
Hans Hagen VOORJAAR 2021 7

Lost in fonts

Nowadays it is rather common to use a (wide font) OpenType aware engine but for
quite a while the eight bit fonts dominated the TEX landscape. The pdfTEX engine
could actually use wide TrueType fonts, but that was more a hack: only an eight
bit subset could be used. This trick permitted for instance using large cjk fonts in
TrueType format by splitting the metrics up in 256 character chunks. Traces of that
approach can be found in TEX distributions where one such font comes with dozens
of tfm files.

In order for TEX to do its work, font metrics are needed and these come, in the
case of pdfTEX, from tfm files.These files contain metric information (width, height,
depth and italic correction), recipes for ligatures (multiple glyphs replaced by one),
and inter-character kerning data. The backend (build-in or external) will eventually
filter the shapes from a font resource by index. Such a resource can be a pk file (direct
index mapping), a Type1 (via an encoding vector) or a ttf file (also via an encoding
vector).

A binary tfm file is either handcrafted or the product of a conversion, for instance
by afmtotfmwhere the human readable afm file that can come with a TrueType font
describes the font. Because TEX can handle ligatures, it is no surprise that when that
information is available it will end up in the tfm file. The converter sees glyphs with
names like f, i and fi and can add the information to the tfm file that an f followed
by an i becomes fi.

Now, when we move on to a modern OpenType aware engine, we no longer need
the tfm file but load the ttf file directly and here is where we can be surprised. The
following example is in ConTEXt speak, but the principles remain:

\definefont [MyFont] [file:TYFATECE.TTF*default @ 45pt]

Here we define a font and apply the default feature set that sets up the font to provide
ligatures (the liga feature) as well as kerns (the kern feature).

\MyFont efficient fietsen

efficient fietsen
When Jano Kula was working on a schedule for a film festival he wanted to use

the font (based on a design by Josef Týfa) shown here, so when no ligatures showed
up he was puzzled by the fact that it had worked before. That made me wonder what
happened.The font is two decades old and has not changed. But what did change was
the engine being used. In LuaTEX (and LuaMetaTEX) we directly load the ttf file
but that particular loaded file has no features! This can be seen in the so called tma
file in the font cache, a human readable Lua file. This is because at the time that font
was made, there were no features. The ttf file was just an alternative for a Type1
file and features had to be derived from the afm file.

So, how do we deal with this? Well, the solution is similar to what these afore-
mentioned converter commands do. First we define an additional feature, then we
use it.



8 MAPS 51 Hans Hagen

\startluacode
fonts.handlers.otf.addfeature {

name = "myliga",
type = "ligature",
data = {

["fi"] = { "f", "i" },
["fl"] = { "f", "l" },
["ffi"] = { "f", "f", "i" },
["ffl"] = { "f", "f", "l" },
["fff"] = { "f", "f", "f" },

}
}
\stopluacode

\definefontfeature[myliga][default][myliga=yes]

\definefont [MyFontLiga] [file:TYFATECE.TTF*myliga @ 45pt]

\MyFontLiga efficient fietsen

For the sake of this summary we used myliga but one can also just use liga as name
before the first font is loaded. However, by being explicit we knowwhat gets applied.
Here is the result:

efficient fietsen
The main reason for bringing this up is that a migration to newer technology can

result in (initial) unexpected loss of functionality. But fortunately in this case there
is a way out. However, one can wonder if the loss of the ligatures was really that
bad here. Just for the record, the following approach simulates the way TEX does it:
pair-wise ligature building: work

\startluacode
fonts.handlers.otf.addfeature {

name = "myliga1",
type = "ligature",
data = {

["fi"] = { "f", "i" },
}

}
fonts.handlers.otf.addfeature {

name = "myliga2",
type = "ligature",
data = {

["ffi"] = { "f", "fi" },
}

}
\stopluacode

\definefontfeature[myliga][default][myliga1=yes,myliga2=yes]

But the earlier solution where we just put all lookups in one feature is of course more
efficient. Other solutions can use so called contextual lookups but that is overkill
here.

Hans Hagen


