
Hans Hagen VOORJAAR 2019 31

Following up on LuaTEX

Introduction
From the ConTEXt mailing list one can get an impres-
sion of howConTEXt is used. It’s mostly for typesetting
books, manuals and sometimes special products and
the input is either TEX or xml. I have no clue about
articles, but in that domainMSWord, LATEX andmaybe
even Google Docs compete each other. As LATEX is
encouraged (or maybe even enforced) on students for
writing reports and such there is also not some body of
default styles that are part of the package and probably
hardly any user expects pre-cooked solutions. Anyway,
I’m always surprised by the diversity of problems that
users try to solve. From posts you can also deduce
that using Lua becomes more popular as a means to
deal with data from various sources. The only measure
that we have to what extent the functionality provided
is used is the quality of answers on mailing lists and
support platforms and they are often of high quality.

It is interesting that outsiders sometimes think that
ConTEXt development is driven by commercial usage
but this mostly untrue. We started serious development
in the 90’s because we wanted the materials that we
produced to look sort of nice and TEX could be used
for that. Over a few decades the package evolved, but
to a large extent that was driven by users as well as
by exploration of specific user demands. The fact that
we could use some features ourselves was nice, but the
investment in time is in no way compensated by the
revenues. It’s the joy of playing with TEX, MetaPost
and Lua as well as the interaction with the ConTEXt
community that drives development.

Sometimes suggestions are made that one should use
a ‘proper’ computer language instead of TEX lingua,
but personally I would not use such an approach as it
is rather painful. There is nothing wrong with coding
a document in some specific document structure or
content related language instead of clumsy function
calls. Take alone the concept of grouping properties. It
is therefore also not correct to conclude that ConTEXt
development eventually will end up with a pure (e.g.)
Lua interface to solve typesetting related problems.
Hardly anyone asked us to provide solutions using TEX:
if we use ConTEXt it’s because we know how to use it

efficiently. Using TEX coding is a convenient side effect
no one really cares about as long as something works.

It must be noted that I, and probably also other users,
see LuaTEX as a convenient Lua engine and especially
in combination with the load of libraries that comes
with ConTEXt, it can do a lot. An extreme example
is that I run some domotica applications with LuaTEX
and Lua scripts. At the last ConTEXt meeting Taco
demonstrated how he uses LuaTEX and friends for his
miniature railway tracks. Other presentations demon-
strated massive number crunching and visualization of
data collected over time.

It often puzzles me why we never run into customers
who see(k) the potential of this TEX, MetaPost, and
Lua mix. It is pretty hard to beat this combination in
performance, quality, convenience and time spent to
reach a solution, but it is probably too strange a mix.
This lack of market also means that there is no real long
term agenda needed and therefore development only
relates to exploration of (often very specialized) user
demand on the one hand and robust continuity on the
other.

What next
Now that LuaTEX has reached a more or less stable
state, the question is: what will happen next. Devel-
opment has been bound rather tightly to ConTEXt
development, but now that other macro packages also
(can) use LuaTEX, we’re sort of stuck and need to freeze
functionality in order to guarantee long term stability
within the TEX ecosystem.However, as the introduction
suggests, we’re in no way bound to this, simply because
no one pays for development. We can move on as we
like. Apart from changes in the way fonts and encod-
ings are dealt with (moremodern techniques) ConTEXt
is pretty stable in most areas. The user interface is
downward compatible so for users progress only has
benefits.

There is a frontend that stays rather close to original
TEX and MetaPost, there is a backend that produces
efficient pdf and provides a high level of control and
there are plenty of hooks to make the machinery do
as you wish, for instance using Lua. Therefore, while
with version 1.0 we got out of the beta stage (already



32 MAPS 49 Hans Hagen

for years LuaTEX could be used in production but the
interfaces evolved over time), with version 1.1 we’re
more or less frozen in functionality for the benefit of
general usage.

But that doesn’t stop ConTEXt development. We
still want to improve some of the more tricky parts of
typesetting (the TEX part), we like to add more graphic
capabilities (the MetaPost part) and we will provide
more interfaces (the Lua part). In doing so, a follow
up on LuaTEX will happen, but in such a way that the
version 1.x range will not be impacted much. Of course
we might occasionally feed back improvements from
the follow up to the ancestor. This further development
is again closely related to ConTEXt, and just as in
the beginning of LuaTEX development, we will not
bother with usage elsewhere: we need the freedom
to experiment and the ConTEXt ecosystem and user
attitudes provide a healthy environment for that.

An impression
During LuaTEX development some ideas have been
postponed but it was around the 2018 ConTEXt meet-
ing that I started thinking about a follow up and actu-
ally did some explorative coding in the ConTEXt code
base. At that meeting this follow upwas mentioned and
since there were no objections we can say that at that
time the next stage was entered.

In the last few months of 2018 and January 2019
the first versions of what we will tag as LuaMetaTEX
(which identifies itself as LuaTEX 2.0 internally) became
production ready. At that time the ConTEXt code could
also emulate the new behavior on regular LuaTEX, and
when tested by some other developers no real problems
surfaced. Because the beginning of the year is also the
moment that TEXLive code freeze happens the public
ConTEXt code is not affected. Also, real experiments
can only start when we also release the next generation
engine, which will happen later this year.

Therefore, the roadmap is kind of like this. After the
code freeze, some of the ConTEXt internals will change
and although I expect users reporting issues, there is
not much that can’t be solved fast. And, ConTEXt
users have always been willing to update. Then, later
in 2019 the alternative engine will surface and at some
point we will switch to this one as default. Binaries can
be generated using the compile farm at the ConTEXt
garden. Of course it will be possible for users to use
stock LuaTEX, but just as whenwe frozeMkII, wemight
bind some functionality to a specific engine. We will
still mostly use MkIV code, but the follow up will be
tagged lmtx, which stands for Lua,MetaPost, TEX and
xml.

A few details
So what is this new engine and why does ConTEXt
need it? And can’t we do the same with LuaTEX al-
ready? I leave answering this to the reader and focus
on what we are doing instead. The current LuaTEX
program is constructed from a TEX kernel that itself is
derived from pdfTEX and snippets of Aleph. It has the
MetaPost library embedded and uses Lua as extension
language. The Lua instance is accompanied by some
libraries. The ConTEXt distribution is a bunch of TEX,
MetaPost and Lua files as well as some resources
(mostly fonts) that are a subset of what TEXLive comes
with. The process of typesetting is managed by some
scripts (mtxrun and context) and on MS Windows a
binary stub is used to launch them. In principle, if we
assume MkIV being used, the only binary needed is
LuaTEX, plus those stubs.

As it had the complete MetaPost library on board,
the dependencies in LuaTEX of a few years back were
kind of complex, mostly due to the optional png output.
But we don’t need that at all. So, when we removed that
option, the binary shrunk from some 10MB to about
7MB. These bytes contain the frontend and backend
code and some libraries (in some cases the Lua and
kpse libraries are external to the main binary). But
because ConTEXt doesn’t need all these libraries and
because only a small part of the backend code is used,
the question surfaced “What if we go lean and mean?”

So, as a first step I copied the experimental branch
and started pruning. It took a couple of iterations to
figure out how to do that best while still being able
to produce documents, but step by step code could be
removed with success. I started with stripping down
the backend. For instance, given the nature of ConTEXt
code, it was quite doable to generate the page stream
ourselves and at some point only font embedding,
image inclusion and object management was left. Ac-
tually, pdf inclusion could already be brought under
ConTEXt control so only bitmaps had to be dealt with.
Replacing the bitmap inclusion by Lua code made it
possible to drop the png libraries (jpeg inclusion didn’t
use libraries). For the record: this actually opens up
some possibilities for future image inclusion.

Next came font embedding, which involves sub-
setting. Because we support variable fonts there was
already quite some work done to enable kicking out
the code that deals with it possible. As starting from
the existing code did not make much sense the stan-
dard was taken as reference and eventually embedding
worked okay.The only drawback here is that we need a
bit more font caching but that is hidden from the user.
On the positive sidewe find ourselveswith a potentially
more powerful virtual font system.



Following up on LuaTEX VOORJAAR 2019 33

With respect to the backend, that left object man-
agement and because most work was already done in
ConTEXt itself, kicking out the whole backend was not
that muchwork. In the end all backend codewas indeed
removed and the pdf file was generated completely by
ConTEXt itself. Interesting is that the generated pdf
code looks a bit nicer on the one hand and it also
turned out to be a bit more efficient. One reason for this
is that the backend kind of knows what the frontend
does.Therewas still a performance hit when comparing
for instance compiling the LuaTEX manual but at this
time there is no such penalty anymore, simply because
other ConTEXt components take advantage of this (and
maybe also because in the meantime some code in the
engine has been optimized).

With the backend code gone the binary already
shrunk significantly. Next to go was the (not used in
ConTEXt) slunicode library. The Lua image library
went away too as did the pdf backend interface (I
kept pplib). Then removing the font loader was on the
agenda and it could be dropped easily because it wasn’t
used at all. Apart from creating an again smaller binary,
it also removed dependencies and compilation became
easier and faster. When you look at how TEX deals
with fonts, it is clear that not that much is needed. For
instance OpenType fonts are processed in Lua and that
code uses resources not present (and needed) by TEX,
and with the backend gone even less is needed. That
meant that I could limit the amount of data passed to
and stored in TEX for traditional font handling: TEX only
needs dimensions, some math properties, and (only) in
so called base mode, kerns and ligatures. This makes
the memory footprint smaller and might make loading
huge fonts a bit faster. When that code was simplified,
it was a small step to removing the traditional tfm
loading code, and because virtual fonts are only dealt
with in the (no longer hard coded) backend that code
could also go. Support for traditional eight bit fonts
based on tfm files (normally we turn such fonts into
wide fonts using information from afm and pfb files) is
still present but a Lua font loader is used instead.

By the time all this was done I decided to remove the
kpse library because in ConTEXt we use a Lua variant.
A future version can bring kpse back as loadable library
(in principle one could use the ffi interface for this).
By removing all kind of dependencies the startup code
was also adapted.The engine can now function as a stub
too, whichmeans that a ConTEXt distribution becomes
simpler as well. At some point we will default to MkIV
only and then only one (or two if you add the LuaJIT
companion) binary is needed.

I will not go into too much of the details this time
(and there are many). As with the development of
LuaTEX, I keep track of choices and experiments in a
document and some chapters can make it into articles.

In between the mentioned stripping down I decided to
also clean up the directional model. In spite of what
one might think, there is not that much code dealing
with this. If we stick to bidirectional typesetting, the
frontend doesn’t really care what it sees. It was the
backend that took care of reversed text streams and
nowwe provide that backend ourselves. So, when won-
dering what to do with vertical typesetting, I realized
that this was actually not supported in a useable fashion
at all so why not let that go? And so it went away and
directional support was simplified: we only have two
directions now. It is worth mentioning that the concept
of a body and page direction already didn’t make much
sense (it is the macro package that deals with this) so
these are gone. Also gone are (related) page dimensions:
no hard coded backend means that there is no need for
them.The keyword driven direction directives with the
three letter acronyms have been removed so we only
have numeric ones now. It is trivial to define commands
that provide the old syntax.

So how about vertical typesetting? As an experiment
I’ve added some properties to boxes: orientation and
offsets; more about that in another article.This is some-
thing that is dealt with in the backend so it was a nice
experiment to see how easy that could be done. This
(plus the new directional approach) is something that
might be ported back to stock LuaTEX, but let’s first see
how it will be used in ConTEXt so that it can stabilize.

The current state
By the time we achieved all this (plus a bit of cleanup)
the binary had shrunk to well below 3MB which is nice
because it is also used as Lua interpreter. There are
hardly any dependencies left. It was a bit cumbersome
to explore howmuch of the code base could be stripped
and how the build related scripts and setups could
be simplified. One can wonder how simple we can
get, given the pretty complex TEX build structure, but
this is the motto: “If on some mainstream platform
Lua can be compiled without hassles, then compiling
LuaMetaTEX should be easy too.”

This brings us to some of the main objectives of this
project. First of all, the idea is to converge to a relatively
small LuaMetaTEX, independent of libraries outside
our control, one that is easy to compile. It provides
an opened up more or less traditional core TEX but
delegates much of the modern font handling to Lua.
The backend can be a Lua job too. Generic font code
we already provide in ConTEXt, and maybe at some
point some of the code might show up as generic; we’ll
see. Apart from providing hooks (callbacks) the engine
stays close to original TEX in concept. After all, that core
also delegates the backend to extensions or external
programs. We kind of go back to the basics.



34 MAPS 49 Hans Hagen

I use the LuaTEX manual as well as the ConTEXt
test suite for testing but for sure user input is needed.
Among the issues to take care of is for instance the
ability for users to use tikz, which dumps low level pdf
code and creates objects. So, for that I needed to provide
a compatibility layer. However, that is probably the only
package from outside ConTEXt that is used, so I might
as well make that bit of the interface a runtime option
at some point. After all, there is no need to pollute
the regular code. In a similar fashion I provide an img
library mockup but that one might be dropped: users
should use the high level interfaces instead. These are
typical issues discussed at meetings.

For quite some time this variant will be a moving
target that aims at ConTEXt and the reason for this is

in the beginning of this article: we do this for the benefit
of users but also for fun. We also want a vehicle that
permits us to freely experiment (for instance with more
advanced virtual fonts) without worrying about usage
elsewhere. And eventually it will be, like its ancestor
LuaTEX, a stable general purpose alternative, but one a
bit closer to where it all started: original TEX.

In order to make experimenting easier, there will be
an updated installer for the ConTEXt garden. That one
will use http instead of Rsync and use a MkIV only set
of resources. All binaries except for the engine and two
runners are dropped and no MkII specific and generic
files are present. Apart from power users nobody might
notice this move.

Hans Hagen


