
Hans van der Meer VOORJAAR 2021 69

Macros and Lua snippets
Helper macros mostly in Lua

Abstract
Described is a module containing a number of helper
macros, many of them programmed in Lua.

Keywords
Lua, macro, file, font, list, date

Introduction
As alreadymentioned in a previous article in theMAPS,
I am somewhat of a do-it-yourself’er. Either because
the macro needed was not present, not on my radar
or just because it seemed something nice to have and
possibly useful in the future. These macros may be of
use to others but it is up to them to decide that, of
course. I just hope some might solve a problem here
or there. They can be downloaded from my website at
https://www.hvandermeer.com. From the homepage jump to
the page Publikaties and TeX modules where they can
be found as ConTeXt module distribution.

This module named hvdm-ctx is dependent on the com-
panying module hvdm-lua. The latter contains most of the
implementations of the caller macros in the former.The
macros can be loosely categorized as file related macros
and macros for the creation, maintenance and querying
of Lua tables, as well as date and string manipulations
plus some macros without much relation to each other.

Files in a Filevault
The Files group of macros is for manipulating file
names, file content, combining files and probing the
internet.

The idea for the FileVault macros arose from my use
of XML for collecting in small notes the data found in
various 17th and 18th century archives. This collection
is nearing a thousand XML files with occasionally the
addition of new ones or updated content. Some people
will check the correctness of the XML before submitting
their files, but that’s not one of my habits. Therefore I
decided to check them for validity in processing runs
using the XMLCheck macro described below. But this im-
plied reading them twice, once for the check and once
for typesetting.

Why not read them once and keep the content as a
string in Lua’s memory? Modern memories have Gi-
gabyte size and my thousand XML files are peanuts.
I could have relied on the file caching of the OS, but
it is not in my nature to forgo a chance to program
something nice. Thus a small set of macros was de-
veloped to ‘read once, use anywhere’ so to speak. Use
of this should be completely transparent, naturally,
not needing special treatment. Switching between in
memory content or rereading from disk to be done
by simply turning it on and off. A bonus will be the
possibility to run filters on the input before handing
over to ConTEXt.

The above “not needing special treatment” could not
be held on to entirely, pity. The culprit turned out to
be the backslash. My notes can contain <tex> nodes,
escapes to typesetting part of the text directly with
ConTEXt. Typesetting files with for example \loop ...

\repeat statements inevitable leads to a crash. In the un-
derlying Lua code backslashes have a special meaning
as escape string for control characters newline \n, \t or
\xxx where xxx is a three digit number. TEX’s use of the
backslash doesn’t fit in this scheme and things like \def

fail miserably.
For possible solutions one can think of replacing \ with
its escaped equivalent \\ but then they turned out to be
neglected completely. Trickery with catcode changes is
not encouraged in general and often extremely danger-
ous and disastrous.
Sad, but complete transparancy had to be relaxed a
bit in order to cope with this situation. Its solution
required the implementation of a macro that will leave
the content of the file in an intermediate buffer in
ConTEXt. Running code like

\xmlprocessbuffer{}{buffer-containing-file}{}

is then possible without causing a crash.

These are the functions implemented for the FileVault:

⊳ \FileVaultGetState

\FileVaultSetState[#1] – handles the current state of
the FileVault. The first macro returns the current
state of the FileVault. In accordance with ConTEXt

70 MAPS 51 Hans van der Meer

custom this is start or stop whether the vault is
active or inactive. Activation and deactivation is
done with the second macro. The option values are
[state=start] and [state=stop] respectively.
When the vault is in an inactive state all actions
except these state macros and those reading
files are suspended (see the example below for
the latter). The latter will either return an error
message or silently do nothing.
Examples: \FileVaultGetState shows the initial
state of the vault as stop. After changing it with
\FileVaultSetState[state=start] we can verify that the
state is start.

⊳ \FileVaultFileString{#1} – returns the file content as
a string. If the file is nonexistent the macro silently
returns an empty string.
Example: \FileVaultFileString{example.txt}

This is a very small example file.
What will happen if the vault is inactive? The same
statement is executed after stopping the vault. The
state is now stop and the same example gives

This is a very small example file.
Thus showing the transparency of the vault system
for file reading.

⊳ \FileVaultFileBuffer[#1]{#2}

\FileVaultFileDefaultBuffer{#1} – returns the content
of a file put into a ConTEXt-buffer. The parameter
between braces {} specifies the file, the parameter
between the option brackets [] must be the name
of an existing buffer. The return of both macros will
be the name of the buffer where the file content
has been stored. With an explicite buffer name the
contents of that buffer stays available, otherwise
the internal buffer is reused each time. If the file is
nonexistent the macro silently returns an empty
buffer.
Example: \typebuffer[...{otherexample.txt}]
results in

This is the other example file.

Since the underlying action is either file reading
or retrieval, this action is transparent to the state
of the filevault as for \FileVaultFileString has been
shown above.

⊳ \FileVaultList

\FileVaultListWithCount – shows the content of the
FileVault, the second caller adds the number of
times each file has been accessed. Between the
filenames in the list \crlf’s are added.
Example: After reading the second file twice again,
the current access counts are:

example.txt 1
otherexample.txt 3

An inactive vault will return the following
appropriate return:

ERROR inactive filevault

⊳ \FileVaultReturnTransform[#1]{#2} – applies the
transformation specified in [#1] on the file named
in #2 and delivers the value returned by that
transformation. The first parameter of the user
defined transformation function will receive the
contents of the file as a Lua string. Since the data
in the filevault are left intact, this macro will
work transparently in either an active or inactive
filevault.
The number of applications one can think of are
manyfold. To name some: returning the length
of the file, changing everything to uppercase,
checking xml for correctness.
The argument [#1] must begin with the name of the
Lua function performing the transformation. After
a comma there may follow any number of comma
separated arguments that are to be passed to the
transformation function.1
To clarify this a complete example is presented of a
function that will return the length of a file, either
counted as bytes or counted as UTF8 characters.
Nota bene: see how our Lua function is registered
in the function registry of the filevault, because
without this registration it will not be found. File
length.txt contains

German ü and è in French.

\startluacode

-- Define our namespace as xmpl.

xmpl = xmpl or {}

-- Return the (utf8) length of a file.

xmpl.filelength = function (filedata, encoding)

if encoding and encoding == "utf8" then

return utf8.len(filedata)

else

return string.len(filedata)

end

end

-- Register this function as "filelength".

hvdm.registerfunction

("filelength", xmpl.filelength)

\stopluacode

Input [filelength]{length.txt} to \FileVaultReturnTransform

results in 28 bytes and [filelength,utf8]{length.txt} in
26 UTF8 characters.2

⊳ \FileVaultTransform[#1]{#2} – nearly same as the
previous macro but instead of leaving the data in
the vault untouched, it will replace them by the
result of the transformation. Because of this the
macro is necessarily inoperative when the filevault
is inactive and it will do so silently except for a

Hans van der Meer VOORJAAR 2021 71

message in the log.
The return of this macro depends on the behaviour
of the transformation function. Functions in Lua
may return more than one value and this macro is
programmed to accept one or two return values.
The first value is used to replace the data in the
filevault and the second value will be sent to the
caller. In this manner it is possible to deliver a
message, for instance to inform the caller of the
cause that made an operation fail. Being more
specific: an absent or nil second value returns
nothing, otherwise that second value is returned.
An example of its use might be the stripping of
ignorable whitespace from xml: returning the
stripped data twice will both change the data
in the filevault as well as having it available for
immediate processing.
Extending the previous example we will use
this macro to replace the length.txt file by its
length as UTF8 string. Note that the original
file on disk will not be affected! Thus after
\FileVaultTransform[filelength,utf8]{length.txt} calling
\FileVaultFileString{length.txt} demonstrates that its
value in the filevault has become

26

⊳ \FileVaultClear

\FileVaultClearFile[#1] – respectively clears the
FileVault completely or clears file #1; if that file is
not in the vault nothing happens.
Example: after \FileVaultClearFile[example.txt] the
vault contains:

length.txt otherexample.txt
and after \FileVaultClear we will receive an empty
string "".

Information on Files
It sometimes is of interest to know if a file has a certain
suffix. Perhaps in order to differentiate between files
with the same basename but of different type: text,
xml, images, pdf. Next follows macros used to query
filenames and to retrieve the content of a directory.

⊳ \FileExist{#1} – returns true or false on existence of
the file #1.
Example: called on the source of this article
naturally results in true.

⊳ \FileBaseName{#1} – returns the filename stripped of
prefixed directories.
Example: ./Documents/Letters/lastletter.doc becomes
lastletter.doc.

⊳ \FileDirectoryName{#1} – returns the prefixed
directories of the filename.
Example: ./Documents/Letters/lastletter.doc becomes
./Documents/Letters/.

⊳ \FileSuffix{#1} – returns the suffix of the filename.
Example: ./Documents/Letters/lastletter.doc returns
doc.

⊳ \FileSuffixList{#1}{#2} – returns the suffix of the
filename if that suffix is in comma separated list
#2.
Example: suffix list {pdf,doc,txt} returns doc, while
{pdf,txt} will return an empty string.

⊳ \FileDirectoryList[#1]{#2}{#3} – collects in a list
all filenames in directory #2 (empty is current
directory) having suffix #3 (empty suffix lists all
files). The result is not directly returned but saved
into a Lua table named #1. That list then can be
queried by the table macros described below. With
empty #1 the name of the list is FILEDIRECTORYLIST by
default. The information is added to the list if it
already exists, except for the default list which is
cleared before the operation.
Example: On this run there are 12 file(s) in the
current directory of which 5 tex-file(s).

Operations on Files
The purpose of the macros below is to execute file op-
erations that otherwise would need intervening actions
outside the ConTEXt run.The operations are concatena-
tion of files, removal of files and querying for existence
on the internet.

⊳ \FileConcatFile{#1}{#2} – concatenates all files
in directory #1 having suffix #2 and returns the
concatenated contents. Before returning the
intermediate temporary is removed.

⊳ \FileConcatName{#1}{#2} – nearly the same as
\FileConcatFile but here the temporary is not
removed and its name is returned to the caller.

⊳ \FileConcatFilePrePost{#1}{#2}{#3}{#4} – same as
\FileConcatFile but #3 precedes the concatenated
contents while #4 is affixed to the end.

⊳ \FileConcatNamePrePost{#1}{#2}{#3}{#4} – same as
\FileConcatFilePrePost but returning the filename
instead of the content.

⊳ \FileRemove[#1] – remove the file by name.

⊳ \URIReturnCode{#1} – reaches into the internet with
a socket.http.request to check if file given can be
accessed. Returns the standard return code 200 on
success and 404 for file not found. Waits 5 seconds
for reaction from the internet before giving up.

72 MAPS 51 Hans van der Meer

Care is taken to change spaces in the URL to the
mandatory %20.

Creation of Lua Lists
Collection of macros to produce and manipulate Lua
tables. The tables or lists as named in the macros, are
kept inside the module in an invisible table functioning
as the holder of those created by the caller.
Themacros in this section arose from the need to collect
various information on the fly, storing it and present it
afterwards in various forms.

Where lists are involved their name is always in #1.

List creation and removal

⊳ ListCreate[#1] – creates a named list. That name is
used in later accesses to the list. The list is created
empty. Beware: reusing a list is silently inhibited,
first delete an existing list before reusing the name.

⊳ \ListExist[#1] – queries the existence of list #1 and
returns true or false accordingly.
Example: \ListCreate[test] then \ListExist[test]

returns true.

⊳ \ListDelete[#1] – removes the list by setting the
reference to the list nil.
Example: given the above ListCreate the sequence
\ListExist[test], \Delete{test}, \ListExist[test] returns
first true and then false.

⊳ \ListClear[#1] – removes the content of the list,
leaving it empty.

⊳ \ListCount[#1] – returns the number of elements in
the list. Lua tables have both an array and a key
based section. The count is done over both these
sections.
Example: empty list should return zero
\ListCreate[zero] then \ListCount[zero] returns 0.

Addition of List Elements

⊳ \ListAdd[#1]{#2} – adds #2 as next element in the
array section of the Lua table. Successive additions
of the same element become successive elements in
the list.
Example: add string "one" to the array section of
list zero created above, the reported element count
is 0 before and 1 after.

⊳ \ListAddKey[#1]{#2}{#3} – adds element with key #2

and value #3 to the key section of the Lua table.
Successive additions with the same key silently
overwrite the previous value.
Example: add string "two" with key "second" to
the same list with \ListAddKey[zero]{second}{two} and
observe the incremented element count 2.

⊳ \ListAddSubKey[#1]{#2}{#3}{#4} – adds element with
key #3 and value #4 to a sublist keyed by #2, creating
that sublist if necessary.

⊳ \ListAddTo[#1]{#2} – adds element with key #2 to the
list setting its count to 1. Successive additions at
the same key increment the counter value. The list
therefore keeps a count of how often that key has
been added.

⊳ \ListAddToKey[#1]{#2}{#3} – adds to the array section
of the Lua table a subtable {#2,#3} as a key-value
pair.

Retrievial of List Elements

⊳ \ListArrayValue[#1]{#2} – returns the element with
index #2. If the index is outside the range of stored
elements an empty string is returned.
Example: retrieve the first element in the array
section of list zero \ListArrayValue[zero]{1} is one.

⊳ \ListKeyValue[#1]{#2} – returns the value of the
element at key #2. If the element is not present then
an empty string is returned.
Example: retrieve the element with key "second"
from list zero \ListKeyValue[zero]{second} is two.

⊳ \ListKeyValueWithDefault[#1]{#2}{#3} – same as
\ListKeyValue but instead of returning an empty
string for an absent element, #4 is returned as
default instead.
Example: an element with key "third" has not been
added thus \ListKeyValue[zero]{third} returns "", an
empty string. The next call shows the return of a
default \ListKeyValueWithDefault[zero]{third}{three}
results in three.

⊳ \ListSubKeyValue[#1]{#2}{#3} – returns element #3 from
sublist #2, empty string if absent.

⊳ \ListSubKeyValueWithDefault[#1]{#2}{#3}{#4} – returns
element #3 from sublist #2, default #4 if absent.

⊳ \ListValueKey[#1]{#2} – find and return from the list
the first key having #2 as its value.

⊳ \ListValueSubKey[#1]{#2}{#3} – find and return from
the list the first key in sublist #2 having #3 as its
value.

⊳ \ListValueSubKeyAll[#1]{#2} – find and return from the
list and all of its sublists the first key having #2 as
its value.

⊳ ListPrint[#1] – simple printer for the contents of list
#1.
The underlying Lua tables harbour two sections:
(1) an array section indexed upwards from 1 (by
default), and (2) a section with key-value pairs.

Hans van der Meer VOORJAAR 2021 73

Both sections are printed unsorted, just as the
entries are encountered by table traversal. Line
endings are set to \crlf to accommodate ConTEXt.
Example: a list has been made with two items in
both the array and the key-value section.
\ListPrint[Test] prints:
1 = array item 2 added first
2 = array item 1 added last
1 = array item 2 added first
2 = array item 1 added last
secondkey = value two
firstkey = value one

XML-related operations
Thepurpose of next macros is the production of content
to be handled by an XML processor. They provide for
the contruction of (embedded) nodes, sorting lists of
nodes, processing and checking of XML from various
sources.

⊳ XMLContentToNode{#1}{#2} – returns the string
<node>content</node> where node = #1 and content is
#2. Convenient when a list must be filled with XML
nodes to be processed later.

⊳ \ListToNodes[#1]{#2}

\ListToNodesSorted[#1]{#2}{#3} – returns the content
of the key section of Lua table #1 as concatenated
pairs <name><key>thekey</key><value>the-
value</value>…</name> where name is #1, the name
of the list. In the second macro the nodes are sorted
to the keys with #3 is normal for ascending (default)
and reverse for descending keys.3 This macro is
meant for lists filled with \ListAdd.

⊳ \ListValuesToNodes[#1]{#2}

\ListValuesToNodesSorted[#1]{#2}{#3} – same as
\ListToNodes except here the sorting is for lists filled
with \ListAddKey where the elements are tables
containing a key-value pair.

⊳ \XMLProcessBuffer{#1} – processes buffer #2

containing a valid XML file with macro call
\xmlprocessbuffer{id}{#2}{}. The id is filled by the
called function.

⊳ \XMLProcessFile{#1} – same as above with file #1.
As a bonus the macro discerns the presence
of embedded TEX and switches processing as
described in the section on the FileVault.

⊳ \XMLProcessFolder{#1} – same as above for all files in
directory #1 having the xml extension.

⊳ \XMLProcessString{#1} – same as above with the
content of argument #1.

⊳ \XMLEntitiesRead[#1] – register entity declarations for

XML processing from a dtd file #1 with the ConTEXt
procedure xml.registerentity().

⊳ \XMLCheck[#1]{#2} – checks the validity of the XML
tree #2 located in #1 being file, folder, buffer or
string. If the XML is correct an empty string is
returned otherwise the string contains the nodes
remaining after removal of the correct nodes.
Example: <root><node att="abc">error</root> is missing
the xml-header (not considered a problem) and a
closing </node>. Checking results in
>>> <root><node></root>

which should be helpful in the repair. The check
works by deleting correct nodes, starting within
and working outwards. At the end of the reduction
correct XML leaves nothing but an empty string,
otherwise something is amiss as can be seen in the
example.

Date and Time formatting
Dates can be given in the formats yyyy-mm-dd, yym-
mdd (20th century only), yyyymmdd, dd-mm-yyyy,
d-m-yyyy, dd-m-yyyy, d-mm-yyyy. Negative dates or
dates with BC get a negative year. Use yyyy for year
only and yyyy-yyyy for a year range. Dates are checked
for validity. Dates containing other characters than
digits, dashes and possible BC are taken as is and
considered dates already in final format.The formatters
return the string "DATE ERROR" when something is amiss.

⊳ \DateCheck{#1} – returns string "true" if a valid date
has been found, "false" otherwise. A range of years
yyyy-yyyy and a date already formatted return
"date".
Example: \DateCheck{1-1-1900} is true and for 13-13-

1313 and 30-2-2020 it is false and false.

⊳ \DateFormat[options]{#1} – formats the date in
European format dd-mm-yyyy where days and
months less than 10 are typeset with one digit
only. There are both single and key=value options.
The formatting options are zero (zero fill), short
(abbreviated month name), long (full month name),
julian (Julian date), text (no formatting), default is
a compact format. A language option switches the
translation (see the example below) default is the
value of \currentlanguage.
Examples:
\DateFormat[]{200201} = 1-2-2020
\DateFormat[zero]{200201} = 01-02-2020
\DateFormat[short]{200201} = 1 Feb 2020
\DateFormat[long]{200201} = 1 February 2020
\..[long,language=fr]{200201} = 1 février 2020
\DateFormat[julian]{200201} = 2458881
\DateFormat[text]{200201} = 200201

⊳ \DateCurrent – the date of today 19-3-2021 formatted

74 MAPS 51 Hans van der Meer

with \DateFormat. Also one can obtain 19 March 2021
from \DateFormat[long]{\DateCurrent}.

⊳ \DateJulian{#1} – same as DateFormat[julian]{#1}. The
date converted to a Julian date with range limited
from 4713 BC to 3628AD. Today is 2459293 in
Julian. The Julian date is useful when things have
to be sorted on date.

⊳ \TimeFormatMinutes{#1}

\TimeFormatSeconds{#1} — format time duration given
as minutes or seconds respectively, into hh:mm:ss.
Input with one or more :’s or otherwise not a
number is considered formatted.
Examples:
\TimeFormatMinutes{59} = 00:59:00
\TimeFormatMinutes{120} = 02:00:00
\TimeFormatSeconds{10} = 00:00:10
\TimeFormatSeconds{3599} = 00:59:59
\TimeFormatSeconds{3600} = 01:00:00

⊳ \TimeCurrent – the time from the current clock as of
the moment of typesetting is 10:04:00. Note that the
underlying macro \the\normaltime returns the time in
minutes since mdidnight.

Case Change and Character Selection
Changing case is notoriously difficult, at least in my
experience. I always had trouble with \uppercase and
friends. ConTEXt provides macros \Word, etc. but doing it
yourself is a challenge I amnot always able to resist.The
implementation of CamelCase transformations came as
a bonus.

⊳ \ChangeLower{#1} – changes all letters in #1 to lower
case. For instance the french Était becomes était.

⊳ \ChangeUpper{#1} – changes first letter to upper case,
était thus becomes Était.

⊳ \ChangeUPPER{#1} – changes all letters in #1 to upper
case, était becomes ÉTAIT.

⊳ \ChangeCamel{#1} – changes all letters following
whitespace in #1 to upper case.
Example: sample text word-combination becomes:
Sample Text Word-combination

⊳ \ChangeCamelPlus{#1}{#2} – changes to uppercase in #1

all letters following whitespace and those from #2.
Beware: the - for example is special in Lua search
patterns and therefore must be preceded by a %.
Note that \letterpercent is how to insert it.
The same example with the - added:
Sample Text Word-Combination

⊳ \TypeCheck{#1} returns the Lua type of #1. Useful
to test if #1 is a string that Lua can convert into a
number.
Example: "5" has type number and "a5b" type string.

The macros below are intended to extract characters
and truncate strings to substrings. For example in oper-
ating systems long filenames are sometimes truncated
by removing parts in the middle.

⊳ \StringFirstCharacters{#1}{#2} – truncates string #1 to
a length of #2 by removing the excess characters at
the end.
Example: string has more than 40 characters This
was a very long string more than th….

⊳ \StringLastCharacters{#1}{#2} – truncates string #1 to
a length of #2 by removing the excess characters at
the front.
Example: string has more than 40 characters …ong
string more than the available space.

⊳ \StringFirstLastCharacters{#1}{#2} – truncates string #1

to a length of #2 by removing the excess characters
in the middle.
Example: string has more than 40 characters This
was a very lo…he available space.

⊳ \CharacterSelect[#1]{#2}{#3} – returns from string
#2 the #3-th character or an empty string if that
character is not found. The option #1 is a selector
from alphanum, alpha, digit, punct. A recognized option
returns the n-th character from the corresponding
set, while an empty selector returns just the n-th
character. The function does not know about UTF8
characters when a selector is given.
Example: \CharacterSelect[]{the 7 dwarfs.}{7} = d
Example: \CharacterSelect[alphanum]{..}{7} = a
Example: \CharacterSelect[alpha]{..}{7} = r
Example: \CharacterSelect[digit]{..}{1} = 7
Example: \CharacterSelect[punct]{..}{1} = .
Example: \CharacterSelect[]{pygmée}{5} = é

Numbers and Number Series

⊳ \RandomSeed{#1} – initializes the Lua random
generator with seed #1.

⊳ \RandomValue – returns next random value from the
Lua random generator.
Example: 0.85193537224893.

⊳ \RandomRange{#1} – returns a random value within
range 1-#1 from the Lua random generator.

⊳ \Series[options]{#1} – returns a series of #1 numbers.
The direction of the values can be ascending
(default) or descending, the corresponding key
options being normal (or empty) and reverse.

Hans van der Meer VOORJAAR 2021 75

The start value and the stepsize follow from
start=number and step=number, both having default 1.
The blank separator between the list items can
be changed with the option separator=value or
separator={value}.4 See the last example below where
the default space separator is replaced by space +
space.
Examples:
\Series[]{10} 1 2 3 4 5 6 7 8 9 10
\Series[reverse]{10} 10 9 8 7 6 5 4 3 2 1
\Series[reverse,start=0]{10} 9 8 7 6 5 4 3 2 1 0
\Series[start=0,step=-0.5]{4} 0 -0.5 -1.0 -1.5
\Series[separator={ + }]{4} 1 + 2 + 3 + 4

A more elaborate example is the following:5

\leavevmode

\setupframed[extras=\space,width=5mm,height=5mm]

\ProcessCommaList{framed[framecolor=blue]}

{\Series[separator={,}]{5}}}

1 2 3 4 5
A few remarks are in order. Macro \ProcessCommaList

is a wrapper around \processcommalist which would
otherwise crash as used here.6

⊳ \RandomSeries[#1]{#2} – returns #2 numbers ran-
domly from the range 0 to 1. With option #1 is
range=integer_number the values are integers drawn
from the interval 1..range. The option #1 will
receive an item separator as in the above example.
Example: \RandomSeries[range=10]{4} 4, 7, 2, 8

⊳ \MDfive{#1} – converts the string #1 into MD5 hash
value. Although nowadays not strong enough for

a secure hash, it is sufficient to fingerprint (long)
strings. Stored in a list useful to detect if these
strings were encountered before.
Example: \MDfive{[[MD5]]} is
6b3663a615846322674e3abf4fd59672

⊳ \SafeNumber{#1}{#2} – Return #1 if the Lua function
tonumber succeeds, otherwise return #2 as default.
Example: strings 207 and 207a with default NAN,
return respectively 207 and NAN.

Availability
The module and its supporting modules can be down-
loaded from my site hvandermeer.com/publications.html. The
TEX-stuff resides in section “Articles on TeX”, down-
loads are a little below in the link “ConTeXt module
distribution”.

Notes
1. Courtesy of the fact that Lua functions can accept a variable

number of parameters.
2. For those who would expect 27 and 25 as answers: the newline

at the end of the line is included in the count.
3. The tablesorter is derived from Programming in Lua by Roberto

Ierusalimschy, 3rd edition, section 20.2 page 197.
4. The braces are mandatory in case certain characters are present

in the option value, especially spaces, commas and Lua special
pattern matching characters. Without the braces the underlying
Lua function does not treat the option value as intended. The
Lua special characters are ^$()%.[]*+-?

5. The \leavevmode is needed to suppress the newlines that otherwise
appear between the frames.

6. All parameters to the \framed could have been placed inside the
[]’s, but it would clutter this presentation too much.

Hans van der Meer
havdmeer@ziggo.nl

76 MAPS 51 Hans van der Meer

