Hans Hagen

Hidden treasures

At ConTgXt meetings we always find our moments to
reflect on the interesting things that relate to TgX that
we have run into. Among those we discussed were some
of the historic treasures one can run into when one
looks at source files. I will show examples from several
domains in the ecosystem and we hereby invite the
reader to come up with other interesting observations,
not so much in order to criticize the fantastic open
source efforts related to TgX, but just to indicate how
decades of development and usage are reflected in the
code base and usage, if only to make it part of the
history of computing.

I start with the plain TEX format. At the top of that
file we run into this:

% The following changes define internal codes as recommended
% in Appendix C of The TeXbook:

\mathcode'**@="2201 % \cdot
\mathcode***A="3223 % \downarrow
\mathcode'**B="010B % \alpha
\mathcode'**C="010C % \beta
\mathcode***D="225E % \land

\mathcode***Y="3221 % \rightarrow
\mathcode***Z="8000 % \ne
\mathcode***[="2205 % \diamond
\mathcode'**\="3214 % \le
\mathcode***]1="3215 % \ge
\mathcode'***="3211 % \equiv
\mathcode'**_="225F % \lor

This means that when you manage to key in one of
these recommended character codes that in AsciI sits
below the space slot, you will get some math symbol,
given that you are in math mode. Now, if you also
consider that the plain TgX format is pretty compact
and that no bytes are wasted,! you might wonder what
these lines do there. The answer is simple: there were
keyboards out there that had these symbols. But, by the
time TgX became popular, the dominance of the 1BMm
keyboard let those memories fade away. This is just
Don’s personal touch I guess. Of course the question
remains if the sources of TAOCP contain these charac-
ters.

1. Such definitions don’t take additional space in the format file.

VOORJAAR 2020

There is another interesting hack in the plain TgX file,
one that actually, when I first looked at the file, didn’t
immediately made sense to me.

\font\preloaded=cmti9
\font\preloaded=cmti8
\font\preloaded=cmti7

\let\preloaded=\undefined

What happens here is that a bunch of fonts get defined
and they all use the same name. Then eventually that
name gets nilled. The reason that these definitions
are there is that when TgX dumps a format file, the
information that comes from those fonts is embedded
to (dimensions, ligatures, kerns, parameters and math
related) data. It is an indication that in those days it
was more efficient to have them preloaded (that is why
they use that name) than loading them at runtime. The
fonts are loaded but you can only access them when you
define them again! Of course nowadays that makes less
sense, especially because storage is fast and operating
systems do a nice job at caching files in memory so that
successive runs have font files available already.

Talking of fonts, one of the things a new TgX user
will notice and also one of the things users love to brag
about is ligatures. If you run the tftopl program on a
file like cmr1@. tfm you will get a verbose representation
of the font. Here are some lines:

(LABEL C f) (LIGC i 0 14) (LIGC f 0 13) (LIGC 1 0 15)
(LABEL 0 13) (LIG C i 0 16) (LIGC 1 0 17)

(LABEL C ') (LIGC * C \)

(LABEL C ') (LIGC ' C ™)

(LABEL C -) (LIGC - C {)

(LABEL C {) (LIGC -C |)

(LABEL C) (LIGC * C <)

(LABEL C ?) (LIGC * C >)

The Cis followed by an asci1 representation and the) by
the position in the font 0 (a number) or C (a character).
So, consider the first two lines to be a puzzle: they define
the fi, ff, fl ligatures as well as the ffi and ffl ones. Do
you see how ligatures are chained?

But anyway, what do these other lines do there? It
looks like ** becomes the character in the backslash slot
and '’ the one in the double quote. Keep in mind that
TgX treats the backslash special and when you want it,
it will be taken from elsewhere. But still, these two liga-

58 MAPS 50

tures look familiar: they point to slots that have the left
and right double quotes.? They are not really ligatures
but abuse the ligature mechanism to achieve a similar
effect. The last four lines are the most interesting: these
are ligatures that (probably) no TgX user ever uses or
encounters. They are again something from the past.
Also, changes are low that you mistakenly enter these
sequences and the follow up Latin Modern fonts don’t
have them anyway.

Actually, if you look at the Metafontand MetaPost
sources you can find lines like these (here we took from
mp.w in the LUATEX repository):

@ @<Put each...@>=
mp_primitive (mp, "=:"
@:=:_H\.{=:} primitive@>;

mp_primitive (mp, "=:|", mp_lig_kern_token, 1);
@:=:/_}\.{=:\char'174} primitive@>;
mp_primitive
@:=:/>_}\.{=:\char'174>} primitive@>;
mp_primitive (mp,
@:=:/_}\.{\char'174=:} primitive@>;

, mp_lig_kern_token, 0);

(mp, "=:|>", mp_lig_kern_token, 5);

"|=:", mp_lig_kern_token, 2);

mp_primitive (mp, "|=:>", mp_lig_kern_token, 6);
@:=:/>_}\.{\char'174=:>} primitive@>;

mp_primitive (mp, "|=:]", mp_lig_kern_token, 3);
@:=:/_}\.{\char'174=:\char'174} primitive@>;
mp_primitive (mp, "|=:|>", mp_lig_kern_token, 7);
@:=:/>_¥\.{\char'174=:\char'174>} primitive@>;
mp_primitive (mp, "|=:|>>", mp_lig_kern_token, 11);

@:=:/>_}\.{\char'174=:\char'174>>} primitive@>;

I won’t explain what happens there (as I would have
to reread the relevant sections of TgX The Program)
but the magic is in the special sequences: =: =:| =: |>
|=: |=:>|=:] |=:]|> |=:|>>. Similar sequences are used
in some font related files. I bet that most MetaPost
users never entered these as they relate to defining
ligatures for fonts. Most users know that combining a
f and i gives a fi but there are other ways to combine
too. One can praise today’s capabilities of OPENTYPE
ligature building but TgX was not stupid either! But
these options were never really used and this treasure
will stay hidden. Actually, to come back to a previous
remark about abusing the ligature mechanism: OPEN-
TypE fonts are just as sloppy as TgX with the quotes:
there a ligature is just a name for a multiple-to-one
mapping which is not always the same as a ligature.
But there are even more surprises with fonts. When
Alan Braslau and I redid the bibliography subsystem of
ConTgXt with help from Lua, I wrote a converter in that
language. I actually did that the way I normally do: look
at a file (in this case a BIBTEX file) and write a parser

2. ConTgXt never assumed this and encourages users to use the quo-
tation macros. Those * ‘quotes’ ' look horrible in a source anyway.

Hans Hagen

from scratch. However, at some point we wondered
how exactly strings got concatenated so I decided to
locate the source and look at it there. When I scrolled
down I noticed a peculiar section:

@*character set dependencies@>

@*system dependencies@>

Now we initialize the system-dependent |char_width| array,
for which |space| is the only |white_space| character given
a nonzero printing width. The widths here are taken from
Stanford’'s June~'87 $cmri1@$~font and represent hundredths
of a point (rounded), but since they're used only for

relative comparisons, the units have no meaning.

@d ss_width = 500 {character |@'31|'s width in the $cmri10$ font}
@d ae_width = 722 {character |@'32|'s width in the $cmr10$ font}
{character |@'33|'s width in the $cmr10$ font}
@d upper_ae_width = 903 {character |@'35|'s width in the $cmri0$

@d oe_width = 77

[

font}

@d upper_oe_width = 1014 {character |@'36|'s width in the $cmrio$

font}

@<Set initial values of key variables@>=
for i:=0 to @'177 do char_width[i] := 0;
Q#

char_width[@'40] := 278;
char_width[@'41] := 278;
char_width[@'42] := 500;
char_width[@'43] := 833;
char_width[@'44] := 500;
char_width[@'45] := 833;

Do you see what happens here? There are hard coded
font metrics in there! As far as I can tell, these are
used in order to guess the width of the margin for
references. Of course that won’t work well in practice,
simply because fonts differ. But given that the majority
of documents that need references are using Computer
Modern fonts, it actually might work well, especially
with Plain TgX because that is also hardwired for 10pt
fonts. Personally I'd go for a multipass analysis (or
maybe would have had BIBTEX produce a list of those
labels for the purpose of analysis but for sure at that
time any extra pass was costly in terms of perfor-
mance). That code stays around of course. It makes for
some nice deduction by historians in the future.

I bet that one can also find weird or unexpected
code in ConTgXt, and definitely on the machines of TgX
users all around the world. For instance, now that most
people use UTF8 all those encoding related hacks have
become history. On the other hand, as history tends to
cycle, bitmap symbolic fonts suddenly can look modern
in a time when emoji are often bitmaps. We should
guard our treasures.

Hans Hagen,
February 2020

