
Hans van der Meer VOORJAAR 2021 65

Translations from a Vocabulary
Handling translation into various languages

Abstract
Formerly part of the module hvdm-xml but now split off into
an independent module with its own description. Used for
making other modules language sensitive. The module is
especially tailored for XML use.

Introduction
Elements of the output can be internationalized through
definition and use of one or more vocabularies. This
module allows for a flexible and adaptable translation of
individual words. The component effectuating this is the
module hvdm-voc. Its interface is meant to be accessed
from XML as well as through ConTEXt-macros.
This module certainly is not a full blown translator. Its
scope is restricted to the translation of individual words,
not even plural forms are automatic and must be added
separately. But although simplistic in nature, it provides
for the automatic adaptation of certain keywords to a
change of language.
It all started with the construction of a database in XML
format with historical facts about my ancestors. Each
fact resides in a separate file to be processed by my note
processing module hvdm-tak. Everything is enclosed in
an XML node with suitable node names chosen. Since
the lingua franca in computing is the English language,
it seemed natural to use this for these names. Thus each
person in my notes became to be described by a <person>
node, for instance:
<note>

<person>
<name>Arnoldus van der Meer</name>
<age>28</age>
<profession>seller of mineral water</profession>

</person>
<!– other nodes –>

</note>

Typeset in ConTEXt with \language[en] such a note
looks as in the next figure. Note the english keywords
at the left edge corresponding to the node names. The
remainder of the text is in Dutch, as might be expected
for material taken from five centuries of dutch archives.

Language set to English.

Not all members in my family did like the english words
interspersed between the text in Dutch. Thus arose the
idea for this translator. The keywords with their trans-
lation were put in a vocabulary as described below.
In the notes module their typesetting is enclosed in a
\translatemacro call. The result is shown in the second
figure, again note the keywords at the left edge.

Language set to Dutch.



66 MAPS 62 Hans van der Meer

But (inevitably) I became a bit sloppy. Dutch words crept
in as node names for new properties which were added
in the course of the genealogical investigations:
<note>

<person>
<name>...</name>

</person>
<samenvatting>an abstract</samenvatting>

</note>

The following figure shows what happens if the note is
typeset in the english language again. That one keyword
samenvatting strangely deviates from the others.

Language set to English with Dutch node.

Although changing node names to their english equiv-
alents is a simple action in an editor, it provided the
incentive to make the translator module a bit more
general. Instead of translating from one language only,
it should allow translation between any two languages
in the vocabulary. Look at the fourth figure where this
flexibility is demonstrated by changing to \language[de].

Language set to German.

XML Interface
Everything starts with the creation and filling of a vo-
cabulary. By default the module provides a vocabulary
to which one can add translations, but it is possible to
create others as has been done in the code below. A new
vocabulary is created the first time its name appears on a
<vocabulary name="name"> node, further such calls with
that name are silently ignored. Creation of a vocabulary
will not make it automatically the current vocabulary.

That should be done by the separate set attribute as in
the example below.
<vocabulary name="myvocab" set="myvocab">

<word>
<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>
</vocabulary>

Load the above data from a buffer or a file with:
<vocabulary buffer="aBuffer"/>
<vocabulary file="aFile"/>

Vocabularies are switched with the set attribute. A value
‘default’ for the name performs a switch back to the
default vocabulary installed by the module.1 The code
below illustrates how to set and retrieve the names of the
current vocabulary and language.

<vocabulary set="myvocab"/>
<vocabulary show="vocabulary"/>
<vocabulary show="language"/>

The results are vocabulary = myvocab and language =
en. Note that attributes name and set behave differently.
When the named vocabulary does not yet exists the
former will create a vocabulary with that name, whereas
the latter will issue an error message instead. When both
attributes are present the vocabulary is created first and
then made current.
Individual translations can be added to any named
vocabulary, but when there is no name attribute on
<vocabulary> the current vocabulary will be extended.
<vocabulary>

<word>
<en>greek</en>
<nl>grieks</nl>
<de>griechisch</de>
<fr>grec</fr>

</word>
</vocabulary>

With the current language being en this results in greek,
Greek and GREEK. Changing the language setting to
german with
<vocabulary use="de"/>

will change to griechisch, Griechisch andGRIECHISCH.
Translations are retrieved by a <vocabulary> node with
attributes get, Get and GET. The three variants select the
corresponding case variants. Presence of a use attribute
translates into that language but leaves the current lan-



Hans van der Meer VOORJAAR 2021 67

guage setting unchanged. For instance:
<vocabulary get="greek"/>
<vocabulary use="nl" Get="dutch"/>
<vocabulary use="fr" GET="english"/>

produce griechisch, Nederlands and ANGLAIS. The
presence of a ‘get’-ter forces the change from attribute
use to be locally confined. Although the last language
accessed here was from use="fr", the current language
de has not changed.
The vocabulary is set up in such a way that transla-
tions between all language pairs are possible. In it-
self that sounds nice, but what if a synonym has to
be added? For example, besides ‘dutch’ translated into
‘niederländisch’, we want the twoletter code ‘nl’ to be
translated into ‘niederländisch’ too.
The problem here is the following. Addition of ‘nl’
in the same manner as demonstrated above, will over-
write cross translations already present instead of merely
adding the equivalents for ‘nl’. The solution is simple.
Use <word add="nl"> and the enclosed translations will
be taken for synonyms. In this manner ‘nl’ is added to
the vocabulary without generating cross translations. We
will find for instance ‘nl’ translating into niederländisch
just as happens when translating ‘dutch’ to german.
<word add="nl">

<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>

A problem still remains with this translation scheme.
Let us add translations for icelandic, switch to dutch
and see what get and Get translations do: ijslands and
Ijslands. The latter is wrong because in dutch the ‘ij’
counts for one letter! Thus ‘Ijslands’ should have been
‘IJslands’. Luckily the solution is not problematic. Add
an extra node for ijsland → IJsland as a synonym with
an adapted language code Nl The first letter of nl now
being in uppercase. Instead of raising the first letter of the
translation only, the translator then uses the alternative
definition:
<Nl>IJslands</Nl>

With this addition to the vocabulary we now get IJs-
lands as it should be. The same problem arises for
letters such as the ç in français leading to FRANçAIS
instead of FRANÇAIS or the ä in Niederländisch.
Here we could have solved it with other exceptions
as <FR>FRANÇAIS</FR>, but instead the upper-lowercase
translator has beenmade a little bit smarter. It knows how
to do a case change for letters like é, à, ü, ç.

ConTEXt Interface
Although primarily developed for use in an XML en-
vironment, it boils down to calling into TEX code. It is
therefore always possible to fall back onto the underlying
macros. The following are the API calls available.
⊳ \VocabularyCreate[#1] – creates a vocabulary
named in #1 if it does not yet exists, otherwise do
nothing. Note that the current vocabulary is not
changed, that should be done explicitly with the set
macro.

⊳ \VocabularyDelete[#1] – use this in the rare case
one wishes to get rid of a vocabulary. The default
and the current vocabulary cannot be deleted. Nor is
it possible to remove items from a vocabulary once
they have been added.

⊳ \VocabularySet[#1] – the vocabulary named #1 will
be made the current one. Reset to the module’s
default vocabulary by calling with an empty
parameter.

⊳ \Vocabulary – the name of the current vocabulary.
Example: the current vocabulary is myvocab.

⊳ \VocabularySetLanguage[#1] – the two-letter
language code makes it the current vocabulary
language.2 An empty argument will set it to the
value of \currentlanguage.

⊳ \VocabularyLanguage – retrieves the two-letter
language code of the current language.
Example: after changing to french by calling
\VocabularySetLanguage[fr] the current language
at this point is fr.

⊳ \VocabularyLoadFromBuffer[#1]
\VocabularyLoadFromString[#1]
\VocabularyLoadFromFile[#1] – these macros load
data as XML nodes from string, buffer and file.
Example: prepare with \startbuffer[spanish] a
buffer to add spanish:
<vocabulary>

<word>
<en>spanish</en>
<nl>spaans</nl>
<de>spanisch</de>
<fr>espagnol</fr>

</word>
</vocabulary>

and load it with \VocabularyLoadFromBuffer[spanish].
Now translation of ‘spanish’ in fr will be espagnol.
Similarly use \VocabularyLoadFromFile[italian.xml]
from the prepared file italian.xml and obtain italien
for ‘italian’.



68 MAPS 62 Hans van der Meer

⊳ \translate{#1}
\Translate{#1}
\TRANSLATE{#1} – translate their argument into the
current language with no case change, first letter
uppercase, all letters uppercase, respectively.
Example: \TRANSLATE{dutch} in the current language
fr results in NÉERLANDAIS. But an absent
translation returns its argument unchanged as in
\Translate{japanese} is Japanese.

⊳ \VocabularySetLanguageDefault[#1]
\VocabularyLanguageDefault
\translateDefault[#1] – There are situations where
one language is special. An example is found in
the module mentioned in the introduction. Nodes
<author>, <person>, etc. need special treatment in
the program. This is accomplished by attaching
a flag. Without a common default language it
would have been necessary to flag all occcurrences
of <author>, <auteur>, <Autor>, etc. separately.
By using \translateDefault this can be avoided

because it enables the programmer to collect all
occurrences into a common language. An empty
argument \VocabularySetLanguageDefault[] sets to
the value of \currentlanguage. Note that setting of
the default language is done globally.

Availability
The module and its supporting modules can be down-
loaded frommy site hvandermeer.com/publications.html.
The TEX-stuff resides in section “Articles on TeX”,
downloads are a little below in the link “ConTeXtmodule
distribution”.

Notes
1. Note that a vocabulary named ‘default’ cannot be used and will

raise an error if one tries to do so.
2. Do not be tempted to try ‘Fr’ or ‘FR’ because the module will

silently convert both to ‘fr’.

Hans van der Meer
havdmeer@ziggo.nl


