACTALS. Aramith. ISBN 90 6834 076 X.
(Contains a.o. PYT3DBT a BASIC backtracking program for 3D bare Pythagoras
Trees.)

- Lauwerier, H.A(1994): Spelen met Graphics and Fractals. Academic Service.
ISBN 90 395 0092 4. (An inspiring book with Math at the high school level for
a wide audience; the BASIC programs I consider outdated for direct use.)

- Manning JR(1972): Continuity conditions for spline curves. Computer Journal,
17,2, p181-186.

- Peitgen, H.O, H.Jirgens, D. Saupe(2004 sec.ed.): Chaos and Fractals. New fron-
tiers of Science. (Images of the fourteen chapters of this book cover the central
ideas and concepts of chaos and fractals as well as many related topics includ-
ing: the Mandelbrot set, Julia sets, cellular automata, L-systems, percolation and
strange attractors. This new edition has been thoroughly revised throughout.



Pythagoras Trees in PostScript

The appendices of the original edition were taken out since more recent publi-
cations cover this material in more depth. Instead of the focused computer pro-
grams in BASIC, the authors provide 10 interactive JAVA-applets for this second
edition via http://www.cevis.uni-bremen.de/fractals. An encyclopedic work.
Audience: Accessible without mathematical sophistication and portrays the new
fields: Chaos and fractals, in an authentic manner.)

- Swanson, E(1986, revised ed): Mathematics into Type. American Mathematical
Society.

- Szabd, P(2009): PDF output size of TgX documents. Proceedings Eu-
roTEX2009/ConTEXt, p57-74. (Various tools have been compared for the pur-
pose.)

- Van der Laan, C.G(1992): LIFO and FIFO sing the Blues. MAPS 92.2.

- Van der Laan, C.G(1995): Publishing with TgX. Public Domain. (See TgX
archives.)

- Van der Laan, C.G(1997): Tiling in PostScript and MetaFont — Escher’s wink.
MAPS 97.2.

- Van der Laan, C.G(unpublished, BachoTEX workshop): TeXing Paradigms. (A
plea is made for standardized macro writing in TgX to enhance readability and
correctness.)

- Van der Laan, C.G(2009): TgX Education: an overlooked approach. Eu-
roTEX2009-3"4ConTeXt proceedings. (Launched my PS1ib.eps library.)

- Van der Laan, C.G(2011): Gabo’s Torsion. MAPS 42. (Contains a summary of the
PS language and its developments.)

- Van der Laan, C.G(submitted MAPS): Julia fractals in PostScript.

- Veith, U(2009): Experiences typesetting mathematical physics. Proceedings Eu-
roTEX2009/ConTgXt, p31-43. (Practical examples where we need to adjust TgX’s
automatic typesetting.)

- Links to Pythagoras Trees in Art
http://www.arsetmathesis.nl (A site about Art&Math, such as Pythagoras Trees,
Escher, ... .)
http://mathpaint.blogspot.com/2007/03/pythagoras-tree.html
http://flickr.com/search/?w=32286042@N00&q=Pythagoras&m=text.

Conclusions

The Pythagoras Tree family can be programmed elegantly in PS with its EPSF, with
its feature to transform user space, and because after processing with Acrobat Pro
the pictures are delivered in . pdf format and cropped to the prescribed BB, ready for
inclusion in publications.

PS programs can be written as readable as literature.

While working on this note the Lindenmayer production rule was enriched by PS
concepts!

The paradigm is to draw a square (line, spline) scaled and rotated, at the right
place, repetitively.

My variant in Metafont with its path datastructure looks more efficient.

I have spotted a few BASIC Pythagoras Trees in Lauwerier(1987) and found John
Deubert’s versions of the Pythagoras Tree in PostScript on the WWW, where I also
stumbled upon beautiful artistic variations on the theme.

It was a surprise that so few and minor adaptations yielded such a rich variety of
results.

My placing of illustrations in TgX documents suffers from the same drawback as
with Word: changing the source text might disturb the layout.

In TgXworks I finally found out how to keep program texts, especially comments,
vertically aligned: I use the font Terminal in the input window.

VOORJAAR 2013

41



42 MAPS 44 Kees van der Laan

Before publishing consult the Wikipedia on aspects of the subject as well as Wol-
fram’s knowledge base http://www.wolframalpha.com.

Conversion into Word made me hands-on aware of differences between TgX and
Word. If you are after utmost accurate user-controlled typeset Mathematics then
plain TgX is to be preferred, for bread and butter Mathematics Word can do. The hy-
phenation by TgX seems better than Word. Inclusion of the . jpg figures and .pdf
objects went smoothly. I did not succeed in handling the subtle spacing of Mathe-
matics in Word. Neglecting superfluous spaces, which TgX does automatically, has
been lost in the conversion. I don’t know how to switch off, or change, pre-settings,
such as: don’t underline automatically WWW addresses, maybe by de-activating the
option WAWW addresses as hyperlinks?

Acknowledgments

Adobe for your maintained, adapted to LanguageLevel 3 since 1997, good old, in-
dustrial standard PS and Acrobat Pro (actually DISTILLER) to view it, Don Knuth
for your stable plain TgX, Jonathan Kew for the TgXworks IDE, Han Thé Thanh for
pdf(La)TgX, Hans Lauwerier for your nice booklets with so many inspiring examples
of fractals.

Thank you Nico Temme for mentioning the work of Bruno Ernst, Hans Jansen
for reminding me of the correct quote from the Casablanca movie, Jos Willink for
proofing, Wim Wilhelm for drawing my attention to the class of scripting languages,
MAPS editors for improving my use of English and Taco Hoekwater for procrusting
my plain TgX note into MAPS format. Thank you Zinadia Nikolaevna Gulka for invit-
ing me to submit a paper or two for the "Informatsionnie Texnologii i Matematich-
eskoe Modelirovanie” journal, and her co-worker for stimulating me to convert the
TgX marked up ASCII source of an early version of this note into the required Word.
The invitation stimulated me to adapt and revise the material. Thank you GUST for
publishing a previous version of this note in the EuroBachoTEX2012 proceedings.
Thank you Svetlana Morozova for prompting me in the use of Word.

IDE My PC runs 32 bits Vista, with Intel Quad CPU Q8300 2.5GHz assisted by
8GB RAM. I visualize PS with Acrobat Pro 7. My PS editor is just Windows “klad-
blok (notepad). I use the EPSF-feature to crop pictures to their BoundingBox, ready
for inclusion in documents. For document production I use TgXworks IDE with the
plain TgX engine, pdf TgX, with as few as possible structuring macros taken from
my BLUe.tex — adhering minimal TgX markup. I use the Terminal font in the edit
window with the pleasing effect that comments remain vertically aligned in the . pdf
window.

I was trapped by the use of the co-symbol in footnotes: explicit font switching has
to be done, a nuisance.

For checking the spelling I use the public domain en_GB dictionary and hyphen-
ation patterns en_GB. aff in TgXworks.

Prior to sending my PDF’s by email the files are optimized towards size by Acrobat
Pro.

The bad news with respect to .eps into . pdf conversion is that the newest Acrobat
10 Pro X does not allow for the run command for library inclusion.

Afterthoughts: Pondering about my languages and tools

Natural languages serve a lifetime: Dutch, English, Russian, ... . My programming
languages come and go. I learned programming in Algol60/68 at the time when per-
forming (numerical) calculations was the main use of mainframe computers. FOR-
TRAN was the language in use in the USA. Despite the numerical program library
—NUMAL— in Algol60 by the CWI, to which I contributed several procedures, de-
spite the NAG ALGOL60 library, despite the programs published in the handbook



Pythagoras Trees in PostScript

series of linear algebra and approximation in Niimerische Mathematik, despite ...
Algol60 is dead, as dead as a doornail. Algol68 I consider one big side effect, it never
catched on, despite its NAG Algol68 library to which I contributed a FFT collection
of operators, despite its interface to FORTRAN, which we commanded for at Gronin-
gen. FORTRAN is alive with its numerical program libraries (IMSL, NAG, ...) with
its mathlab, with its published programs in the Collected Algorithms of the ACM,
with its published programs in TOMS (Transactions on Mathematical software), with
its programs published in various books, with ... and despite Dijkstra’s famous and
shocking "Goto’s considered harmful’ letter. FORTRAN is efficient, much more effi-
cient than the Algol family ever was, because of Algol’s rigorous checking on array
bounds for example. FORTRAN is the language of choice on the so-called number
crunchers. Over time FORTRAN has evolved, F77, F90, ... and extended by facilities
needed. PASCAL is alive as a general purpose educational programming language, I
presume. Modula was interesting, with its modules concept. ADA elaborated on that
but did not find a wide audience, despite the support of the EU. PL1 was an impres-
sive, huge effort, while at the same time with UNIX&C a tendency towards simplicity,
smaller scale and cooperating tools had started. BASIC (Beginners All Purpose In-
struction Code, 1964!) is apparently alive (Wikipedia), and embraced by Lauwerier.
The simplicity of BASIC is a plus. For graphics PS is more suited because the results
can be easily included in publications typeset by pdf TgX, Word, ... . Moreover, PS
is portable in place and time, and maintained by Adobe. ConTgXt can include even
more formats on the fly. I prefer to tune my illustrations separately. For interactive
work Java is more appropriate, I guess. C, C++ (modular, object oriented) are heavily
used programming languages. A newer approach forms the group of scripting lan-
guages such as AWK, Lex, Yacc, Perl, Python, .... Little experience with that group
myself: read Larry Wall’s interesting, amusing, beautiful Perl book, TIMTOWTDI,
and played a little with Perl.

TgX&MetaFont/-Post serve a need in document production, although Metafont
is outdated and overruled by the worldwide Open Type Fonts activity and TgX is
becoming of age despite pdf(La)TgX, where the result is not a .dvi but a . pdf file.

The TgX collection DVD with

- pdf(La)TgX and its wealth of packages

- ConTgXt integrated with MetaPost, keeps TpX&MetaPost alive, and more
- its TEX&Co archive

- the TgXworks IDE, with scripting possibilities, dictionaries

is the main reason that pdf(La)TgX, and descendants, are still being used mainly
within the subculture of TgX User Groups. The discussion lists of UGs serve a need.
LuaTgX is a promising new development as successor of TgX, though old Ben-
LeeUser-TgXies have created their subset of use of TgX&Co and stick to it, fading
away from the UG’s.

MS Word is, I estimate, at least a million times more in use. For TgX&Co’s survival
the possibility to use Open Type fonts is a necessary condition —which activity is
underway— next to the volunteer-biased production and distribution of the TgXLive
DVD with the tools and languages.

Would I advise new users TgX&Co?

20 years ago I would.

The investment in learning TgX&Co will cost a novice still much time compared
to the investment in learning to use other more intuitive interactive tools, such as
MS Word, with its Cambria formula templates and OT (Math) fonts, despite its lack
of automatic formula numbering, its ... for the moment. For those already familiar
with TgX&Co it is important that it ’ll continue to cooperate smoothly with develop-
ments since the birth of TgX, such as .pdf and OT scalable fonts. LaTgX users don’t
have to invest much: they just use canned packages. After 2° years of TgX&Metafont

VOORJAAR 2013 43



44 MAPS 44 Kees van der Laan

the TgX kernel can be considered time-proven bug free, after some adaptations casu
quo corrections. The TgX world contributes with ETEX packages, with TgXworks, an
AlNTEX IDE (integrated development environment), with newer versions of ConTgXt,
and research towards the successors of TgX, such as ETgX2e, NTS, XHTEX, LuaTgX,
... . For the graphics don’t forget PS with its EPSF — the AIITEX time-proven, graph-
ics companion — maintained (and adapted to developments) by Adobe, or if you can
afford it the omnipotent Mathematica. I consider the biggest weakness of the pre-
processor MetaPost that it shields you away from PS, it does not really interface with
PS. Processing requires an extra step. The syntactic sugar, which MetaPost provides,
is not necessary, despite its ability to solve linear equations on the fly. However, ...
Hobby’s boxes macros are nice and beautiful. The interfacing of TgX with MetaPost
is nice, for inclusion of illustrations on the fly. Interfacing TgX with Metafont had its
virtues (as was provided for in 4AllTEX, which is no longer maintained nor distrib-
uted) has become superfluous with the rise of the universal, scalable OT fonts. (A
nice feature was to process a selected part of a document, separately on the fly.)

Adobe InDesign CS5.5 software lets you design and preflight engaging page lay-
outs for print or digital distribution with built-in creative tools and precise control
over typography. Integrate interactivity, video, and audio for playback on tablets,
smart-phones, and computers. No hands-on experience. Impressive. HMTL (with its
style sheets) and XML are the (markup) languages for the WWW, enriched with
scripting facilities for interactivity and forms.

EPSF I use for my illustrations to be included in a plain TgX document. I call EPSF
a TpXies graphics companion. Outside the TgXworld PS is the de-facto standard in-
dustrial page description cq printer language.

Photoshop is a tool, not a language, without rigorous BNF syntax notation. It is
very alive, it is bundled in the so-called variants of the Creative Suite to facilitate
exchange of files between other Adobe tools of the CS. I use Photoshop for editing
photographs (illustrations) and for conversion of . jpg into .eps.

Acrobat is another useful tool with its . pdf format. It was developed to compen-
sate for PS deficiencies in porting documents, especially the glyphs of the used fonts
were not correctly rendered everywhere. I use Acrobat Pro as interpreter/viewer
for my EPSF. Acrobat Reader, the .pdf viewer, is free to use. On Adobe’s Acrobat
activity MS reacted with XPS.

LINUX, a free to use UNIX-biased operating system, is a treasure, and comes with
C and many other programs and tools. It is GNU-licensed, free to use software, en-
riched by the community at large, with the copyright and intellectual ownership
protected.

Mathematica is rumored
to be a very useful pro- ==
duction and experimen-
tation tool, for people like

Java, and the Cabri software, a must

for (math) teachers, with its anima-

tion and interactive functionalities. me %}%
http://en.wikipedia.org/wiki . . a3
/Java_(programming_language) glels rit\?;z[efxgz?ﬁl‘;etirfr?é L ):6

Java Duke http://download.oracle.com/javaee P ¥ /&

/6/tutorial /doc/bnadx.html  €ing but .. Mathemat-
icanotebooks can be read

thanks to the free reader.

On my Vista PC I have parallel Ubuntu LINUX, but hardly use it. The newest
MEDION computers come with a fast boot option, meaning LINUX as dual and fast
OS next to Windows System 7. Macintosh OS, X and beyond, has been built upon
LINUX as documented open source kernel.

Quite something!

GRAPHICS with MATHEMATICA
FRACTA NS

‘CHONAT GETZ snd JANET HELMSTEDT



Pythagoras Trees in PostScript

“Making the right choices has become more than ever important,
because ... you simply can’t familiarize with all.”

A question one must ask oneself over and over again Does it still make sense or isita
waste of time and energy, to create illustrations in PS to be included in AIITEX marked
up documents, to maintain a library of PS def's etc, in the presence of the omnipotent
commercial graphics- and Math-oriented tool Mathematica, with its ubiquitous free
for use notebooks, in the presence of animated Java, in the presence of special fractal
tools, such as for example the XaoS or Fractulus programs, with rich colouring and
zooming functionalities?

Lauwerier(1994) adhered to PowerBASIC (compiler) because of the concise and
fast programs and because of interactivity (he even has provided a zoom program in
BASIC!?!). BASIC dates back to 1964(!). At the moment there is PowerBASIC version
10, which reflects that BASIC is maintained. In 2006 MS came with Visual BASIC.
BASIC4GL is a free download, but ... not upwards compatible; moreover, I can’t run
Lauwerier’s programs as such, and ... I don’t know for the moment how to reuse
BASIC4GL illustrations in my publications.

Notes

1. Lauwerier(1989) narrates what mathematicians thought about the co-concept
through the ages from the ancient Greeks onward.

2. The run command does include my library when processed by my version of
PSView. PSView is very fast. BASIC is interactive and PS batch-oriented.

3. This is different from a polynomial P3(x), where 2 values and 2 derivatives de-
termine the polynomial uniquely.

My case rests, have fun and all the best.
Chisinau, 14 febr 2012

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Gr, NL
kisal@xs4all.nl

VOORJAAR 2013 45



46 MAPS 44 Kees van der Laan

Appendix 0 Splines

In PS a spline, a Bézier cubic — a vector function of the time variable — is characterized
by the begin point ay, the control points a; and a,, also called handles, and the end
point aj.

“Splines are the important 20t century’s time-dependent functions

comparable to the 19t"century’s Fourier series for approximations.”

In Java one can drag the handles and watch the effects, interactively. Nice.

The control point al lies on the tangent to the spline in a0, and the control point
a2 lies on the tangent to the spline in a3. The points a@ and a3 and the angles of the
tangents to the spline at these points are not enough to describe the spline uniquely:
the size of the handles also matters, as explained in Manning(1972).3 The control
points stand for the angle of the tangents and the size of the handles and therefore
determine the B-cubic uniquely.

a, a,
aZ al
a=a,
a, a, TN
A, ga A, a a, a, A, a a, a,
With a@ as currentpoint a B-cubic, characterized by a0 , a1, a2 , a3, is

appended to PS's (internal) path by a1 a2 a3 curveto.

Mathematical formula of a spline Splines as used in PS, and in MetaPost, are Bézier
cubics. These 374 degree polynomials are a linear combination of 374 degree Bernsten
basis polynomials, which were discovered in 1912 by Bernsten.
A n'h degree Bernsten basis polynomial is B, (t) = (3)t¥(1-t)"* Y, v =0,1,..,n.
A Bézier cubic — a linear combination of 374 degree Bernsten basis polynomials —
with begin point ay, control points ay, a,, and end point a3 reads

z(t) = (1-t)3ag+3(1—t)2t a; +3(1—t)t2 a,+t3a3  with  z ap,a7,0a5,a3 € R%, t € [0, 1].

A PS spline path is created by curveto and painted to the current page by stroke.
For the evaluation the de Casteljau algorithm is generally used

z(t) = (1—t) ((lt) ((lft)aoth a1)+t ((]*t)a1+t a2)>+t ([1‘[)((1‘[)(11 +t a2)+t ((17t)a2+t a3)).

For this note the above is enough to know about splines, because of the splines | only
randomly varied the position of the control points.

Appendix 1: Lauwerier’'s BASIC versions

Lauwerier uses the binary number representation to identify the various nodes
in a binary tree. A node with decimal number n has left descendant 2n and
right descendant 2n+1. For example node 5 = 1015, has left descendant node
10 = 10105, and right descendant 11 = 1011,. If we identify O in the binary
representation with a Left transformation and 1 in the binary representation
with a Right transformation then the node (1)01, = 5 is arrived at by the 1
transformation LR, where the first bit is neglected.




Classical Math Fractals in PostScript

VOORJAAR 2013

PYTHB1 is Lauwerier's computational intensive variant for the symmetric Pythagoras
Tree: each node is calculated beginning from the root each time with a square drawn

at the node layer for layer, or order after order.

10 REM **xPythagoras Tree, program PYTHB1#*x
20 REM *x*Computation intensivex*x
30 PI=3.141593

40 P=8 : DIM A(P) : REM x**KEUZE ORDER***
50 X=0 : Y=0 : U=1 : V=1 : C=1/sqr(2)

60 FOR M=0 TO P

70 FOR N=2*M to 2*(M+1)-1

80 L=N : H=1 : X=0 : Y=0 : F=0

90 FOR K=0 TO M-1

100 A(M-K)=L MOD 2 : L=INT(L/2) : NEXT K
110 X=0 : Y=0

120 FOR J=1 TO M

130 IF A(J)=0 THEN GOSUB 220 ELSE GOSUB 250
140 NEXT J

150 U=H#*(cos(F)+sin(F))
160 V=H*(cos(F)-sin(F))
170 GOSUB 200

180 NEXT N : NEXT M : END
190 LINE (X-V,Y-U)=(X+U,Y-V) : LINE -(X+V,Y+U)

200 LINE -(X-U,Y+V) : LINE -(X-V,Y-U) : RETURN
210 X=X-Hx(cos(F)+2*SIN(F))

220 Y=Y+Hx(2xcos(F)-SIN(F))

230 F=F+PI/4 : H CxH : RETURN

240 X=X+Hx( cos(F)-2%SIN(F))

250 Y=Y+Hx(2xcos(F)+ SIN(F))

260 F=F-PI/4 : H CxH : RETURN

270 END

Notes

In the transcription use has been made of

PS user Space

Left, Right transformations

- drawsquare procedure

- in PS mod and idiv require integers

- the array has to be enlarged because it starts by
0

%!PS-Adobe-3.0 EPSF-3.0

%%Transcriptor: Kees van der Laan, April 2011, kisal@xs4all.nl
%%BoundingBox: -300 -55 300 350 %6s X 4s
%%BeginSetup

%%ENdSetup

%%BeginProlog

/drawsquare{-.5 s mul dup s s rectstroke}def
/Left {@ .5 s mul translate 45 rotate c c scale

@ s translate}def

/Right{@ .5 s mul translate -45 rotate c c scale

0 s translate}def

/PYTHB1{%Pythagoras Tree (computational intensive)
a la Lauwerier

/p exch def /A p 1 add array def

@ 1 p{/m exch def

2mexp 1 2m1 add exp 1 sub{%2*m 1 2*(m+1)-1
/n exch def
gsave
@ 1 m 1 sub{/k exch def %store bits of n in

A
A m k sub cvi
2 idiv def
}for%binary digits of n
%transform user space
1 1 m{A exch get @ eq {Left}{Right}ifelse}for
drawsquare
grestore
}for%n
}ford%m
} bind def
%%EndProlog
%
%  Program --- the script ---
%
/s 100 def % s = side of initial square
10 PYTHB1 % order = 10
showpage
%HEOF

ncvi 2 mod put /nn cvi

into A

PYTHB3 is Lauwerier's backtracking variant of the (oblique) Pythagoras Tree.

The order of transversal of the Tree is given by the numbers in the squares which
illustrates the printing sequence of the squares during the backtracking process. My
(recursive, backtracking) variant is given in the beginning of this paper, which has also

been used to generate the illustration below.

10 REM *x*Skewed Pythagoras Tree, program PYTHB3*x*
20 SCREEN 3 L CLS : PI=3.141593

30 WINDOW (-5,-3)-(5,4.5)

40 P=12
50 REM **xCHOICE FOR ANGLE Fx**

60 F=PI/5 : C=COS(F) : S=SIN(F)

70 A1=-CxS : A2=C"2 : B1=A1+A2 :B2=-A1+A2
80 C1=B2 : C2=1-B1 : D1=1-A1 : D2=1-A2

90 X1=0 : Y1=0 : U1=0 : V1=0

100 LINE (0,0)-(0,1) : LINE -(1,-1)
110 S=1 : GOSUB 170

120 FOR M=1 TO 2*(P-1)-1 : S=P : N=M
130 IF N MOD 2=@ THEN N=N\2 : S=S-1:
140 GOSUB 150 : NEXT M END

: LINE -(1,0)

GOTO 130

: DIM X1(P),Y1(P),X2(P),Y2(P),U1(P),V1(P),U2(P),V2(P) 2 Y ®

< <s

2
N

22 26
So

&
2
19

6¢

<>

47



48 MAPS 44 Kees van der Laan

150 X1(S-1)=X2(S-1) : Y1(S-1)=Y2(5-1)

160 UT(S-1)=U2(S-1) : V1(S-1)=V2(5-1)

170 FOR J=S TO P

180 X=X1(J-1) : Y=Y1(J-1) : U=UT(J-1) : V=VI(J-1)

190 X3=U-X : Y3=V-Y

200 X1(J)=X+A1%X3-A2%Y3

210 Y1(J)=Y+A2%X3+A1%Y3

220 U1(J)=X+B1%X3-B2%Y3

230 V1(J)=Y+B24X3+B1Y3

240 X2(J)=X+C1%X3-C2%Y3

250 Y2(J)=Y+C2%X3+C1%Y3

260 U2(J)=X+D1#%X3-D2%Y3

270 V2(J)=Y+D2%X3+D1%Y3

280 LINE (X,Y)-(X1(J),Y1(3)) : LINE -(U1(J),V1(J)) : LINE -(U,V)
290 LINE -(X,Y) : LINE -(X2(J),Y2(J)) : LINE -(U2(J),V2(J)) : LINE -(U,V)
300 NEXT J : RETURN : END

Appendix 2: My Metafont programs of old

For the MetaFont and MetaPost aficionados | have included my simplified MetaFont
Tree, in 2 versions. Those fluent in MetaPost can adapt the codes for their purposes,
| presume.

The first program is an example of straightforward recursive programming, as in clas-
sical languages with value variables, where the fractal property is used that at each
level a complete tree of lower order has to be drawn with the right orientation and at
the right scale.

%November 1995, CGL. Pythagoras (line) Tree. (Coding approach borrowed from my PWT guide, where
I did it in TexX!)
proofing:=1;screenstrokes; pickup pencircle scaled .005pt;
def pt(expr n,%order
z,%drawing coordinate pair
d,%(in-)angle at z
1 %length of branch to be drawn
)=if n>1:draw z--z+1lxdir(d+45); pt(n-1,z+1xdir(d+45),d+45,.71);
draw z--z+1xdir(d-45); pt(n-1,z+1*dir(d-45),d-45,.71);
fi
enddef’;
1=100; draw (21,0)--(21,1); pt(8,(21,1),90,.61); showit; end

The non-recursive variant is impressive to watch when processed by Blue Sky's Meta-
Font on my old PowerMac of 1997. First the list of left nodes is built after which in
the backtracking the left path is rotated and copied to yield the right part. Very fast
this swapping.

%December 1995, CGL. Nonrecursive Pythagoras (line) Tree
pickup pencircle scaled 1.5;
pair node[];
n=15; %order
1=125; %size of the trunk
node[@]=origin; d= 90;%position and orientation trunk
%(so rotating or shifting the tree is easy) %Create nodes of most leftbound

branche
for k=1 upto n: node[k]=node[k-1]+1xdir d; d:=d+45;1:=.71;endfor; %/sqrt2
def openit=openwindow currentwindow from origin to (screen_rows, screen_cols) at (-250, 375) enddef;
for k=n-1 downto 1: draw node[k+1]--node[k];

addto currentpicture also currentpicture rotatedaround (nodel[k],-90);%The swapping!
endfor
draw nodel--node@; drawdot origin; showit; end

Comment anno 2012: This swapping should be formalized into a production rule; work
to do.



