
Hans Hagen VOORJAAR 2020 53

All those TEX’s

This is about TEX, the program that is used as part of
the large suite of resources that make up what we call a
‘TEX distribution’, which is used to typeset documents.
There are many flavors of this program and all end
with tex. But not everything in a distribution that ends
with these three characters is a typesetting program.
For instance, latex launches the amacro package LATEX,
code that feeds the program tex to do something useful.
Other formats are Plain (no tex appended) or ConTEXt
(tex in the middle. Just take a look at the binary path
of the TEX distribution to get an idea. When you see
pdftex it is the program, when you see pdflatex it is
the macro package LATEX using the pdfTEX program.
You won’t find this for ConTEXt as we don’t use that
model of mixing program names and macro package
names.

Here I will discuss the programs, not the macro
packages that use them. When you look at a complete
TEXLive installation, you will see many TEX binaries.
(I will use the verbatim names to indicate that we’re
talking of programs). Of course there is the original
tex. Then there is its also official extended version etex,
which is mostly known for adding some more prim-
itives and more registers. There can be aleph, which
is a stable variant of omega meant for handling more
complex scripts. When pdf became popular the pdftex
program popped up: this was the first TEX engine that
has a backend built in. Before that you always had to
run an additional program to convert the native dvi
output of TEX into for instance PostScript. Much later,
xetex showed up, that, like Omega, dealt with more
complex scripts, but using recent font technologies.
Eventually we saw luatex enter the landscape, an en-
gine that opened up the internals with the Lua script
subsystem; it was basically a follow up on pdftex and
aleph.

The previous paragraph mentions a lot of variants
and there are plentymore. For cjk and especially Japan-
ese there are ptex, eptex, uptex, euptex. Parallel to
luatex we have luajittex and luahbtex. As a follow
up on the (presumed stable) luatex the ConTEXt com-
munity now develops luametatex. A not yet mentioned
side track is nts (New TEX system), a rewrite of good
old TEX in Java, which in the end didn’t take off and
was never really used.

There are even more TEX’s and they came and went.

There was enctexwhich added encoding support, there
were emtex and hugeemtex that didn’t add functionality
but made more possible by removing some limits on
memory and such; these were quite important. Then
there were vendors of TEX systems that came up with
variants (some had extra capabilities), like microtex,
pctex, yandytex and vtex but they never became part
of the public effort.

For sure there are more, and I know this because not
so long ago, when I cleaned up some of my archives,
I found eetex (extended 𝜀-TEX), and suddenly remem-
bered that Taco Hoekwater and I indeed had exper-
imented with some extensions that we had in mind
but that never made it into 𝜀-TEX. I had completely
forgotten about it, probably because we moved on to
LuaTEX. It is the reason why I wrap this up here.

In parallel there have been some developments in
the graphic counterparts. Knuts metafont program got
a Lua enhanced cousin mfluawhile metapost (aka mpost
or mp) became a library that is embedded in LuaTEX
(and gets a follow up in LuaMetaTEX). I will not discuss
these here.

If we look back at all this, we need to keep in mind
that originally TEX was made by Don Knuth for type-
setting his books. These are in English (although over
time due to references he needed to handle different
scripts than Latin, be it just snippets and not whole
paragraphs). Much development of successors was the
result of demands with respect to scripts other than
Latin and languages other than English. Given the fact
that (at least in my country) English seems to become
more dominant (kids use it, universities switch to it)
one can wonder if at some point the traditional engine
can just serve us as well.

The original tex program was actually extended
once: support for mixed usage of multiple languages
became possible. But apart from that, the standard pro-
gram has been pretty stable in terms of functionality. Of
course, the parts that made the extension interface have
seen changes but that was foreseeable. For instance,
the file system hooks into the kpse library and one
can execute programs via the \write command. Virtual
font technology was also an extension but that didn’t
require a change in the program but involved postpro-
cessing the dvi files.



54 MAPS 50 Hans Hagen

The first major ‘upgrade’ was 𝜀-TEX. For quite a
while extensions were discussed but at some point the
first version became available. For me, once pdfTEX
incorporated these extensions, it became the default.
So what did it bring? First of all we got more than
256 registers (counters, dimensions, etc.).Then there are
some extra primitives, for instance \protected that per-
mits the definition of unexpandable macros (although
before that one could simulate it at the cost of some
overhead) and convenient ways to test the existence of
a macro with \ifdefined and \ifcsname. Although not
strictly needed, one could use \dimexpr for expressions.
A probably seldom used extension was the (paragraph
bound) right to left typesetting. That actually is a less
large extension than one might imagine: we just signal
where the direction changes and the backend deals with
the reverse flushing. It was mostly about convenience.

The Omega project (later followed up by Aleph)
didn’t provide the additional programming related
primitives but made the use of wide fonts possible. It
did extend the number of registers, just by bumping the
limits. As a consequence it was much more demanding
with respect to memory. The first time I heard of 𝜀-TEX
and Omega was at the 1995 euroTEXmeeting organized
by the ntg and I was sort of surprised by the sometimes
emotional clash between the supporters of these two
variants. Actually it was the first time I became aware of
TEX politics in general, but that is another story. It was
also the time that I realized that practical discussions
could be obscured by nitpicking about speaking the
right terminology (token, node, primitive, expansion,
gut, stomach, etc.) and that one could best keep silent
about some issues.

The pdfTEX follow up had quite some impact: as
mentioned it had a backend built in, but it also permit-
ted hyperlinks and such by means of additional primi-
tives. It added a couplemore, for instance for generating
random numbers. But it actually was a research project:
the frontend was extended with so called character
protrusion (which lets glyphs hang into the margin)
and expansion (a way to make the output look bet-
ter by scaling shapes horizontally). Both these exten-
sions were integrated in the paragraph builder and are
thereby extending core code. Adding some primitives
to the macro processor is one thing, adapting a very
fundamental property of the typesetting machinery is
something else. Users could get excited: TEX renders a
text even better (of course hardly anyone notices this,
even TEX users, as experiments proved).

In the end Omega never took off, probably because
there was never a really stable version and because
at some time X ETEX showed up. This variant was first
only available on Apple computers because it depends
on third party libraries. Later, ports to other systems
showed up. Using libraries is not specific for X ETEX.

For instance pdfTEX uses them for embedding images.
But, as that is actually a (backend) extension it is not
critical. Using libraries in the frontend is more tricky as
it adds a dependency and the whole idea about TEX was
that is is independent. The fact that after a while X ETEX
switched libraries is an indication of this dependency.
But, if a user can live with that, it’s okay. The same
is true for (possibly changing) fonts provided by the
operating system. Not all users care too strongly about
long term compatibility. In fact, most users work on a
document, and once finished store some pdf copy some
place and then move on and forget about it.

It must be noted that where 𝜀-TEX has some limited
right to left support, Omega supports more. That has
some more impact on all kinds of calculations in the
machinery because when one goes vertical the width
is swapped with the height/depth and therefore the
progression is calculated differently.

Naturally, in order to deal with scripts other than
Latin, X ETEX did add some primitives. I must admit
that I never looked into those, as ConTEXt only added
support for wide fonts. Maybe these extensions were
natural for LATEX, but I never saw a reason to adapt the
ConTEXt machinery to it, also because some pdfTEX
features were lacking in X ETEX that ConTEXt assumed
to be present (for the kind of usage it is meant for). But
we can safely say that the impact of X ETEX was that the
TEX community became aware that therewere new font
technologies that were taking over the existing ones
used till now. One thing that is worth noticing is that
X ETEX is still pretty much a traditional TEX engine: it
does for instance OpenType math in a traditional TEX
way. This is understandable as one realizes that the
OpenType math standard was kind of fuzzy for quite a
while. A consequence is that for instance the OpenType
math fonts produced by the Gust foundation are a kind
of hybrid. Later versions adopted some more pdfTEX
features like expansion and protrusion.

I skip the Japanese TEX engines because they serve a
very specific audience and provide features for scripts
that don’t hyphenate but use specific spacing and line
breaks by injecting glues and penalties. One should
keep in mind that before Unicode all kinds of encod-
ings were used for these scripts and the 256 limitations
of traditional TEX were not suited for that. Add to that
demands for vertical typesetting and it will be clear
that a specialized engine makes sense. It actually fits
perfectly in the original idea that one could extend TEX
for any purpose. It is a typical example of where one can
argue that users should switch to for instance X ETEX
or LuaTEX but these were not available and therefore
there is no reason to ditch a good working system just
because some new (yet unproven) alternative shows up
a while later.



All those TEX’s VOORJAAR 2020 55

We now arrive at LuaTEX. It started as an exper-
iment in 2005 where a Lua interpreter was added to
pdfTEX. One could pipe data into the TEX machinery
and query some properties, like the values of registers.
At some point the project sped up because Idris Hamid
got involved. He was one of the few ConTEXt users
who used Omega (which it actually did support to
some extent) but he was not satisfied with the results.
His oriental TEX project helped pushing the LuaTEX
project forward. The idea was that by opening up the
internals of TEX we could do things with fonts and
paragraph building that were not possible before. The
alternative, X ETEX was not suitable for him as it was
too bound to what the libraries provides (rendering
then depends on what library gets used and what is
possible at what time). But, dealing with scripts and
fonts is just one aspect of LuaTEX. For instance more
primitives were added and the math machinery got an
additional OpenType code path. Memory constraints
were lifted and all became Unicode internally. Each
stage in the typesetting process can be intercepted,
overloaded, extended.

Where the 𝜀-TEX and Omega extensions were the
result of many years of discussion, the pdfTEX, X ETEX
and LuaTEX originate in practical demands. Very small
development teams that made fast decisions made that
possible.

Let’s give some more examples of extensions in
LuaTEX. Because pdfTEX is the starting point there is
protrusion and expansion, but these mechanisms have
been promoted to core functionality. The same is true
for embedding images and content reuse: these are
now core features. This makes it possible to implement
them more naturally and efficiently. All the backend
related functionality (literal pdf, hyperlinks, etc) is
now collected in a few extension primitives and the
code is better isolated. This took a bit of effort but
is in my opinion better. Support for directions comes
from Omega and after consulting with its authors it
was decided that only four made sense. Here we also
promoted the directionality to core features instead of
extensions. Because we wanted to serve Omega users
too extended tfm fonts can be read, not that there
are many of them, which fits nicely into the whole
machinery going 32 instead of 8 bits. Instead of the
𝜀-TEX register model, where register numbers larger
than 255 were implemented differently, we adopted the
Omega model of just bumping 256 to 65536 (and of
course, 16K would have been sufficient too but the
additional memory it uses can be neglected compared
to what other programs use and/or what resources
users carry on their machines).

The modus operandi for extending TEX is to take
the original literate web sources and define change
files. The pdfTEX program already deviated from that

by using a monolithic source. But still Pascal is used
for the body of core code. It gets translated to C before
being compiled. In the LuaTEX project Taco Hoekwater
took that converted code and laid the foundation for
what became the original LuaTEX code base.

Some extensions relate to the fact that we have
Lua and have access to TEX’s internal node lists for
manipulations. An example is the concept of attributes.
By setting an attribute to a value, the current nodes
(glyphs, kerns, glue, penalties, boxes, etc) get these as
properties and one can query them at the Lua end.
This basically permits variables to travel with nodes and
act accordingly. One can for instance implement color
support this way. Instead of injecting literal or special
nodes that themselves can interfere we now can have
information that does not interfere at all (apart from
maybe some performance hit). I think that conceptually
this is pretty nice.

At the Lua one has access to the TEX internals but
one can also use specific token scanners to fetch infor-
mation from the input streams. In principle one can cre-
ate new primitives this way. It is always a chicken-egg
question what works better but the possibility is there.
There are many such conceptual additions in LuaTEX,
which for sure makes it the most ‘aggressive’ extension
of TEX so far. One reason for these experiments and ex-
tensions is that Lua is such a nice and suitable language
for this purpose.

Of course a fundamental part of LuaTEX is the em-
beddedMetaPost library. For sure the fact that ConTEXt
integrates MetaPost has been the main reason for that.

The ConTEXt macro package is well adapted to
LuaTEX and the fact that its users are always willing
to update made the development of LuaTEX possible.
However, we are now in a stage that other macro
packages use it so LuaTEX has entered a state where
nothing more gets added. The LATEX macro package
now also supports LuaTEX, although it uses a variant
that falls back on a library to deal with fonts (like X ETEX
does).

With LuaTEX being frozen (of course bugs will be
fixed), further exploration and development is now
moved to LuaMetaTEX, again in the perspective of
ConTEXt. I will not go into details apart from saying
that is is a lightweight version of LuaTEX. More is
delegated to Lua, which already happened in ConTEXt
anyway, but also some extra primitives were added,
mostly to enable writing nicer looking code. However,
amajor aspect is that this program uses a lean andmean
code base, is supposed to compile out of the box, and
that sourceswill be an integral part of the ConTEXt code
base, so that users are always in sync.

So, to summarize: we started with tex and moved
on to etex and pdftex. At some point omega and xetex
filled the Unicode and script gaps, but it now looks



56 MAPS 50 Hans Hagen

like luatex is becoming popular. Although luatex is
the reference implementation, LATEX exclusively uses
luahbtex, while ConTEXt has a version that targets at
luametatex. In parallel, the [e][u][p]tex engines fill
the specific needs for Japanese users. In most cases,
good old tex and less old etex are just shortcuts to
pdftex which is compatible but has the pdf backend
on board. That 8 bit engine is not only faster than the
more recent engines, but also suits quite well for a
large audience, simply because for articles, thesis, etc.
(written in a Latin script, most often English) it fits the
bill well.

I deliberately didn’t mention names and years as
well as detailed pros and cons. A user should have the
freedom to choose what suits best. I’m not sure how
well TEX would have evolved or will evolve in these
days of polarized views on operating systems, chang-
ing popularity of languages, many (also open source)
projects being set up to eventually be monetized. We
live in a time where so called influencers play a role,

where experience and age often matters less than being
fancy or able to target audiences. Where something
called a standard today is replaced quickly by a new
one tomorrow. Where stability and long term usage of
a program is only a valid argument for a few. Where
one can read claims that one should use this or that
because it is todays fashion instead of the older thing
thatwas the actually the onlyway to achieve something
at all a while ago. Where a presence on facebook,
twitter, instagram, whatsapp, stack exchange is also
an indication of being around at all. Where hits, likes,
badges, bounties all play a role in competing and self
promotion. Where today’s standards are tomorrow’s
drawbacks. Where even in the TEX community politics
seem to creep in. Maybe you can best not tell what
is your favorite TEX engine because what is hip today
makes you look out of place tomorrow.

Hans Hagen
February 2020


