
Hans Hagen VOORJAAR 2019 29

Basic image formats

In TEX a graphic is not really known as graphic. The
core task of the engine is to turn input into typeset
paragraphs. By the time that happens the input has
become a linked list of so called nodes: glyphs, kerns,
glue, rules, boxes and a couple of more items. But, when
doing the job, TEX is only interested in dimensions.

In traditional TEX an image inclusion happens via
the extension primitive \special, so you can think of
something:

\vbox to 10cm {%
\hbox to 4cm {%

\special
{image foo.png width 4cm height 10cm}%

\hss
}%

}

When typesetting TEX sees a box and uses its dimen-
sions. It doesn’t care what is inside. The special itself
is just a so called whatsit that is not interpreted. When
the page is eventually shipped out, the dvi-to-whatever
driver interprets the special’s content and embeds the
image.

It will be clear that this will only work correctly
when the image dimensions are communicated. That
can happen in real dimensions, but using scale factors
is also a variant. In the latter case one has to somehow
determine the original dimensions in order to calculate
the scale factor. When you embed eps images, which
is the usual case in for instance dvips, you can use TEX
macros to figure out the (high res) bounding box, but for
bitmaps that often meant that some external program
had to do the analysis.

It sounds complex but in practice this was all quite
doable. I say ‘was’ because nowadays most TEX users
use an engine like pdfTEX that doesn’t need an external
program for generating the final output format. As a
consequence it has built-in support for analyzing and
including images. There are additional primitives that
analyze the image and additional ones that inject them.

\pdfximage
{foo.png}%

\pdfrefximage
\pdflastximage
width 4cm

height 10cm
\relax

A difference with traditional TEX is that one doesn’t
need to wrap them into a box. This is easier on the
user (not that it matters much as often a macro package
hides this) but complicates the engine because suddenly
it has to check a so called extension whatsit node
(representing the image) for dimensions.

Therefore in LuaTEX this model has been replaced
by one where an image internally is a special kind of
rule, which in turnmeans that the code for checking the
whatsit could go away as rules are already taken into
account. The same is true for reusable boxes (xforms in
pdf speak).

\useimageresource
{foo.png}%

\saveimageresource
\lastsavedimageresourceindex
width 4cm
height 10cm

\relax

While dvips supported eps images, pdfTEX and LuaTEX
natively support png, jpg en pdf inclusion. The easiest
to support is jpg because the PDF format supports so
called jpg compression in its full form. The engine only
has to pass the image blob plus a bit of extra infor-
mation. Analyzing the file for resolution, dimensions
and colorspace is relative easy: consult some tables
that have this info and store it. No special libraries are
needed for this type of graphic.

A bit more work is needed for pdf images. A pdf file
is a collection of (possibly compressed) objects. These
objects can themselves refer to other objects so basi-
cally we have a tree of objects.Thismeans that whenwe
embed a page from a pdf file, we start with embedding
the (content stream of the) page object and then embed
all the objects it refers to, which is a recursive process
because those objects themselves can refer to objects. In
the process we keep track of which objects are copied
so that when we include another page we don’t copy
duplicates.

A dedicated library is used for opening the pdf file
and looking for objects that tell us the dimensions and
fetching objects that we need to embed. In pdfTEX



30 MAPS 49 Hans Hagen

the poppler library is used, but in LuaTEX we have
switched to pplib which is specially made for this
engine (by Paweł Jackowski) as a consequence of some
interchange that we had at the 2018 BachoTEXmeeting.
This change of library gives us a greater independence
and a much smaller code base. After all, we only need
access to pdf files and its objects.

One can naively think that png inclusion is as easy
as jpg inclusion because pdf supports png compression.
Well, this is indeed true, but it only supports so called
png filter based compression. The image blob in a png
file describes pixels in rows and columns where each
row has a filter byte explaining how that row is to
be interpreted. Pixel information can be derived from
preceding pixels, pixels above it, or a combination. Also
some averaging can come into play. This way repetitive
information can (for instance) become a sequence of
zeros even when actual changes in pixel values took
place. And such a sequence can be compressed very
well which is why the whole blob is compressed with
zlib.

In pdf zlib compression can be applied to object
streams so that bit is covered. In addition a stream can
be png compressed, which means that it can have filter
bytes that need to be interpreted. But the png file format

can do more: the image blob is actually split in chunks
that need to be reassembled. The image information
can be interlaced which means that the whole comes
in 7 separate chunks that get overlaid in increasing
accuracy. Then there can be an image mask part of the
blob and that mask needs to be separated in pdf (think
of transparency). Pixels can refer to a palette (grayscale
or color) and pixels can be encoded in 1, 2, 4, 8 or
16 bits where color images can have 3 bytes. When
multiple pixels are packed into one byte they need to
be expanded.

This all means that embedding a png file can demand
a conversion and when you have to do that each run,
it has a performance hit. Normally, in a print driven
workflow, one will have straightforward png images:
1 byte or 3 bytes which no mask and not interlaced.
These can be transferred directly to the pdf file. In
all other cases it probably makes sense to convert the
images beforehand (to simple png or just pdf).

So, to summarize the above: a modern TEX engine
supports image inclusion natively but for png images
you might need to convert them beforehand if runtime
matters and one has to run many times.

Hans Hagen


