
Hans Hagen VOORJAAR 2019 31

Is TEX really slow?

The question
Sometimes you read complaints about the performance
of TEX, for instance that a LuaTEX job runs slower than
a pdfTEX job. But what is actually a run? Consider the
following example (in ConTEXt speak):

\starttext
Hello \TeX\ {\bf world}!

\stoptext

In the next few pages I will try to explain what happens
when you process some text and why even such a
simple TEX job takes about half a second to process on
my laptop.

Starting up
When we start up the TEX engine (one of pdfTEX,
X ETEX or LuaTEX), the first thing the program does is
figuring out in what environment it is running. How
is the TEX resource tree organized and what format file
is to be loaded (we assume a production run here)?
The format file, which is just a saved memory dump,
relates to a macro package and after it has been loaded
additional loading can happen, triggered by the macro
package. A ConTEXt format file for LuaTEX is 11.6 MB
(11.0 MB for LuajitTEX), 8.3 MB for pdfTEX and 4.8 MB
for X ETEX. Just for the record: creating a MkIV format
for LuaTEX takes 4.8 seconds (a bit less for LuajitTEX),
making a MkII format for pdfTEX needs 10.8 seconds
and for X ETEX uses about 6.9 seconds, just to indicate
the spread. If you’re a LATEX user, can you predict the
relative values for that package?

In LATEX, before you start the text in your document,
you load one or more packages, while in ConTEXt
everything is already loaded. So, due to the much
smaller format file normally LATEX wins here in terms
of speed, unless you start adding lots of functionality
via packages. Before the actual typesetting begins for
sure a couple of fonts have to be loaded and the math
subsystem has to be set up. All this takes time but with
ssd disks and plenty of memory on a modern machine
with proper caching of files, it happens quite fast. Next
time you reboot your machine, just compare the first
TEX run with a successive one and you will see how
fast disks and proper file caching help.When you have a
short document, the startup timematters, but when you

have a document of 200 pages, it can often be neglected.
Nevertheless it helps accepting performance penalties
when you consider what happens.

The time spent on initializing the file system depends
on the size of the TEX resource tree that you use. If you
decided to install all there is, you pay a price because
the file databases are large. On the other hand, if you
consider leaving out plain TEX or ConTEXt, you’re not
savingmuch. For instance, if you use an eight bit engine
and therefore eight bit fonts, and when you then also
want to typeset some cjk text, you end up with huge
(for instance) ttf fonts being turned into a collection of
small fonts. We’re talking about hundreds of extra files
here. And in a TEX tree there can be many such font
collections. Another example is the TEXGyre collection.
When you use a wide engine (Unicode aware) you can
do with a dozen fonts (otf), but when you use an eight
bit engine, you end up with hundreds of files (tfm, vf,
afm, pfb,map files, etc.), each for a specific encoding. So,
if speedmatters: try to be lean andmean.When I started
with using LuaTEX in ConTEXt, we already were using
so called minimals with pdfTEX: an as small as possible
TEX tree. By using Lua instead of the built-in libraries
we could actually speed up the startup even more.

Loading the format itself is basically just copying
bytes to well defined memory locations.The only factor
that can delay this is when we use formats that are
portable across operating systems and hardware archi-
tectures. In that case we get a hit from byte swapping:
little endian becomes big endian. The interesting fact
here is that most users are on platforms that suffer from
this swapping, but the good news is that nowadays dis-
tributions don’t use portable formats. When we found
out that this delayed format creation and loading, in
LuaTEXwe therefore permanently disabled this feature.
We also compress the format (zip level 3) which speeds
up loading too. One reason why a pdfTEX format is
relatively large is that it is not compressed while it has
a lot of hyphenation patterns embedded too.The reason
why a ConTEXt format file for LuaTEX is much larger
than one for X ETEX (which also has patterns) is that in
MkIV (which is ConTEXt for LuaTEX) we have quite a
lot of Lua code and also quite some metadata about for
instance characters, something that X ETEX gets from
elsewhere.



32 MAPS 49 Hans Hagen

So, when the bytes in the format file have become
tokens in TEX memory space, the job can start. Loading
a bunch of extra macros is pretty fast, and often not
measurable, but there are exceptions. If you load for
instance tikz a truckload of files gets looked up and
loaded, and that takes time. Loading additional files is
not just copying bytes, but involves converting them
to tokens, storing them in memory, maybe doing some
calculations, etc. It sounds bad, but you just get what
you ask for and the rewards are probably worth it. The
only difference between engines in this stage is that
X ETEX and LuaTEX are using utf which involves a bit
more work in parsing the input.

Nowadays fonts are seldom preloaded so the ones
to be used have to be read from disk and converted
into a suitable format for TEX. And this is again where
differences between engines start showing up. Loading
a tfm file is pretty fast as it’s just some byte juggling
and there are not that many bytes involved: widths,
a limited set of heights and depths, possibly a hand-
ful of ligature definitions and some kerning pairs. A
wide engine has to interpret a rather large OpenType
font resource and filter the information that it needs:
dimensions but also OpenType features (although this
depends on how these are processed). Some of these
properties are passed from Lua to TEX. However, when
you use more than basic Latin, loading these much
larger files pays off because we don’t need to deal with
specific encoding related instances.

Somewhat related is loading of hyphenation pat-
terns. In LuaTEX this is delayed so you only load what
is needed but otherwise these are part of the format file
and the more languages a package supports, the more
get loaded. Because nowadays patterns are defined in
utf this means that making a format file (which doesn’t
happen often) takes more time in pdfTEX than in the
other engines, because this encoding is to be somehow
mapped onto a (bunch of) eight bit encoding(s). This
brings us to the users input.

Often TEX is used for English documents but what
if your document is encoded in utf and has substantial
amounts of Greek, Cyrillic or Chinese? In that case
you end up with lots of two and three byte codes. In
pdfTEX this can be handled by making the first byte an
active character (a command) that then looks ahead and
interprets the following bytes. This is often not enough
because each code range might demand its own font,
so switching fonts is needed too. In X ETEX and LuaTEX
that comes for free. So, conclusions about LuaTEX being
slower than pdfTEX depend on the language and script
you use! For instance, in pdfTEX typesetting Arabic is
macro magic, while in LuaTEX Lua and in X ETEX the
engine do the work.

We already mentioned math. Here it depends on the
way math is supported in a macro package. Do we

use many families and eight bit fonts, or do we use
OpenType math, or do we use a mixture? Do we set
up most and store it in the format, or do we delay this
till runtime? Do we want to mix different math fonts
in one document? Do we use regular and bold (heavy)
math? Do we support bidirectional math?

Anyway, by the time we’re past \starttext and
can start with typesetting, we already let the engine
do a lot. When you’re staring at your console, also
realize that this all happens in an interpreted language,
where macros get expanded, token lists get created and
destroyed and all calculations happen by interpretation.
Often TEX looks ahead and has to push back tokens
into its input. And, grouping means that we have a
save stack so that after a group ends adapted registers
have to be restored. Although it is not strictly true, you
can consider TEX to run on a virtual machine with a
large instruction set. And as the meaning or macros can
change any time, there is not that much just-in-time
optimization possible. If you say \tracingall at the top
of you document you get an idea what we’re talking
about.

Typesetting text
When TEX sees the Hello \TeX\ {\bf world}! the H
tells the engine to start a new paragraph. That itself
can trigger a lot because a macro package can hook all
kind of actions into \everypar. But, when that is done,
TEX starts consuming the characters that make up the
paragraph and it expands macros on its way till \par
or an empty line is seen. At that moment characters,
kerns, penalties, glue, rules . . . all became nodes that
got appended to the current node list. When done with
that TEX will launch the par builder.

There is a conceptual difference between pdfTEX
and LuaTEX with respect to the paragraph builder. I
can’t speak of X ETEX as I don’t know how that works
internally but it can’t be far from either of these two. In
pdfTEX constructing the so called node list and figuring
out line breaks is interleaved with hyphenation, font
kerning and ligature building. Traditional TEX is very
optimized to do only what is needed here.

In LuaTEX these stages are split: we collect, then
we hyphenate, build ligatures, kern glyphs, and then
break the result into lines. Each is optional and can be
overloaded by callbacks (which is why there are split
stages).This is how for instanceOpenType font features
can be applied and special demands of scripts can be
met: by intercepting the node list at certain points in the
process. Performance wise, pdfTEX is the winner here.
But, only when we’re talking basic Latin. Anything
more complex, and especially a mix of languages and
scripts pays a price. Even then X ETEX and LuaTEX can
be slower simply because more advanced font features
are applied. Quality carries a burden (although today’s



Is TEX really slow? VOORJAAR 2019 33

documents in most cases don’t look much better than
before).

The paragraph building itself is more or less the same
in the engines: first TEX tries without hyphenation.
Keep in mind that in LuaTEX the list always is in a
hyphenated form, i.e. has discretionary nodes added. If
that fails, a hyphenated pass is applied and when TEX
is not satisfied, an emergency pass can happen that will
stretch or shrink spacing to the extent that makes all
happy.

The pdfTEX engine introduced protrusion (hanging
glyphs in the margin) and expansion (stretching glyphs
so that excessive spacing become less prominent). It
uses additional font instances that get created on the
fly. In LuaTEX we support the same but don’t do it
the same way because there we keep information in
the glyph nodes. This is more efficient and also gives
nicer code. No matter what method is chosen, enabling
these mechanisms hit performance. And it looks like
some TEXies really think that all will look better so they
enable this feature by default, so they always suffer.

As an intermezzo: enabling something by default can
always come at a price. A good example is synctex,
which will add a 5 to 10% overhead to a run. The same
is true for inefficient styles. You can load lots of fonts
that you never use and it will add runtime.

After the par builder has done its work it hands over
the result to the box builders or page builder. There
decisions will be made and additional action can be
triggered. For instance, the page builder can decide to
launch the output routine which is a hook that can do
lots of things, depending on the macro package. One
of these can be constructing the page body, adding
headers and footers and shipping out the page to the
output medium, for instance a pdf file.

Shipping out a page is not that spectacular. The page
is just a nested linked list that gets serialized to a stream
of pdf codes. But, in the process information is col-
lected about what characters from what fonts are used.
If used, hyperlinks can be injected. Location specific
information can be flushed to an auxiliary file. The
more features you enable the more runtime is involved.
There is probably not that much difference between the
engines here.

Because in LuaTEX nearly all steps can be replaced or
extended by callbacks (Lua functions) a macro package
can add its own overhead. And here is where comments
about performance become somewhat lame. The more
you hook in, themore overhead is added. And theworse
the code is, the larger the penalty. One cannot blame
an engine for that. Because the LuaTEX engine itself
is quite efficient, users (or macro packages) can add
seconds or even minutes to a run. It is often easier
to blame LuaTEX than your own programming skills
and/or demands.

This effect is not limited to callbacks. Macros and
rendering feature related mechanisms can be inefficient
too. A macro package writer can pay attention to that,
but a user can have a dramatic impact by adding bad
macros, redundant font switches, useless calculations
etc. It can really add up! Of course this also relates
to how often something is used. For instance, an im-
age inclusion subsystem can involve lots of (possibly
inefficient) code, but because the number of images is
normally small it has no significant impact on the run.
The final inclusion of the resource will definitely have
more impact.

In the small example text above, not much is hap-
pening: only a font switch. But again, a simple \bf can
be either a straightforward switch to a font (basically
changing the current font id) or it can involve some
more: housekeeping, loading a font, triggering related
mechanisms to also adapt to bold, etc. In most cases
one can assume that a macro package writer has done
a decent job on it.

In this small sentence we see the \TeX macro. The
original definition by Don Knuth is not that complex
but still involvesmoving glyphs around. In ConTEXt the
definition is such that the rendering adapts itself to the
current font as good as possible. You really don’t want
to see the full expansion (10.000 such expansions take
half a second so in practice it goes unnoticed.)

Wrapping up
Once we’ve arrived at the \stoptext the engine needs
to wrap up the result. At that moment, it is known
which fonts are used and what characters from these
fonts are referred to. The shapes of the used glyphs
need to be embedded. Normally this process is quite
efficient, but just as one can see some hiccup before
\starttext, an extra hiccup can happen after \stoptext
(or whatever your macro package uses).

After the run, a decision has to be made about
successive runs to get the table of contents right, fix
cross references, sort registers, massage bibliographies
and more. In ConTEXt dealing with this is part of
the regular run but one can also delegate this to an
external program. Anyhow it adds to the runtime (or
time between runs). Macro packages differ in the way
they deal with this.

Conclusion
In ConTEXt performance is measured in pages per
second. An average document does between 20 and 30
pages per second. Of course when you need multiple
runs the effective average drops. But, because input
can also be for instance xml, performance is then also
influenced by interpreting this format. And, when your
pdf needs to be tagged, again some overhead can be
added (typically you can delay that overhead till the



34 MAPS 49 Hans Hagen

final run). When you have all kinds of MetaPost code,
some runtime gets added (but not much) even when
that happens realtime during typesetting. When you
use color or backgrounds, in text or tables or in the
page body, it comes at a price. But, even then, runtime is
still acceptable: processing the 300 page LuaTEXmanual
on my laptop currently takes some 13 seconds and
although processors don’t become faster I bet that on a
more modernmachine it goes below 10 seconds (maybe
even lower than I expect) but I can’t test that right now.

So let’s summarize the above. When you feel that
your TEX job runs slow, try to answer these questions:

� What engine do I use, an eight bit or a Unicode
aware one?

� What kind of fonts do I use, eight bit (Type1) or
OpenType?

� How much do I ask from the font system?
� Do I really need expansion and/or protrusion?
� How much math magic do I need?
� Do I really need to load all these extra packages

(modules)?
� Is my styling okay?
� Are my own macros, when used in abundance, top

notch?
� Do I really need to enable all these features now?

Quite likely pdfTEX, X ETEX and LuaTEX will all stay
around, so you can choose whatever suits you best.
However, the choice might also depend on to what
extent the macro package supports all engines. For
ConTEXt there is not much choice. All recent develop-
ment relates to LuaTEX, so you’re stuck with that. The
good news is that on average a LuaTEX run is faster
than one with pdfTEX or X ETEX. It also offers waymore,
which is why most users made the switch.

Typesetting the MetaFun manual could easily take
many minutes in pdfTEX, but in LuaTEX it takes less
than 20 seconds. We sometimes process collections of
xml files, for instance math schoolbooks of hundreds
of pages. Thousands of small files are combined run-
time based on student profiles and the colorful result
has more (small) images than pages, typeset alongside
the text. Realtime content selection, xml coding error
correction, all happens each run. This takes less than
a minute for the few runs needed to construct the
document compared to close to an hour in the pdfTEX
setup (if it’s possible at all). Comparing performance is
more than clocking a run.

When pondering processing speed, it might help
to think of what actually has to happen when your
document gets processed.Then youmight also consider
how fast a 300 page equivalent webpage (with the same
amount of tables, images, math, etc) would render and
with what memory footprint (apart from assembling
that page). Or, howwould a word processor do a change
in page 5 that affects all following pages. Or how does
a desktop publishing system deal with your work in
progress in terms of preview, memory management,
generating output, etc. Probably TEX and friends, which
are rather robust and reliable, won’t come out that bad.
So we end with asking ourselves:

� Is the alternative, using another program, really
faster?

An the equally valid question:

� Can an alternative tool support me in a way that I
like?

Hans Hagen


