
112 EUROTEX 2012 & 6CM PROCEEDINGS Taco Hoekwater

Parsing PDF content streams with LuaTEX

Abstract
The new pdfparser library in LuaTEX allows parsing
of external pdf content streams directly from within a
LuaTEX document. This paper explains its origin and us-
age.

Background
Docwolves main product is an infrastructure to fa-
cilitate paperless meetings. One part of the func-
tionality is handling meeting documents, and to do
so it offers the meeting participants a method to
distribute, share, and comment on such documents
bymeans of an intranet application as well as an iPad
App.

Meeting documents typically consist of a meeting
agenda, followed by included appendices, combined
into a single pdf file. Such documents can have vari-
ous revisions, for example if a change has been made
to the agenda or if an appendix has to be added or
removed. After such a change, a newly combined pdf
document is re-distributed.

Annotations can be made on these documents
and these can then be shared with other meeting
participants, or just communicated to the server for
safe keeping. Like documents, annotations can be
updated as well.

All annotations are made on the iPad, with an
(implied) author and an intended audience. Anno-
tations apply to a specific part of the source text,
and come in a few types (highlight, sticky note,
freehand drawing).The iPadApp communicates with
a network server to synchronize shared annotations
between meeting participants.

The annotation update problem
The server-client protocol aims to be as efficient as
possible, especially in the case of communication
with the iPad app, since bandwidth and connection
costs can be an issue.

This means that for any annotation on a refer-
enced document, only the document’s internal iden-
tification, the (pdf) page number, and the beginning
and end word indices on the page and are communi-
cated back and forth. This is quite efficient, but gives
rise to the following problem:

When a document changes, e.g. if an extra
meeting item is added, all annotations follow-
ing that new item have to be updated because
their placement is off.

The actual update process is quite complicated,
but the issue this paper deals with is that the server
software needs to know what words are on any pdf
page, as well as their location on that page, and
therefore its text extraction process has to agree with
the same process on the iPad.

pdf text extraction
Text extraction is a two-step process. The actual
drawing of a pdf page is handled by PostScript-style
postfix operators. These are contained in objects that
are called page content streams.

After decompression of the pdf, the beginning of
a content stream could look like this:

59 0 obj
<< /Length 4013 >>
stream
0 g 0 G
1 g 1 G
q
0 0 597.7584 448.3188 re f
Q
0 g 0 G
1 0 0 1 54.7979 44.8344 cm
...

Here g, G, q, re, f, Q, and cm are all (postfix) operators,
and the numeric quantities are all arguments. As
you see, not all operators take the same amount of
arguments (g takes one, q zero, and re four). Other
operators may take for instance string-valued argu-
ments instead of numeric ones. There are a little over
half a dozen different types.

To process such a stream easily, it is best to
separate the task (at least conceptually) into two
separate tasks. First there is a the lexing stage, which
entails converting the actual bytes into combinations
of values and types (tokens) that can be acted upon.

Separate from that, there is the interpretation



Parsing PDF content streams with LuaTEX EUROTEX 2012 & 6CM PROCEEDINGS 113

stage, where the operators are actually executed with
the tokenized arguments that have preceded it.

pdf text extraction on the iPad
It is very easy on an iPad to display a represen-
tation of a pdf page, and Apple also provides a
convenient interface to do the actual lexing of pdf
content streams that is the first step in getting the
text from the page. But to find out where the actual
pdf objects are, one has to interpret the pdf document
stream oneself, and that is the harder part of the text
extraction operation.

pdf text extraction on the server
On the server side, there is a similar problem at
a different stage: displaying a pdf is easy, and
even literal text extraction is easy (with tools like
pdftotext). However, that does not give you the lo-
cation of the text on the page. On the server, Apple’s
lexing interface is not available, and the available pdf
library (libpoppler) does not offer similar function-
ality.

Our solution
We needed to write text extraction software that can
be used on both platforms, to ensure that the same
releases of server and iPad software always agreed
perfectly on the what and where of the text on the
pdf page.

Both platforms use a stream interpreter written by
ourselves in C, with the iPad sofware starting from
the Apple lexer, and the server software starting from
a new lexer written from scratch.

The prototype and first version of the newly cre-
ated stream interpreter as well as the server-side
lexer were written in Lua. LuaTEX’s epdf libpoppler
bindings to Lua were a very handy tool at that stage
(see below). The code was later converted back to C
for compilation into a server-side helper application
as well as the iPad App, but originally it was written
als a TEXLua script.

A side effect of this development process is that
the lexer could be offered as a new LuaTEX extension,
and that is exactly what we did.

About the ‘epdf’ library
This library is written by Hartmut Henkel, and it
provides Lua access to the poppler library included
in LuaTEX. For instance, it is used by ConTEXt for
keeping links in external pdf figures.

The library is fairly extensive, but a bit low-level,
because it closely mimics the libpoppler interface. It
is fully documented in the LuaTEX reference manual,
but here is a small example that extracts the page
cropbox information from a pdf document:

local function run (filename)
local doc = epdf.open(filename)
local cat = doc:getCatalog()
local numpages = doc:getNumPages()
local pagenum = 1
print ('Pages: ' .. numpages)
while pagenum <= numpages do

local page = cat:getPage(pagenum)
local cbox = page:getCropBox()
print (string.format(

'Page %d: [%g %g %g %g]',
pagenum, cbox.x1, cbox.y1,
cbox.x2, cbox.y2))

pagenum = pagenum + 1
end

end
run(arg[1])

Lexing via poppler
As said, a lexer converts bytes in the input text
stream into tokens, and such tokens have types and
values. libpoppler provides a way to get one byte
from a stream using the getChar() method, and it
also applies any stream filters beforehand, but it does
not create actual tokens.

Poppler limitations
There is no way to get the full text of a stream
immediately, it has to be read byte by byte.

Also, if the page content consists of an array of
content streams instead of a single entry, the separate
content streams have to be manually concatenated.

And content streams have to be ‘reset’ before the
first use.

Here is a bit of example code for reading a stream,
using the epdf library:

function parsestream(stream)
local self = { streams = {} }
local thetype = type(stream)
if thetype == 'userdata' then
self.stream = stream:getStream()

elseif thetype == 'table' then
for i,v in ipairs(stream) do
self.streams[i] = v:getStream()

end
self.stream = table.remove(

self.streams,1)
end
self.stream:reset()
local byte = getChar(self)
while byte >= 0 do
...
byte = getChar(self)

end



114 EUROTEX 2012 & 6CM PROCEEDINGS Taco Hoekwater

if self.stream then
self.stream:close()

end
end

In the code above, any interesting things you want to
happen have to inserted at the ... line. The example
makes use of one helper function (getChar) and that
looks like this:

local function getChar(self)
local i = self.stream:getChar()
if (i<0) and (#self.streams>0) then
self.stream:close()
self.stream = table.remove(

self.streams, 1)
self.stream:reset()
i = getChar(self)

end
return i

end

Our own lexer: ‘pdfscanner’
The new lexer we wrote does create actual tokens.
Its Lua interface accepts either a poppler stream,
or an array of such streams. It puts pdf operands
on an internal stack and then executes user-selected
operators.

The library pdfscanner has only one function,
scan(). Usage looks like this:

require 'pdfscanner'
function scanPage(page)
local stream = page:getContents()
local ops = createOperatorTable()
local info = createParserState()
if stream then
if stream:isStream()

or stream:isArray() then
pdfscanner.scan(stream, ops,

info)
end

end
end

The functions createOperatorTable() and createParser
State() are helper functions that create arguments
of the proper types.

The scan() function
As you can see, the function takes three arguments:

The first argument should be either a pdf stream

object, or a pdf array of pdf stream objects (those
options comprise the possible return values of
<Page>:getContents() and <Object>:getStream() in
the epdf library).

The second argument should be a Lua table where
the keys are pdf operator name strings and the
values are Lua functions (defined by you) that are
used to process those operators. The functions are
called whenever the scanner finds one of these pdf
operators in the content stream(s).

Here is a possible definition of the helper function
createOperatorTable():

function createOperatorTable()
local ops = {}
-- handlecm is listed below
ops['cm'] = handlecm
return ops

end

The third argument is a Lua variable that is passed on
to provide context for the processing functions. This
is needed to keep track of the state of the pdf page
since pdf operators, and especially those that change
the graphics state, can be nested.1

In its simplest form, its creation looks like this:

function createParserState()
local stack = {}
stack[1] = {}
stack[1].ctm =
AffineTransformIdentity()

return stack
end

Internally, pdfscanner.scan() loops over the input
stream content bytes, creating tokens and collecting
operands on an internal stack until it finds a pdf op-
erator. If that pdf operator’s name exists in the given
operator table, then the associated Lua function is
executed. After that function has run (or when there
is no function to execute) the internal operand stack
is cleared in preparation for the next operator, and
processing continues.

The processing functions are called with two ar-
guments: the scanner object itself, and the info
table that was passed are the third argument to
pdfscanner.scan.

The scanner argument to the processing functions
is needed because it offers various methods to get the
actual operands from the internal operand stack.

1. In Lua this could actually have been handled by upvalues or global variables. The third argument was initially a concession made to the
planned conversion to C.



Parsing PDF content streams with LuaTEX EUROTEX 2012 & 6CM PROCEEDINGS 115

Extracting tokens from the scanner
Themost low-level function in scanner is scanner:pop()
which pops the top operand of the internal stack, and
returns a lua table where the object at index one is
a string representing the type of the operand, and
object two is its value.

The list of possible operand types and associated
lua value types is:

integer <number>
real <number>
boolean <boolean>
name <string>
operator <string>
string <string>
array <table>
dict <table>

In case of integer or real, the value is always a
Lua (floating point) number.

In case of name, the leading slash is always
stripped.

In case of string, please bear in mind that pdf
actually supports different types of strings (with
different encodings) in different parts of the pdf
document, so you may need to reencode some of the
results; pdfscanner always outputs the byte stream
without reencoding anything. pdfscanner does not
differentiate between literal strings and hexidecimal
strings (the hexadecimal values are decoded), and it
treats the stream data for inline images as a string
that is the single operand for EI.

In case of array, the table content is a list of pop
return values.

In case of dict, the table keys are pdf name strings
and the values are pop return values.

While parsing a pdf document that is known to be
valid, one usually knows beforehand what the types
of the arguments will be. For that reason, there are
few more scanner methods defined:

󰀭 popNumber() takes a number object off the
operand stack.

󰀭 popString() takes a string object off the operand
stack.

󰀭 popName() takes a name object off the operand
stack.

󰀭 popArray() takes an array object off the operand
stack.

󰀭 popDict() takes a dictionary object off the
operand stack.

󰀭 popBool() takes a boolean object off the
operand stack.

A simple operator function could therefore look like
this (The Affine... functions are left as an exercise
to the reader):

function handlecm (scanner, info)
local ty = scanner:popNumber()
local tx = scanner:popNumber()
local d = scanner:popNumber()
local c = scanner:popNumber()
local b = scanner:popNumber()
local a = scanner:popNumber()
local t =
AffineTransformMake(a,b,c,d,tx,ty)

local stack = info.stack
local state = stack[#stack]
state.ctm =
AffineTransformConcat(state.ctm,t)

end

Finally, there is also the scanner:done() function
which allows you to abort processing of a stream
once you have learned everything you want to learn.
This comes in handy while parsing /ToUnicode, be-
cause there usually is trailing garbage that you are
not interested in.Without done, processing only ends
at the end of the stream, wasting CPU cycles.

Summary
The new pdfparser library in LuaTEX allows parsing
of external pdf content streams directly from within
a LuaTEX document. While this paper explained its
usage, the formal documentation of the new library
is the LuaTEX reference manual. Happy LuaTEX-ing!

Taco Hoekwater
Docwolves B.V.


