
Hans Hagen VOORJAAR 2021 13

Extensions related to
programming macros

Introduction
Many thanks to Karl Berry who improved the English while copy-editing the following
text for the spring 2021 issue of TugBoat.

Sometimes you can read (or hear) comments about TEX not being a real program-
ming language or the wish for it to be more like a typical procedural language. A
discussion about this is somewhat pointless because it relates to experiences and
preferences. Also, when we mention TEX, we are talking about an interpreter, a lan-
guage, a set of macros and in practice, about an ecosystem, simply because all kinds
of resources are involved—especially the ecosystem is one reason why a successor
is not showing up.

So, when we discuss the language aspect, it concerns a macro language and that is
for a good reason: one can mix content and operations on that content in one docu-
ment source. That source is interpreted and processed as it goes. This is contrary to a
procedural language, where one explicitly has to push content into some procedure.
These are a bit of a mix, e.g., webpage templates where some elements are snippets
of programs and a preprocessor assembles the result.

\def\MyMacroA#1{This or #1!}
\def\MyMacroB{that}

\MyMacroA{\MyMacroB}

Here the last line will result in “This or that!” ending up in the output. But it must be
noted that \MyMacroB is passed as a token, and only in the body of the macro does it
get expanded into “that”.

\edef\MyMacroC{\MyMacroB}

The code above defines a new macro with the expanded text as body. To expand or
not, that is often the question. Now compare this code with the following:

function MyFunctionA(one)
return "This or " .. one .. "!"

end
function MyFunctionB()

return "that"
end
function MyFunctionC(one)

return "This or " .. one() .. "!"
end

MyFunctionA("that")
MyFunctionA(MyFunctionB())
MyFunctionC(MyFunctionB)

14 MAPS 51 Hans Hagen

The first function expects a string and returns a concatenation. The second function
returns a string. The first call gets a string passed and the second one too because we
call that function. But the third call passes the function itself, which is why the third
function has to call it explicitly in the function body. It is this property that, in my
opinion, complicates matters when you want to do typesetting in such a language:
the more you nest the more dangers there are for asynchronous side effects. This can
be understood from the following example:

function MyFunctionA(one)
print("A")
return "This or " .. one .. "!"

end
function MyFunctionB()

print("B")
return "that"

end

MyFunctionA(MyFunctionB())

Here we print B before we print A. Now, one can certainly argue that in spite of
this, functions are easier to understand than macros (which can also have surprising
side effects). Indeed, when one works on an abstract document tree where content
is fetched from, say, a database that might be true but most TEX users mix content
and operations.

In the following sections I will introduce some of the additional features that
LuaMetaTEX provides.They are the result of experiencing many years of macro writ-
ing and the wish to come up with readable code using native features of the language
when possible. Of course in ConTEXt we have a high level interface for dealing with
typographical constructs and properties but deep down the code looks less clear.
Putting layer upon layer doesn’t help much either, so we don’t go that route. Us-
ing funny characters like !?@_: doesn’t make things look better either. We do have
lots of so-called low-level macros but it doesn’t make much sense to come up with
a pseudo-programming layer while in fact the engine could make better facilities
available; so that is the route we follow. After decades it had become clear that none
of the successor TEX variants have filled in the gaps in this way, so at some point I
decided that LuaMetaTEX should do it (at least for ConTEXt).

While ConTEXt MkII was written for the more traditional engines pdfTEX and
X ETEX, MkIV targets LuaTEX. It resulted in a rewrite of many components and a
freeze of MkII. It made no sense to cripple ourselves so in the end we went fur-
ther than originally expected. Then, when LuaMetaTEX development started, again
a rewrite happened, but this time the reason was to make the code base a bit more
efficient (less indirectness) by using extended native functionality. Apart from other
benefits of this new engine, it gives a bit nicer code and the fewer layers we have the
better. This is why ConTEXt LMTX (a.k.a. MkXL) again has a split-off code base so
that MkIV is not harmed. All that said, I do admit that, lacking other TEX challenges,
it is also fun to explore new venues.

Hans Hagen VOORJAAR 2021 15

Conditions
It must be said that when one goes even a little beyond simple TEX programming,
one could indeed wish for a bit more comfort. Take this:1

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\else\ifdim\dimexpr#1\relax=\dimexpr#2\relax

equal%
\else

more%
\fi\fi}

One needs to keep track of the nesting here in order to have the right number of
\fi’s.

\def\doifelse#1#2#3#4%
{\edef\a{#1}\edef\b{#1}%
\ifx\a\b#3\else#4\fi}

The temporarymacros are needed in order to be able to compare the expandedmean-
ings. But when #3 and #4 are macros that look ahead you can imagine that when they
see \else or \fi things can get confused. Compare this to:

function doifelse(a,b,c,d)
if a == b then

c()
else

d()
end

end

Here the compiler creates code that calls either c or dwithout them having to bother
about leaving the condition. In TEX-speak we would need to have something like
this:

\def\firstoftwoarguments #1#2{#1}
\def\secondoftwoarguments#1#2{#2}
\def\doifelse#1#2#3#4%

{\edef\a{#1}\edef\b{#1}%
\ifx\a\b

\expandafter\firstoftwoarguments
\else

\expandafter\secondoftwoarguments
\fi}

And when you try that with the first example where we had a nested condition you
can imagine that it quickly starts looking complex. Another aspect of the last macro
is that it uses two temporary macros that better have names that don’t clash, so the
ones we choose here are pretty bad. I will come back to dealing with that later.

One gets accustomed to this and often this kind of code is hidden from the user
so only macro writers are victims here. But, being one myself, the question is, can
we make the code look nicer?

1. We use a \dimexpr because we cannot use a terminal percentage or space if we want to be fully ex-
pandable and don’t want spaces to creep in after one token arguments.

16 MAPS 51 Hans Hagen

Let’s redo the first example with LuaMetaTEX:

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\orelse\ifdim\dimexpr#1\relax=\dimexpr#2\relax

equal%
\else

more%
\fi}

Many programming languages have something like elseif but because TEX has quite
a number of different tests, \elseifdimmakes no sense but the more generic \orelse
does. We can even think of:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

less%
\or

equal%
\else

more%
\fi}

And because LuaMetaTEX provides this test, one obstacle is gone. We leave it to the
reader to come up with a traditional TEX implementation of this:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

\expandafter\firstofthreearguments
\or

\expandafter\secondofthreearguments
\else

\expandafter\thirdofthreearguments
\fi}

And how nice it would be to be able to do this:

\def\doifelse#1#2%
{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments
\else

\expandafter\secondoftwoarguments
\fi}

And so, LuaMetaTEX has such a primitive test. Keep in mind that defining \iftok as
a macro is possible here but that won’t work well nested, even with \orelse:

\iftok{.}{.}
\orelse\iftok{..}{..}
\orelse\iftok{...}{...}
\fi

When a condition succeeds or fails TEX enters fast scanning mode to skip over the
branch that is not used. For that it needs to know if a token is a test, which is why
defining \iftok as a macro is no help. We could flag a macro as a test and I actually
played with this, but it means that we need to test a macro property independent
of the current condition handler and that is something for later. As an intermediate
solution we have an \ifcondition primitive that is seen as a condition when fast

Hans Hagen VOORJAAR 2021 17

scanning happens and as a no-op when a condition is expected in which case the
following macro has to expand to a condition itself. Something like this:

\ifcondition\mytest{.}{.}
\orelse\ifcondition\mytest{..}{..}
\orelse\ifcondition\mytest{...}{...}
\fi

Because we have Lua there are also ways to let Lua functions behave like if tests but
that is beyond this overview, since it goes beyond the macro language. In ConTEXt
we use this feature to implement some bitwise operations and tests.

In the engine we provide this repertoire of tests: \if, \ifcat, \ifnum, \ifdim,
\ifodd, \ifvmode, \ifhmode, \ifmmode, \ifinner, \ifvoid, \ifhbox, \ifvbox, \ifx,
\iftrue, \iffalse, \ifcase, \ifdefined, \ifcsname, \iffontchar, \ifincsname,
\ifabsnum, \ifabsdim, \ifchknum, \ifchkdim, \ifcmpnum, \ifcmpdim, \ifnumval,
\ifdimval, \iftok, \ifcstok, \ifcondition, \ifflags, \ifempty, \ifrelax,
\ifboolean, \ifmathparameter, \ifmathstyle, \ifarguments, \ifparameters,
\ifparameter, \ifhastok, \ifhastoks and \ifhasxtoks.

Some of these are variants of \ifcase, needed when there are more than two out-
comes possible. In addition there are \unless, \else, \or, \orelse and \orunless.The
new primitives are discussed in documents that come with the ConTEXt distribution.

With respect to testing arguments, you can also use the pseudo-counter
\lastarguments (watch the ‘last’ in the name) and somewhat less efficient but more
reliable \parametercount instead as these are indicators of the number of passed
commands.

Protection
In the previous section we mentioned that using auxiliary macros is tricky because
they can clash with existing macros. In fact, this is true for any macro! I therefore
decided to dowhat has been on the agenda for awhile: add amechanism that protects
against overload.This is still experimental and the impact on users can only be tested
after most ConTEXt users have switched to LMTX, which may take a while. This also
means that it will take a while before the related primitives are considered stable
(although I’m sure not much will change). Let’s take a previous example:

\permanent\def\firstoftwoarguments #1#2{#1}
\permanent\def\secondoftwoarguments#1#2{#2}
\permanent\protected\def\doifelse#1#2%

{\iftok{#1}{#2}%
\expandafter\firstoftwoarguments

\else
\expandafter\secondoftwoarguments

\fi}

Here the three macros are defined as permanent. The test itself is protected against
expansion (which it has always been so we keep that). Depending on the value of the
\overloadmode variable (discussed below) a user will get a warning or fatal error. By
default there is no checking (but I might give the \immutable prefix, also discussed
below, an “always check for it” property).

18 MAPS 51 Hans Hagen

The whole repertoire of prefixes related to overload protection is given in the fol-
lowing table.

frozen a macro that has to be redefined in a managed way
permanent a macro that had better not be redefined
primitive a primitive that normally will not be adapted
immutable a macro or quantity that cannot be changed, it is a constant
mutable a macro that can be changed no matter how well protected it is
instance a macro marked (for instance) to be generated by the user interface
overloaded when permitted the flags will be adapted
enforced all is permitted (but only in zero mode or ‘initex’ mode)
aliased the macro gets the same flags as the original

For the first five the primitive state has no related prefix primitive; it is set by
the engine itself. Maybe someday I will decide to permit defining primitives, which
would take hardly any code to implement. Permanent macros are (as shown) those
that we don’t want users to redefine, and frozen ones are mildly protected. They can
be redefined when the \overloaded prefix is used. A mutable macro can always be
redefined, think of temporary macros, while an immutable can never be redefined.
The instance property is just a signal that we’re dealing with an instance, which can
be handy when we trace. The \aliased prefix will copy properties, so this:

\aliased\let\forgetaboutit\relax

makes \forgetaboutit a reference to the current meaning of \relax (because that is
what \let does) but also protects it like a primitive (because that is what \relax is).

The \enforced prefix is special. It only has a meaning inside a macro body or to-
ken register and it gets converted in a (hidden) \always prefix when in so-called ini
mode (when the format is made). This permits system macros to overload in spite of
heavy protection against it. Think of macros like \NC where the meaning can differ
depending on the kind of table mechanism used, or \item which can differ by en-
vironment. We can protect these against overloading by the user but still redefine
them. Of course, when the overload mode is zero, all can be redefined.

The value of \overloadmode determines to what extent a user will be annoyed
when an existing macro is redefined, as shown in the table below. That can also be
an instance defined by commands like \definehighlight although these normally
are just \frozen \instance which means that a low level of protection only issues a
warning.

immutable permanent primitive frozen instance
1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this
parameter. At level five and above the instance flag is also checked but no drastic
action takes place.We use this to signal to the user that a specific instance is redefined
(of course the definition macros can check for that too).

Hans Hagen VOORJAAR 2021 19

Alignments
In ConTEXtmany commands are defined using the prefix \protected, which is handy
when they are used in a context where expansion would not work out well, like writ-
ing to file or inside an \edef. However, this is impossible when we use the alignment
mechanism. This has to do with the fact that the parser looks ahead to see if we
have (for instance) a \noalign primitive. And since the parser doesn’t look inside a
\protected macro, this fails:

\protected\def\MyMacro{\noalign{\vskip 10pt}}

It also works out badly for macros that look for arguments. A dirty trick is:

\def\MyMacroA{\noalign\bgroup\MyMacroB}
\def\MyMacroB{\dosingleempty\MyMacroC}
\def\MyMacroC[#1]{....\egroup}

This somewhat over the top approach can now (in LuaMetaTEX) be simplified to the
following. Let’s also go crazy with prefixes here:

\noaligned\permanent\tolerant\protected\def\MyMacroA[#1]%
{\noalign\bgroup....\egroup}

For the record: in LuaMetaTEX the \noalign construct can be nested which again
simplifies some (ConTEXt) code. Keep in mind that until now we could do whatever
we wanted in traditional TEX speak, apart from making such macros \protected.

Definitions
From the perspective of the above it will become clear that in a system like ConTEXt
quite a number of definitions are candidates for being flagged. You also need to
think of symbolic character names or math symbols. For instance dimensions de-
fined by \dimendef also get a permanent status. This means that one cannot redefine
\scratchcounter but still its value can be changed. At this moment I see no reason
to have a flag for preventing that (also because it would add overhead), but it might
become an option some day.

However, there are often quantities that need overload protection, such as con-
stant values. This is why we have:

\immutable \integerdef \plusone 1
\immutable \dimensiondef \onepoint 1pt
\immutable \gluespecdef \zeroskip 0pt plus 0pt minus 0pt
\immutable \mugluespecdef \onemuskip 1mu

Thosewill never change and are amacro-like variant of registers but with an efficient
storage model and behaving like a register. But one cannot use the operators like
\advance on them. Their intended usage is as a constant.

Another definition-related extension involves \csname. In LuaTEX we introduced
more robust handling of \ifcsname as well as an extra accessor:

\ifcsname f o o\endcsname
\lastnamedcs % reference to the constructed \cs

\fi

as well as:

\begincsname f o o\endcsname

which doesn’t define \f o o as a ‘relaxed’ macro when it doesn’t already exist. Both
\begincsname and \lastnamedcs avoid a second name construction, as in:

20 MAPS 51 Hans Hagen

\ifcsname f o o\endcsname
\csname f o o\endcsname

\fi

Keep in mind that these additions are a side effect of control sequences being in utf-
8 format so we want to avoid unnecessary construction of temporary strings and
related expansion.

Original TEX only has \csname; 𝜀-TEX and LuaTEX added some companion primi-
tives to that, and LuaMetaTEX again extends the repertoire:

\letcsname f o o\endcsname\relax
\defcsname f o o\endcsname{...}
\edefcsname f o o\endcsname{...}
\gdefcsname f o o\endcsname{...}
\xdefcsname f o o\endcsname{...}

This saves passing some arguments to a helper like \setvalue which is a bit more
efficient and it also saves a token. (The ConTEXt format file became quite a bit smaller
when the extensions discussed here were applied.)The \ifcsname primitive has been
made somewhat more efficient by honoring macros that were defined as \protected
which (we think) means: don’t expand me in those cases where it makes no sense. So
here we have an (in my opinion) acceptable downward incompatibility with engines
that conform to 𝜀-TEX.

There are a few more definition related new primitives, like:

\glet\MyMacroA\MyMacroB % shortcut for \global\let
\swapcsvalues\MyMacroA\MyMacroB % also works for registers
\futuredef\DoWhatever\MyMacro{...}
\expand\MyProtectedMacro % \protected like this

Arguments
Let’s start with a teaser. A previous definition needed a helper to gobble one of two
arguments. The following does the same but it just gobbles and doesn’t store the
argument, which is why we use #1 in both cases. This avoids storing token lists for
the unused arguments.

\permanent\def\firstoftwoarguments #1#-{#1}
\permanent\def\secondoftwoarguments#-#1{#1}

Because anything other than a digit after a # triggers an error I saw no reason not to
support some more: it doesn’t hurt downward compatibility, unless you use TEX to
generate error messages. Here is the full list of extensions, of which I will discuss a
few (more can be found in the ConTEXt distribution and source code).

+ keep the braces
- discard and don’t count the argument
/ remove leading and trailing spaces and pars
= braces are mandatory
_ braces are mandatory and kept
^ keep leading spaces
1-9 an argument
0 discard but count the argument
* ignore spaces
: pick up scanning here
; quit scanning

Hans Hagen VOORJAAR 2021 21

We have a few useful characters left, such as < and > so who knows what future
extensions might show up.

Delimited arguments are used frequently in ConTEXt; take this:

\def\MyMacro[#1][#2]{...}

Here the call is rather sensitive, for instance this will fail:

\MyMacro[A] [B]

We can cheat and define:

\def\MyMacro[#1]#2[#3]{...}

in which case #2 gets what sits between the brackets. But still these two arguments
have to be given. So, in MkII and MkIV you will find indirectness like the following:

\def\MyMacro{\dodoubleempty\doMyMacro}
\def\doMyMacro[#1][#2]{}

However, in LMTX you can find this alternative:

\tolerant\def\MyMacro[#1]#*[#2]{...}

The \tolerantwill make the parser quit when no match can be made and the #*will
gobble spaces. In fact, we often do this:

\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

and if we want overload protection:

\permanent\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

The combination of \tolerant and \protected with either expansion or not of a
macro gives four variants of low-level macro commands: normal, tolerant normal,
protected and tolerant protected. In LuaTEX that protection against expansion is im-
plemented in a more indirect way, just like in 𝜀-TEX. There we also have \long and
\outer properties so we have normal, long normal, outer normal and long outer nor-
mal. Making protected against expansion a native command would have given an-
other four command codes. Combining that with tolerant would again double it so
we then would end up with 16 command codes. But in LuaMetaTEX we dropped the
long and outer properties. In ConTEXt we never used outer and always want long
anyway.

The reason for mentioning these details is to make clear that the introduced over-
head can be neglected when we compare to LuaTEX, apart from the fact that we
gain from the expansion protection being a first class feature now, macros without
arguments being stored more efficiently, the parser being a little optimized and so
on.

But of course the biggest benefit is that, when we look at the example above, we
avoid indirectness. It looks nicer. It gives less clutter in tracing. It takes fewer tokens
in the format (where each token takes eight bytes). It runs a little faster. It demands
no trickery. Take your choice. For the record: you don’t want to know what the set
of \dodoubleempty macros looks like, as they themselves use indirectness and are
highly optimized for performance.

The list of possible features has more than skipping spaces. Here’s another exam-
ple:

\tolerant\def\MyMacro[#1]#;(#2){<#1#2>}

Here \MyMacro accepts [A] and then quits or when not seen, checks for (A) and
when not found is still happy. So, either #1 or #2 has a value. How do we know what
arguments got grabbed? There are several ways to find out:

22 MAPS 51 Hans Hagen

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifarguments

% zero arguments
\or

% one argument
\else

% two arguments
\fi}

This test uses the count from the last expansion so if any macro expansion happens
before the test you can get the wrong value! The next test provides feedback about
what argument got a value:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameters

% all empty
\or

% first has value
\else

% second has value
\fi}

But still may not be enough so we can also explicitly test for a parameter. But again
be aware of nesting:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameter#1\or

% first has value
\fi
\ifparameter#2\or

% second has value
\fi}

This is pretty robust but expands the arguments in the test:

\tolerant\def\MyMacro[#1]#;(#2)%
{\unless\iftok{#1}{}%

% first has value
\fi
\unless\iftok{#2}{}%

% second has value
\fi}

When we use a colon instead of a semicolon the parser knows where to pick up after
a match fails:

\tolerant\def\MyMacro[#1]#:#2{...}

So, the argument between brackets is optional and the single token or braced second
argument (turned into a token list) is mandatory.

The other extensions more or less speak for themselves: they grab arguments and
discard or keep braces and such in cases where TEX would treat them specially when
storing or passing them on. Speaking of braces, in spite of what onemight expect (as-
suming that braces are more a TEX thing than brackets) the following two definitions
perform equally well

\def\foo[#1]{} \foo[1]
\def\foo #1{} \foo{1}

Hans Hagen VOORJAAR 2021 23

but:

\def\oof[#1]{}
\def\foo{\dosingleempty\oof}

performs more that 5 times worse than this:

\tolerant\def\foo[#1]{}

So, the added overhead (and there is some, also because we keep track of more) in the
argument parser gets compensated well by the fact that we can avoid indirectness.
The impact on an average document probably goes unnoticed.

As with much in TEX you need to be aware of (intentional) side effects. Take for
instance:

\tolerant\def\foo#1[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

That will probably not do what you expect. It has to do with how TEX interprets
spaces in the context of argument parsing: they can become part of the argument
(here #1) so anything before the first seen left bracket becomes the argument’s value.

\tolerant\def\foo#1#*[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

This however works because the first #* directive stops scanning for the first argu-
ment and then gobbles spaces when seen before continuing to look for the bracketed
arguments. So TEX’s charm is still there.

Introspection
Because macros have more properties and variation in arguments the \meaning com-
mand has a companion \meaningfull that displays what prefixes were applied. The
\meaningless variant only shows the body.

Quite some effort went into normalizing the so-called command codes. Primitives
are grouped into categories with similar treatments in order to keep the main loop
efficient. These codes also determine the expansion contexts (think of usage in an
\edef, how they get serialized (for instance in messages), etc. The char codes (called
such because in most cases tokens represent characters of some kind) distinguish
commands in these groups. Think of \def and \edef being call commands with a
different code. This rather intrusive (internal) regrouping of primitives was needed
in order to get a more consistent Lua token interface. So, for instance the codes are
now in consecutive ranges, registers are split into internal and user variants, etc.

Also, memory management has been overhauled so we have a more dynamic al-
location of various data structures (stacks, equivalents, tokens, nodes, etc.) and we
use the whole 64 bit memory word to save some memory in places too. All this is
the reason why it is unlikely that much will get backported to LuaTEX, also because
in ConTEXt we now have a special version for LuaMetaTEX: LMTX.

There is more
Here we’ve discussed only the primitives that make the source look better while also
being convenient. But it is worth mentioning that there are primitives like \toksapp
and \etokspre that append and prepend tokens to a register (there are eight variants).
There are ways to collect tokens for just before or after a group ends. There are some
new expansion related primitives like \expandtoken that can be used to inject a token
with some specific catcode, just like one can define active characters without the
need for dirty uppercase tricks.

The typesetting department also has extensions. We can freeze paragraph proper-
ties, adjust math parameters locally, normalize lines so that at the Lua end we know

24 MAPS 51 Hans Hagen

what to expect (think of consistent presence of left and right skip, left and right shape
related properties, left and right parfill skips, indentation being glue, etc.). Hyphen-
ation can be controlled in more detail too, and left and right side ligatures and kerns
can be influenced in the running text and go with glyphs. Talking of glyphs, there
are advanced scaling options as well as support for influencing placement in the run-
ning text, which permits more efficient font handling. Boxes have more properties
too: they can have offsets, an orientation, etc. which makes implementing vertical
typesetting a bit easier. Rules also have shifts. We can register actions to be expanded
at the end of a paragraph. All this evolved over time and has been tested in ConTEXt
but will be applied more frequently after the complete code split between MkIV and
LMTX. That process goes hand in hand with adapting to the new situation, remove
old (obsolete) variants, removing still present experimental code, etc.

There is more but hopefully this gives an impression of how substantial the
LuaMetaTEX engine differs (in added functionality) with its ancestors. Maybe it looks
a bit over the top, but I did actually reject some ideas after experimenting with them.
On the other hand there are still some on the agenda. For instance the engine can
migrate and carry around so-called deeply buried inserts pretty well now but dealing
with inserts could be made a bit easier (think of columns). So, we’re not done yet.

It should be noted that contrary to what one might expect the code base is still
quite okay and the binary stays well below 3 MB. In the meantime memory man-
agement is also improved and the format file got smaller. A lot of the internal re-
organization relates to the fact that we have a Lua interface and exposing internals
demands consistency, avoidance of (often clever) tricks, more abstraction, etc.

It is also worth noting that we can only do such a massive operation because
users are willing to test intermediate versions (sometimes on very large projects) and
because all changes in the code base are meticulously checked byWolfgang Schuster
who knows TEX and ConTEXt inside out. And of course we have Mojca Miklavec’s
compile farm to keep it available for all relevant platforms, where we use a mix of
gcc (also with cross compilation), clang and msvc for various platforms, up to date.
It definitely helps that compilation is fast (due to the refactored code base) and that
I can use Visual Studio to work with the code.

In this summary I only covered some aspects of TEX. Another important set of
extensions concerns the MetaPost library, where token scanners are exposed, more
advanced Lua calls are possible and where no longer relevant bits of code have been
removed. And we use the latest and greatest Lua 5.4—but discussing the implications
of these is for another article.

Hans Hagen

