
NUMMER 51 • VOORJAAR 2021

R E D A C T I E
Frans Goddijn, gangmaker
Taco Hoekwater

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

voorzitter@ntg.nl

Secretaris
Taco Hoekwater

secretaris@ntg.nl

Penningmeester
Ferdy Hanssen

penningmeester@ntg.nl

Bestuursleden
Frans Goddijn

Pieter van Oostrum
Postadres

Nederlandstalige TEX Gebruikersgroep
Baarsjesweg 268-I

1058 AD Amsterdam
ING bankrekening

IBAN: NL53INGB0001306238
BIC: INGBNL2A
E-mail bestuur
ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2021 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een
forum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN

software-archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN zowel als SWIFT/BIC en selecteer shared cost. Daarnaast
dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan
ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 35. Voor studenten geldt een tarief van ¤ 18. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte TUG-contributie is momenteel $105.

Afmelding kan met ingang van het volgende kalenderjaar door opzegging per e-mail
aan de penningmeester.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class �le en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.20 en luatex 1.13.0 draaiend onder MacOS X 11.2. De gebruikte fonts zijn Linux
Libertine, het niet-proportionele font Inconsolata, schree�oze fonts uit de Latin Modern
collectie, en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TEX. Voorbeelden zijn LATEX van Leslie Lamport, AMS-TEX van Michael Spivak,
en ConTEXt van Hans Hagen.

Contents

Redactioneel 1
Waarom is een NTG lidmaatschap belangrijk?, Hans Hagen 2
Proud or ashamed?, Hans Hagen 3
Lost in fonts, Hans Hagen 7
UTF-8 in MetaPost, Hans Hagen 9
Extensions related to programming macros, Hans Hagen 13
Playing with Axodraw, J.A.M. Vermaseren 25
Two Questions and Answer Sessions by Donald Knuth at FI MU, Tomáš Szaniszlo 40
Translations from a Vocabulary, Hans van der Meer 65
Macros and Lua snippets, Hans van der Meer 69
GUST e-foundry font projects, closing report 2019–2020, Jerzy Ludwichowski 77
De ontwikkeling van het LaTEX package fancyhdr, Pieter van Oostrum 79
Ontwikkelingen in TEX Live, Siep Kroonenberg 97

maps redactie VOORJAAR 2021 1

Redactioneel

Door middel van deMaps willen we u op de hoogte houden van ontwikkelingen, ook
om daarmee onze leden te danken voor hun trouwe steun aan de TEX ontwikkelaars.
Verder bieden we ruimte aan lezers die anderen laten delen in hun ervaringen met
TEX, MetaPost, fonts en aanverwanten. Aarzel dus niet ons artikelen te sturen. Een
halve pagina is al heel leuk, meer mag ook, graag zelfs. Het hoeft geen ‚zware kost’
te zijn want het is voor lezers bijvoorbeeld al heel interessant te lezen hoe anderen
TEX gebruiken. Dus een artikeltje als „dit doe ik met TEX, zo doe ik dat en nu kun jij
het ook” is zeer welkom!

Hoewel het internet tegenwoordig een belangrijke bron van informatie is, blijft pa-
pier een functie vervullen binnen de vereniging. Dat past immers bij TEX!

Veel leesplezier,

Uw redactie

2 MAPS 50 Hans Hagen

Waarom is een ntg lidmaatschap
belangrijk?

TEX bestaat bijna 40 jaar en het ziet er niet naar uit
dat het systeem snel zal verdwijnen. Oorspronkelijk
was het alleen beschikbaar op universiteiten, later kon
men het ook thuis installeren. Verschillende ‚journals’
worden vormgegeven in TEX en op universiteiten is het
nog steeds populair.

Het begon met TEX, geschreven door Donald Knuth.
Later kwamen er wat extensies onder de vlag 𝜀-TEX.
De succesvolle variant met ingebouwd backend PDFTEX
werd na verloop van tijd de standaard. Toen UNICODE
opgang maakte kwam X ETEX erbij, en wat later be-
gon de ontwikkeling van LUATEX. Parallel aan deze
ontwikkeling zijn fonts ontwikkeld, is MetaPost uit-
gekristalliseerd en zijn macro-pakketten als LATEX en
ConTEXt ontstaan die een groot aantal talen en scripts
ondersteunen.

De hele TEX beweging kan worden getypeerd met
woorden als originaliteit, solidariteit, continuïteit, on-
dersteuning en ontwikkeling. Dat alles vinden we als
gebruikers heel normaal. Vanzelfsprekend is het feit
dat we al zo lang aanwezig zijn mede het gevolg van
de sympathieke Donald Knuth. Rond hem ontstond de
eerste gebruikersgroep tug, maar al snel verenigden
gebruikers zich in groepen, in de regel per taalgebied,
met als doel ondersteuning van het taalgebied en de
kenmerkende (lokale) typografie. De gebruikersgroe-
pen organiseren bijeenkomsten, publiceren tijdschrif-
ten en hosten websites en mailing lijsten.

De verschillende programma’s (ook wel ‚engines’
genoemd) worden al sinds jaren verspreid door de ge-
bruikersgroepen, de laatste decennia op CD’s and DVD’s.
De Nederlandstalige Gebruikersgroep heeft daarbij een
pioniersrol gespeeld. De programma’s worden verge-
zeld van een uitgebreide collectie fonts en macros.

Tegenwoordig vindt de communicatie vooral plaats
via internet, maar in het verleden (en met enige regel-
maat nog steeds) kwamen ontwikkelaars samen op (in-
ternationale) bijeenkomsten. Regelmatig zijn door ge-
bruikersgroepen projecten geïnitieerd en ondersteund.

Op dit moment draagt de ntg substantieel bij aan de
ontwikkeling van moderne fonts.

Wat gebeurt er als de gebruikersgroepen wegvallen?
Dat is niet met zekerheid te zeggen, maar het is een
feit dat er heel veel gebruikers zijn die hun hele leven
lang het TEX ecosysteem gebruiken. Zij kunnen dankzij
de gebruikersgroepen vooralsnog verzekerd zijn van
continuïteit en stabiliteit. En dat zonder de tegenwoor-
dig alom tegenwoordige reclame (zoals in apps), zonder
lock-in op een bepaald hardware platform, onafhanke-
lijk van een besturingssysteem, en natuurlijk zonder
dringende uitnodiging om een betaalde pro-versie te
gebruiken of deel te nemen aan een of ander ‚plan’.

Zal de rol van de vereniging veranderen? Natuur-
lijk! Publicaties worden bijvoorbeeld wat zeldzamer en
concentreren zich op ontwikkelingen. Bijeenkomsten
worden kleinschaliger en trekken vooral actieve TEXers
wat weer bijdraagt aan de kwaliteit, volledigheid en
continuïteit van distributies. Mailing lijsten en websites
worden tegenwoordig aangevuld met forums en blogs.
Er zijn nog steeds internationale bijeenkomsten.

De financiële positie van de ntg is solide, ondanks
het feit dan het ledental wat afneemt en vergrijst.
Vooralsnog wordt er gebruik gemaakt van (door leden)
gesponsorde sites voor het hosten van de distributies
en archieven. Als de font projecten zijn afgerond, is er
weinig reden om geld te reserveren voor ontwikkeling.
Om die reden zijn de kosten niet gestegen en kan het
lidmaatschap laagdrempelig worden gehouden.

Lid zijn van de vereniging is afgezien van een ga-
rantie voor de beschikbaarheid van distributies ook een
signaal aan gebruikers dat die garantie er vooralsnog
is. Niet alles kan via internet, soms moeten we elkaar
gewoon ontmoeten. En het helpt als ontwikkelaars we-
ten dat er gebruikers zijn die zich willen verbinden aan
het lot van TEX. Kortom, als de verenigingen zouden
verdwijnen dan ontstaat denk ik snel een versnipperde
en instabiele situatie. En dat willen we niet, toch?

Hans Hagen, voorzitter NTG

Hans Hagen VOORJAAR 2021 3

Proud or ashamed

In TUGboat, Volume 41 (2020), No. 1, the user group president Boris Veytsman ends
his introduction with “When I read papers on COVID, I habitually check how they
are typeset. When I see TEX I feel a pride that somehow our efforts contributed to
the common task.” I have to admit that I seldom go on the web searching for such
content, but I did run into a publication from the Dutch RIVM, the institute that deals
with matters like COVID.

Now, it must be said, that when I was a third the age that I’m now, I actually
sometimes bought the nicely typeset and printed copies of government publications.
They had at that time their own typesetting and printing facilities and many such
documents (like those about long term environmental planning) always looked very
nice. It did make me kind of feel proud. But those times are gone, and nowadays we
often get pretty mediocre stuff. There are however exceptions, like the MH17 report
named : ‘Report MH17 crash’, which looks quite okay. It was not made by TEX but
with InDesign, but could as well have been done with TEX.

Tabel 1. Aantal gemelde COVID-19 patiënten, aantal in het ziekenhuis opgenomen
COVID-19 patiënten en aantal overleden COVID-19 patiënten1.

Aantal %
Totaal gemeld 6412
Ziekenhuisopname 1836 28.6
Overleden 356 5.6

Aantal bij de GGD’en gemelde COVID-19 patiënten, naar meldingsdatum

Meldingen tot en met 24-03-2020.

0

200

400

600

17 feb 24 feb 2 mrt 9 mrt 16 mrt 23 mrt
Meldingsdatum GGD

A
an

ta
l

1Het werkelijke aantal COVID-19 patiënten is hoger dan het aantal meldingen in de surveillance,
omdat niet iedereen met mogelijke besmetting getest wordt. Het werkelijke aantal COVID-19 patiënten
opgenomen in het ziekenhuis is hoger dan het aantal opgenomen patiënten gemeld in de surveillance,
omdat het gaat om informatie die bekend is op het moment van melding. Ziekenhuisopname na melding
is niet altijd bekend. Aan het RIVM wordt niet gemeld wie hersteld is.

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 2

Aantal bij de GGD’en gemelde in het ziekenhuis opgenomen COVID-19
patiënten, naar meldingsdatum

Meldingen tot en met 24-03-2020.

0

50

100

150

200

250

17 feb 24 feb 2 mrt 9 mrt 16 mrt 23 mrt
Meldingsdatum GGD

A
an

ta
l

Aantal bij de GGD’en gemelde overleden COVID-19 patiënten, naar datum
van overlijden

Voor 19 patiënten de datum van overlijden werd niet gemeld.
Meldingen tot en met 24-03-2020.

0

10

20

30

40

50

17 feb 24 feb 2 mrt 9 mrt 16 mrt 23 mrt
Datum van overlijden

A
an

ta
l

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 3

Page 2 Page 3

Figure 1.

4 MAPS 51 Hans Hagen

Tabel 2. Leeftijdsverdeling van bij de GGD’en gemelde COVID-19 patiënten, van in het
ziekenhuis opgenomen COVID-19 patiënten en van overleden COVID-19 patiënten2.

Leeftijdsgroep Totaal % Ziekenhuisopname % Overleden %
Totaal gemeld 6412 1836 356
0-4 23 (0.4) 10 (0.5) 0 (0.0)
5-9 6 (0.1) 1 (0.1) 0 (0.0)
10-14 30 (0.5) 4 (0.2) 0 (0.0)
15-19 42 (0.7) 4 (0.2) 0 (0.0)
20-24 119 (1.9) 5 (0.3) 0 (0.0)
25-29 322 (5.0) 23 (1.3) 0 (0.0)
30-34 330 (5.1) 28 (1.5) 0 (0.0)
35-39 283 (4.4) 20 (1.1) 0 (0.0)
40-44 282 (4.4) 27 (1.5) 0 (0.0)
45-49 460 (7.2) 87 (4.7) 0 (0.0)
50-54 529 (8.3) 115 (6.3) 2 (0.6)
55-59 602 (9.4) 131 (7.1) 2 (0.6)
60-64 487 (7.6) 157 (8.6) 7 (2.0)
65-69 484 (7.5) 226 (12.3) 24 (6.7)
70-74 562 (8.8) 265 (14.4) 33 (9.3)
75-79 599 (9.3) 275 (15.0) 70 (19.7)
80-84 574 (9.0) 233 (12.7) 105 (29.5)
85-89 426 (6.6) 167 (9.1) 80 (22.5)
90-94 175 (2.7) 47 (2.6) 23 (6.5)
95+ 53 (0.8) 6 (0.3) 9 (2.5)
Niet gemeld 23 (0.4) 4 (0.2) 1 (0.3)
NA 1 (0.0) 1 (0.1) NA NA

Tabel 3. Man-vrouwverdeling van bij de GGD’en gemelde COVID-19 patiënten, van in
het ziekenhuis opgenomen COVID-19 patiënten en van overleden COVID-19 patiënten.

Geslacht Totaal % Ziekenhuisopname % Overleden %
Totaal gemeld 6412 1836 356
Man 3181 (49.6) 1155 (62.9) 226 (63.5)
Vrouw 3199 (49.9) 673 (36.7) 128 (36.0)
Niet gemeld 32 (0.5) 8 (0.4) 2 (0.6)

2Het werkelijke aantal COVID-19 patiënten is hoger dan het aantal meldingen in de surveillance,
omdat niet iedereen met mogelijke besmetting getest wordt. Het werkelijke aantal COVID-19 patiënten
opgenomen in het ziekenhuis is hoger dan het aantal opgenomen patiënten gemeld in de surveillance,
omdat het gaat om informatie die bekend is op het moment van melding. Ziekenhuisopname na melding
is niet altijd bekend. Aan het RIVM wordt niet gemeld wie hersteld is.

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 4

Tabel 4a. Aantal bij de GGD’en gemelde COVID-19 patiënten, in het ziekenhuis
opgenomen COVID-19 patiënten en overleden COVID-19 patiënten met onderliggende
aandoeningen en/of zwangerschap3.

Comorbiditeit Totaal % Ziekenhuisopname % Overleden %
Totaal gemeld 6412 1836 356
Ja 1748 (27.3) 974 (53.1) 191 (53.7)
Geen onderliggende aandoening 1411 (22.0) 322 (17.5) 17 (4.8)
Niet gemeld 3253 (50.7) 540 (29.4) 148 (41.6)

Tabel 4b. Voorkomende onderliggende aandoeningen4 en/of zwangerschap van bij de
GGD’en gemelde COVID-19 patiënten en in het ziekenhuis opgenomen COVID-19 patiën-
ten en overleden COVID-19 patiënten3. Meerdere onderliggende aandoeningen kunnen
gemeld zijn per patiënt. De meest voorkomende onderliggende aandoeningen zijn Cardio-
vasculaire aandoening, Chronische longaandoening en Diabetes.

Comorbiditeit Totaal % Ziekenhuisopname % Overleden %
Totaal voorkomende aand. 2510 1455 319
Zwangerschap 27 (1.1) 4 (0.3) 0 (0.0)
Cardio-vasc. aand. en hypertensie 690 (27.5) 437 (30.0) 84 (26.3)
Diabetes 310 (12.4) 213 (14.6) 49 (15.4)
Leveraandoening 10 (0.4) 5 (0.3) 1 (0.3)
Chron. (neuro)musculaire aand. 81 (3.2) 35 (2.4) 9 (2.8)
Immuundeficiëntie 44 (1.8) 23 (1.6) 1 (0.3)
Nieraandoening 113 (4.5) 69 (4.7) 23 (7.2)
Chron. longaandoening 399 (15.9) 234 (16.1) 47 (14.7)
Maligniteit 172 (6.9) 111 (7.6) 23 (7.2)
Overig 664 (26.5) 324 (22.3) 82 (25.7)

3Het werkelijke aantal COVID-19 patiënten is hoger dan het aantal meldingen in de surveillance,
omdat niet iedereen met mogelijke besmetting getest wordt. Het werkelijke aantal COVID-19 patiënten
opgenomen in het ziekenhuis is hoger dan het aantal opgenomen patiënten gemeld in de surveillance,
omdat het gaat om informatie die bekend is op het moment van melding. Ziekenhuisopname na melding
is niet altijd bekend. Aan het RIVM wordt niet gemeld wie hersteld is

4Totaal voorkomende aand. = Totaal voorkomende aandoeningen, Card. vasc. aand. = Cardio-
vasculaire aandoening, Chron. (neuro)musculaire aandoening = Chronische neurologische of neuromus-
culaire aandoening, Chron. longaandoening = Chronische longaandoening

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 5

Page 4 Page 5

Figure 2.

Back to COVID and the RIVM, I was actually quite horrified by a document I saw
online, named ‘Epidemiologische situatie COVID-19’.The document properties gave
no indication how it has been produced. The producer is Acrobat Pro but that can
as well be a backend job. The first page looks like your average word processor text,
some colourful graphicsmight have been produced by a desktop publishing program,
and the rest (running text and some tables) scream TEX.

Now it’s not my habit to criticise documents this way but in the perspective of
Boris’ remark I think the TEX community should be honest about reality: there are
lots of nice looking documents around made by TEX but maybe even more horri-
ble looking ones. The fact that we have TEX doesn’t mean that, to quote him again,
“Following Knuth, we use rational methods to create beautiful pages in service of
presentation of beautiful thoughts.”. We can also say “Ignoring Knuth, we use irra-
tional methods to create awful pages in service of presentation of whatever we want
to look scientific.”.

On the second page we notice a couple of things.There is hardly any text andmost
is actually in a footnote that ends up at the end of the text and not at the bottom of the
page. Yes, because TEX can do footnotes, users love them. This is a typical example
of where a footnote could have been running text. The table caption is at the top of
the table, but the graphic has an unnumbered title. The spacing around the table is
kind of weird as is the spacing around the graphics. The first graphic on the third
page probably fits on the second page.

Hans Hagen VOORJAAR 2021 5

Totaal aantal bewezen COVID-19 patiënten per datum op de Nederlandse
intensive care afdelingen

Wegens drukte op de IC is er mogelijk een vertraging van 2 a 3 dagen in de data-
aanlevering, hieronder in groen aangegeven.

0

200

400

600

17 feb 24 feb 2 mrt 9 mrt 16 mrt 23 mrt
Datum

A
an

ta
l I

C
 o

pn
am

es

Bewezen Waarschijnlijk onvolledig

Bron: Nationale Intensive Care Evaluatie (NICE)
Voor meer figuren, zie www.stichting-nice.nl

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 6

Tabel 5. Aantal bij de GGD’en gemelde COVID-19 patiënten per provincie5.

Provincie Aantal %
Totaal gemeld 6412
Drenthe 60 0.9
Flevoland 85 1.3
Friesland 53 0.8
Gelderland 695 10.8
Groningen 84 1.3
Limburg 786 12.3
Noord-Brabant 1915 29.9
Noord-Holland 870 13.6
Overijssel 326 5.1
Utrecht 574 9.0
Zeeland 77 1.2
Zuid-Holland 887 13.8

5Het werkelijke aantal COVID-19 patiënten opgenomen in het ziekenhuis is hoger dan het aantal
opgenomen patiënten gemeld in de surveillance, omdat het gaat om informatie die bekend is op het
moment van melding

Epidemiologische situatie COVID-19 Nederland 25-03-2020. Bron : RIVM 7

Page 6 Page 7

Figure 3.

Page four and five also have tables and of course footnotes. The running text is
moved to the table captions. In the tables we see parenthesis around the percentage
entries and the percentage symbol is not centred. Again, like footnotes, TEXies often
claim that the program can make nice tables but when a macro package doesn’t help
(or steer) them doing just that such a claim is useless. Last year I attended a session
where some hundred students graduated and the teachers showed some results from
papers on the beamer. Most of the tables (the showcase I presume) looked horrible:
bad spacing and lots of rules. All done in TEX, but not showing 30 years of progress
in usage. Lucky me that my colleague and I were probably the only adults in the
room that immediately recognised TEX, so no harm was done to its reputation.

To the tables in the COVID document we can point out that the captions could
have been centred and maybe in bold and there is no apparent reason for these tables
to run into the margin.There is also no reason for the bad rendering of the paragraph
in the footnotes. Footnote number 4 looks like some “text done in math mode” job to
me. Pages six and seven could have been one page, and in fact the whole document
could have been at least one page less.

Now, one can blame the composer of the document but we can equally well blame
the software. If an argument for using TEX is the structured approach that leads to
quality, then here it failed. Actually, I see no properties that give reason for even
using TEX. A word document might even look better.

Now the reason for even going in such detail about an otherwise irrelevant aspect
of presenting data, is that I noticed that in presenting information about COVID to

6 MAPS 51 Hans Hagen

a countries inhabitants, some governments actually have a very well designed web
presence: nicely designed websites, adaptive graphics, tables with nice colours and
spacing. There is absolutely no reason for not having a variant in print done with
TEX. Actually, there is probably no program like TEX that can produce a flow of
documents with a high degree of consistency in rendering.

I think that after many decades of TEX its qualitative properties are seldom ex-
posed by publishers (or equivalents). It’s common users who make the beautiful doc-
uments. It’s them who sit behind the screen and spend time, maybe even struggling,
experimenting, trialing and erroring in order to come to something that they think
looks beautiful. When you use TEX you enter a feedback loop. You have to spend
time, and if you don’t want to do that, don’t use it. It’s those users who gets inspired
by Don Knuths legacy, nice looking manuals, maybe articles in user group journals,
posts on mailing lists, help on forums. Forget about the publishers, they seldom care.
Forget about institutions that demand usage of TEX for e.g. thesis and reports using
some decades old template. It’s the freedom of users that produce nice stuff. And
often these documents don’t scream TEX. I bet that when one can recognise a TEX
document, it often is also a not so nice looking document. Don Knuths work is of
course the exception to this rule. I therefore end with quoting Boris again: “TEX was
born from the striving for beauty and rationality.” With that I completely agree.

You can find the mentioned texts at

� www.tug.org/TUGboat/Pres/tb127pres.pdf
� www.onderzoeksraad.nl/en/media/attachment/2018/7/10/debcd724fe7breport

_mh17_crash.pdf
� www.rivm.nl/sites/default/files/2020-03/Epidemiologische situatie COVID

-19 2025 20maart 202020 20Nieuw.pdf

Hans Hagen

Hans Hagen VOORJAAR 2021 7

Lost in fonts

Nowadays it is rather common to use a (wide font) OpenType aware engine but for
quite a while the eight bit fonts dominated the TEX landscape. The pdfTEX engine
could actually use wide TrueType fonts, but that was more a hack: only an eight
bit subset could be used. This trick permitted for instance using large cjk fonts in
TrueType format by splitting the metrics up in 256 character chunks. Traces of that
approach can be found in TEX distributions where one such font comes with dozens
of tfm files.

In order for TEX to do its work, font metrics are needed and these come, in the
case of pdfTEX, from tfm files.These files contain metric information (width, height,
depth and italic correction), recipes for ligatures (multiple glyphs replaced by one),
and inter-character kerning data. The backend (build-in or external) will eventually
filter the shapes from a font resource by index. Such a resource can be a pk file (direct
index mapping), a Type1 (via an encoding vector) or a ttf file (also via an encoding
vector).

A binary tfm file is either handcrafted or the product of a conversion, for instance
by afmtotfmwhere the human readable afm file that can come with a TrueType font
describes the font. Because TEX can handle ligatures, it is no surprise that when that
information is available it will end up in the tfm file. The converter sees glyphs with
names like f, i and fi and can add the information to the tfm file that an f followed
by an i becomes fi.

Now, when we move on to a modern OpenType aware engine, we no longer need
the tfm file but load the ttf file directly and here is where we can be surprised. The
following example is in ConTEXt speak, but the principles remain:

\definefont [MyFont] [file:TYFATECE.TTF*default @ 45pt]

Here we define a font and apply the default feature set that sets up the font to provide
ligatures (the liga feature) as well as kerns (the kern feature).

\MyFont efficient fietsen

efficient fietsen
When Jano Kula was working on a schedule for a film festival he wanted to use

the font (based on a design by Josef Týfa) shown here, so when no ligatures showed
up he was puzzled by the fact that it had worked before. That made me wonder what
happened.The font is two decades old and has not changed. But what did change was
the engine being used. In LuaTEX (and LuaMetaTEX) we directly load the ttf file
but that particular loaded file has no features! This can be seen in the so called tma
file in the font cache, a human readable Lua file. This is because at the time that font
was made, there were no features. The ttf file was just an alternative for a Type1
file and features had to be derived from the afm file.

So, how do we deal with this? Well, the solution is similar to what these afore-
mentioned converter commands do. First we define an additional feature, then we
use it.

8 MAPS 51 Hans Hagen

\startluacode
fonts.handlers.otf.addfeature {

name = "myliga",
type = "ligature",
data = {

["fi"] = { "f", "i" },
["fl"] = { "f", "l" },
["ffi"] = { "f", "f", "i" },
["ffl"] = { "f", "f", "l" },
["fff"] = { "f", "f", "f" },

}
}
\stopluacode

\definefontfeature[myliga][default][myliga=yes]

\definefont [MyFontLiga] [file:TYFATECE.TTF*myliga @ 45pt]

\MyFontLiga efficient fietsen

For the sake of this summary we used myliga but one can also just use liga as name
before the first font is loaded. However, by being explicit we knowwhat gets applied.
Here is the result:

efficient fietsen
The main reason for bringing this up is that a migration to newer technology can

result in (initial) unexpected loss of functionality. But fortunately in this case there
is a way out. However, one can wonder if the loss of the ligatures was really that
bad here. Just for the record, the following approach simulates the way TEX does it:
pair-wise ligature building: work

\startluacode
fonts.handlers.otf.addfeature {

name = "myliga1",
type = "ligature",
data = {

["fi"] = { "f", "i" },
}

}
fonts.handlers.otf.addfeature {

name = "myliga2",
type = "ligature",
data = {

["ffi"] = { "f", "fi" },
}

}
\stopluacode

\definefontfeature[myliga][default][myliga1=yes,myliga2=yes]

But the earlier solution where we just put all lookups in one feature is of course more
efficient. Other solutions can use so called contextual lookups but that is overkill
here.

Hans Hagen

Hans Hagen VOORJAAR 2021 9

UTF8 in MetaPost

Around the time Alan Braslau and I were discussing his new MetaFun node mod-
ule, I made the MetaPost library accept utf8, if only because nowadays that is the
preferred portable file encoding. Before I show what that brings us, let’s see how the
TEX suite deals with input.

When TEX andMetaFont, the program thatMetaPost shares much of its codewith,
evolved, punch cards were widely used. There was quite some diversity in the word
size of computers and those were not always multiples of eight. Initially characters
in the engines took seven bits but soon that became eight bits. When a character
was read from file, it went though a re-mapper that turned the input byte into one
that was normalised inside the engine. Before something was shown to the user (on
the console or in the log) there was a conversion to the preferred output encoding.
Internally ascii was used, but the outer world could for instance talk ebcdic.

In the previous paragraph I talk in the past tense because in the extended TEX
engines that I use, LuaTEX and LuaMetaTEX, this mapping is gone: they have a utf8
code path. In the MetaPost library that is used in LuaMetaTEX the mapping is also
gone because in practice it was a one-to-one mapping, an unused leftover from the
past (one can consider it an old system dependency).

The TEX and MetaPost engines differ in the way that they deal with characters. In
TEX a character has a so called catcode. For instance a dollar is a math shift character
(it begins or ends math mode) and its code is 3. A space has code 10, a comment 14,
etc. There are 16 catcodes and if you want to know more about that: read the TEX
book! It’s one of these intriguing properties of TEX.

In MetaPost characters don’t have catcodes but they are grouped into classes that
drive the expression scanner, like left or right bracket or parenthesis.They also play a
role in prioritising operators. In TEX characters with a code larger than 127 are valid
and depending on how a macro package is set up they have category letter or other.
In stock MetaPost they are illegal. However, in MetaPost we can make them letters
(one of the classes) after which the engine will just accept them and not complain. In
the wide TEX engines the characters > 127 signals a multibyte utf8 sequence, which
also means that the related character code ends up as glyph reference. If you want a
specific utf sequence to be a valid letter in amacro name, you need tomake sure it has
the right catcode for that: you need to set that up (think of Chinese with thousands
of characters). In MetaPost it’s easier: just put all in the characters in the 128-255
range in the letter class and you’re done. One can tell the library to do that with a
simple flag and we’re done: MetaPost can do utf8. All it takes is this:

for (int k = 127; k <= 255; k++) {

mp->char_class[k] = mp->utf8_mode

? letter_class

: invalid_class;

}

10 MAPS 51 Hans Hagen

After this rather trivial patch (of course one needs to set the mode) we can do the
following and get figure 1:

\startMPcode
vardef dœn_knüth = textext("Don Knuth") enddef ;

vardef ДональдКнут = textext("Donald Knuth") enddef ;

draw ДональдКнут xsized 10cm withcolor "middlegray";
draw dœn_knüth xsized 4cm withcolor "darkred";
draw dœn_knüth ysized 5mm rotated 45 withcolor "darkgreen";
draw textext(str dœn_knüth) ysized 5mm rotated -45 withcolor "darkblue";
draw textext(str ДональдКнут) ysized 5mm rotated 90 withcolor "darkgray";
\stopMPcode

Donald KnuthDon Knuth
Do
n K

nu
thdœn_knüth

Д
он

ал
ьд

Кн
ут

Figure 1.

But, as I mentioned that Alan and I were playing with this, a more tantalising exam-
ple is possible; the result is shown in figures 2 and 3):

\startMPcode
save p ; pen p ; p := currentpen ;

pickup pencircle scaled .05;

picture ○ ; ○ := image (draw fullcircle) ;

picture ◎ ; ◎ := image (draw fullcircle ; draw fullcircle scaled .5) ;

currentpen := p ;

draw ◎ ysized 2cm withcolor "darkblue" ;

draw ○ ysized 2cm shifted (4cm,0) withcolor "darkred" ;

\stopMPcode

Figure 2.

\startMPcode
draw image (

for i=1 upto 100:

draw ◎ scaled .3i shifted ((i/2)*mm,0) rotated (i*10)
withcolor (i*red/100);

endfor ;

) shifted (4cm,8cm);
\stopMPcode

Hans Hagen VOORJAAR 2021 11

Figure 3.

In the end we came up with a bunch of symbols that can be used as indicators in
graphics for tagging data points:

\startMPcalculation
begingroup

pen savedpen ; savedpen := currentpen ;

pickup pencircle scaled .05 ;

interim ahlength := .5 ;

interim ahvariant := 1 ;

picture ○ ; ○ = image(draw fullcircle) ;

picture ◎ ; ◎ = image (draw fullcircle ;draw fullcircle scaled .5) ;

picture □ ; □ = image(draw fullsquare) ;

picture ◇ ; ◇ = □ rotated 45 ;

picture △ ; △ = image(draw (dir 90–dir 210–dir 330–cycle) scaled (2/3)) ;

picture ▽ ; ▽ = △ rotated 180 ;

picture ◁ ; ◁ = △ rotated 90 ;

picture ▷ ; ▷ = △ rotated -90 ;

picture ● ; ● = image(fill pathpart ○) ;

picture ■ ; ■ = image(fill pathpart □) ;

picture ◆ ; ◆ = image(fill pathpart ◇) ;

picture ▲ ; ▲ = image(fill pathpart △) ;

picture ▼ ; ▼ = image(fill pathpart ▽) ;

picture ◀ ; ◀ = image(fill pathpart ◁) ;

picture ▶ ; ▶ = image(fill pathpart ▷) ;

picture ↑ ; ↑ = image(drawarrow (0,-1/2)–(0,1/2)) ;

setbounds ↑ to unitsquare;

picture → ; → = ↑ rotated 180;

picture ↓ ; ↓ = ↑ rotated 90;

picture ← ; ← = ↑ rotated -90;
pickup savedpen ;

endgroup ;

\stopMPcalculation

12 MAPS 51 Hans Hagen

These symbols can now be used as follows, see figure 4 for the result:

\startMPcode
save n ; n := 0 ;

for symbol = ○, ◎, □, ◇, △, ▽, ◁, ▷, ●, ■, ◆, ▲, ▼, ◀, ▶, ↑, →, ↓, ← :

draw symbol scaled 4mm shifted (n, 0) ;

n := n + 6mm ;

endfor ;

\stopMPcode

Figure 4.

Of course, when we have many such symbols, using a font with these characters in
combination with the textext command is more efficient because then we just refer
to a shape in a font.

The possibilities are endless. Take the following:

\startMPcalculation
def ○ = fullcircle enddef ;

def ✁ = cutafter enddef ;

def ✃ = cutbefore enddef ;

def ✏ = withpen pencircle enddef ;

def ✖ = scaled enddef ;

def ◷ = rotated - enddef ;

def ◴ = rotated enddef ;

\stopMPcalculation

This might draw icon and Emoji freaks to MetaPost, but it might equally well make
potential users look the other way (see figure 5):

\startMPcode
draw (○ ✁ point 2 of ○) ✖ 2cm ✏ ✖ 5mm ◷ 90 withcolor "darkred" ;

draw (○ ✃ point 2 of ○) ✖ 2cm ✏ ✖ 5mm ◴ 90 withcolor "darkblue" ;

\stopMPcode

Figure 5.

But, as with many obscure features in macro packages, I’m sure that users will find a
way to (ab)use this feature. Just for the record: the textext command is the MetaFun
way to get typeset text, and using string for colours is just a convenient way to access
colours at the TEX end (a redefinition of a primitive). The MPwrapper commands deal
with runtime MetaPost processing and embedding.

Hans Hagen

Hans Hagen VOORJAAR 2021 13

Extensions related to
programming macros

Introduction
Many thanks to Karl Berry who improved the English while copy-editing the following
text for the spring 2021 issue of TugBoat.

Sometimes you can read (or hear) comments about TEX not being a real program-
ming language or the wish for it to be more like a typical procedural language. A
discussion about this is somewhat pointless because it relates to experiences and
preferences. Also, when we mention TEX, we are talking about an interpreter, a lan-
guage, a set of macros and in practice, about an ecosystem, simply because all kinds
of resources are involved—especially the ecosystem is one reason why a successor
is not showing up.

So, when we discuss the language aspect, it concerns a macro language and that is
for a good reason: one can mix content and operations on that content in one docu-
ment source. That source is interpreted and processed as it goes. This is contrary to a
procedural language, where one explicitly has to push content into some procedure.
These are a bit of a mix, e.g., webpage templates where some elements are snippets
of programs and a preprocessor assembles the result.

\def\MyMacroA#1{This or #1!}
\def\MyMacroB{that}

\MyMacroA{\MyMacroB}

Here the last line will result in “This or that!” ending up in the output. But it must be
noted that \MyMacroB is passed as a token, and only in the body of the macro does it
get expanded into “that”.

\edef\MyMacroC{\MyMacroB}

The code above defines a new macro with the expanded text as body. To expand or
not, that is often the question. Now compare this code with the following:

function MyFunctionA(one)
return "This or " .. one .. "!"

end
function MyFunctionB()

return "that"
end
function MyFunctionC(one)

return "This or " .. one() .. "!"
end

MyFunctionA("that")
MyFunctionA(MyFunctionB())
MyFunctionC(MyFunctionB)

14 MAPS 51 Hans Hagen

The first function expects a string and returns a concatenation. The second function
returns a string. The first call gets a string passed and the second one too because we
call that function. But the third call passes the function itself, which is why the third
function has to call it explicitly in the function body. It is this property that, in my
opinion, complicates matters when you want to do typesetting in such a language:
the more you nest the more dangers there are for asynchronous side effects. This can
be understood from the following example:

function MyFunctionA(one)
print("A")
return "This or " .. one .. "!"

end
function MyFunctionB()

print("B")
return "that"

end

MyFunctionA(MyFunctionB())

Here we print B before we print A. Now, one can certainly argue that in spite of
this, functions are easier to understand than macros (which can also have surprising
side effects). Indeed, when one works on an abstract document tree where content
is fetched from, say, a database that might be true but most TEX users mix content
and operations.

In the following sections I will introduce some of the additional features that
LuaMetaTEX provides.They are the result of experiencing many years of macro writ-
ing and the wish to come up with readable code using native features of the language
when possible. Of course in ConTEXt we have a high level interface for dealing with
typographical constructs and properties but deep down the code looks less clear.
Putting layer upon layer doesn’t help much either, so we don’t go that route. Us-
ing funny characters like !?@_: doesn’t make things look better either. We do have
lots of so-called low-level macros but it doesn’t make much sense to come up with
a pseudo-programming layer while in fact the engine could make better facilities
available; so that is the route we follow. After decades it had become clear that none
of the successor TEX variants have filled in the gaps in this way, so at some point I
decided that LuaMetaTEX should do it (at least for ConTEXt).

While ConTEXt MkII was written for the more traditional engines pdfTEX and
X ETEX, MkIV targets LuaTEX. It resulted in a rewrite of many components and a
freeze of MkII. It made no sense to cripple ourselves so in the end we went fur-
ther than originally expected. Then, when LuaMetaTEX development started, again
a rewrite happened, but this time the reason was to make the code base a bit more
efficient (less indirectness) by using extended native functionality. Apart from other
benefits of this new engine, it gives a bit nicer code and the fewer layers we have the
better. This is why ConTEXt LMTX (a.k.a. MkXL) again has a split-off code base so
that MkIV is not harmed. All that said, I do admit that, lacking other TEX challenges,
it is also fun to explore new venues.

Hans Hagen VOORJAAR 2021 15

Conditions
It must be said that when one goes even a little beyond simple TEX programming,
one could indeed wish for a bit more comfort. Take this:1

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\else\ifdim\dimexpr#1\relax=\dimexpr#2\relax

equal%
\else

more%
\fi\fi}

One needs to keep track of the nesting here in order to have the right number of
\fi’s.

\def\doifelse#1#2#3#4%
{\edef\a{#1}\edef\b{#1}%
\ifx\a\b#3\else#4\fi}

The temporarymacros are needed in order to be able to compare the expandedmean-
ings. But when #3 and #4 are macros that look ahead you can imagine that when they
see \else or \fi things can get confused. Compare this to:

function doifelse(a,b,c,d)
if a == b then

c()
else

d()
end

end

Here the compiler creates code that calls either c or dwithout them having to bother
about leaving the condition. In TEX-speak we would need to have something like
this:

\def\firstoftwoarguments #1#2{#1}
\def\secondoftwoarguments#1#2{#2}
\def\doifelse#1#2#3#4%

{\edef\a{#1}\edef\b{#1}%
\ifx\a\b

\expandafter\firstoftwoarguments
\else

\expandafter\secondoftwoarguments
\fi}

And when you try that with the first example where we had a nested condition you
can imagine that it quickly starts looking complex. Another aspect of the last macro
is that it uses two temporary macros that better have names that don’t clash, so the
ones we choose here are pretty bad. I will come back to dealing with that later.

One gets accustomed to this and often this kind of code is hidden from the user
so only macro writers are victims here. But, being one myself, the question is, can
we make the code look nicer?

1. We use a \dimexpr because we cannot use a terminal percentage or space if we want to be fully ex-
pandable and don’t want spaces to creep in after one token arguments.

16 MAPS 51 Hans Hagen

Let’s redo the first example with LuaMetaTEX:

\def\MyMacro#1#2%
{\ifdim\dimexpr#1\relax<\dimexpr#2\relax

less%
\orelse\ifdim\dimexpr#1\relax=\dimexpr#2\relax

equal%
\else

more%
\fi}

Many programming languages have something like elseif but because TEX has quite
a number of different tests, \elseifdimmakes no sense but the more generic \orelse
does. We can even think of:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

less%
\or

equal%
\else

more%
\fi}

And because LuaMetaTEX provides this test, one obstacle is gone. We leave it to the
reader to come up with a traditional TEX implementation of this:

\def\MyMacro#1#2%
{\ifcmpdim\dimexpr#1\relax\dimexpr#2\relax

\expandafter\firstofthreearguments
\or

\expandafter\secondofthreearguments
\else

\expandafter\thirdofthreearguments
\fi}

And how nice it would be to be able to do this:

\def\doifelse#1#2%
{\iftok{#1}{#2}%

\expandafter\firstoftwoarguments
\else

\expandafter\secondoftwoarguments
\fi}

And so, LuaMetaTEX has such a primitive test. Keep in mind that defining \iftok as
a macro is possible here but that won’t work well nested, even with \orelse:

\iftok{.}{.}
\orelse\iftok{..}{..}
\orelse\iftok{...}{...}
\fi

When a condition succeeds or fails TEX enters fast scanning mode to skip over the
branch that is not used. For that it needs to know if a token is a test, which is why
defining \iftok as a macro is no help. We could flag a macro as a test and I actually
played with this, but it means that we need to test a macro property independent
of the current condition handler and that is something for later. As an intermediate
solution we have an \ifcondition primitive that is seen as a condition when fast

Hans Hagen VOORJAAR 2021 17

scanning happens and as a no-op when a condition is expected in which case the
following macro has to expand to a condition itself. Something like this:

\ifcondition\mytest{.}{.}
\orelse\ifcondition\mytest{..}{..}
\orelse\ifcondition\mytest{...}{...}
\fi

Because we have Lua there are also ways to let Lua functions behave like if tests but
that is beyond this overview, since it goes beyond the macro language. In ConTEXt
we use this feature to implement some bitwise operations and tests.

In the engine we provide this repertoire of tests: \if, \ifcat, \ifnum, \ifdim,
\ifodd, \ifvmode, \ifhmode, \ifmmode, \ifinner, \ifvoid, \ifhbox, \ifvbox, \ifx,
\iftrue, \iffalse, \ifcase, \ifdefined, \ifcsname, \iffontchar, \ifincsname,
\ifabsnum, \ifabsdim, \ifchknum, \ifchkdim, \ifcmpnum, \ifcmpdim, \ifnumval,
\ifdimval, \iftok, \ifcstok, \ifcondition, \ifflags, \ifempty, \ifrelax,
\ifboolean, \ifmathparameter, \ifmathstyle, \ifarguments, \ifparameters,
\ifparameter, \ifhastok, \ifhastoks and \ifhasxtoks.

Some of these are variants of \ifcase, needed when there are more than two out-
comes possible. In addition there are \unless, \else, \or, \orelse and \orunless.The
new primitives are discussed in documents that come with the ConTEXt distribution.

With respect to testing arguments, you can also use the pseudo-counter
\lastarguments (watch the ‘last’ in the name) and somewhat less efficient but more
reliable \parametercount instead as these are indicators of the number of passed
commands.

Protection
In the previous section we mentioned that using auxiliary macros is tricky because
they can clash with existing macros. In fact, this is true for any macro! I therefore
decided to dowhat has been on the agenda for awhile: add amechanism that protects
against overload.This is still experimental and the impact on users can only be tested
after most ConTEXt users have switched to LMTX, which may take a while. This also
means that it will take a while before the related primitives are considered stable
(although I’m sure not much will change). Let’s take a previous example:

\permanent\def\firstoftwoarguments #1#2{#1}
\permanent\def\secondoftwoarguments#1#2{#2}
\permanent\protected\def\doifelse#1#2%

{\iftok{#1}{#2}%
\expandafter\firstoftwoarguments

\else
\expandafter\secondoftwoarguments

\fi}

Here the three macros are defined as permanent. The test itself is protected against
expansion (which it has always been so we keep that). Depending on the value of the
\overloadmode variable (discussed below) a user will get a warning or fatal error. By
default there is no checking (but I might give the \immutable prefix, also discussed
below, an “always check for it” property).

18 MAPS 51 Hans Hagen

The whole repertoire of prefixes related to overload protection is given in the fol-
lowing table.

frozen a macro that has to be redefined in a managed way
permanent a macro that had better not be redefined
primitive a primitive that normally will not be adapted
immutable a macro or quantity that cannot be changed, it is a constant
mutable a macro that can be changed no matter how well protected it is
instance a macro marked (for instance) to be generated by the user interface
overloaded when permitted the flags will be adapted
enforced all is permitted (but only in zero mode or ‘initex’ mode)
aliased the macro gets the same flags as the original

For the first five the primitive state has no related prefix primitive; it is set by
the engine itself. Maybe someday I will decide to permit defining primitives, which
would take hardly any code to implement. Permanent macros are (as shown) those
that we don’t want users to redefine, and frozen ones are mildly protected. They can
be redefined when the \overloaded prefix is used. A mutable macro can always be
redefined, think of temporary macros, while an immutable can never be redefined.
The instance property is just a signal that we’re dealing with an instance, which can
be handy when we trace. The \aliased prefix will copy properties, so this:

\aliased\let\forgetaboutit\relax

makes \forgetaboutit a reference to the current meaning of \relax (because that is
what \let does) but also protects it like a primitive (because that is what \relax is).

The \enforced prefix is special. It only has a meaning inside a macro body or to-
ken register and it gets converted in a (hidden) \always prefix when in so-called ini
mode (when the format is made). This permits system macros to overload in spite of
heavy protection against it. Think of macros like \NC where the meaning can differ
depending on the kind of table mechanism used, or \item which can differ by en-
vironment. We can protect these against overloading by the user but still redefine
them. Of course, when the overload mode is zero, all can be redefined.

The value of \overloadmode determines to what extent a user will be annoyed
when an existing macro is redefined, as shown in the table below. That can also be
an instance defined by commands like \definehighlight although these normally
are just \frozen \instance which means that a low level of protection only issues a
warning.

immutable permanent primitive frozen instance
1 warning ⋆ ⋆ ⋆
2 error ⋆ ⋆ ⋆
3 warning ⋆ ⋆ ⋆ ⋆
4 error ⋆ ⋆ ⋆ ⋆
5 warning ⋆ ⋆ ⋆ ⋆ ⋆
6 error ⋆ ⋆ ⋆ ⋆ ⋆

The even values (except zero) will abort the run. A value of 255 will freeze this
parameter. At level five and above the instance flag is also checked but no drastic
action takes place.We use this to signal to the user that a specific instance is redefined
(of course the definition macros can check for that too).

Hans Hagen VOORJAAR 2021 19

Alignments
In ConTEXtmany commands are defined using the prefix \protected, which is handy
when they are used in a context where expansion would not work out well, like writ-
ing to file or inside an \edef. However, this is impossible when we use the alignment
mechanism. This has to do with the fact that the parser looks ahead to see if we
have (for instance) a \noalign primitive. And since the parser doesn’t look inside a
\protected macro, this fails:

\protected\def\MyMacro{\noalign{\vskip 10pt}}

It also works out badly for macros that look for arguments. A dirty trick is:

\def\MyMacroA{\noalign\bgroup\MyMacroB}
\def\MyMacroB{\dosingleempty\MyMacroC}
\def\MyMacroC[#1]{....\egroup}

This somewhat over the top approach can now (in LuaMetaTEX) be simplified to the
following. Let’s also go crazy with prefixes here:

\noaligned\permanent\tolerant\protected\def\MyMacroA[#1]%
{\noalign\bgroup....\egroup}

For the record: in LuaMetaTEX the \noalign construct can be nested which again
simplifies some (ConTEXt) code. Keep in mind that until now we could do whatever
we wanted in traditional TEX speak, apart from making such macros \protected.

Definitions
From the perspective of the above it will become clear that in a system like ConTEXt
quite a number of definitions are candidates for being flagged. You also need to
think of symbolic character names or math symbols. For instance dimensions de-
fined by \dimendef also get a permanent status. This means that one cannot redefine
\scratchcounter but still its value can be changed. At this moment I see no reason
to have a flag for preventing that (also because it would add overhead), but it might
become an option some day.

However, there are often quantities that need overload protection, such as con-
stant values. This is why we have:

\immutable \integerdef \plusone 1
\immutable \dimensiondef \onepoint 1pt
\immutable \gluespecdef \zeroskip 0pt plus 0pt minus 0pt
\immutable \mugluespecdef \onemuskip 1mu

Thosewill never change and are amacro-like variant of registers but with an efficient
storage model and behaving like a register. But one cannot use the operators like
\advance on them. Their intended usage is as a constant.

Another definition-related extension involves \csname. In LuaTEX we introduced
more robust handling of \ifcsname as well as an extra accessor:

\ifcsname f o o\endcsname
\lastnamedcs % reference to the constructed \cs

\fi

as well as:

\begincsname f o o\endcsname

which doesn’t define \f o o as a ‘relaxed’ macro when it doesn’t already exist. Both
\begincsname and \lastnamedcs avoid a second name construction, as in:

20 MAPS 51 Hans Hagen

\ifcsname f o o\endcsname
\csname f o o\endcsname

\fi

Keep in mind that these additions are a side effect of control sequences being in utf-
8 format so we want to avoid unnecessary construction of temporary strings and
related expansion.

Original TEX only has \csname; 𝜀-TEX and LuaTEX added some companion primi-
tives to that, and LuaMetaTEX again extends the repertoire:

\letcsname f o o\endcsname\relax
\defcsname f o o\endcsname{...}
\edefcsname f o o\endcsname{...}
\gdefcsname f o o\endcsname{...}
\xdefcsname f o o\endcsname{...}

This saves passing some arguments to a helper like \setvalue which is a bit more
efficient and it also saves a token. (The ConTEXt format file became quite a bit smaller
when the extensions discussed here were applied.)The \ifcsname primitive has been
made somewhat more efficient by honoring macros that were defined as \protected
which (we think) means: don’t expand me in those cases where it makes no sense. So
here we have an (in my opinion) acceptable downward incompatibility with engines
that conform to 𝜀-TEX.

There are a few more definition related new primitives, like:

\glet\MyMacroA\MyMacroB % shortcut for \global\let
\swapcsvalues\MyMacroA\MyMacroB % also works for registers
\futuredef\DoWhatever\MyMacro{...}
\expand\MyProtectedMacro % \protected like this

Arguments
Let’s start with a teaser. A previous definition needed a helper to gobble one of two
arguments. The following does the same but it just gobbles and doesn’t store the
argument, which is why we use #1 in both cases. This avoids storing token lists for
the unused arguments.

\permanent\def\firstoftwoarguments #1#-{#1}
\permanent\def\secondoftwoarguments#-#1{#1}

Because anything other than a digit after a # triggers an error I saw no reason not to
support some more: it doesn’t hurt downward compatibility, unless you use TEX to
generate error messages. Here is the full list of extensions, of which I will discuss a
few (more can be found in the ConTEXt distribution and source code).

+ keep the braces
- discard and don’t count the argument
/ remove leading and trailing spaces and pars
= braces are mandatory
_ braces are mandatory and kept
^ keep leading spaces
1-9 an argument
0 discard but count the argument
* ignore spaces
: pick up scanning here
; quit scanning

Hans Hagen VOORJAAR 2021 21

We have a few useful characters left, such as < and > so who knows what future
extensions might show up.

Delimited arguments are used frequently in ConTEXt; take this:

\def\MyMacro[#1][#2]{...}

Here the call is rather sensitive, for instance this will fail:

\MyMacro[A] [B]

We can cheat and define:

\def\MyMacro[#1]#2[#3]{...}

in which case #2 gets what sits between the brackets. But still these two arguments
have to be given. So, in MkII and MkIV you will find indirectness like the following:

\def\MyMacro{\dodoubleempty\doMyMacro}
\def\doMyMacro[#1][#2]{}

However, in LMTX you can find this alternative:

\tolerant\def\MyMacro[#1]#*[#2]{...}

The \tolerantwill make the parser quit when no match can be made and the #*will
gobble spaces. In fact, we often do this:

\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

and if we want overload protection:

\permanent\tolerant\protected\def\MyMacro[#1]#*[#2]{...}

The combination of \tolerant and \protected with either expansion or not of a
macro gives four variants of low-level macro commands: normal, tolerant normal,
protected and tolerant protected. In LuaTEX that protection against expansion is im-
plemented in a more indirect way, just like in 𝜀-TEX. There we also have \long and
\outer properties so we have normal, long normal, outer normal and long outer nor-
mal. Making protected against expansion a native command would have given an-
other four command codes. Combining that with tolerant would again double it so
we then would end up with 16 command codes. But in LuaMetaTEX we dropped the
long and outer properties. In ConTEXt we never used outer and always want long
anyway.

The reason for mentioning these details is to make clear that the introduced over-
head can be neglected when we compare to LuaTEX, apart from the fact that we
gain from the expansion protection being a first class feature now, macros without
arguments being stored more efficiently, the parser being a little optimized and so
on.

But of course the biggest benefit is that, when we look at the example above, we
avoid indirectness. It looks nicer. It gives less clutter in tracing. It takes fewer tokens
in the format (where each token takes eight bytes). It runs a little faster. It demands
no trickery. Take your choice. For the record: you don’t want to know what the set
of \dodoubleempty macros looks like, as they themselves use indirectness and are
highly optimized for performance.

The list of possible features has more than skipping spaces. Here’s another exam-
ple:

\tolerant\def\MyMacro[#1]#;(#2){<#1#2>}

Here \MyMacro accepts [A] and then quits or when not seen, checks for (A) and
when not found is still happy. So, either #1 or #2 has a value. How do we know what
arguments got grabbed? There are several ways to find out:

22 MAPS 51 Hans Hagen

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifarguments

% zero arguments
\or

% one argument
\else

% two arguments
\fi}

This test uses the count from the last expansion so if any macro expansion happens
before the test you can get the wrong value! The next test provides feedback about
what argument got a value:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameters

% all empty
\or

% first has value
\else

% second has value
\fi}

But still may not be enough so we can also explicitly test for a parameter. But again
be aware of nesting:

\tolerant\def\MyMacro[#1]#;(#2)%
{\ifparameter#1\or

% first has value
\fi
\ifparameter#2\or

% second has value
\fi}

This is pretty robust but expands the arguments in the test:

\tolerant\def\MyMacro[#1]#;(#2)%
{\unless\iftok{#1}{}%

% first has value
\fi
\unless\iftok{#2}{}%

% second has value
\fi}

When we use a colon instead of a semicolon the parser knows where to pick up after
a match fails:

\tolerant\def\MyMacro[#1]#:#2{...}

So, the argument between brackets is optional and the single token or braced second
argument (turned into a token list) is mandatory.

The other extensions more or less speak for themselves: they grab arguments and
discard or keep braces and such in cases where TEX would treat them specially when
storing or passing them on. Speaking of braces, in spite of what onemight expect (as-
suming that braces are more a TEX thing than brackets) the following two definitions
perform equally well

\def\foo[#1]{} \foo[1]
\def\foo #1{} \foo{1}

Hans Hagen VOORJAAR 2021 23

but:

\def\oof[#1]{}
\def\foo{\dosingleempty\oof}

performs more that 5 times worse than this:

\tolerant\def\foo[#1]{}

So, the added overhead (and there is some, also because we keep track of more) in the
argument parser gets compensated well by the fact that we can avoid indirectness.
The impact on an average document probably goes unnoticed.

As with much in TEX you need to be aware of (intentional) side effects. Take for
instance:

\tolerant\def\foo#1[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

That will probably not do what you expect. It has to do with how TEX interprets
spaces in the context of argument parsing: they can become part of the argument
(here #1) so anything before the first seen left bracket becomes the argument’s value.

\tolerant\def\foo#1#*[#2]#*[#3]{\edef\ofo{#1}}
\def\oof{\foo{oeps}}

This however works because the first #* directive stops scanning for the first argu-
ment and then gobbles spaces when seen before continuing to look for the bracketed
arguments. So TEX’s charm is still there.

Introspection
Because macros have more properties and variation in arguments the \meaning com-
mand has a companion \meaningfull that displays what prefixes were applied. The
\meaningless variant only shows the body.

Quite some effort went into normalizing the so-called command codes. Primitives
are grouped into categories with similar treatments in order to keep the main loop
efficient. These codes also determine the expansion contexts (think of usage in an
\edef, how they get serialized (for instance in messages), etc. The char codes (called
such because in most cases tokens represent characters of some kind) distinguish
commands in these groups. Think of \def and \edef being call commands with a
different code. This rather intrusive (internal) regrouping of primitives was needed
in order to get a more consistent Lua token interface. So, for instance the codes are
now in consecutive ranges, registers are split into internal and user variants, etc.

Also, memory management has been overhauled so we have a more dynamic al-
location of various data structures (stacks, equivalents, tokens, nodes, etc.) and we
use the whole 64 bit memory word to save some memory in places too. All this is
the reason why it is unlikely that much will get backported to LuaTEX, also because
in ConTEXt we now have a special version for LuaMetaTEX: LMTX.

There is more
Here we’ve discussed only the primitives that make the source look better while also
being convenient. But it is worth mentioning that there are primitives like \toksapp
and \etokspre that append and prepend tokens to a register (there are eight variants).
There are ways to collect tokens for just before or after a group ends. There are some
new expansion related primitives like \expandtoken that can be used to inject a token
with some specific catcode, just like one can define active characters without the
need for dirty uppercase tricks.

The typesetting department also has extensions. We can freeze paragraph proper-
ties, adjust math parameters locally, normalize lines so that at the Lua end we know

24 MAPS 51 Hans Hagen

what to expect (think of consistent presence of left and right skip, left and right shape
related properties, left and right parfill skips, indentation being glue, etc.). Hyphen-
ation can be controlled in more detail too, and left and right side ligatures and kerns
can be influenced in the running text and go with glyphs. Talking of glyphs, there
are advanced scaling options as well as support for influencing placement in the run-
ning text, which permits more efficient font handling. Boxes have more properties
too: they can have offsets, an orientation, etc. which makes implementing vertical
typesetting a bit easier. Rules also have shifts. We can register actions to be expanded
at the end of a paragraph. All this evolved over time and has been tested in ConTEXt
but will be applied more frequently after the complete code split between MkIV and
LMTX. That process goes hand in hand with adapting to the new situation, remove
old (obsolete) variants, removing still present experimental code, etc.

There is more but hopefully this gives an impression of how substantial the
LuaMetaTEX engine differs (in added functionality) with its ancestors. Maybe it looks
a bit over the top, but I did actually reject some ideas after experimenting with them.
On the other hand there are still some on the agenda. For instance the engine can
migrate and carry around so-called deeply buried inserts pretty well now but dealing
with inserts could be made a bit easier (think of columns). So, we’re not done yet.

It should be noted that contrary to what one might expect the code base is still
quite okay and the binary stays well below 3 MB. In the meantime memory man-
agement is also improved and the format file got smaller. A lot of the internal re-
organization relates to the fact that we have a Lua interface and exposing internals
demands consistency, avoidance of (often clever) tricks, more abstraction, etc.

It is also worth noting that we can only do such a massive operation because
users are willing to test intermediate versions (sometimes on very large projects) and
because all changes in the code base are meticulously checked byWolfgang Schuster
who knows TEX and ConTEXt inside out. And of course we have Mojca Miklavec’s
compile farm to keep it available for all relevant platforms, where we use a mix of
gcc (also with cross compilation), clang and msvc for various platforms, up to date.
It definitely helps that compilation is fast (due to the refactored code base) and that
I can use Visual Studio to work with the code.

In this summary I only covered some aspects of TEX. Another important set of
extensions concerns the MetaPost library, where token scanners are exposed, more
advanced Lua calls are possible and where no longer relevant bits of code have been
removed. And we use the latest and greatest Lua 5.4—but discussing the implications
of these is for another article.

Hans Hagen

J.A.M. Vermaseren VOORJAAR 2021 25

Playing with Axodraw

Abstract
This paper shows some of the features of Axodraw. It puts emphasis on applications,
not only in the field of physics, but also in completely unrelated fields like
mathematical tiling constructions, fashion patterns or the design of sudokus.

Introduction
Question: what do the figures 1–5 have in common?

The answer to the above question is: all were made with the help of Axodraw.

A first version of Axodraw was created in 1992. At the time LaTEX did not have
any sophisticated graphical capabilities beyond lines and the creation of fonts that
might contain half circles and line segments. Attempts at drawing Feynman dia-
grams resulted either in very ugly graphics or the inclusion of an external file for
each individual diagram/picture which had to be made by a separate drawing pack-
age. The advent of the NeXT computer with a screen that ran display postscript,
combined with the possibilities to include postscript commands in TEX and LaTEX

E
n

1
1

1

12

q ·q = (Ñ + E − n−D + 5)
E
n

1
1

1

11

+ n
E
n-1

1 1

11

+
E
n

1 1

12

+ E
E+1
n

1 1

11

− n
E
n-1

1 1

11

− E
E+1
n

1
1

0

11

,

Figure 1.

Figure 2.

26 MAPS 51 J.A.M. Vermaseren

Figure 3.

(0.0,0.0)

(0.0,1.5)

(10.0,0.0)

(0.0,24.5) (53.0,24.5)

(53.0,0.0)

(0.0,55.5) (53.0,55.5)

(0.0,5.5)

(26.1,5.5)

(21.6,24.5)

(2
1.
6,
5.
5)

(21.6,15.0)

(0.0,79.5) (53.0,79.5)

(2
6.
5,
24
.5
)(26.5,24.5)

(26.5,55.5)

(26.5,79.5)

(2
6.
5,
55
.5
)

(2
6.
5,
79
.5
)

(10.8,24.5)

(10.8,55.5)

(10.8,79.5)

(23.5,22.6)

(16.5,7.5)

(17.6,2.6)

(18.6,2.9)

(5
3.
0,
8.
3)

(4
3.
2,
0.
0)

(33.5,24.5)

(33.5,19.1)

(43.2,27.0)

(43.2,55.5)

(43.2,79.5)

(43.2,0.0)

(31
.9,

22.
9)

(
2
6
.
1
,
5
.
5
)

(
2
8
.
9
,
7
.
0
)

(25.5,55.5) (28.5,55.5)

(9
.6
,5
5.
5)

(12.1,55.5) (4
1.
5,
55
.5
) (45.0,55.5)

(10.8,68.0)

(43.2,63.0)

(16.0,0.0)

(0.8,15.7) (31.2,15.7)

(5.5,65.0) (26.5,65.0)(16.0,65.0)

(17.8,0.4)

(2.6,15.2)

(19.5,1.6)

(4.2,14.0)

(20.9,3.4)

(5.7,12.3)

(22.3,5.5)

(7.1,10.2)

(23.6,7.8)(8.4,7.8)

(24.9,10.2)

(9.7,5.5)

(26.3,12.3)

(11.1,3.4)

(27.8,14.0)

(12.5,1.6)

(29.4,15.2)

(14.2,0.4)

Figure 4.

files made it possible to design a style file that contained many graphical primitives
inside the LaTEX picture environment. This gave much better graphics and also al-
lowed all diagrams to be part of the LaTEX source file. At first this was for private
use, but on demand it was made publicly available and published in CPC [1].

Playing with Axodraw VOORJAAR 2021 27

2

2

2

2

2

22
9

8

7

6

5

4

3

2

1

A B C D E F G H I

8 4
1 2
4 6 9

1 2
5

2
4
7

2
4 5
7

3
9 6 3 4 7

2
5 1

2
5 8

5 7
1 2
4

1

3 8 6 9
2

4

2 3
4 8 4 5 1 7

2 3
4 6 9

2 3
4 1 5 9 8 6

2 3
4

2
4 7

6 9 7 3 2 4 8 1 5
4 3 6 8 5 9

2
4
7

2
4
7

1
1

2
4 9 7 6 3 5 8 4

7 5 8
1

4
1

9 3 6

Figure 5.

Version 1
Version 1 worked with the use of postscript specials. Such specials pass the code
inside them on to the dvips program that converts the dvi code to postscript. Hence
the flow of translation is

latex file
dvips file -o

and the result would be file.ps with the postscript code inside the specials now inside
the .ps file. Here is an example of such a special
\special{! /bbox{
%
% Draws a blanked out box x1,y1,x2,y2
%

gsw p2 p1
gsave
1 setgray abox fill
grestore
abox stroke
grestore

} def }

and the LaTEX interface for this function:
\def\BBox(#1,#2)(#3,#4){
%
% Draws a box with the left bottom at (x1,y1) and the right top
% at (x2,y2). The box is blanked out.
%
\put(\axoxoff,\axoyoff){\special{"\axocolor #1 \axoxo add #2 \axoyo
add #3 \axoxo add #4 \axoyo add \axowidth \axoscale bbox showpage}}

}

The variables here are offsets, color, linewidth and a scale factor. All postscript
functions are in a preamble which, together with the LaTEX interfaces, are inside the
file Axodraw.sty.

28 MAPS 51 J.A.M. Vermaseren

There are of course much more complicated functions, like a gluon on a circle
segment:
\special{! /gluearc{
%
% Draws a gluon on an arcsegment
% x_center,y_center,radius,stat_angle,end_angle,gluon_radius,num
% in which num is the number of windings of the gluon.
% Method:
% 1: compute length of arc.
% 2: generate gluon in x and y as if the arc is a straight line
% 3: x’ = (radius+y)*cos(x*const)
% y’ = (radius+y)*sin(x*const)
%

gsw /num ed /ampi ed /arcend ed /arcstart ed /radius ed
%
% When arcend comes before arcstart we have a problem. The solution
% is to flip the order and change the sign on ampi
%

arcend arcstart lt {
/ampi ampi -1 mul def
/arcstart arcend /arcend arcstart def def

} if
%

translate % move to center of circle
arcstart rotate % segment starts at zero
/darc arcend arcstart sub def % argsegment

%
/dr darc 180 div 3.141592 mul radius mul def % length of segment.

%
/const darc dr div def % conversion constant

%
/num num 0.5 sub round def
/inc dr num 2 mul 2 add div def % increment per half winding

%
/amp8 ampi 0.9 mul def
/amp1 radius ampi add def
/amp2 radius ampi sub def
/amp3 radius ampi 2 div add def
/amp4 amp1 inc amp8 add const mul cos div def
/amp5 amp2 amp8 const mul cos div def
/amp6 amp1 inc 0.6 mul amp8 add const mul cos div def
/amp7 amp1 inc 0.9 mul const mul cos div def
amp8 0 lt {/amp8 amp8 neg def} if

%
/x1 inc 2 mul def

%
newpath

radius 0 moveto
%

inc 0.1 mul const mul dup cos amp3 mul exch sin amp3 mul
inc 0.5 mul const mul dup cos amp7 mul exch sin amp7 mul
inc 1.4 mul const mul dup cos amp1 mul exch sin amp1 mul

curveto
x1 amp8 add const mul dup cos amp6 mul exch sin amp6 mul

Playing with Axodraw VOORJAAR 2021 29

x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
x1 const mul dup cos amp2 mul exch sin amp2 mul

curveto
%

2 1 num {
pop
x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
x1 amp8 sub const mul dup cos amp4 mul exch sin amp4 mul
x1 inc add const mul dup cos amp1 mul exch sin amp1 mul

curveto
/x1 x1 inc dup add add def
x1 amp8 add const mul dup cos amp4 mul exch sin amp4 mul
x1 amp8 add const mul dup cos amp5 mul exch sin amp5 mul
x1 const mul dup cos amp2 mul exch sin amp2 mul

curveto
} for

%
x1 amp8 sub const mul dup cos amp5 mul exch sin amp5 mul
x1 amp8 sub const mul dup cos amp6 mul exch sin amp6 mul

x1 inc 0.6 mul add const mul dup cos amp1 mul exch sin amp1 mul
curveto

x1 inc 1.5 mul add const mul dup cos amp7 mul exch sin amp7 mul
dr inc 0.1 mul sub const mul dup cos amp3 mul exch sin amp3 mul
dr const mul dup cos radius mul exch sin radius mul
curveto

stroke
%

grestore
} def }

Its use is with:

\begin{center}
\SetScale{1.5}
\begin{axopicture}(70,70)
\GluonArc(10,60)(50,270,360){4}{8}
\end{axopicture}
\end{center}

30 MAPS 51 J.A.M. Vermaseren

Version 2
A big weakness of Axodraw was that one needed to figure out the coordinates.
D.Binosi en L.Theussl solved that problem by creating an interactive Java program
named JAxodraw [2] in which one can select graphical elements and position them
with the mouse. When the figure is complete one can let it generate the proper Ax-
odraw code. It is still used very much.

When John Collins was writing a book on field theory, he needed more graphical
primitives. At first this resulted in a second version of JAxodraw [3], but in the end
it was not sufficient.

Eventually John and I have made a second version of Axodraw in which many of
the user remarks were addressed. For instance the coordinate problem was greatly
improved by a grid function which is used during the design of a picture and com-
mented out when the picture is complete.
\begin{center}
\begin{axopicture}(300,120)
\AxoGrid(0,0)(10,10)(30,12){LightGray}{0.5}
\Line[arrow](110,110)(190,110)
\Line[arrow](190,10)(110,10)
\Arc[arrow,clockwise](110,60)(50,270,180)
\Arc[arrow,clockwise](110,60)(50,180,90)
\GluonArc(190,60)(50,270,360){4}{8}
\GluonArc(190,60)(50,0,90){4}{8}
\Gluon(110,110)(110,60){-4}{5}
\Gluon(110,60)(110,10){-4}{5}
\Gluon[double](10,60)(60,60){4}{4}
\Gluon[double](240,60)(290,60){4}{4}
\Line[arrow](190,110)(190,60)
\Line[arrow](190,60)(190,10)
\Gluon(110,60)(190,60){4}{8}
\Vertex(110,110){1.5}
\Vertex(110,10){1.5}
\Vertex(60,60){1.5}
\Vertex(240,60){1.5}
\Vertex(190,110){1.5}
\Vertex(190,10){1.5}
\Vertex(110,60){1.5}
\Vertex(190,60){1.5}
\Vertex(10,60){1}
\Vertex(290,60){1}
\end{axopicture}
\end{center}

Playing with Axodraw VOORJAAR 2021 31

One of the wishes from my side was the capability to use pdflatex because nowa-
days the pdf file format is used much more than the postscript format. This is far
from trivial, because pdf is not a language in which one can compute things and in
addition its manual is about 1000 pages. The eventual solution is a separate program,
axohelp, that generates the pdf instructions. It is used in a way that is similar to the
use of makeindex:

pdflatex file
axohelp file
pdflatex file

The first run of pdflatex generates a file file.ax1 which contains a list of all Axo-
draw instructions that need to be translated. The running of axohelp creates a file
file.ax2 that contains the original file.ax1 statements and their pdf translation. When
pdflatex is run again, it sees the .ax2 file and as long as all Axodraw statements agree
with the statements in the .ax2 file pdflatex can use the translation. If there is dis-
agreement, because the input pictures have been changed, there will be the advise to
run axohelp again. Hence, when no pictures have been changed and there is already
a .ax2 file one can suffice with running pdflatex just once.

Hence, if in a file.ax1 the graphical object 287 would look like
[287] Polygon "(-163.4721,-118.7694)(-139.6218,-126.5188)

(-148.7318,-113.9800)(-148.7318,-98.4812)" 1.000000;

in file.ax2 it would become:
\axo@setObject{287}%
{Polygon "(-163.4721,-118.7694)(-139.6218,-126.5188)

(-148.7318,-113.9800)(-148.7318,-98.4812)" 1.000000;}%
{ 1 w -163.472 -118.769 m -139.622 -126.519 l -148.732 -113.98 l
-148.732 -98.481 l h S}

Among the new features are Bezier curves and customizable arrows that can be
put at a percentage of the length of a line. This gives interesting problems like how
to put a properly alligned arrow on a Bezier curve at a given fraction of its length.

20%

\Bezier[arrow,arrowpos=0.20](10,10)(20,60)(80,10)(90,40)

To do this well you need to:

1. Compute the length of a Bezier curve.

2. Compute the length of part of a Bezier curve.

3. Iterate until you are at the proper percentage.

4. Compute the derivative at the given point.

32 MAPS 51 J.A.M. Vermaseren

Another little problem: How to draw a double line or spiral?

\begin{center}
\SetScale{2.0}
\begin{axopicture})100,50)(0,0)
\DashDoubleGluonArc(45,0)(40,20,160){5}{8}{1.3}{1.5}
\end{axopicture})100,50)(0,0)
\end{center}

Some of these features take quite some calculations. This is easy in the C sources
of axohelp, but it is also possible in postscript. In LaTEX and in pdf files this is not
possible.

In general you don’t draw a double line by drawing two lines, shifted from each
other as in JAxodraw, but by first drawing a fat line in the foreground color and then
a thinner line in the background color on top:

→

\begin{center}
\SetScale{1.3}
\begin{axopicture}(250,15)(0,0)
\Photon[width=2](10,8)(90,8){5}{8}
\Text(125,8)[]{\rightarrow}
\Photon[width=2](160,8)(240,8){5}{8}
\SetColor{Yellow}
\Photon[width=1](170,8)(230,8){5}{6}
\end{axopicture}
\end{center}

Another problem in Axodraw is how to draw a sine wave, a spiral or, in pdf, a
circle? It can be approximated by a very large number of very small lines, but this
is incredibly slow, specially back in 1992. The solution is to use approximations in
terms of Bezier curves which are present both in postscript and pdf. A sine wave is
drawn with the use of 180 degree segments (from 90 to 270 degrees and from 270 to
90 degrees) with special segments for the endpoints. If this is done well, you need
to magnify it very much to see the difference with a proper sine wave. This can also
be done with a spiral. The gluon has special endpoints to keep everything properly
centered. This is a feature that shows immediately whether a picture has been made
with Axodraw.

Postscript has circles, but pdf does not. Hence also circles and circle segments
have to be approximated with Bezier curves.

Playing with Axodraw VOORJAAR 2021 33

The postscript output and the pdflatex output are, to my knowledge, identical,
except for one detail:

In postscript there are real postscript fonts and those do not exist as such in the
pdf version. There do exist LaTEX versions of these fonts, and those are used in
the pdflatex version, but there is a problem with that the zero height is interpreted
differently in postscript than in LaTEX and pdf. Because of this there can be a small
vertical displacement between the two versions. A good example is the character q.
In Postscript the zero is at the bottom.

About axohelp: the program is set up in in a way that makes it relatively easy
to prepare files for other formats if those would become popular in the future. The
language in which it is written is C, because this is available on all computers, and
also because I am rather familiar with it. If the project would have to be redone, the
language Rust might be a consideration, due to its draconic error checking.

An example of some code in axohelp:
static double BzK;

void BezierCircle(double r,char *action)
{

outpos += sprintf(outpos,
" %12.3f 0 m %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",
-r,-r,r*BzK,-r*BzK,r,r);

outpos += sprintf(outpos,
" %12.3f %12.3f %12.3f %12.3f %12.3f 0 c\n",
r*BzK,r,r,r*BzK,r);

outpos += sprintf(outpos,
" %12.3f %12.3f %12.3f %12.3f 0 %12.3f c\n",
r,-r*BzK,r*BzK,-r,-r);

outpos += sprintf(outpos,
" %12.3f %12.3f %12.3f %12.3f %12.3f 0 c %s\n",
-r*BzK,-r,-r,-r*BzK,-r,action);

}

with BzK = 4
3 (
√
2− 1), or

void Polygon(double *args,int num,int type)
{

int i;
MoveTo(args[0],args[1]);
args += 2;
for (i = 1; i < num; i++, args += 2) {

LineTo(args[0],args[1]);
}
if (type == 0) { CloseAndStroke; }
else if (type == 1) { CloseAndFill; }

}

In terms of postscript the corresponding routine is
% Incoming stack:
% [array of x,y pairs] width scale
\special{! /polygon{

gsw /points ed
/ss points length 2 idiv 2 mul def
ss 4 gt {

newpath
points 0 get points 1 get moveto
0 2 ss 4 sub { /ii ed

34 MAPS 51 J.A.M. Vermaseren

/x1 points ii 2 add get def
/y1 points ii 3 add get def
x1 y1 lineto

} for
closepath
stroke

} if
grestore

} def }

It would have been not very complicated to have axohelp generate the postscript
code as well, but much of the code existed already from version 1 and hence we left
it that way. Hence the LaTEX binding:
%
% Draws a curve through the points in argument 1.
% The points are given as coordinates (x1,y1)(x2,y2)(x3,y3).....
% The curve is continous and continuous in its first and second
% derivatives. The method is linear interpolation of
% quadratic curves.
% Color name is argument 2.
%

\def\Polygon#1#2{%
{%

\SetColor{#2}%
\ifcase\axo@pdfoutput

\put(\axoxoff,\axoyoff){\AXOspecial{%
[\axoparray#1] \axowidth\space \axoscale\space polygon }}%

\else
\getaxohelp{Polygon}{"#1" \axowidth}%
\put(\axoxoff,\axoyoff){\axo@pdfliteral{\contentspdf}}%

\fi
}%
\ignorespaces

}

Axohelp can do something that TEX/LaTEX cannot do: read the complete .ax1 file
and prepare the complete .ax2 file inside the memory and hence optimize it. TEX
has only a limited capacity for such things. One can increase the upper-limit but
even then there is a hard coded upper-upper-limit. In a first version of Axodraw2 it
was programmed that the complete .ax2 file would be read at startup. This ran into
trouble with the follwing type of plots:

Playing with Axodraw VOORJAAR 2021 35

0.01 0.1 1 10
3000

4000

5000

N
um

be
ro

fo
pe
ra
tio

ns

Cp

There are 4000 points in this plot.

At the time we were preparing an article [4] that had about a dozen of these plots.
Each point is drawn with a statement of the type

\Vertex(68.08, 44.40){0.5}% 330

The system kept crashing and we were forced to translate the plots one by one
and feed them in as .eps files. This is entirely against the Axodraw philosophy. In the
end we decided to read the .ax2 file one line at a time. The loss in speed turned out to
be rather small and it did solve the problem. It took however much more thinking.

About the examples
Back to the examples at the start.

The first example with the graphical formula is from a physics paper [5]. It is
actually rather simple. If we take the code for the formula
\begin{eqnarray}

\TAF(1,1,1,2,E,n,1)\ q\mydot q & = &
(\tilde{N}+E-n-D+5)\TAF(1,1,1,1,E,n,1)
+n\TAB(1,1,1,1,E,{n-1})
\nonumber \\ &&
+\TAB(1,1,1,2,E,n)
+E\TAD(1,1,1,1,{E+1},n)
-n\TAD(1,1,1,1,E,{n-1})
-E\TAF(1,0,1,1,{E+1},n,1) \, ,
\nonumber

\end{eqnarray}

there are a few macro’s with parameters. One of these macro’s is:
\def\TAB(#1,#2,#3,#4,#5,#6){

\raisebox{-28.1pt}{
\SetPFont{Helvetica}{14}

36 MAPS 51 J.A.M. Vermaseren

\hspace{-22.5pt}
\begin{axopicture}(90,59)(-15,-6)
\SetScale{0.75}
\SetColor{Blue}
\CArc(40,35)(25,90,270) \CArc(60,35)(25,270,90)

\Line(40,60)(60,60) \Line(40,10)(60,10) \Line(50,10)(50,60)
\Line(0,35)(15,35) \Line(85,35)(100,35)
\SetColor{Black}
\PText(53,39)(0)[lb]{#5} \PText(53,36)(0)[lt]{#6}
\PText(35,62)(0)[rb]{#1} \PText(65,62)(0)[lb]{#2}
\PText(65,12)(0)[lt]{#3} \PText(35,12)(0)[rt]{#4}
\SetColor{Red}
\SetWidth{3}

\Line(50,10)(50,60)
\Vertex(50,60){1.3}
\Line(40,60)(50,60)
\CArc(40,35)(25,90,180)

\SetWidth{0.5}
\end{axopicture}
\SetScale{1.0}
\hspace{-7pt}
}

}

The Penrose file was generated by computer (of course). If not it can become quite
difficult to make very big patterns. The computer generates the LaTEX file. Here is a
little piece of it:
\begin{axopicture}{(560,400)(0,0)}
\SetWidth{1.000000}
\SetPFont{Courier}{182.03}
\SetOffset(360,160)
\Polygon{(-163.4721,-118.7694)(-139.6218,-126.5188)% \

(-148.7318,-113.9800)(-148.7318,-98.4812)}{Black} % Dart
\Polygon{(-163.4721,-118.7694)(-187.3223,-126.5188)% \

(-172.5821,-131.3082)(-163.4721,-143.8471)}{Black} % Dart
\Polygon{(-163.4721,-118.7694)(-163.4721,-143.8471)% \

(-154.3621,-131.3082)(-139.6218,-126.5188)}{Black} % Dart
\Polygon{(-163.4721,-118.7694)(-148.7318,-98.4812)% \

(-163.4721,-103.2706)(-178.2123,-98.4812)}{Black} % Dart
\Polygon{(-163.4721,-118.7694)(-178.2123,-98.4812)% \

(-178.2123,-113.9800)(-187.3223,-126.5188)}{Black} % Dart
\Polygon{(-240.6531,-118.7694)(-216.8029,-126.5188)% \

(-225.9128,-113.9800)(-225.9128,-98.4812)}{Black} % Dart
.
.

\Polygon{(288.3536,93.6918)(303.0939,73.4035)% \
(312.2039,85.9424)(312.2039,101.4412)}{Black} % Kite

\Polygon{(38.5905,93.6918)(14.7403,101.4412)% \
(14.7403,85.9424)(23.8503,73.4035)}{Black} % Kite

\Polygon{(38.5905,93.6918)(38.5905,118.7694)% \
(23.8503,113.9800)(14.7403,101.4412)}{Black} % Kite

%\Polygon{(-328.2706,-205.1691)(328.2706,-205.1691)%\
% (328.2706,205.1691)(-328.2706,205.1691)}{Black}
\Vertex(0,0){2}
\end{axopicture}

Playing with Axodraw VOORJAAR 2021 37

The generating C program takes about 350 lines and can make the pattern as big
as you might want it. In this case it was a pattern for a table cloth of about 900 pieces
of cotton in various colors. In the actual execution some local variations were made
in the size of the pieces. The result became:

The example of the pattern for the t-shirt with long sleeves has an interesting
problem. Howdo youmake it such that the sleeve fits exactlywith the body? Fashion
designers use heuristic algorithms to draw lines that will fit more or less, but they
can be off by a centimeter. There are special sewing techniques to correct for this.
In our example the lines are drawn as the sum of a few Bezier curves and then the
problem is that the sum of those (different) curves for the sleeves must be equal to
the sum for the body. By making variations in the control points of the Bezier curves
one can get the lines correct to small fractions of a millimeter. And the routines to
calculate those lengths can be copied from axohelp, if the creation program is written
in C at least.

All together it does not take much effort to make a program that for given sizes
creates a perfect pattern in terms of a LaTEX program with Axodraw statements.

In the postscript version of Axodraw it is not very difficult to add commands. This
can be done with an extra style file, e.g. sudoku.sty for showing sudokus together
with their step-by-step solution with explanations.

It is a bit more complicated with the pdflatex version. The LaTEX part is not very
complicated. The problem is when calculations are needed, because then the ax-
ohelp.c file needs to be extended. By itself that is not very difficult, but then the
modified axohelp needs to be used and not the version that comes with the TEX dis-
tribution. This makes it a bit less elegant. To avoid this the current paper has been
translated in the old fashioned way:

latex paper
dvips paper -o
ps2pdf paper.ps

This gave however the problem that dvips cannot handle .jpg files and the paper has
two photo’s included. Fortunately these could be converted with the GIMP program
into .eps files.
The code for the sudoku is given by:

38 MAPS 51 J.A.M. Vermaseren

\begin{center}\begin{picture}(200,200)(0,0)
\SetWidth{0.5 }
\MakeBoard(10,10,20)
\ColorCell(2,6){LightBlue}
\ColorCell(2,8){LightRed}
\PutSudoColor(8,9,2){LightRed}
\PutSudoColor(7,1,2){LightRed}
\PutSudoColor(4,3,2){LightRed}
\PutSudoColor(1,2,2){LightRed}
\PutSudoColor(3,4,2){LightRed}
\PutSudoColor(9,6,2){LightRed}
\PutSudoColor(9,4,2){LightBlue}
\SetCoordinates
\PutCell(1,1,8)
\PutAllow(1,2,4)
\PutAllow(1,3,1)
\PutAllow(1,3,2)
\PutAllow(1,3,4)
\PutCell(1,4,6)
\PutCell(1,5,9)
\PutAllow(1,6,1)
\PutScratch(1,6,2)
\PutAllow(1,6,5)
\PutAllow(1,7,2)
\PutAllow(1,7,4)
\PutAllow(1,7,7)
\PutAllow(1,8,2)

.

.
\PutCell(9,5,4)
\PutAllow(9,6,1)
\PutCell(9,7,9)
\PutCell(9,8,3)
\PutCell(9,9,6)
\MakeBoard(10,10,20)
\end{picture}\end{center}

and it was completely computer generated. It is an example from a sudoku book
that first explains many tricks and then gives 500 sudokus that were generated by a
Monte Carlo technique. When one does this, most sudokus are rather trivial. Hence
the program generated many millions of them and the more interesting ones were
selected. Therewere also still quite a few that could not be solvedwith the techniques
explained in the book, indicating that maybe there will be a sequel with very difficult
sudokus. The book can be found at

http://www.nikhef.nl/~t68/sudokus/book.pdf

The origin of the name
In 1976, during my graduate study in Stony Brook, we did our computer work on the
CDC computer in Brookhaven. We worked by means of a telephone line and the fast
modemwas 300 baud. I had a number of kinematics routines for my calculations and
I was told things would go much faster if I would make them into a library. Hence I
got the CDC manual. It had an example and the name of the library in the example
was mylib. That did not look very creative. Hence, how to call it then? I looked
around and at my feet was my dog. And the name of the dog was Axo. And there

Playing with Axodraw VOORJAAR 2021 39

was the name: axolib. That library has served many years and featured in many
calculations. I still use it in lectures about particle kinematics. There are some rather
unique routines in it. Years later it was a small step to call the drawing package
Axodraw, even though at that moment the dog had been dead already for 7 years.

References
[1] J.A.M. Vermaseren, Comput. Phys. Commun. 83 (1994) 45–58.
[2] D. Binosi and L. Theussl, Comput. Phys. Commun. 161 (2004) 76–86.
[3] D. Binosi, J. Collins, C. Kaufhold, L. Theussl, Comput. Phys. Commun. 180

(2009) 1709–1715.
[4] J. Kuipers, A. Plaat, J.A.M. Vermaseren and J.H. van den Herik, Comput. Phys.

Commun. 184 (2013) 2391–2395.
[5] Sven Olaf Moch and J.A.M.Vermaseren, Nucl. Phys. B573 (2000) 853-907.

J.A.M. Vermaseren
Science Park 105, 1098 XG Amsterdam, The Netherlands
t68 at nikhef dot nl
28-Aug-2020

40 MAPS 51 Tomáš Szaniszlo

Two Questions and Answer
Sessions by Donald Knuth at
FI MU
Abstract
In October 2019, the Faculty of Informatics, Masaryk University, hosted Donald Knuth
as a guest who led two questions and answers sessions at this occasion, dedicated to
the themes of Computer Science and art. Besides some background on these lectures,
you can also find their transcripts in this article.

Keywords
Donald Knuth, Computer Programming as Art, Boundless Interests, Q&A

In October 2019, the Faculty of Informatics, Masaryk University in Brno, Czechia,
celebrated the 25th anniversary of its foundation. Several events were held for this
occasion, the most prestigious of which was perhaps the Week with Turing Prize
Laureates (Sojka, 2019a) with Donald Knuth and Dana Stewart Scott as the guests
of honor. At the end of the week, the Czech premiere of Knuth’s musical opus, the
Fantasia Apocalyptica oratorio, (Knuth, 2020b) took place, as discussed in the previous
issue of the cs-tug Bulletin. (Lupták, 2019)

This was not the �rst time Donald Knuth has ever visited Brno: In 1996, Don-
ald Knuth gave lectures and has received an honorary doctoral degree at the Fac-
ulty. (Zlatuška, 1996) Twenty-�ve years later, Donald Knuth gave two lectures in the
Q&A format inspired by the famous physicist, Richard Feynman. The titles of his
lectures were Computer Programming as Art, and Boundless Interests. Both lectures
were moderated, the �rst by prof. RNDr. Jozef Gruska, DrSc., and the second by prof.
RNDr. Jiří Zlatuška, CSc. Questions to the speaker were also posed by the audience
via the Slido web service.

In the �rst lecture, Donald Knuth con�ded to the audience about the importance
of batch processing, the advantages of not reading e-mails, the deviousness of the
„What is you favorite X?“ type of questions, Knuth’s cooperation with the NSA, the
renaissance of magnetic type data storage algorithms, and the relation between the
sounds of a water fountain and a crying infant.

The second lecture was interleaved by passages from Fantasia Apocalyptica, played
by Donald Knuth on a digital keyboard. In the lecture, you will learn about the musical
side of Donald Knuth, the motifs used in Fantasia Apocalyptica, the reducibility of its
composition to Constraint Logic Programming (CLP), how Donald Knuth grappled
with burn-out during the composition, how he managed his time, the di�erence
between programmers and good programmers, what Donald Knuth considers the
worst program he ever witnessed, and also Donald Knuth’s very own pipe organ.

Additional information, video recordings (Sojka, 2019b; Sojka, 2019c), and tran-
scripts of the lectures (Szaniszlo, 2019a; Szaniszlo, 2019b) are available on the web
of the Faculty. A video recording of the Czech premiere of Fantasia Apocalyptica is
available on YouTube. (Knuth, 2020a)

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 41

Questions and Answers Session 1: Computer Programming as Art
Gruska: Good afternoon. Dear informaticians, we have today very special collo-
quium. We have the legend of informatics, father of analysis of algorithm, father
of art of programming, father of many other books, father of TEX and so on and so
on. . . I better stop, because I would spend probably all my time here talking about
his outcome. He came here to answer your questions. Sessions will be so interesting,
how interesting will be the questions you ask. There are two ways to ask questions.
Either by microphone or you can use mobile. Ok?

I mentioned that this legend of informatics and one argument supporting that is
when in 1989 there was the IT World Computer Congress in US in San Francisco,
professor Knuth was invited to give the �rst talk, the most important talk. So welcome,
professor Knuth. Welcome here, and you can start the session, colloquium, by asking
the questions from your audience. Welcome in Brno. applause
Knuth: Prof. Gruska, do you have a question?
Gruska: Yes! 42 years ago I wrote you letter.
Knuth: Oh!
Gruska: I was waiting for answer. After one month I decided to call you. Secretary
took the phone and said: “Oh, he’s three months behind answering letters. However,
he is next to me.” So I could talk to you. Has that changed with your custom to
respond to letters?
Knuth: Can you hear me? Testing. . . Testing, testing. Zero one, zero one. laughter

So the secretary I had 42 years ago is Phyllis Winkler who served me for many
years, but she died about 15 years ago and actually retired before that. However, I
go into campus at Stanford four days a week, and I have lunch with the students
every Thursday and with the faculty every Tuesday and things like that. . . However,
I found that one of the great secrets of Computer Science is called batch processing.
So when I answer mail, I don’t do it by interruption, but by batch processing. So I
gave up email, I guess, on January 1, 1990, and I’ve been a happy man ever since. But
the questions come in, and they’re �ltered, and I answer a lot of them all at once. So
it turns out that that’s necessary for me in order to work e�ciently. But Phyllis was
a wonderful protector. So she kept it possible for me to work e�ciently for me all
these years.
Gruska: And there’s also another question, well, they ask, one student: Can you talk
to Knuth? He said: “Yes, Friday night.”
Knuth: Friday night? Ok.

Before I go on to more questions I want to mention that the whole inspiration
for this kind of a session came about when I was at Caltech during these 1960s and
Richard Feynman, our famous physics professor, would end every one of his classes
the last day of class: Anybody can ask any question they wanted to. And so I started
using that in my own classes, and I kept that up until I retired. And so now I �nd this
as a best way to customise the lecture. So I will try to give an answer to basically any
question, and I’ll try to keep it short, so we can move to a variety of question.

On the other hand, tomorrow I’m giving another talk at 12:30, and it’s also called
Questions and Answers. Tomorrow I’m gonna have a piano keyboard, so that I can
answer questions if they have anything to do with music because I think when you
walked in here, you’ve got an ad for a concert that’s gonna be given on Friday. So
today let’s not have questions about music, but anything else is �ne.

Then I also brought this with me. This is a prop for a paperback book that I pub-
lished, I don’t know, 2–3 years ago, which is the middle third of Volume 4B of The
Art of Computer Programming. So far I’ve �nished Volume 1, 2, 3 and 4A and I’m
working on Volume 4B. I started writing it in the middle, and this came out. It’s called
satis�ability, and the big six on it here says Volume 6, Fascicle 6. Fascicles 0, 1, 2, 3
and 4 were part of Volume 4A.

42 MAPS 51 Tomáš Szaniszlo

Now the reason I’m saying this is that right now, maybe as we speak, Fascicle 5
is being printed and it will be available in bookstores a month from now, and you
will love it. It’s a wonderful book. Ask your parents to get it for you for Christmas.
laughter And the main thing is that it’s, I would say, maybe eighty percent of it is
about puzzles or topics that are often considered not only worthwhile but fun. I sort
of have been waiting all my life to present this material in showing how puzzles are
very relevant to learning how to be a good computer programmer. And so that’s
Fascicle 5 gonna be coming out in a month. So that’s end of advertisement.
Gruska: There is a question: What is your favorite unsolved problem in Computer
Science?
Knuth: My favorite unsolved problem in Computer Science. . . Ok, well. . . I guess,
personally, what is the worst kind of question to ask? And I’m sorry, but it’s a question
that starts by “what is your favorite X?”. Because it’s really hard to say what is my
favorite X: almost always “what’s my favorite algorithm?”, “what’s my favorite. . .
relative? – Do I like my son better than my daughter?”, and so on. . . So I hope not
too many of the questions today are gonna be “what’s my favourite X?”, however, I
don’t wanna duck this one.

So unsolved problems in Computer Science. It depends on who and whether I
think it’s gonna be solved or not. So in order to be a really favorite problem, it would
one where I expect that when I tell you what it is, then next week someone in the
room will solve it. So often my favorite problem is one that I’ve just thought up. And
last week I thought up a problem that I mentioned to one of Dan Kráľ’s students on
Sunday night, and so I’m not gonna repeat that one now, so he can work on it and
solve it for me.

Of course, the most famous unsolved problem in Computer Science in a sense that
it’s got a million-dollar price associated with it is a question “does P equal NP or
not?” Someone is gonna ask me about that anyway, so I might as well spend one or
two minutes on that. So the question is: The P is the set of all problems for which
we can solve in polynomial time, and NP is a set of all problems for which we can
verify a solution in polynomial time, more or less. And so the big question people
say is “Does P equal NP or not?” Now, I wanna amplify that question. So let’s try
to be speci�c. It’s known that the question “P equals NP?” is equivalent to saying
“is there a polynomial-time algorithm to solve one particular problem?” Let me take
satis�ability, for example because I held that up.

So there’s a problem called 3-SAT which says: I have n clauses and each clause
is of the form (a ∨ b ∨ c) ∧ (d ∨ e ∨ f) and so on. Various clauses like these and
all together [logical] and of these. And a, b, c, d, e and f are actually x ∨ ȳ ∨ z or
something like that. . . a, b and all of these things are Boolean variables that are either
negated or not. And the question is: Can we satisfy all these clauses simultaneously?
Is there a way to say that x is true, saying y is true and z is false, and all of the clauses
are gonna be true? And that it’s satis�able if and only if there is a way to set these
variables.

So when you look at this problem, you say: “Oh, sure, I can easily solve this
problem.” However, I don’t wanna say if you’ve solved it tell me how you did it
because a lot of people have told me that, but it was a waste of time. A lot of people
think they’ve solved this problem, but they didn’t.

The question “P equals NP?” says “is there an algorithm that solves 3-SAT to
some constant steps?” I wanna ask another question, and that is: Could we know an
algorithm that solves 3-SAT? Some people think that these are the same questions. If
an algorithm exists, certainly, we would know what it is, right? However, that is a
giant step to go from saying that there is an algorithm, and there is an algorithm we
actually can �nd. A lot of things are proved non-constructively, so it can go several
ways. One is that we have “yes, there is an algorithm, yes, we know it”. Or it might
be “yes, there is an algorithm, but no, it actually is beyond our grasp”. You can never

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 43

write it down. It exists up there, but you need to be God in order to know, actually
to use it. And then there is a case “well, there is no algorithm”. Well, then this [the
fourth cell in a schematic combinatorial table] had better be no. I’m not gonna have
an N and Y in here.
Gruska: Would you be happy to have non-constructive solution?
Knuth: Well, that’s what I believe is probably true. I’m not sure how happy I would
be, but it could be that the total number of algorithms is huge, and if it doesn’t exist,
it’s a completely di�erent question. It’s quite likely, but hardly anyone thinks about
this puzzle. It’s quite likely that the algorithm exists but only because there’s only
�nitely many reasons why it doesn’t exists. And that’s not gonna tell us much. There
are many cases of non-constructive things where we know, for example, that there’s
a winning strategy in a game of hex, but nobody has any way to actually win hex.
It’s just known that there is a winning strategy for the �rst . . .
Gruska: So next question. . .
Knuth: Yeah. . . laughter
Gruska: Do you still write any code? If so, why and which programming language?
Knuth: In this case, I could even say what my favourite programming language is.
laughter When I wrote Fascicle 5 I probably wrote about 600, I don’t know, many
hundreds of programs and every week I write on average at least �ve. Most of
programs are rather short, of course, but some of them get to be fairly good size.
The language I use all the time is called cweb. It just really works for me. It comes
installed with Linux, and so I’ve got many dozens of cweb programs as examples on
my website. If anybody wants more information about any of the ones that I didn’t
put on the website yet, I’m glad to put it online.

It’s a combination of TEX and C. It’s so much better than any other way to write
programs, but I’d better not get started on it. To me, it’s the greatest outcome of all
of my work on TEX. The fact that I now have cweb in order to solve lots of problems.
Gruska: Ok, a related question. Did you try to write program for quantum computer?
Knuth: Ahaaa! Quantum computing is something that I have absolutely no intuition
for. If quantum computing turns out to be the best way to go and everybody switches
over to quantum computing, in a way, that will be the best thing for me, because
then I’ll have more time to write my books. Because I’m never gonna write anything
about quantum computing. I only promise to write about things that were known in
1962 when I started a project [The Art of Computer Programming]. . .
Gruska: Another question is such that you may have a di�culty to answer. The
question is: What were the research problems you worked on during your cooperation
with NSA? laughter
Knuth: So I spent a year before going to Stanford working on code breaking, and
I’m not allowed to tell my wife what I did during that year. laughter
Gruska: She’s not here! LAUGHTER
Knuth: But this is being recorded, and maybe she would watch the recording.
Gruska: [Disappointedly] Oh. . .

My question is: What was your subject in your thesis? PhD. thesis. And did your
advisor help you?
Knuth: I was lucky to work with Marshall Hall at Caltech, and so my thesis was about
a general area that now would be called combinatorial designs. More speci�cally,
�nite projective plane. This is an arrangement of points and lines that are abstract.
There is a parameter n, and I think it was. . . n2 +n+ 1 point, and every line contains
n + 1 points and every point is on n + 1 lines and any two lines intersect at exactly
one point. So this is like a projective geometry, but �nite projective geometry, instead
of the projective geometry of the sphere or something. So my thesis was to show that

44 MAPS 51 Tomáš Szaniszlo

certain kinds of �nite projective planes do exist and they hadn’t been known before
to exist. The whole area of designs is to �nd families of sets that have interesting
properties that might be useful in application.

Now the interesting thing is that over the year since I graduated, I applied almost
every branch of mathematics that I’ve ever heard of to computer programming except
the theory of design. Because subsequently, we’ve found out that we can do better
with random choices in almost all cases instead of trying to �nd these very rare
patterns that sometimes exist. It was very good training, and my advisor helped me
in the following way: I was working on another problem and one morning as I rode
up in the elevator, got to my o�ce and said hey, I betcha I can solve this particular
problem I just heard about. And my advisor said: Ok, that’s your thesis.
Gruska: Another question: Vim or Emacs? [The question wasn’t answered at this
moment. But see a later mention near the text “Tabs or spaces” in this transcript.]
Knuth: What do I think about Arti�cial Intelligence? Ok. Do you think it could be
dangerous?

Certainly, I prefer real intelligence to Arti�cial Intelligence. I have always felt that
the working ??? AI has been at the cutting edge of Computer Science. Of the last sixty
years, the people working on the challenging problems of Arti�cial Intelligence have
come up with many of the most important innovations in the �eld. I always regarded
it as something that tells us how to stretch what we know and invent better algorithms
rather than as something where I would actually use the algorithms afterwards and
believe that.

In other words, suppose we develop a really good algorithm that decides whether
or not a student ought to graduate. Should I let the computer decide which students
graduate or should I try to understand their working and see if it has some value?

Right now, the question about the danger is extremely pressing and especially with
respect to military applications. There is this really frightening movie, short video. . .
I can’t remember the name of it. Came out about three years ago. Where you could
pretty much, with today’s technology, you could program drones to kill anybody you
wanted to. The scenario I should remember, some of you will maybe remember the
title, but my friend Stu Russell at Berkeley was one of the people behind that �lm.
Essentially it’s already possible to do these horrible things, so we gotta �nd some
way to keep that from happening. Stu has the best idea so far about how to prepare
for such dangers, but still, I’m afraid his ideas are not satisfying me because they
depend on assumption that human beings are rational. And the more I read about
these days, the less and less I believe that human beings are rational.

It’s very serious to see how to restrain the things that we don’t understand and
�gure out how, because with the new techniques we are able to solve many problems,
wonderful problems in all branches of science that we weren’t able to solve before.
The ones that are encouraging to me are the ones where there’s no enemy involved.
Like somebody trying to defeat us in the experiment, but the only enemy is that
we’re battling ignorance, we’re trying to �nd some pattern in the way stars work
or something like this, the way biology works, how to identify diseases of di�erent
kinds. . . And these machine learning techniques are wonderful. Even though we
don’t understand anything about how they work. But you use the same algorithm
for something where there’s adversarial interest involved, then everything gets bad.
Gruska: Another question was very nice, and I think you will like it: Could you tell
us the story of TEX from the very beginning to implementation?
Knuth: Ah, yes. laughter Yes. In short, I found out that computer technology had
changed so that the work that was once done by hand with hot metal was no longer
being done. It was replaced by new technology which was based on photography.
And the new technology looked awful. I saw the proofs for the new edition of Volume
2 of The Art of Computer Programming, and I was almost sick. I didn’t wanna have a
book that looked like that. And then a couple of weeks later I learned that computers

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 45

might be the answer, because somebody working in Southern California had found
out that actually with digital methods, with pixel zeros and ones you could potentially
make books that would look just as good as the real printed one.

So I got in an airplane and �ew down to South California, talked to the people there
and decided to change my sabbatical plans for the next year where I was gonna study
combinatorial algorithms. Instead, I decided that oh, I can now solve the problem
with the books if I only write the computer program that makes patterns of zeros and
ones that say what should be on every page of the book. Well it took a little longer
than a year, but that was the beginning of my work on typography.
Zlatuška: So the proofs for Volume 2. That means Volume 1 was already printed not
using TEX? Does it exist?
Knuth: No. Volume 1, 2nd edition have already come out.
Zlatuška: The �rst edition you ??? about.
Knuth: Volume 1 would have come out looking bad at some point, but I was revising
Volume 2, and so those proofs came in. What happened, is the technology went away
from hot metal, basically monotype setting, and actually in Eastern Europe was the
only place left for people who were still doing monotype during the 70s. So I have a
translation of my book in Hungarian that as done by these hand methods still look
good in the 70s, but the books that were printed. . . if you look at all the journals
of mathematics that were printed in the 70s you see what I mean. So I was feeling
bad about until I realised it was just a matter of programming. The machines were
there that would make the book, but I need to get the pixels �gured out. So I spent a
long time in the library looking at everything that I could see about how to make
good-looking books, and I brought the experts to Stanford, and we worked together
on it for a while.
Gruska: How many months you worked on TEX?
Knuth: It’s hard to say because I was also doing a few other things, but at one point
I took a leave of absence from Stanford for a year because I found that working on
software was harder than writing books. You can write books, you can write papers,
but software involves much more of your brain, and I couldn’t swap in and swap out
so much without taking a year o� of teaching and getting TEX done. Then I could go
back and resume the other schedule. But in calendar time I �nished this �ve-volume
set of books called Computers in Typography. I �nished that in 1984, I have started
the project in 1977. So that’s seven years. Then I came back to it in 1989. I came
back to it because I didn’t realise that people were gonna be using it for typesetting
strange languages like Czech. laughter You know, you have accents on letters. Wow.
So I went from 7-bit to 8-bits in 1989. Took a year.
Gruska: As far as I remember, when working on TEX every evening or every morning
you wrote down what was good, what was bad. Did you make use of these comments?
Knuth: Well, I got a paper out of it. I have a paper called “The Errors of TEX” which
I think is a good idea for everybody – to keep track of what mistakes you make.
Programming is too complicated, you can’t get it right all. And I wanted to �nd out
what were the kind of errors that I made and also learn something about patterns
and that I could change my actions. I kept this log showing every century(???),
every major non-trivial change that I made, some of the trivial ones too, to TEX
and to metafont over the years. Then I was able to get a good understanding of
the scale, how important are certain kind of errors. For example, people say: goto
statements are bad. Look at my history with TEX – sure enough, I made some errors,
because I used goto statements improperly. However, I had also used every other
kind of statement improperly too. Every statement – assignment statements are bad,
conditional statements are bad, everything from that aspect can be misused. But I did
learn something about which kinds of things to avoid and the corrections were not
only to �x errors but also to improve user interface and things like that.

46 MAPS 51 Tomáš Szaniszlo

Gruska: Next two questions are pretty ??? so please ???.
Knuth: All right so. . . What would you advise to your 25 years [old your]self?

So 25 year, that would be. . . 1963. That’s the year I got my PhD. . . . I decided that
year to become a college professor. I actually been o�ered the year before when I
was 24 to drop out of grad school. Essentially I was o�ered a salary of $100,000 a year
plus an assistant. Now in 1962 that would be like $10,000,000. It’s not anywhere near
Bill Gates’s salary, but anyway I knew that my role in life, my interest was going to
be to work with students rather than to maximize the amount of income that I had.
On the other hand, I’m not saying everybody should make that decision. Anyway, at
25, that’s when you want to start becoming stable and making long-term decisions
that you’re gonna live with.
Knuth: Next question: Anonymous:
Gruska: How being a Christian a�ected you as computer scientist?
Knuth: It’s hard for me to say what it would have been like if I had been born into a
di�erent family, but certainly, I guess, one of the ways, my Christian upbringing with
respect to work on crypto and questions of computer security. I’m not very good at
doing work on cryptography, because I’m not as sneaky as the people who are trying
to defeat these things, but with respect to security all my life I had this idea. . . I’m
sorry, not security, privacy. . . I always had the idea that everything that I do is known
to God, so I don’t have absolute privacy. And I didn’t understand until later that there
are people who think that nobody should know what their thoughts are. So it makes
it harder for me to understand, but some people concern about privacy, although of
course, I don’t want my thoughts to be used by the devil, by something that’s going to
exploit me, but I’m not very comfortable if there was something bene�cent watching
over what I’m doing.

All these things, I guess I should say, I’m very happy that there are parts of my life
in which there’s no mystery, and I can prove that something is right, but I wouldn’t
be happy if there was no mystery whatsoever, so I appreciate the fact that there are
things that I’ll never understand, so it teaches me some humility that I shouldn’t
expect to understand everything. So I don’t claim to understand everything, and I’m
very happy that God did not make it possible to prove or disprove the existence of
God.
Gruska: Related to this question: Let us assume that you will live still 30 years.
Knuth: Do I? What now? . . . Oh goodness. laughter
Gruska: By famous visionary Kurzweil at that time we should have laptop with
information processing power better than all human brains. What would you do with
such laptop?
Knuth: I would certainly try to �nish The Art of Computer Programming. Let me
rephrase your question. How do I want to continue, you know, what should I do the
next week and the week after that? How do I want to continue to live? I have to
be watching when am I gonna start going senile. At the moment I don’t think I’ve
reached that point yet, but it might come to the point where I should stop writing
The Art of Computer Programming because I’m starting to write stupid stu�.
Gruska: In which area of Computer Science or mathematics do you see the most
potential?
Knuth: In which area. . . This is one of these favourite questions again. The much
harder question would be: “Which area does not have much potential?” because I
think everywhere I look, I see potential. The problem is really have to go to sleep
at night not using the knowledge we have. Everywhere I look, I see that it’s not
saturated yet.
Gruska: Additional question is pretty philosophic: What your opinion on Curry-
Lambek correspondence? Do you think mathematics is constructed or exists inde-
pendently?

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 47

Knuth: I guess I’m a Platonist in the sense that I’m discovering things that are there
already. The stu� that’s there is all consistent with my own attitude that these truths
are there and I just am learning a few of them at a time. There might be an algorithm
that solves 3-SAT, and that would be there. In fact, I’m not sure I even understand
how I could be a non-Platonist.
Gruska: What was the most valuable ??? you learned during your career?
Knuth: Not to use email? laughter There we go.
Gruska: Is too late for 20 years old students to start learning real mathematics and
programming?
Knuth: A 20-year old student? My goodness, no. I didn’t now that much math when
I was 20. It depends on what you’ve seen so far and the teachers you’ve had. But I
consider life to be a binary search where you �nd out things that are relatively easy
for you, because of the unique experiences that you’ve had, and you try some things,
and some things work, and some things don’t work. Then you keep learning more
about yourself. I’m 81 years old now, I’m still not sure exactly where to go, but I keep
trying di�erent thing. I have given up on quantum computing, though. laughter .
I tried to understand quantum computing, and I know people who do understand
quantum computing, but I ??? it’s not me.
Gruska: Do you believe in non-locality in physics?
Knuth: I understand a few things about multiverse and things like that. For example,
there’s no way to distinguish between whether or not this lecture I’m giving now is
simultaneously forking into many di�erent things and so each di�erent incarnation
of it will have a di�erent series of questions, and I’ll give di�erent answers to di�erent
questions and so on. And all of this idea that there are these all the di�erent universes
all simultaneously existing is consistent with quantum mechanics.
Gruska: Biggest challenge of becoming a good programmer?
Knuth: What does it say? Spaces. . . Tabs or spaces? hehehe laughter

So I use Emacs for my hacking, and I always untabify ??? but I also read a lot of
programs that other people have written, and I start out with changing all the tabs to
spaces. Of course, I’m using cweb, not Python.
Knuth: Next. . . Some of the exercises are known to be open research problems. Yes
indeed. If the number is 46 or higher, it’s something where, as far as I know, it hasn’t
been solved yet.
Knuth: Has anyone ever contacted you that they have solved one of them while
reading the book? Yeah. People look at them ??? I do want to point out that a lot of
people haven’t been looking at those lately, so . . . I’m sorry. . .
Gruska: Excuse me. . . We make break for 5 minutes because they need to change
[the microphone].
Knuth: So we had a celebration at Berkeley, I guess a month ago, celebrating the life
of Dick Karp and at that time there were a dozen speakers, and I decided I would
say something about the Karp’s work that the others weren’t going to talk about.
So I looked again at Volume 3 of The Art of Computer Programming, where Dick
had told me about some things he never published that applied to sorting on tapes.
Nowadays people don’t use tapes for sorting, but when Volume 3 came out, this was
one of the biggest topics in all of Computer Science. People were saying one third
of all computer time was spent on sorting, and people had these tapes, and these
were must have to have in the book. But since we don’t do sorting that way anymore,
I should rip out all this, I don’t know, sixty pages or something of Volume 3. And
then people say “no, no, don’t take it away, because we’re just �nding out there’s a
new memory kind of being invented which is rather similar to tape and so these old
techniques are gonna be good!”

48 MAPS 51 Tomáš Szaniszlo

Anyway one of the things about magnetic tape is that you can read it forward
and backwards, so you can write information on the tape, and then you can read it
in the other direction, and that would be much faster than rewinding and reading
back forward. And Dick Karp worked out a beautiful theory about patterns of using
tapes for sorting that he showed me at lunch one day and I put it in my book, and
he never published it. So I showed it to the people at Berkeley, and as I was looking
through this I came across a research problem, you know the level 46, which it seems
to me is ripe for solution now. 50 years have gone by, and people know a lot more
math than then, so I suspect that there are dozen problems in there that are just
waiting to be solved. So you can go through, you have to spend a little time paging
through and checking out the numbers. And if it’s 46 or more then think about it
and say “hm, I wonder if I can solve this now”, because people haven’t been doing
that systematically.
Zlatuška: How many girls you seduced because of Computer Science?
Knuth: How many girls have I had thanks to Computer Science?
Gruska: Forget it. Forget it.
Knuth: So, in fact, I had 28 grad students, but none of them were female, laughter
but I did serve on many committees and many others and so on. . .
Gruska: Here is better question: What’s the biggest motivation that kept you going
through career?
Knuth: I guess it’s the example of my parents which was always to somehow be a
servant, to see how I could be of use to somebody else. My father’s name was Erwin.
He had an informal, I guess you’d call it a startup ???, he is a one-person operation,
and he would do services for all churches and schools and a few other nonpro�t
things like this, and he called it ERW service. He thought it was clever he could write
the word service but make ERW large, so would say ERW service. But anyway, that
epitomized all the philosophy that I grew up with – to be a service. If I got to a point
where I thought that I couldn’t be of use to anybody anymore, I told my children not
to keep me alive just to make me happy, but if I get to a point where I don’t recognize
them or anything like this. . . How do I express this. . . There’s a novel, came out less
than 20 years ago by P. D. James and it was about. . . the world. . . the people discover
that from now on all women in the whole world would be infertile and so there will
be no more children ever born again. So humanity was eventually going to die out.
So what did people do? That was very devastating to me, to imagine what it would
be like if I was in a situation where I could not do something that would be of use to
people, more than my immediate family, but to people in the future.

Well there’s a short story by. . . Oh, goodness. . . Okay, who’s the greatest Argenti-
nan author?
Zlatuška: Borges.
Knuth: Borges, yes, of course, Borges. So he has this short story. I think it even
takes place maybe in Czechoslovakia, I don’t know. But anyway, it’s a story of a
person who is a playwright, but he’s facing a �ring squad, because of his political
views. And just as the guns are aimed at him and so on, he prays to God, and he says:
“God, I have to �nish this play I’m working on. Please, make time stand still so that I
can work out all the details and �gure out exactly what should happen in this play.”
So God says okay and time stands still, and this playwright solves the problem, he
�gures out exactly what’s the perfect play. And then he’s shot. So nobody ever gets
to see what happened in the play. It was just that the playwright himself was able to
solve that particular problem. So that’s the opposite of my own way to do it. It has to
be something that I do that somebody can use. I hope that’s making myself a little
clearer what this idea of service is.
Gruska: There are quite a few people that try to put the idea of formal method into
programming, software development. . . What do you think about that?

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 49

Knuth: When you’re putting ideas into formal methods, it forces you to understand
what the ideas are. You don’t realize what you don’t know until you try to formalize
it some way. So it’s a great educational experience. On the other hand, I guess I said
a similar thing about Arti�cial Intelligence a while ago that I consider it as a very
useful way, a source of good problems and continuing to learn. But then I was less
interested in actually using the programs afterwards because I knew that they would
only be approximately right.

I once had a language called SOL, Simulation Oriented Language, and the idea was
that it would be it would be pretty easy to write models for discrete systems. And
you could simulate the system. As I was working on this language, I looked at a lot
of di�erent applications, and in each case, I found out that the idea of formalizing the
application and putting it into this language was a wonderful educational experience.
I can build models of things to simulate, but I learned much more writing the model
than I did actually running the model afterwards. So I almost thought I should take
output statements out of the language. The people only use language for formalizing
their model instead of for actually running it and believing the answers that they get
afterwards.

Nobody seems to understand what I’m saying, but anyway, I believe the main
advantage of formalism is educational rather than actually having a payo� afterwards.
Gruska: Next question: For how long can you program or read papers per day until
you are exhausted? How do you relax? Do you relax sometimes? laughter
Knuth: Yes, but in fact, I’m relaxing right now. laughter At night, I have to take my
mind o� whatever I’m doing. So I read James Bond or something not really heavy
literature. I’m reading right now a novel by Frederick Forsyth called The Odessa File
which is story about the German SS in Latvia. . . what you’d call a thriller. Some kind
of story like that and I go right to sleep. I read novels at the same speed as I read a
math paper. laughter I don’t know any other way to do it, so I don’t get through that
many books. However, when I do come across a book, that I think is especially nice,
I put it on my website. So I think if you look on my website and under. . . I think,
there’s a Frequently Asked Questions and it says “so you’re retired” or something
like this. You click on that, and it’ll tell you, I think, maybe three dozen books that I
think were special to me.
Gruska: Did you work hard when you were student?
Knuth: I was a machine. I was a problem-solving machine. Somebody said: Okay,
Don, do this, and I would do it. And I didn’t start reading for pleasure probably until
I was about thirty years old. I was given an assignment, and I was a good boy. So I
did it.

At least that’s the way I remember how it was. I don’t know how it really was. I
think I also was a. . . they might call me a wise guy. I mean, I was cracking jokes and
not paying too much attention to what I was supposed to do.
Gruska: Did you watch westerns or detective stories?
Knuth: What about detective stories?
Gruska: Did you watch westerns movie or detective stories?
Knuth: I certainly watch a lot of movies, but, by the way, I might as well mention
one thing. I guess it was a month ago when I saw again a movie. It’s called Double
Indemnity. It came out in 1944 or something like that. It’s one of the earliest noir
movies, and it stars Fred MacMurray and Edward G. Robinson and Barbara Stanwyck.
That movie has special signi�cance for me because when I was writing The Art of
Computer Programming, that movie was playing almost every night on The Late
Show. As I was typing The Art of Computer Programming, I would have the TV on,
and I would see Double Indemnity over and over again. So The Art of Computer
Programming was written largely to this movie Double Indemnity. The music to
Double Indemnity was written by Miklós Rózsa, and it’s haunting music that I hadn’t

50 MAPS 51 Tomáš Szaniszlo

remembered how haunting it was until about ten years ago. I saw Double Indemnity
again at a theater and immediately when they showed the title, and I heard this music,
and I said: “Oh my god, what powerful music is it.” So I’ve included music from
Double Indemnity in my piece that’s gonna be played on Friday. Although I’m not
sure if I’m gonna be sued for this. But one of the things that occurs, you can check it
out by watching the movie.
Gruska: Didn’t you have idea to write science �ction?
Knuth: I talked about writing it or? I enjoy di�erent kinds of science �ction, of
course, but I haven’t had time to. . . I wrote this little book called Surreal Numbers. I
kind of think of it as a little bit like opera in the sense that opera is good music to a
little bit of a plot. My book Surreal Numbers is good mathematics to a little bit of a
plot. The characters in this story work on a math problem together, and it makes a
little plot, but mainly there’s beautiful mathematics that they’re discussing.

If I live long enough and �nish The Art of Computer Programming, I’d like to
write some science �ction. One book I’d like to write is where the story is told by ant
colony. Not by an ant, but by ant colony. There are tens of thousands of ants, and
somehow they cooperate with each other and so that they form a consciousness and
so I think there ought to be a short novel that’s told by an ant colony.

The other thing is a short story something like. . . you could call it The Fly. Now,
Mark Twain in one of his books, I think it’s called The Mysterious Stranger, there’s a
character in there representing the devil, and early on in the book the devil opens a
window, and a �y goes out the window. And he said: “Because I let this �y out the
window, there’s gonna be war next year.” He’s predicting what they call the butter�y
e�ect of chaos theory. All kind of things are codependent.

So maybe people have seen this movie Run Lola Run that came out of Germany
a few years ago. It tells a story, three or four times the story starts out exactly the
same way, but then there are three or four di�erent, completely di�erent endings,
just because of little changes in time. So I think it would be fun to write stories that. . .
Well, it’s not one story, but it’s two or three stories that all start out the same, but
end completely di�erently. But on the other hand, did this movie, its German name
is Lola rennt. Run Lola Run in English. So the author of that movie already did it,
what I was planning some time to do.
Gruska: So, please, ask questions. Yes, will be �nishing. Maybe those who don’t
have mobile with, they should have the chance also to ask questions.
Knuth: Yes!
Student: You have a trouble ??? distractions or maintaining focus when you’re
working on a problem during the day? And if you do, how do you sit down and focus
and do some piece of work during the day? You have like a ???.
Knuth: If I understand, you’re saying how can I focus on one thing instead of many
others? I don’t have all the distractions of modern day. I don’t have the radio play,
music blaring ???. I found that, for example, if my job for the day is to do something
like proofreading, then it helps me to have some kind of music like Telemann or
something playing in the background. It sharpens my mind. But if I have Bach playing
the background, it’s too much, and everything goes away. So part of it is having no
distractions, no interruption.

When my children were babies, they would be crying. I had this problem: How
am I gonna concentrate on writing a book when the baby is screaming? The answer
was white noise. I had a waterfall, and I could turn the fountain on and crying plus
white noise equal white noise. laughter

But in general to concentrate on one thing I collect a lot of material, all on the
same subject. I’ll read thirty papers about that subject all at once, instead of reading
about many di�erent things. So I spent a lot of my time �ling things away to be read
later. Batch processing is very important.

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 51

Sochor: My question is: Do you prefer screen and keyboard or paper and pencil?
Knuth: I love that question because it turns out that I learned when I was in college
that I could write a letter home to my parents faster with pencil and paper than on a
typewriter. The reason was, actually, because I’m a good typist, I type faster than I
think. laughter I had actually gone to typing school, so I can type so fast that it’s a
synchronization problem. laughter I’m not ready for it. But pencil and paper for me
is a perfect sync with my thought process. So I make the �rst draft of everything in
pencil paper, but then I go to the computer, and I polish it, and I edit for style. And
I’m typing on it ??? I do that.
Gruska: So, you don’t have to think, you just looked on your �ngers.
Knuth: That doesn’t work for me.
Student: So my question is: How has your stay in Czechia been so far?
Knuth: In fact, I wanted to say at the very beginning that it’s a thrill for me to be
invited here to celebrate your 25th anniversary. It couldn’t have been better in every
way, and I’m really enjoying this week. I was babbling over with enthusiasm for that,
but I forgot about it at the beginning.

Of course, I’ve only had �ve/six days so far, but each one has been a joy.
Gruska: Ok, I think it’s time to make break. The break will be quite long. Continua-
tion will be tomorrow. Thank you, professor Knuth.

applause
Sojka: Come tomorrow and those who want to make a photo with Don and the
faculty, the photography . . .

Questions and Answers Session 2: Boundless Interests
organ music playing
Zlatuška: Ok, ladies and gentlemen, dear colleagues, I would like to welcome you at
the second session of Questions and Answers with professor Donald Knuth. Today,
again, there is a possibility to put questions over your phones or whatever connection
this works (???). And today’s topics are not limited to just Computer Science, but
also to music.

We invited Don for 25th anniversary of Faculty of Informatics. Not only as the
�rst honorary doctor of informatics of this university and this faculty, but also
as personality who transcends boundaries, and especially we felt that it would be
interesting to have him here also as a musician.

I believe he’s got at home not only his work o�ce devoted to The Art of Computer
Programming and informatics, but also to music. He built his own organ in his
house at Stanford, so this other Donald Knuth, I believe, will be for many people
as interesting as Donald Knuth, the author of The Art of Computer Programming.
If you look at that from other perspective, I feel that the idea of programming as
an art—Don quoted that yesterday—is something which resonates with this second
personality, but I hope that there will be also questions concerning this part.

Now. I thought Donald travelled with this, but he travelled so light, but it would be
impossible so. . . The �oor is yours with the questions. Any questions from the �oor?
Knuth: Right, so, hello, everybody. I want to thank again for the wonderful hos-
pitality this week, and before I forget, I also want to mention that there’s another
lecture today by Dana Scott. I think 4:30 in the afternoon. So, you know, if I give a
bad lecture, you at least get one good one today. Zlatuška’s laughter

The other thing I wanted. . . Before we start with new questions, I had a couple
things to say. First of all, I don’t know if you’ve ever given a lecture, but the night
after it you wake up in the middle of night saying “Oh, I should have said that!” and
so I thought of at least two things that I wish I had said yesterday.

52 MAPS 51 Tomáš Szaniszlo

So in the �rst place, I was trying to explain why the question about P versus NP is
not as simple as people usually think when they talk about whether there exists an
algorithm that runs in polynomial time, and they think it’s the same as saying that
we could know an algorithm that runs in polynomial time. But there’s a big jump
between that, and then someone asked me later on about the Arti�cial Intelligence.
So it occurred to me during the middle of the night that one way to think about it is
this:

I want to give an example where maybe there exists an algorithm to decide the
3-SAT problem in polynomial time. But we won’t know what the algorithm is. So
imagine that we have a problem of size n, and we build, let’s say, (n1,000,000)-state,
some kind of a neural network that has n1,000,000 neurons. So this is a polynomial
number of things. Just add a few more [zeroes to the exponent]. So now we trained
this neural network on lots and lots of SAT problems. You know, we’ve got great
advances now in machine learning theory. Now I feed it a new SAT problem, and
how do I know that it’s not gonna solve all of them? In fact, in order to prove that,
we couldn’t possibly train this neural network. In order to show that P is unequal NP,
we would have to show that there’s no way to train this neural network to do it.

And that’s a situation that we’re faced with. Right now, when we do train neural
networks, we’ve got something that solves the problem, but we have no idea what
the network is doing inside. And that might be a way to think about the di�erence
between an algorithm existing and an algorithm that we know what it is. Ok. Do
you have a comment on that?
Zlatuška: If I may.
Knuth: Yeah.
Zlatuška: Could you extend this problem to the problem of human mind? The
human mind and limits of human mind?
Knuth: Okay.
Zlatuška: Because that laughter obviously. . . That’s obviously similar problem.
Knuth: Yeah.
Zlatuška: So what’s your idea about limits, the capacity of human mind? You know,
the ideas like mysterianism, and the existence of problems which are inaccessible to
human mind?
Knuth: In that case, we actually have rigorous proofs, because there are incompress-
ibility theorems. So we know that there are things that cannot be made small, and so
the human mind can’t possibly understand something that has more states in it then
there are, well, let’s say, protons in the universe or something like this.
Zlatuška: So, something between man and the God.
Knuth: Yeah. But in one of my papers, I have a number that I called. . . I don’t know,
I forget. . . I shall call it Super K , which is also the name of a breakfast cereal in
America, but anyway, I needed a special font in order to do it. Like I wanted to print
it only in color, but if you look with a magnifying glass at the paper where I talk
about Super K . . .

Anyway, this was a number that was, I forget, it was something like 10 ↑↑↑↑ 3,
which is de�ned in terms of the [Knuth] arrow notation. Anyway, I was once giving
a talk at Livermore Lab where they were trying to impress me by how big their
equipment is, so I said: “Well, here, let me show you some big numbers that are
bigger than you ever thought of before.” When you try to think—what is this number
Super K—this simply means writing on blackboard that you take ten. . . let’s see. . .
quadruple arrow I don’t even remember the thing. . . Anyway, 10 ↑↑ 10 is equal to
10 ↑ 10 ↑ 10 ↑ . . . and then if you want to go to triple arrow, then you simply do this
that many times. Pretty soon, it gets mind-boggling.

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 53

But still, this number is �nite, and almost all numbers are bigger than this. laughter
You get a little idea that even though computer scientists stick to studying �nite
numbers, we aren’t limiting ourselves too much. There’s still a lot of interesting stu�
down in. . . I don’t necessarily insist on immortality, I would settle for living this long.
laughter
Zlatuška: And if I may misuse the moderator’s role, I would like to ask about music
a bit. Within Fantasia Apocalyptica, you have lots of quotations from. . . or sort
of inspirations from other authors. And what seems to me really fantastic is the
scope. You go from Gregorian chants to authors whose music is sort of dramatic,
like Olivier Messiaen. And incidentally to see quotations from Olivier Messiaen and
Bruce Springsteen at the same time, well, both of them are favorites of mine, but
what seems to me interesting, just to combine those absolutely di�erent styles which
are usually considered incompatible. How did you solve this compatibility problem?
Knuth: So come on Friday, but what’s your opinion of rap music? Zlatuška laughs
Because there’s a quotation from Eminem as well. laughter And of course Dvořák.
There are a few notes that are actually original with me as well. I wanted to mention
that now before I forget because it ties in with Brno. When I came 24 years ago, my
�rst visit to this part of the world, as my plane was approaching the airport in Prague,
I woke up that morning with a melody in my head. And I wrote it down. Probably in
the airline magazine or something, but anyway, I wrote it down, and I kept that piece
of paper, and I saved it. I sort of thought of it as a Prague theme. Because really, I
woke up and here was this melody and I wanted to write it down before I forgot it.

So fast forward twenty more years, and I’m writing Fantasia Apocalyptica, and
I came to a point of the piece where I’m trying to represent Chapter 21. . . I guess
I gotta go back. The point of Apocalyptica refers to Apocalypse, the last book of the
Bible. I’m trying something new in this piece, which I don’t think had been done
before. To make a fairly literal translation of an original Greek text and convert it
into musical equivalent. So I �nd more than hundred �fty motifs for things that are
repeatedly used in the Greek text. The same sequence of motifs occurs in my piece. . .
Zlatuška: You consider yourself Wagnerian?
Knuth: Yes, Wagner had motifs, but he never told anybody what they were. So the
di�erences is. . .
Zlatuška: He wasn’t university teacher, so. . .
Knuth: For example, the motif for war is staccato. The motif for angels is an arpeggio.
keyboard playing The motif for God is a three-note melody. keyboard playing If you’re
referring to the �rst person of the Trinity, you emphasize the �rst note. keyboard
playing If you’re emphasizing the second person of the Trinity. keyboard playing
And guess what the third person of the Trinity. keyboard playing And the motif for
the devil, in the book of Revelation, there’s also a [sic] Anti-Trinity. And so this is
keyboard playing the devil. And there’s the �rst person keyboard playing and the
second. The Book of Revelation has about ten thousand words in Greek, almost
exactly, and I didn’t just go word by word because I want it to be good music.

I use this as the constraints to say what kind of good music is suggested by this
pattern of motifs. And when I get to Chapter 21, the story talks about the New
Jerusalem. Here’s a Golden City coming out of the sky, and that’s where I got to
use my Prague theme. I’m not sure which. . . I’ll just play it instead of trying to �nd
the absolute best combination of voices. So it goes like this: keyboard playing So,
da-da-da da-da-da da-da-da da. That’s what I wrote down in the airplane. Then it
goes on a few more bars, it uses some of the chord progressions of Dvořák’s New
World Symphony. And New World Symphony is like New Jerusalem. So this is a little
bit of music here, that. . .
Zlatuška: So this is actually what we lose for not having international airport in
Brno. Because if Don landed in Brno, that could have been Brno theme.

54 MAPS 51 Tomáš Szaniszlo

Knuth: So if I had never been invited here in the �rst place, who knows what would
have happened. One other footnote to yesterday and that is: There was a question
where I referred to Stuart Russell. Now I can give you the de�nite reference because I
recommended that you watch this video. I think it’s �ve minutes long, and it’s easy to
�nd. So Stuart Russell. . . writing on blackboard And there’s been a lot of follow-up on
it, but this came out not quite two years ago, and it’s called Slaughterbots. It’s sort of
a mind-changing video that I recommend everybody to look at. It’s very important, I
think, that we should ban autonomous weapons, and there are thousands of computer
scientists who have signed declarations and are actively trying to make sure that the
dangers are minimized.

So that was end of footnotes to yesterday, now I’m ready for new question.
Zlatuška: So I guess. . . Have you ever burned out?
Knuth: There was a period about 1990, where I was feeling kind of low and I actually
I got a little worried about it, because one of my uncle’s had gone through a period
where he was, I don’t know, not getting along with anybody else in the family and so.
So when he got old, and I said: “Oh-oh! Maybe I’m inheriting some mental problem.”
Anyway, so I went to see a psychiatrist, and he said: “Have you ever heard of a Type
A personality?” He was a great doctor, he showed me his textbooks. Instead of telling
me, sort of preaching to me, he said: “Here, look. Here’s a book I was giving you. If
you look in this chapter, you’ll see something that describes you to a T (???).”

I learned from that how to reduce the stress, and so it was 1990. So how old am
I? 50. . . 52 years old. And I realized why physical education was a required subject
in college. I had never done much exercise, so I started swimming in 1990, and very
quickly I was happy again.

But there was a time when. . . Well, I work sort of 24/7, in some sense, but it’s fun.
Mostly. I have to psych myself up in the morning, and once I get into something,
then it’s hard to stop again, so that’s why I have to turn o� like somebody mentioned
yesterday. . . . Well, how do I describe my daily schedule?

I have a very peculiar scheduling algorithm. You wake up in the morning, and you
have to decide what you’re gonna do next. The algorithm that I �nally decided to
work the best is that I always do what I hate the most. Of all the things that I have
no good excuse for not doing, which one would I rather not do. And that’s what I
choose. So all the time I’m working on something I don’t wanna do, in a sense.

On the other hand, at the end of the week, I’ve got stu� out the door. And I’d
have to do those unpleasant things anyway, so as long as there’s no good reason to
procrastinate anymore, that’s what I choose to do. Somehow that turns out to be a
better scheduling algorithm than the other way, where, “what is the most fun all the
time?”

I noticed that my mood, when I start feeling bad, is really if several weeks have gone
by, and I’ve never had a time to do anything creative. There’s something, there’s some
urge that says: “Prove a theorem or something!” So if there’s too much busywork, I
can stand that for a little while, but after three weeks I have to try to do something
new. I can’t explain why that is. But that seems to be true.
Zlatuška: I would just add to that Stuart Russell, for anybody interested: There is a
new book, which is Human Compatible by him and that was published yesterday.
Knuth: Oh, yesterday! smiling . . . Human. . .
Zlatuška: . . . compatible. Staying. . . Arti�cial Intelligence and the problem of control.
And that looks pretty much as this topic.
Knuth: Very good.
Zlatuška: Tabs or spaces?
Knuth: Tabs or spaces? smiling You’re going back to that question again? Knuth
laughs
Zlatuška: Oh! Okay, it was. . . ???

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 55

Knuth: No, I have a question: Why does [sic] people ask about tabs or spaces? To
me, when I make somebody else’s code in order to read it, [and] it comes in with tabs,
it confuses TEX. The Tab prints as a letter gamma, so I have to go through it, get rid
of all the Tabs, and change to space, and then I can print the �le.
Zlatuška: That’s a proper answer, after which nobody would ever use Tabs.
Knuth: laughing Ok.
Zlatuška: Ok. Biggest challenge of becoming a good programmer?
Knuth: Biggest challenge of becoming a good programmer? Well, being born a geek.
I know, some people think that it’s just a matter of motivation and trying harder and
keep educating, read and write right books and so on. Well, that might be true, but
my experience is di�erent.

My experience is that I know many many intelligent people who are, no matter how
motivated they are, I don’t think they’ll ever be a good programmer, and conversely, I
know that I’m never gonna be good as a programmer of a quantum computer. There’s
something about the way my brain works that gives me a great intuition for the
classical computer, but not for quantum computing. And it’s not a matter of good or
bad or trying or harder or not being motivated. It’s a quirk that I happen to [have]
been born with one of these peculiarity [sic].
Zlatuška: What’s your idea in this context about sort of mandatory courses of
programming within elementary school? If it is true that not everybody can be a
programmer.
Knuth: No, no! You left out the word “good”. laughter
Zlatuška: Ah, ok. laughter
Knuth: I think people can become a programmer [sic], but dogs can walk on their
hind legs.
Zlatuška: So you feel that there’s not enough of bad code.
Knuth: What I’m saying is: If you somehow realize that you’ve been born a geek,
then you owe it to the world to you use that talent because the world needs this
talent. That’s the way I look at it.
Zlatuška: Vim or Emacs. . . That was also yesterday. I am not quite sure. . .
Knuth: Vim or Emacs. Yeah, yeah, ok. I just did admit to using Emacs, but I learned
how to use vi enough to know how to quit. laughter That was the hardest �rst lesson.
I mean, I had to go Control-Q or something, I don’t know.
Zlatuška: Do you think that we are living in a computer simulation?
Knuth: Do I? smiling
Zlatuška: Is your God a programmer?
Knuth: It’s hard to tell. laughter So whether I think so or not doesn’t matter. The
whole question about how far Arti�cial Intelligence could go: It certainly could go to
the point where it has decided that we should have this gathering today.
Zlatuška: There’s one consequence of living in computer simulation because that
means that the world would be only processes which are computable.
Knuth: And �nite, yeah. So, for example, the game of life can simulate any such
thing. You have any universal scheme, then it would represent the lecture I’m giving
now. As one very special case, it would represent Stuart Russell’s book, etc. It would
represent all discordant ways to write the Fantasia Apocalyptica.
Zlatuška: What was the worst code you have ever seen?
Knuth: What was the worst code I have ever seen? Hey, I love this! smiling
Zlatuška: All you down to ??? level.

56 MAPS 51 Tomáš Szaniszlo

Knuth: No, no. I had this student in the 70s who was not born a geek laughter , but he
came to Stanford from, I think, West Point. Anyway, he was trained as a soldier, and
he would follow orders. He was not a Ph.D. student; he was master student. But he
did a master’s project which was to automate the system that we had in the Computer
Science department for sharing technical reports with other universities. So we had
to make subscriptions to others, and then if they send us their reports, we send them
our reports gratis. We had this large database, sort of. . . data processing problem. So
we needed somebody to do that, and I gave that to him as a master project. He wrote
a system that was going to handle the technical parts. I saw the thing, I was busy at
the time, and it looked like the right number of pages and so on. And it had a sample
where he had taken a couple of. . . a small database with a few reports, and it gave
the right report, so I gave him A on it, and he got his degree. Well, that was in June.

Then in July, the secretary called me: “So Don, we’re having a little problem using
this system.” So I went, and that was one of my �rst trips to the Stanford AI Lab,
where they had special computers there. I started looking at the code that he had
written. I got to page three or page four, and it was an example of shellsort, a sorting
routine, but it was implemented. . . It was the �rst time I had seen a program where
I could change one character in the program and make it run hundred times faster.
laughter And the thing was, the variable should have stepped by H instead of by one.
So he wrote shellsort so that it was just a plain old insertion sort. And clearly, he
didn’t understand that. So I made a copy of that page: “Hey, I gotta show this to my
students next ???!” Then I turned to the next page, and he did a binary search on that.

So every page I turned to, I saw a new kind of programming error that I had never
seen before. laughter And �nally I looked at the whole way he had organized the
thing. It’s really hard to explain, but the text editor that we used in that day—this was
way before Emacs—it would start out with an index page, so text editor would always
prepare automatically a table of contents at the beginning. He had assumed that text
editor would always put all of the whole database into alphabetical order in just the
way that you could read it, knowing that there would be line breaks or anything like
this. So it was impossible to �x the program. You couldn’t possibly write a program
that was assuming that you were gonna use the text editor’s database for table of
contents to do the data processing. So that wins my vote.
Zlatuška: Well, given the fact that programming is actually about giving orders, and
maybe he studied military academy. That means some privates should never be given
the ability to issue orders.

Do you have any experience with psychedelic drugs, like Richard Feynman? Al-
tered state of consciousness. LSD, psilocybin.
Knuth: No, I’m glad that I didn’t, nor did my kids. As far as I know. Near-death
experiences? No.
Zlatuška: Any problems you gave up on trying to solve?
Knuth: Any problems you gave up on trying to solve, yes. Many times, In fact, I
certainly thought that I had proved that P was unequal NP rather earlier. And after I
had solved it, then I wrote it up, and �nally, everything disappeared, just about as I
was writing the last line of the paper. I realized that it was hopeless.

I can remember the �rst time I actually solved a problem that I had given up on,
which was a kind of a breakthrough. As a student, I had tried various things, and I
sort of had a “give it �ve days and, if you haven’t got any ideas, then let it go.” But
once, I let it go, and the next morning, I woke up, and I said: “Wait, what if I tried
this.” When you do work on a problem and fail, there’s one trick you can try, and
that is: Imagine somebody sent you email or letter or knocked on your door, and said
“So ??? I just solved that problem.” And then use: “Oh, I bet I know how he did it.”
Somehow, if you think the problem can be solved, sometimes it helps you solve it.

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 57

But the one that was most dramatic for me, I guess, years ago, when I started,
about one third of Computer Science was a study of programming languages, and
now my collected papers collected in eight volumes, and one of those volumes is
all the papers that I wrote about programming languages. There’s a journal called
SIGACT News that has book reviews, and they have a page in there saying: “Here
are books that we’ve received. Would you like to review them?” And this collection
of my papers on programming languages was on that list for a couple years. Nobody
wanted to review it. So nobody cares about this although this the hottest thing in
Computer Science when I started.

I worked on a problem that was called parentheses languages. So I think everybody
still knows what a context-free grammar is. A way of de�ning a language in terms
of productions. But some context-free grammars have the property like nested
parentheses. So if you look at the language, half of the characters are like left
delimiters, and half of the characters are like right delimiters. And every string in
the language has nested left and right delimiters, properly nested. So the question
is: “Somebody gives you a grammar. Is the language that it generates a parenthesis
language?”

The grammar won’t show any matching between these, but can you somehow
look at the grammar and �gure out yes or no? Is it really gonna be possible to do
this? That was an open problem, and I worked several weeks on it and �nally gave
up. But then, I think a week later, the key came to me how to solve it. And so, at that
point, I was quite delighted to have the solution. I was able to use the insights I got
from that when I was doing other work later on, but as far as I know, nobody has
ever read that paper.
Zlatuška: Do you solve many programming problems or create music when you
sleep?
Knuth: Do I. . . solve many programming problems, create music when I sleep? So,
no. laughter

With respect to the Fantasia, it was kind of interesting that after I started working
on it, I had the feeling that the music had already been written, and I just had to listen
for it. I don’t know, out of body experience. . . it’s like I was channeling in a way, that
it was there. It did feel that there was a muse helping somehow.

Now, with respect to programming problems, it goes the other way. If I’m trying
to �gure out how to solve a programming problem, I can’t go to sleep. So I need
somehow to either solve it or forget it. But when working on a di�cult problem, I
usually �ll up sheets and sheets of scrap paper, and so I can’t keep it all in my head,
but I have to write down a whole bunch of stu� in order to get it into my brain. But
when it comes to the point, when I can actually think about that problem when I’m
swimming, then I know I’m about ready to solve. My brain has absorbed enough
so that I’ve learned how to go from baby steps to giant steps in this territory, the
problem domain. So there is this mysterious thing that takes place once I’m ready to
do it.

So I always say to my grad students. . . They’re working on the thesis, and I realized
early on that was a good idea that they should keep. Every week when we would
meet, they would write down in detail what they had been thinking about that week
and what was on, what do we know, what don’t we know. Then after the problem is
solved, you can look at that, and I can use that to prove to them that they solved a
hard problem. Because once you solve the hard problem, you think it was obvious, I
didn’t do anything. But once you see how many hurdles you actually got through. . .
This was good.
Zlatuška: Also yesterday you mentioned that you are Platonist with respect to
mathematics.
Knuth: Yes.
Zlatuška: Are you Platonist with respect to music? Music is up there and. . .

58 MAPS 51 Tomáš Szaniszlo

Knuth: The music of the spheres. There’s a question. Why is it that some music I
can hear ten times and next time I hear, it’s just as if I never heard it at all.
Zlatuška: This happens to some students with mathematics. laughter
Knuth: With mathematics as well, yeah.

But, for example, in the old days, when you have CD, I mean long-play records,
they would always have to add to the piece you wanted, they had to add something
else to �ll it out. So I have something by Brahms, and then the publisher added a
piece by somebody named Bax. B-A-X. I’ve heard the piece by Bax as many times as
I’ve heard the piece by Brahms because it’s hard for me to get up and turn o� the
record player. However, I’ll never recognize the piece by Bax the next time I hear it.
So there’s something di�erent about Brahms’s music and Bax’s music, and I haven’t
been able to reverse-engineer that at all.

My piece [Fantasia] has parts of it that involve more less random elements. And the
question was, well, if you just have random music, does the human brain somehow
learn to do it? Well, it didn’t work with Bax’s music, but there are parts of it where I
based on Morse code. I had to make a decision how to spell some Greek words. It
turns out that in Ancient Greek, they had a notation for absolute pitch, so you could
spell a Greek word just by playing those notes. Let’s see if I can �nd. . . There’s a
place in Chapter 2 where the name Jezebel comes out. So Jezebel in Greek is iota,
epsilon, zeta, and so on. I think it comes in here. . . Yeah. music playing That’s Jezebel.
It’s kind of ???. Now Jezebel was a prophetess, and the motif for prophet is contrary
motion. And so after I play Jezebel, then I play it contrary motion. But anyway, that’s
random. Still, our brain gets it in, we �nd ourselves humming. Jezebel, even though
there was no reason why we should be able to remember that melody.

So I’m not sure to what extent you can take random elements, and they actually
become warm and somehow have a personality. On the other hand, if you have no
randomness whatsoever—musicians found long ago—that if you go straight one two
three four, one two three four, exactly right, it loses life. You have to go a little bit
before the beat, a little bit after the beat in order for music to come to life. And I
tried the same experiment with font design. So instead of drawing a letter precisely, I
would wiggle some of the points a little bit, and then the alphabet seemed to have a
personality.
Zlatuška: Software patents. Software patents, can you elaborate your stance regard-
ing software patents. Patenting software. The second from bottom.
Knuth: Second from bottom? Stances regarding software patterns.
Zlatuška: Patents. Intellectual property.
Knuth: Patents! Ok, aha. Software patterns is another thing, okay software patents,
right.

I think people deserve protection for their ideas, but not if just the ideas are trivial.
So a great number of software patents were something that we would expect any
student to do on an exam, but a lawyer—a patent lawyer not being a geek—wouldn’t
know how to distinguish those. And so there was a time when people went and tried
pro bono make a patent on every trivial idea. So that people wouldn’t be able to make
us pay them every time they use this trivial idea.

When I wrote TEX, I didn’t need to get permission for any of the ideas that I use,
the trivial ideas that I used in TEX. But after intellectual property rights got more and
more complicated, it might very well have been impossible to write TEX twenty years
later.

So when it comes to a substantial piece of software, like the undoing mechanism
in Photoshop or something like this, I think this really deserves patent protection
for a limited amount of time, but not in perpetuity. That’s my general feeling about
patents in a nutshell.
Zlatuška: What’s your favorite music band?

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 59

Knuth: My favorite music. . . band? laughter I remember The Beatles. But lot of the
music after that sounds like noise to me.
Zlatuška: Some of the exercises in The Art of Computer Programming are known
to be open research problems. Has anyone ever contacted you that they have solved
one of them while reading the book?
Knuth: Yes, I think I mentioned that yesterday, but it’s not that uncommon.
Zlatuška: And you don’t pay actually. . .
Knuth: No, no, I only pay. . .
Zlatuška: It became closed problem, so it was an error. . .
Knuth: It’s stated there that if you �nd a better answer, you don’t get money, you
get glory instead, and so instead I mention your name. But if you correct an error, I
silently correct it as if I had known it.
Zlatuška: What would you like to redo?
Knuth: What would I like to redo if I could? I would base TEX on decimal instead
of binary at the lowest level. TEX is based—at the lowest level—on a scaled point, of
which there are 216 scale point to weigh a point. So internally, everything is kept in
binary but is communicated to the user in decimal. So the user doesn’t get to see. . .
This leads to strange results. You know, you say one third, and then you multiply it
by three, and you get 0.999 instead of one. So that would have been better to do that.
Zlatuška: Do you still use TEX often?
Knuth: giggles Well, let’s see. . . I haven’t used it since last Friday because I’ve been
in other town.

Here’s a. . . Oh, I see. You’re not raising your hand, you’re raising the camera. Ok.
But other people out here who. . .
Zlatuška: Anybody from the audience?
Someone: Can you play something?
Zlatuška: Can you play something?
Someone: Like a longer piece.
Zlatuška: Longer. . .
Someone: Anything you like.
Knuth: Well, I only have this music here. So, choose a random chapter.
Someone: Uh. . . Seven? laughter

Knuth: Seven. Ok, so seven is the chapter where the saints come marching in. And. . .
Zlatuška: 3:16?
Knuth: What?
Zlatuška: 3:16?
Knuth: So there are di�erent motifs here. I’m trying to see which are the easiest to
explain. Well, ??? mentioned that [it] has lots of di�erent styles, and since this is
about the Apocalypse, one of the styles had to be calypso. So in Chapter 7, we get
calypso: music playing Now, that’s trying to imitate an organ. Let’s try to just do
a piano. I don’t know how to do this here. Voice. . . Voice “church [organ]”. . . Let’s
change other voices. . . How do we go down?
Szaniszlo: What kind of voice?

60 MAPS 51 Tomáš Szaniszlo

Knuth: Just take piano, for example. Grand piano, here we go. music playing Now
this last thing is music playing Harry Belafonte, so “run Venezuela”. music playing and
Knuth singing “She ran with the tailor.” laughter That’s what I’m singing to myself
when I was writing this piece. However, this is, of course, taking place as the saints
come marching in. music playing So at this point there’s a grand shout, comes along,
and chord plays at the is called music playing. That’s God. music playing Next is:
music playing This is the motif for the lamb, one of the principal characters, and it’s
supposed to sound like baa baa. music playing So the scene we have here is that the
saints go onto this hill, and then there are 24 elders, and the elders form a chromatic
scale of 24 notes. music playing Besides the elders and other characters are Seraphim,
and there are four creatures, and the theme for the four creatures is music playing.
And you can do this: music playing.

Is that enough? applause
Zlatuška: By the way, is it di�cult to actually play something for organ just on
piano? If I understand. . .
Knuth: Yes, but it’s also very di�cult. . . It’s also very di�cult to play this on the
organ. Jan [Rotrekl, the performer of the Fantasia Apocalyptica], the organist, has
had to work very hard in order to do it. When I wrote this piece, I didn’t hold back. I
knew it was the only piece I was ever going to write, and so I didn’t bother to simplify
it. I wrote what I thought I wanted to hear, and so he has to play what I wrote.
Zlatuška: With (???) Don, when I asked him [Don] whether we can perform this, he
mentioned that the organist who did the world premiere was ill and unable to play
that, but there is a proof that it is playable. laughter
Knuth: laughs Yes. I can play it, but not at speed. Well, the organist who did work
on it actually fell in love with—I’m glad to say—and he wrote me a couple weeks ago
saying that you he’s feeling withdrawal symptoms, he wants to play it again.
Zlatuška: Anybody else?
Someone: I have a question. I have read about your web and cweb projects. Do
you think that the problem in Computer Science that you were trying to solve with
this projects is already solved by maybe new programming languages or di�erent
approaches towards documentation? Or do you think that the projects are still
relevant today? And maybe a follow-up: If you had ability to write cweb or web
again today, would you do anything di�erently than you did before?
Knuth: To me, it’s one of the things I love the most about my life, is that I can write
programs in cweb. However, in order to do that, I’m also living with the fact that
the implementation that I have had never been tuned up to a great programming
environment. So, for example, I start a cweb program, and I always type a few things.
Like I always type a line that says: |@...| at-sign asterisk index period, and I put that
at the bottom. It’s a little bit of a nuisance, but in fact everything in life has some
small nuisances, and so as long as something is working for 97 % of the time, I’m not
gonna spend much time �guring out the 3 %, but a mature program, they start �xing
up the 3 %.

So I use cweb knowing that it was a quick and dirty implementation, but it still
does almost everything that I want, exactly as I want. And I have an Emacs interface
to cweb. My wife will tell you I come out of my o�ce several times a day saying:
“It’s so fun programming in cweb!”

And the reason is that as I’m doing it, it seems to me that I’m combining the
formal and the informal aspects of the program the way they ought to be. In order to
understand any complicated technical subject, one of the main tricks of it, of a person
who writes about Computer Science, mathematics, is to say everything twice: once
formally and once informally. Maybe three times, but from di�erent perspectives, but
you don’t only give a formula, but you say what the variables in the formula mean.
You write a program, you not only declare something to be ??? and a variable. You

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 61

say what has an invariant relation: This is the number of nonzero elements in the
array or something, but you combine formal and informal.

And that’s the way cweb works. It breaks down a program into a small number of
pieces that �t together in a small number of ways. But each module of the program is
a combination of informal—which you write in natural language—and formal—which
you write in whatever formal language you’re using. In cweb, it’s C, but there are
many di�erent �avors of web.

So I really think there’s nothing else anywhere near as good as my approach,
but I know that there are many ways to re�ne it, and I’m not interested in actually
pursuing the re�nements because it’s good enough for me. On the other hand, most
of the world writes. . . you look on the solid programs on GitHub. You’ll �nd that
they’re probably not using cweb, but there’s a certain style that’s become. . . I don’t
know, I don’t like C++ program because. . . it’s so ambiguous. Each C++ compiler does
di�erent things with these programs, and so when people. . . If somebody sends me a
program in C++, I don’t know what subset of the language they’re using. There’s all
kind of things going on automatically, and the programmer knows what she’s doing,
but their reader doesn’t know which subset is there, so I don’t care for that.

But let’s suppose we look at a typical module that we get, that’s written in C, and
it’s a style of programming that people have learned to read and maintain, and so it
works. I can say: “Oh yeah, let me rewrite your program in cweb, and you’ll see that
it actually not only is better, it’s more reliable, and you’ll realize that certain features
were missing because of the discipline of literate programming.” However, I don’t
believe I’ll ever convert the world with this. It’d be like saying Esperanto is a much
better language than English, so therefore let’s abolish English. English works well
enough so that some ideal language isn’t going to displace it.

Zlatuška: There’s question by Tim: Paul Erdős spoke of book in which God kept
the most elegant mathematical proofs in the same sense of divinity that are key??? I
would extend this also to the most elegant programs, but. . .

Knuth: I read a very strange paper recently where they asked people to compare al-
gorithms to music. One group of subjects, they were supposed to compare algorithms
to music, and another group of subjects was supposed to compare the algorithms to
art. Where was this paper? It was one of the papers I read in the last three weeks.
Anyway, these people presented keep sort, binary search, . . . they took �ve algorithms
that they thought were classic, and then they showed the subjects several pieces of
music, and the subjects were supposed to say: “Okay, now match this algorithm to
this piece of music.” They found—maybe a hundred subjects—that there was a fairly
good correlation, it wasn’t random permutation of this matching between algorithms
and music. But then they did another group, and they showed them �ve paintings,
and they were supposed to again associate this with the painting, and that didn’t
work at all. But maybe they didn’t choose the right paintings. I don’t think all kinds
of art are equivalent. Certainly, there’s a quantitativeness to music that’s similar to
Computer Science.

Zlatuška: Suppose we create a technology to faithfully copy and simulate working
human brain. Would you want to continue living as such a simulation? That’s
apparently the Kurzweil’s idea.

Knuth: So there’s a line in. . . That’s a Gershwin’s song Ain’t Necessarily So. And
it says something like Methuselah lived nine hundred years. Methuselah lived nine
hundred years, but who calls that livin’ if no gal won’t give in to a man who was nine
hundred years. So there’s more to living than thinking.

Knuth: Your favorite fractal?

62 MAPS 51 Tomáš Szaniszlo

Knuth: My favorite fractal. Well, it has to be the dragon curve because that was the
�rst one I knew about. The dragon curve—you can look it up—but basically, you take
a long sheet of paper. Like thin sheet of paper, like we used to have adding machine
tape or something. And you fold it in half, you crease it, you fold it again, and you
fold it again, so each time it gets half as big as before. And you’ve got creases in
the paper. Then you open it up, some of the creases go down, and some of them go
up. It makes a pattern. An interesting pattern that also turns out to be equivalent to
the Legendre symbol of minus one over anything (???). Anyway it’s a pattern. You
open up the paper, and you make all the bends go ninety degrees. So it’ll go like this
drawing on blackboard, and then go like this. . . something, left-right, left-right. You
can round o� the corners if you want, but this is the idea of dragon curve.

It turns out it never intersects itself, and if you take four of them, and start them
out. . . I probably didn’t drop correct dragon curve, but if I take four of them, it will
cover the entire plane, with four of them. I had a lot of fun proving that theorem
in the 80s. And I was really proud when that theorem was picked up in Russia in
Quant magazine, which late sixties, of course, there was the iron curtain then, and
they illustrated my theorem with four colors in this magazine written for high school
students in Russia. It says, you know, I knew enough Russian to translate it, it said:
This is a di�cult theorem, it was proved by Donald Knuth.

Now we see Czech version of. . . my books.
Zlatuška: I think the topmost question was already tackled.
Knuth: Are there any other questions from the. . .
Zlatuška: From the �oor?
Someone: What kind of organ do you have at home? Is it a pipe organ? Mechanically
controlled or a digital or electronic. . .
Knuth: Yes, it has 850 pipes or so, and the website explains it all. If you go to my
home page and look under pipe organ. It was built by a �rm called Abbott and
Sieker—they’re both dead now—but they used to make about four organs a year. And
it has 17 ranks of pipes, and I have a major exercise in Fascicle 5—which is coming
out next month to say—how many di�erent sounds can you make on this organ that
have exactly �ve pipes going, or exactly six pipes going, or so on. I found it to be
quite a fascinating exercise. So if you want to know more about the organ, online has
the specs, but also then you’ve got to buy the book, [to] look at this exercise about
that organ that I have.
Someone: So I assume that you also prefer pipe organ, mechanically controlled,
instead of say, digital organs.
Knuth: I am sorry, I don’t understand the question.
Zlatuška: You prefer classical organ to digital?
Knuth: Oh, I see. Yes, absolutely. I heard a pretty good digital organ in England in
July, but it’s quite rare. They make good digital recordings of organs, most of the
organs that I’ve ever had a chance to play. Even though it’s in a great building, and
you had the reverberation and everything, it just doesn’t match.

I come from a part of the United States where it was illegal to some—it’s called
America’s Dairy State, America’s Dairyland—and so it was illegal to sell margarine
instead of butter in our state. If you wanted to get margarine, you had to go to Illinois
laughter to buy it, it was a little cheaper. But I look at butter versus margarine, that sort
of has the di�erence between pipe organ and electronic organ. But also in the early
days, before we had good resolution in fonts, there was good printing–butter–and
there was the kind that we could get in our lab in the early days–margarine.
Zlatuška: You originally wanted not to have your organ built by some American
company, but you imported from some Nordic country. Do you regret that did not
work? Or. . .

Two Questions and Answer Sessions by Donald Knuth at FI MU VOORJAAR 2021 63

Knuth: I heard some really beautiful organs in Denmark, and I inquired about having
a Danish organ, and this was in the 70s, there was only one Danish organ in America
at that time, it was one in Boston. So I had talked to the builder, and then I found out
that there was no way. . . I had a limited budget, and according to Danish law, the
only way I could buy this organ was to agree that the price was indeterminate until
after it was built because by Danish law whatever the Union workers wanted to get
for it, had to be the amount that was done. So they couldn’t get me a �xed price for
it, and I might have gone broke, so I was unable to do that.
Zlatuška: So your love for organ was not that big that you would get broke because
of it? laughs

Knuth: The organ that I �nally bought cost $35,000. People were paying that for a
house in those days. Now you get a house for $35,000, it’s impossible.
Zlatuška: What will happen with your organ when the lease of your house expires?
Knuth: Who knows. But it has only existed in this room. People could unscrew it
and reassemble it somewhere.
Knuth: Somebody else? Ah, over there.
Someone: You mentioned once that in Super Bowl game the crowds, they have �ags
with. . . showing 3:16 on it. I’ve always been puzzled what does that have to do with
football game.
Knuth: There are people who �aunt their religion. And the most famous verse in
the Bible by its number is John 3:16, which is said to be the gospel in a nutshell. It
says the God loved the world in such a way that He gave His only child, and so on.
So that’s a very famous verse of the Bible. People think that by putting that number
up that will give publicity, to make people look up this verse and they will suddenly
realize that this should be their religion. At football games, it just happened that the
cameras, the camera crews survey the crowd, and so this was a way to get advertising
for whatever slogans you wanted to do. And a certain group of people started doing
it.

Then there were jokes based on. I mean, there was in baseball game. . . what was
his name. . . a guy from the Boston Red Sox, but anyway his batting average was
0.316, and his nick, his �rst name was John. So people hold up a chart saying “John!
0.316!” And this was to be a satire on this phenomenon. But it was something that
sort of grew like. . . we have bumper stickers, slogans that people put on their cars
and things like that.

But the fact is that this number, the verse got popular by its number, and I used
that later when I wrote this book called 3:16 because I wanted to use a cross section of
the Bible in order to understand the complexity of it and have some way of sampling.
So I used this in order to get a good cross section of not the Bible itself so much, but
all the secondary literature about the Bible. So there have been 100,000s of books
written about the Bible, but I could go into a theological library, and most of those
books have an index in the back, and they’ll say which verses do I refer to. So I go
through, and I �nd out, oh yeah, I only have to read a dozen pages of this book, and I
can see what it says about Genesis 3:16 and what it says about Revelation 3:16.

By the way, Revelation 3:16 is one of the verses that’s here [in Fantasia Apoca-
lyptica], so I might as well go to Chapter 3. �ipping pages The verse Revelation 3:16
says something like “because you are lukewarm, neither cold nor hot, I will spit you
out of my mouth.” The message is that God prefers atheist to people who don’t care
at all. So when I do verse 3:16, I had a little fun in the music. I used time signature
3/16, which is three sixteenth notes to a measure. And then it says: “I will spit you
out of my mouth,” so on the organ, we have here in the church on Friday, has a pipe
called the spitz�ute, so we use a spitz�ute for this spitting out of the mouth. So it
goes anyway music playing and then spitz! music chord Listen for that on Friday.

64 MAPS 51 Tomáš Szaniszlo

Zlatuška: I guess that we basically �nished the time allocated for this. There will be
the question: “How are you today?” but that will be postponed for next time. Maybe
if Don wakes up in the night, maybe he starts with another sermon in the Church,
but. . . Now, that was just a joke.

So thank you very much, I believe that. . . applause Thank you very much for coming,
for having these sessions with us. An invitation to everybody for Friday, 7 p.m. in the
Church of Jesuits, where the piece Fantasia Apocalypsa [sic] will be performed.

References
KNUTH, Donald, 2020a. Czech Premiere of Donald Knuth’s Fantasia Apocalyptica

[online]. Ed. by NOVOTNÝ, Vít; MAČEJOVSKÝ, Šimon. YouTube [visited on 2020-
10-08]. Available from: https://youtu.be/wk7dEKMPP68.

KNUTH, Donald, 2020b. Fantasia Apocalyptica [online]. Stanford Univerzity [visited
on 2020-06-23]. Available from: http://www-cs-faculty.stanford.
edu/~knuth/fant.html.

LUPTÁK, Dávid, 2019. Fantasia Apocalyptica: Česká premiéra. Zpravodaj Českosloven-
ského sdružení uživatelů TEXu. Vol. 29, no. 1–4, pp. 11–18. ISSN 1213-8185. Available
from DOI: 10.5300/2019-1-4/11.

SOJKA, Petr, 2019a. Donald Knuth a Dana Scott: Týden s držiteli Turingovy ceny v Brně
[online]. Ed. by KUBÍČEK, Petr. Faculty of Informatics, Masaryk University [visited
on 2020-06-23]. Available from: https://fi.muni.cz/events/2019-
10-donald-knuth-dana-scott-turing-prize-laureates-
brno.html.

SOJKA, Petr, 2019b. Otázky a odpovědi s Donaldem Knuthem: Umění programování [on-
line]. Ed. by KUBÍČEK, Petr. Faculty of Informatics, Masaryk University [visited on
2020-06-23]. Available from: https://fi.muni.cz/events/2019-10-
08-donald-knuth-question-answer-session-computer-
programming-as-an-art-brno.html.

SOJKA, Petr, 2019c.Otázky a odpovědi s DonaldemKnuthem: Zájmy bez hranic [online].
Ed. by KUBÍČEK, Petr. Faculty of Informatics, Masaryk University [visited on 2020-
06-23]. Available from: https://fi.muni.cz/events/2019-10-
09-donald-knuth-question-answer-session-boundless-
interests-brno.html.

SZANISZLO, Tomáš, 2019a. Donald E. Knuth Q&A Session 1 Transcript [online]. Fac-
ulty of Informatics, Masaryk University [visited on 2020-06-23]. Available from:
https://fi.muni.cz/events/2019-10-08-donald-knuth-
question-answer-session-computer-programming-as-an-
art-transcript-brno.html.

SZANISZLO, Tomáš, 2019b. Donald E. Knuth Q&A Session 2 Transcript [online].
Faculty of Informatics, Masaryk University [visited on 2020-06-23]. Available
from: https://fi.muni.cz/events/2019-10-09-donald-
knuth-question-answer-session-boundless-interests-
transcript-brno.html.

ZLATUŠKA, Jiří, 1996. Donald E. Knuth doktorem honoris causa Masarykovy univerzity
[online]. Institute of Computer Science, Masaryk University [visited on 2020-06-
23]. Available from: http://webserver.ics.muni.cz/zpravodaj/
articles/59.html.

Tomáš Szaniszlo
xszanisz@fi.muni.cz

Hans van der Meer VOORJAAR 2021 65

Translations from a Vocabulary
Handling translation into various languages

Abstract
Formerly part of the module hvdm-xml but now split off into
an independent module with its own description. Used for
making other modules language sensitive. The module is
especially tailored for XML use.

Introduction
Elements of the output can be internationalized through
definition and use of one or more vocabularies. This
module allows for a flexible and adaptable translation of
individual words. The component effectuating this is the
module hvdm-voc. Its interface is meant to be accessed
from XML as well as through ConTEXt-macros.
This module certainly is not a full blown translator. Its
scope is restricted to the translation of individual words,
not even plural forms are automatic and must be added
separately. But although simplistic in nature, it provides
for the automatic adaptation of certain keywords to a
change of language.
It all started with the construction of a database in XML
format with historical facts about my ancestors. Each
fact resides in a separate file to be processed by my note
processing module hvdm-tak. Everything is enclosed in
an XML node with suitable node names chosen. Since
the lingua franca in computing is the English language,
it seemed natural to use this for these names. Thus each
person in my notes became to be described by a <person>
node, for instance:
<note>

<person>
<name>Arnoldus van der Meer</name>
<age>28</age>
<profession>seller of mineral water</profession>

</person>
<!– other nodes –>

</note>

Typeset in ConTEXt with \language[en] such a note
looks as in the next figure. Note the english keywords
at the left edge corresponding to the node names. The
remainder of the text is in Dutch, as might be expected
for material taken from five centuries of dutch archives.

Language set to English.

Not all members in my family did like the english words
interspersed between the text in Dutch. Thus arose the
idea for this translator. The keywords with their trans-
lation were put in a vocabulary as described below.
In the notes module their typesetting is enclosed in a
\translatemacro call. The result is shown in the second
figure, again note the keywords at the left edge.

Language set to Dutch.

66 MAPS 62 Hans van der Meer

But (inevitably) I became a bit sloppy. Dutch words crept
in as node names for new properties which were added
in the course of the genealogical investigations:
<note>

<person>
<name>...</name>

</person>
<samenvatting>an abstract</samenvatting>

</note>

The following figure shows what happens if the note is
typeset in the english language again. That one keyword
samenvatting strangely deviates from the others.

Language set to English with Dutch node.

Although changing node names to their english equiv-
alents is a simple action in an editor, it provided the
incentive to make the translator module a bit more
general. Instead of translating from one language only,
it should allow translation between any two languages
in the vocabulary. Look at the fourth figure where this
flexibility is demonstrated by changing to \language[de].

Language set to German.

XML Interface
Everything starts with the creation and filling of a vo-
cabulary. By default the module provides a vocabulary
to which one can add translations, but it is possible to
create others as has been done in the code below. A new
vocabulary is created the first time its name appears on a
<vocabulary name="name"> node, further such calls with
that name are silently ignored. Creation of a vocabulary
will not make it automatically the current vocabulary.

That should be done by the separate set attribute as in
the example below.
<vocabulary name="myvocab" set="myvocab">

<word>
<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>
</vocabulary>

Load the above data from a buffer or a file with:
<vocabulary buffer="aBuffer"/>
<vocabulary file="aFile"/>

Vocabularies are switched with the set attribute. A value
‘default’ for the name performs a switch back to the
default vocabulary installed by the module.1 The code
below illustrates how to set and retrieve the names of the
current vocabulary and language.

<vocabulary set="myvocab"/>
<vocabulary show="vocabulary"/>
<vocabulary show="language"/>

The results are vocabulary = myvocab and language =
en. Note that attributes name and set behave differently.
When the named vocabulary does not yet exists the
former will create a vocabulary with that name, whereas
the latter will issue an error message instead. When both
attributes are present the vocabulary is created first and
then made current.
Individual translations can be added to any named
vocabulary, but when there is no name attribute on
<vocabulary> the current vocabulary will be extended.
<vocabulary>

<word>
<en>greek</en>
<nl>grieks</nl>
<de>griechisch</de>
<fr>grec</fr>

</word>
</vocabulary>

With the current language being en this results in greek,
Greek and GREEK. Changing the language setting to
german with
<vocabulary use="de"/>

will change to griechisch, Griechisch andGRIECHISCH.
Translations are retrieved by a <vocabulary> node with
attributes get, Get and GET. The three variants select the
corresponding case variants. Presence of a use attribute
translates into that language but leaves the current lan-

Hans van der Meer VOORJAAR 2021 67

guage setting unchanged. For instance:
<vocabulary get="greek"/>
<vocabulary use="nl" Get="dutch"/>
<vocabulary use="fr" GET="english"/>

produce griechisch, Nederlands and ANGLAIS. The
presence of a ‘get’-ter forces the change from attribute
use to be locally confined. Although the last language
accessed here was from use="fr", the current language
de has not changed.
The vocabulary is set up in such a way that transla-
tions between all language pairs are possible. In it-
self that sounds nice, but what if a synonym has to
be added? For example, besides ‘dutch’ translated into
‘niederländisch’, we want the twoletter code ‘nl’ to be
translated into ‘niederländisch’ too.
The problem here is the following. Addition of ‘nl’
in the same manner as demonstrated above, will over-
write cross translations already present instead of merely
adding the equivalents for ‘nl’. The solution is simple.
Use <word add="nl"> and the enclosed translations will
be taken for synonyms. In this manner ‘nl’ is added to
the vocabulary without generating cross translations. We
will find for instance ‘nl’ translating into niederländisch
just as happens when translating ‘dutch’ to german.
<word add="nl">

<en>dutch</en>
<nl>nederlands</nl>
<de>niederländisch</de>
<fr>néerlandais</fr>

</word>

A problem still remains with this translation scheme.
Let us add translations for icelandic, switch to dutch
and see what get and Get translations do: ijslands and
Ijslands. The latter is wrong because in dutch the ‘ij’
counts for one letter! Thus ‘Ijslands’ should have been
‘IJslands’. Luckily the solution is not problematic. Add
an extra node for ijsland → IJsland as a synonym with
an adapted language code Nl The first letter of nl now
being in uppercase. Instead of raising the first letter of the
translation only, the translator then uses the alternative
definition:
<Nl>IJslands</Nl>

With this addition to the vocabulary we now get IJs-
lands as it should be. The same problem arises for
letters such as the ç in français leading to FRANçAIS
instead of FRANÇAIS or the ä in Niederländisch.
Here we could have solved it with other exceptions
as <FR>FRANÇAIS</FR>, but instead the upper-lowercase
translator has beenmade a little bit smarter. It knows how
to do a case change for letters like é, à, ü, ç.

ConTEXt Interface
Although primarily developed for use in an XML en-
vironment, it boils down to calling into TEX code. It is
therefore always possible to fall back onto the underlying
macros. The following are the API calls available.
⊳ \VocabularyCreate[#1] – creates a vocabulary
named in #1 if it does not yet exists, otherwise do
nothing. Note that the current vocabulary is not
changed, that should be done explicitly with the set
macro.

⊳ \VocabularyDelete[#1] – use this in the rare case
one wishes to get rid of a vocabulary. The default
and the current vocabulary cannot be deleted. Nor is
it possible to remove items from a vocabulary once
they have been added.

⊳ \VocabularySet[#1] – the vocabulary named #1 will
be made the current one. Reset to the module’s
default vocabulary by calling with an empty
parameter.

⊳ \Vocabulary – the name of the current vocabulary.
Example: the current vocabulary is myvocab.

⊳ \VocabularySetLanguage[#1] – the two-letter
language code makes it the current vocabulary
language.2 An empty argument will set it to the
value of \currentlanguage.

⊳ \VocabularyLanguage – retrieves the two-letter
language code of the current language.
Example: after changing to french by calling
\VocabularySetLanguage[fr] the current language
at this point is fr.

⊳ \VocabularyLoadFromBuffer[#1]
\VocabularyLoadFromString[#1]
\VocabularyLoadFromFile[#1] – these macros load
data as XML nodes from string, buffer and file.
Example: prepare with \startbuffer[spanish] a
buffer to add spanish:
<vocabulary>

<word>
<en>spanish</en>
<nl>spaans</nl>
<de>spanisch</de>
<fr>espagnol</fr>

</word>
</vocabulary>

and load it with \VocabularyLoadFromBuffer[spanish].
Now translation of ‘spanish’ in fr will be espagnol.
Similarly use \VocabularyLoadFromFile[italian.xml]
from the prepared file italian.xml and obtain italien
for ‘italian’.

68 MAPS 62 Hans van der Meer

⊳ \translate{#1}
\Translate{#1}
\TRANSLATE{#1} – translate their argument into the
current language with no case change, first letter
uppercase, all letters uppercase, respectively.
Example: \TRANSLATE{dutch} in the current language
fr results in NÉERLANDAIS. But an absent
translation returns its argument unchanged as in
\Translate{japanese} is Japanese.

⊳ \VocabularySetLanguageDefault[#1]
\VocabularyLanguageDefault
\translateDefault[#1] – There are situations where
one language is special. An example is found in
the module mentioned in the introduction. Nodes
<author>, <person>, etc. need special treatment in
the program. This is accomplished by attaching
a flag. Without a common default language it
would have been necessary to flag all occcurrences
of <author>, <auteur>, <Autor>, etc. separately.
By using \translateDefault this can be avoided

because it enables the programmer to collect all
occurrences into a common language. An empty
argument \VocabularySetLanguageDefault[] sets to
the value of \currentlanguage. Note that setting of
the default language is done globally.

Availability
The module and its supporting modules can be down-
loaded frommy site hvandermeer.com/publications.html.
The TEX-stuff resides in section “Articles on TeX”,
downloads are a little below in the link “ConTeXtmodule
distribution”.

Notes
1. Note that a vocabulary named ‘default’ cannot be used and will

raise an error if one tries to do so.
2. Do not be tempted to try ‘Fr’ or ‘FR’ because the module will

silently convert both to ‘fr’.

Hans van der Meer
havdmeer@ziggo.nl

Hans van der Meer VOORJAAR 2021 69

Macros and Lua snippets
Helper macros mostly in Lua

Abstract
Described is a module containing a number of helper
macros, many of them programmed in Lua.

Keywords
Lua, macro, file, font, list, date

Introduction
As alreadymentioned in a previous article in theMAPS,
I am somewhat of a do-it-yourself’er. Either because
the macro needed was not present, not on my radar
or just because it seemed something nice to have and
possibly useful in the future. These macros may be of
use to others but it is up to them to decide that, of
course. I just hope some might solve a problem here
or there. They can be downloaded from my website at
https://www.hvandermeer.com. From the homepage jump to
the page Publikaties and TeX modules where they can
be found as ConTeXt module distribution.

This module named hvdm-ctx is dependent on the com-
panying module hvdm-lua. The latter contains most of the
implementations of the caller macros in the former.The
macros can be loosely categorized as file related macros
and macros for the creation, maintenance and querying
of Lua tables, as well as date and string manipulations
plus some macros without much relation to each other.

Files in a Filevault
The Files group of macros is for manipulating file
names, file content, combining files and probing the
internet.

The idea for the FileVault macros arose from my use
of XML for collecting in small notes the data found in
various 17th and 18th century archives. This collection
is nearing a thousand XML files with occasionally the
addition of new ones or updated content. Some people
will check the correctness of the XML before submitting
their files, but that’s not one of my habits. Therefore I
decided to check them for validity in processing runs
using the XMLCheck macro described below. But this im-
plied reading them twice, once for the check and once
for typesetting.

Why not read them once and keep the content as a
string in Lua’s memory? Modern memories have Gi-
gabyte size and my thousand XML files are peanuts.
I could have relied on the file caching of the OS, but
it is not in my nature to forgo a chance to program
something nice. Thus a small set of macros was de-
veloped to ‘read once, use anywhere’ so to speak. Use
of this should be completely transparent, naturally,
not needing special treatment. Switching between in
memory content or rereading from disk to be done
by simply turning it on and off. A bonus will be the
possibility to run filters on the input before handing
over to ConTEXt.

The above “not needing special treatment” could not
be held on to entirely, pity. The culprit turned out to
be the backslash. My notes can contain <tex> nodes,
escapes to typesetting part of the text directly with
ConTEXt. Typesetting files with for example \loop ...

\repeat statements inevitable leads to a crash. In the un-
derlying Lua code backslashes have a special meaning
as escape string for control characters newline \n, \t or
\xxx where xxx is a three digit number. TEX’s use of the
backslash doesn’t fit in this scheme and things like \def

fail miserably.
For possible solutions one can think of replacing \ with
its escaped equivalent \\ but then they turned out to be
neglected completely. Trickery with catcode changes is
not encouraged in general and often extremely danger-
ous and disastrous.
Sad, but complete transparancy had to be relaxed a
bit in order to cope with this situation. Its solution
required the implementation of a macro that will leave
the content of the file in an intermediate buffer in
ConTEXt. Running code like

\xmlprocessbuffer{}{buffer-containing-file}{}

is then possible without causing a crash.

These are the functions implemented for the FileVault:

⊳ \FileVaultGetState

\FileVaultSetState[#1] – handles the current state of
the FileVault. The first macro returns the current
state of the FileVault. In accordance with ConTEXt

70 MAPS 51 Hans van der Meer

custom this is start or stop whether the vault is
active or inactive. Activation and deactivation is
done with the second macro. The option values are
[state=start] and [state=stop] respectively.
When the vault is in an inactive state all actions
except these state macros and those reading
files are suspended (see the example below for
the latter). The latter will either return an error
message or silently do nothing.
Examples: \FileVaultGetState shows the initial
state of the vault as stop. After changing it with
\FileVaultSetState[state=start] we can verify that the
state is start.

⊳ \FileVaultFileString{#1} – returns the file content as
a string. If the file is nonexistent the macro silently
returns an empty string.
Example: \FileVaultFileString{example.txt}

This is a very small example file.
What will happen if the vault is inactive? The same
statement is executed after stopping the vault. The
state is now stop and the same example gives

This is a very small example file.
Thus showing the transparency of the vault system
for file reading.

⊳ \FileVaultFileBuffer[#1]{#2}

\FileVaultFileDefaultBuffer{#1} – returns the content
of a file put into a ConTEXt-buffer. The parameter
between braces {} specifies the file, the parameter
between the option brackets [] must be the name
of an existing buffer. The return of both macros will
be the name of the buffer where the file content
has been stored. With an explicite buffer name the
contents of that buffer stays available, otherwise
the internal buffer is reused each time. If the file is
nonexistent the macro silently returns an empty
buffer.
Example: \typebuffer[...{otherexample.txt}]
results in

This is the other example file.

Since the underlying action is either file reading
or retrieval, this action is transparent to the state
of the filevault as for \FileVaultFileString has been
shown above.

⊳ \FileVaultList

\FileVaultListWithCount – shows the content of the
FileVault, the second caller adds the number of
times each file has been accessed. Between the
filenames in the list \crlf’s are added.
Example: After reading the second file twice again,
the current access counts are:

example.txt 1
otherexample.txt 3

An inactive vault will return the following
appropriate return:

ERROR inactive filevault

⊳ \FileVaultReturnTransform[#1]{#2} – applies the
transformation specified in [#1] on the file named
in #2 and delivers the value returned by that
transformation. The first parameter of the user
defined transformation function will receive the
contents of the file as a Lua string. Since the data
in the filevault are left intact, this macro will
work transparently in either an active or inactive
filevault.
The number of applications one can think of are
manyfold. To name some: returning the length
of the file, changing everything to uppercase,
checking xml for correctness.
The argument [#1] must begin with the name of the
Lua function performing the transformation. After
a comma there may follow any number of comma
separated arguments that are to be passed to the
transformation function.1
To clarify this a complete example is presented of a
function that will return the length of a file, either
counted as bytes or counted as UTF8 characters.
Nota bene: see how our Lua function is registered
in the function registry of the filevault, because
without this registration it will not be found. File
length.txt contains

German ü and è in French.

\startluacode

-- Define our namespace as xmpl.

xmpl = xmpl or {}

-- Return the (utf8) length of a file.

xmpl.filelength = function (filedata, encoding)

if encoding and encoding == "utf8" then

return utf8.len(filedata)

else

return string.len(filedata)

end

end

-- Register this function as "filelength".

hvdm.registerfunction

("filelength", xmpl.filelength)

\stopluacode

Input [filelength]{length.txt} to \FileVaultReturnTransform

results in 28 bytes and [filelength,utf8]{length.txt} in
26 UTF8 characters.2

⊳ \FileVaultTransform[#1]{#2} – nearly same as the
previous macro but instead of leaving the data in
the vault untouched, it will replace them by the
result of the transformation. Because of this the
macro is necessarily inoperative when the filevault
is inactive and it will do so silently except for a

Hans van der Meer VOORJAAR 2021 71

message in the log.
The return of this macro depends on the behaviour
of the transformation function. Functions in Lua
may return more than one value and this macro is
programmed to accept one or two return values.
The first value is used to replace the data in the
filevault and the second value will be sent to the
caller. In this manner it is possible to deliver a
message, for instance to inform the caller of the
cause that made an operation fail. Being more
specific: an absent or nil second value returns
nothing, otherwise that second value is returned.
An example of its use might be the stripping of
ignorable whitespace from xml: returning the
stripped data twice will both change the data
in the filevault as well as having it available for
immediate processing.
Extending the previous example we will use
this macro to replace the length.txt file by its
length as UTF8 string. Note that the original
file on disk will not be affected! Thus after
\FileVaultTransform[filelength,utf8]{length.txt} calling
\FileVaultFileString{length.txt} demonstrates that its
value in the filevault has become

26

⊳ \FileVaultClear

\FileVaultClearFile[#1] – respectively clears the
FileVault completely or clears file #1; if that file is
not in the vault nothing happens.
Example: after \FileVaultClearFile[example.txt] the
vault contains:

length.txt otherexample.txt
and after \FileVaultClear we will receive an empty
string "".

Information on Files
It sometimes is of interest to know if a file has a certain
suffix. Perhaps in order to differentiate between files
with the same basename but of different type: text,
xml, images, pdf. Next follows macros used to query
filenames and to retrieve the content of a directory.

⊳ \FileExist{#1} – returns true or false on existence of
the file #1.
Example: called on the source of this article
naturally results in true.

⊳ \FileBaseName{#1} – returns the filename stripped of
prefixed directories.
Example: ./Documents/Letters/lastletter.doc becomes
lastletter.doc.

⊳ \FileDirectoryName{#1} – returns the prefixed
directories of the filename.
Example: ./Documents/Letters/lastletter.doc becomes
./Documents/Letters/.

⊳ \FileSuffix{#1} – returns the suffix of the filename.
Example: ./Documents/Letters/lastletter.doc returns
doc.

⊳ \FileSuffixList{#1}{#2} – returns the suffix of the
filename if that suffix is in comma separated list
#2.
Example: suffix list {pdf,doc,txt} returns doc, while
{pdf,txt} will return an empty string.

⊳ \FileDirectoryList[#1]{#2}{#3} – collects in a list
all filenames in directory #2 (empty is current
directory) having suffix #3 (empty suffix lists all
files). The result is not directly returned but saved
into a Lua table named #1. That list then can be
queried by the table macros described below. With
empty #1 the name of the list is FILEDIRECTORYLIST by
default. The information is added to the list if it
already exists, except for the default list which is
cleared before the operation.
Example: On this run there are 12 file(s) in the
current directory of which 5 tex-file(s).

Operations on Files
The purpose of the macros below is to execute file op-
erations that otherwise would need intervening actions
outside the ConTEXt run.The operations are concatena-
tion of files, removal of files and querying for existence
on the internet.

⊳ \FileConcatFile{#1}{#2} – concatenates all files
in directory #1 having suffix #2 and returns the
concatenated contents. Before returning the
intermediate temporary is removed.

⊳ \FileConcatName{#1}{#2} – nearly the same as
\FileConcatFile but here the temporary is not
removed and its name is returned to the caller.

⊳ \FileConcatFilePrePost{#1}{#2}{#3}{#4} – same as
\FileConcatFile but #3 precedes the concatenated
contents while #4 is affixed to the end.

⊳ \FileConcatNamePrePost{#1}{#2}{#3}{#4} – same as
\FileConcatFilePrePost but returning the filename
instead of the content.

⊳ \FileRemove[#1] – remove the file by name.

⊳ \URIReturnCode{#1} – reaches into the internet with
a socket.http.request to check if file given can be
accessed. Returns the standard return code 200 on
success and 404 for file not found. Waits 5 seconds
for reaction from the internet before giving up.

72 MAPS 51 Hans van der Meer

Care is taken to change spaces in the URL to the
mandatory %20.

Creation of Lua Lists
Collection of macros to produce and manipulate Lua
tables. The tables or lists as named in the macros, are
kept inside the module in an invisible table functioning
as the holder of those created by the caller.
Themacros in this section arose from the need to collect
various information on the fly, storing it and present it
afterwards in various forms.

Where lists are involved their name is always in #1.

List creation and removal

⊳ ListCreate[#1] – creates a named list. That name is
used in later accesses to the list. The list is created
empty. Beware: reusing a list is silently inhibited,
first delete an existing list before reusing the name.

⊳ \ListExist[#1] – queries the existence of list #1 and
returns true or false accordingly.
Example: \ListCreate[test] then \ListExist[test]

returns true.

⊳ \ListDelete[#1] – removes the list by setting the
reference to the list nil.
Example: given the above ListCreate the sequence
\ListExist[test], \Delete{test}, \ListExist[test] returns
first true and then false.

⊳ \ListClear[#1] – removes the content of the list,
leaving it empty.

⊳ \ListCount[#1] – returns the number of elements in
the list. Lua tables have both an array and a key
based section. The count is done over both these
sections.
Example: empty list should return zero
\ListCreate[zero] then \ListCount[zero] returns 0.

Addition of List Elements

⊳ \ListAdd[#1]{#2} – adds #2 as next element in the
array section of the Lua table. Successive additions
of the same element become successive elements in
the list.
Example: add string "one" to the array section of
list zero created above, the reported element count
is 0 before and 1 after.

⊳ \ListAddKey[#1]{#2}{#3} – adds element with key #2

and value #3 to the key section of the Lua table.
Successive additions with the same key silently
overwrite the previous value.
Example: add string "two" with key "second" to
the same list with \ListAddKey[zero]{second}{two} and
observe the incremented element count 2.

⊳ \ListAddSubKey[#1]{#2}{#3}{#4} – adds element with
key #3 and value #4 to a sublist keyed by #2, creating
that sublist if necessary.

⊳ \ListAddTo[#1]{#2} – adds element with key #2 to the
list setting its count to 1. Successive additions at
the same key increment the counter value. The list
therefore keeps a count of how often that key has
been added.

⊳ \ListAddToKey[#1]{#2}{#3} – adds to the array section
of the Lua table a subtable {#2,#3} as a key-value
pair.

Retrievial of List Elements

⊳ \ListArrayValue[#1]{#2} – returns the element with
index #2. If the index is outside the range of stored
elements an empty string is returned.
Example: retrieve the first element in the array
section of list zero \ListArrayValue[zero]{1} is one.

⊳ \ListKeyValue[#1]{#2} – returns the value of the
element at key #2. If the element is not present then
an empty string is returned.
Example: retrieve the element with key "second"
from list zero \ListKeyValue[zero]{second} is two.

⊳ \ListKeyValueWithDefault[#1]{#2}{#3} – same as
\ListKeyValue but instead of returning an empty
string for an absent element, #4 is returned as
default instead.
Example: an element with key "third" has not been
added thus \ListKeyValue[zero]{third} returns "", an
empty string. The next call shows the return of a
default \ListKeyValueWithDefault[zero]{third}{three}
results in three.

⊳ \ListSubKeyValue[#1]{#2}{#3} – returns element #3 from
sublist #2, empty string if absent.

⊳ \ListSubKeyValueWithDefault[#1]{#2}{#3}{#4} – returns
element #3 from sublist #2, default #4 if absent.

⊳ \ListValueKey[#1]{#2} – find and return from the list
the first key having #2 as its value.

⊳ \ListValueSubKey[#1]{#2}{#3} – find and return from
the list the first key in sublist #2 having #3 as its
value.

⊳ \ListValueSubKeyAll[#1]{#2} – find and return from the
list and all of its sublists the first key having #2 as
its value.

⊳ ListPrint[#1] – simple printer for the contents of list
#1.
The underlying Lua tables harbour two sections:
(1) an array section indexed upwards from 1 (by
default), and (2) a section with key-value pairs.

Hans van der Meer VOORJAAR 2021 73

Both sections are printed unsorted, just as the
entries are encountered by table traversal. Line
endings are set to \crlf to accommodate ConTEXt.
Example: a list has been made with two items in
both the array and the key-value section.
\ListPrint[Test] prints:
1 = array item 2 added first
2 = array item 1 added last
1 = array item 2 added first
2 = array item 1 added last
secondkey = value two
firstkey = value one

XML-related operations
Thepurpose of next macros is the production of content
to be handled by an XML processor. They provide for
the contruction of (embedded) nodes, sorting lists of
nodes, processing and checking of XML from various
sources.

⊳ XMLContentToNode{#1}{#2} – returns the string
<node>content</node> where node = #1 and content is
#2. Convenient when a list must be filled with XML
nodes to be processed later.

⊳ \ListToNodes[#1]{#2}

\ListToNodesSorted[#1]{#2}{#3} – returns the content
of the key section of Lua table #1 as concatenated
pairs <name><key>thekey</key><value>the-
value</value>…</name> where name is #1, the name
of the list. In the second macro the nodes are sorted
to the keys with #3 is normal for ascending (default)
and reverse for descending keys.3 This macro is
meant for lists filled with \ListAdd.

⊳ \ListValuesToNodes[#1]{#2}

\ListValuesToNodesSorted[#1]{#2}{#3} – same as
\ListToNodes except here the sorting is for lists filled
with \ListAddKey where the elements are tables
containing a key-value pair.

⊳ \XMLProcessBuffer{#1} – processes buffer #2

containing a valid XML file with macro call
\xmlprocessbuffer{id}{#2}{}. The id is filled by the
called function.

⊳ \XMLProcessFile{#1} – same as above with file #1.
As a bonus the macro discerns the presence
of embedded TEX and switches processing as
described in the section on the FileVault.

⊳ \XMLProcessFolder{#1} – same as above for all files in
directory #1 having the xml extension.

⊳ \XMLProcessString{#1} – same as above with the
content of argument #1.

⊳ \XMLEntitiesRead[#1] – register entity declarations for

XML processing from a dtd file #1 with the ConTEXt
procedure xml.registerentity().

⊳ \XMLCheck[#1]{#2} – checks the validity of the XML
tree #2 located in #1 being file, folder, buffer or
string. If the XML is correct an empty string is
returned otherwise the string contains the nodes
remaining after removal of the correct nodes.
Example: <root><node att="abc">error</root> is missing
the xml-header (not considered a problem) and a
closing </node>. Checking results in
>>> <root><node></root>

which should be helpful in the repair. The check
works by deleting correct nodes, starting within
and working outwards. At the end of the reduction
correct XML leaves nothing but an empty string,
otherwise something is amiss as can be seen in the
example.

Date and Time formatting
Dates can be given in the formats yyyy-mm-dd, yym-
mdd (20th century only), yyyymmdd, dd-mm-yyyy,
d-m-yyyy, dd-m-yyyy, d-mm-yyyy. Negative dates or
dates with BC get a negative year. Use yyyy for year
only and yyyy-yyyy for a year range. Dates are checked
for validity. Dates containing other characters than
digits, dashes and possible BC are taken as is and
considered dates already in final format.The formatters
return the string "DATE ERROR" when something is amiss.

⊳ \DateCheck{#1} – returns string "true" if a valid date
has been found, "false" otherwise. A range of years
yyyy-yyyy and a date already formatted return
"date".
Example: \DateCheck{1-1-1900} is true and for 13-13-

1313 and 30-2-2020 it is false and false.

⊳ \DateFormat[options]{#1} – formats the date in
European format dd-mm-yyyy where days and
months less than 10 are typeset with one digit
only. There are both single and key=value options.
The formatting options are zero (zero fill), short
(abbreviated month name), long (full month name),
julian (Julian date), text (no formatting), default is
a compact format. A language option switches the
translation (see the example below) default is the
value of \currentlanguage.
Examples:
\DateFormat[]{200201} = 1-2-2020
\DateFormat[zero]{200201} = 01-02-2020
\DateFormat[short]{200201} = 1 Feb 2020
\DateFormat[long]{200201} = 1 February 2020
\..[long,language=fr]{200201} = 1 février 2020
\DateFormat[julian]{200201} = 2458881
\DateFormat[text]{200201} = 200201

⊳ \DateCurrent – the date of today 19-3-2021 formatted

74 MAPS 51 Hans van der Meer

with \DateFormat. Also one can obtain 19 March 2021
from \DateFormat[long]{\DateCurrent}.

⊳ \DateJulian{#1} – same as DateFormat[julian]{#1}. The
date converted to a Julian date with range limited
from 4713 BC to 3628AD. Today is 2459293 in
Julian. The Julian date is useful when things have
to be sorted on date.

⊳ \TimeFormatMinutes{#1}

\TimeFormatSeconds{#1} — format time duration given
as minutes or seconds respectively, into hh:mm:ss.
Input with one or more :’s or otherwise not a
number is considered formatted.
Examples:
\TimeFormatMinutes{59} = 00:59:00
\TimeFormatMinutes{120} = 02:00:00
\TimeFormatSeconds{10} = 00:00:10
\TimeFormatSeconds{3599} = 00:59:59
\TimeFormatSeconds{3600} = 01:00:00

⊳ \TimeCurrent – the time from the current clock as of
the moment of typesetting is 10:04:00. Note that the
underlying macro \the\normaltime returns the time in
minutes since mdidnight.

Case Change and Character Selection
Changing case is notoriously difficult, at least in my
experience. I always had trouble with \uppercase and
friends. ConTEXt provides macros \Word, etc. but doing it
yourself is a challenge I amnot always able to resist.The
implementation of CamelCase transformations came as
a bonus.

⊳ \ChangeLower{#1} – changes all letters in #1 to lower
case. For instance the french Était becomes était.

⊳ \ChangeUpper{#1} – changes first letter to upper case,
était thus becomes Était.

⊳ \ChangeUPPER{#1} – changes all letters in #1 to upper
case, était becomes ÉTAIT.

⊳ \ChangeCamel{#1} – changes all letters following
whitespace in #1 to upper case.
Example: sample text word-combination becomes:
Sample Text Word-combination

⊳ \ChangeCamelPlus{#1}{#2} – changes to uppercase in #1

all letters following whitespace and those from #2.
Beware: the - for example is special in Lua search
patterns and therefore must be preceded by a %.
Note that \letterpercent is how to insert it.
The same example with the - added:
Sample Text Word-Combination

⊳ \TypeCheck{#1} returns the Lua type of #1. Useful
to test if #1 is a string that Lua can convert into a
number.
Example: "5" has type number and "a5b" type string.

The macros below are intended to extract characters
and truncate strings to substrings. For example in oper-
ating systems long filenames are sometimes truncated
by removing parts in the middle.

⊳ \StringFirstCharacters{#1}{#2} – truncates string #1 to
a length of #2 by removing the excess characters at
the end.
Example: string has more than 40 characters This
was a very long string more than th….

⊳ \StringLastCharacters{#1}{#2} – truncates string #1 to
a length of #2 by removing the excess characters at
the front.
Example: string has more than 40 characters …ong
string more than the available space.

⊳ \StringFirstLastCharacters{#1}{#2} – truncates string #1

to a length of #2 by removing the excess characters
in the middle.
Example: string has more than 40 characters This
was a very lo…he available space.

⊳ \CharacterSelect[#1]{#2}{#3} – returns from string
#2 the #3-th character or an empty string if that
character is not found. The option #1 is a selector
from alphanum, alpha, digit, punct. A recognized option
returns the n-th character from the corresponding
set, while an empty selector returns just the n-th
character. The function does not know about UTF8
characters when a selector is given.
Example: \CharacterSelect[]{the 7 dwarfs.}{7} = d
Example: \CharacterSelect[alphanum]{..}{7} = a
Example: \CharacterSelect[alpha]{..}{7} = r
Example: \CharacterSelect[digit]{..}{1} = 7
Example: \CharacterSelect[punct]{..}{1} = .
Example: \CharacterSelect[]{pygmée}{5} = é

Numbers and Number Series

⊳ \RandomSeed{#1} – initializes the Lua random
generator with seed #1.

⊳ \RandomValue – returns next random value from the
Lua random generator.
Example: 0.85193537224893.

⊳ \RandomRange{#1} – returns a random value within
range 1-#1 from the Lua random generator.

⊳ \Series[options]{#1} – returns a series of #1 numbers.
The direction of the values can be ascending
(default) or descending, the corresponding key
options being normal (or empty) and reverse.

Hans van der Meer VOORJAAR 2021 75

The start value and the stepsize follow from
start=number and step=number, both having default 1.
The blank separator between the list items can
be changed with the option separator=value or
separator={value}.4 See the last example below where
the default space separator is replaced by space +
space.
Examples:
\Series[]{10} 1 2 3 4 5 6 7 8 9 10
\Series[reverse]{10} 10 9 8 7 6 5 4 3 2 1
\Series[reverse,start=0]{10} 9 8 7 6 5 4 3 2 1 0
\Series[start=0,step=-0.5]{4} 0 -0.5 -1.0 -1.5
\Series[separator={ + }]{4} 1 + 2 + 3 + 4

A more elaborate example is the following:5

\leavevmode

\setupframed[extras=\space,width=5mm,height=5mm]

\ProcessCommaList{framed[framecolor=blue]}

{\Series[separator={,}]{5}}}

1 2 3 4 5
A few remarks are in order. Macro \ProcessCommaList

is a wrapper around \processcommalist which would
otherwise crash as used here.6

⊳ \RandomSeries[#1]{#2} – returns #2 numbers ran-
domly from the range 0 to 1. With option #1 is
range=integer_number the values are integers drawn
from the interval 1..range. The option #1 will
receive an item separator as in the above example.
Example: \RandomSeries[range=10]{4} 4, 7, 2, 8

⊳ \MDfive{#1} – converts the string #1 into MD5 hash
value. Although nowadays not strong enough for

a secure hash, it is sufficient to fingerprint (long)
strings. Stored in a list useful to detect if these
strings were encountered before.
Example: \MDfive{[[MD5]]} is
6b3663a615846322674e3abf4fd59672

⊳ \SafeNumber{#1}{#2} – Return #1 if the Lua function
tonumber succeeds, otherwise return #2 as default.
Example: strings 207 and 207a with default NAN,
return respectively 207 and NAN.

Availability
The module and its supporting modules can be down-
loaded from my site hvandermeer.com/publications.html. The
TEX-stuff resides in section “Articles on TeX”, down-
loads are a little below in the link “ConTeXt module
distribution”.

Notes
1. Courtesy of the fact that Lua functions can accept a variable

number of parameters.
2. For those who would expect 27 and 25 as answers: the newline

at the end of the line is included in the count.
3. The tablesorter is derived from Programming in Lua by Roberto

Ierusalimschy, 3rd edition, section 20.2 page 197.
4. The braces are mandatory in case certain characters are present

in the option value, especially spaces, commas and Lua special
pattern matching characters. Without the braces the underlying
Lua function does not treat the option value as intended. The
Lua special characters are ^$()%.[]*+-?

5. The \leavevmode is needed to suppress the newlines that otherwise
appear between the frames.

6. All parameters to the \framed could have been placed inside the
[]’s, but it would clutter this presentation too much.

Hans van der Meer
havdmeer@ziggo.nl

76 MAPS 51 Hans van der Meer

Jerzy Ludwichowski VOORJAAR 2021 77

GUST e-foundry font projects, closing
report 2019–2020

For the record
The GUST e-foundry’s set of interrelated projects that
are reported on here was conceived in 2015. A lea�et
presenting the ideas and asking for �nancial support
was sent out to various TEX LUG boards later that year.
Support was o�ered in 2015 by NTG, in 2016 by CSTUG
and ConTEXt Group. DANTE e.V. and TUG joined in
2017.

The “advertising” lea�et mentioned above was turned
into a one page summary and published in TUGBoat,
Volume 38 (2017), No. 2 as “GUST e-foundry current
font projects”.

The o�cial start of the project was never declared,
but it seems that 2017 is a good number. However, work
was being done already in 2016.

What was planned
The main goal of those projects was to add mathematical,
technical and geometrical symbols to all of the TEX Gyre
text fonts with the exception of TG Chorus. TG Chorus
was excluded as such symbols seem of little use in a
chancery font.

Further, several related ideas were coined:

• a sans-serif math OTF font, possibly based on De-
jaVu, for use in headings;

• a heavy math OTF font, possibly based on TG Ter-
mes, also for headings;

• a monospace text font with math symbols, for use
in text editors.

Two other goals were also set:

• enhancements to existing math fonts, like math
kerns, variant extra alphabets (e.g., calligraphic or
double-struck) implemented using the “stylistic set”
features ss01–ss20;

• continuous, yearly maintenance reviews and, if
needed, releases of e-foundry’s fonts with �xes.

Stage 1: what was done until 2019
The outcome of a part of the project that might be called
its �rst stage was described in the paper by B. Jackowski,
P. Pianowski, and P. Strzelczyk „TEX Gyre text fonts
revisited”, published both in TUGBoat, Volume 39 (2018),
No. 3 and Die Technische Komödie, 30. Jahrgang, Heft
3/2018.

This is a crude summary of what was done (for details
see the article):

• devising the enhanced repertoire of glyphs;

• elements of MetaType 1 (en.wikipedia.org/
wiki/METATYPE1) were reimplemented by replac-
ing T1utils and some AWK and Perl scripts with Python
code interfacing to FontForge – both more portable and
easier to maintain;

• the internal structure of the TG fonts became even more
OTF-like:

– the ss10 feature allows the use of the original
math symbols if replacements are not liked or
needed and

– the “anchors” mechanism based on the ccmp,
mark and mkmk features is used to place accents
over glyphs in a precise way;

• the improved MetaType1 was used to extend the list of
glyphs of TG Adventor and TG Pagella by over 850 items,
which took the fonts to ver. 2.501

Stage 2: Algotype, the successor to
MetaType 1, 2019–2020
After releasing the new versions of TG Adventor and
Pagella, the team decided to attempt a full hearted reim-
plementation of MetaType1.

It is important to notice that up to now for over 20
years all of the many e-foundry’s fonts were produced
with MetaType1. It began in late nineties of the twen-
tieth century with a no-name engine to create Adobe
PostScript Type1 outline fonts for Janusz M. Nowacki’s
e�orts to revive the traditional Polish type Antykwa
Półtawskiego and was reported at the Heidelberg Eu-
roTEX Conference in 1999 (“Antykwa Półtawskiego: a
parameterized outline font”).

78 MAPS 51 Jerzy Ludwichowski

A few years later OpenType became ISO standard
(Open Font Format: ISO Standard ISO/IEC 14496-22
[MPEG-4 Part 22], March 2007). Obviously, the engine
by the name MetaType1 has been adapted and OpenType
versions could be included in the TEX Gyre collection of
fonts (released in 2006–2007).

Another adaptation of MetaType1 became necessary
with the advent OpenType Math font when in 2010 Mi-
crosoft implemented math fonts support into MS O�ce.
MetaType 1 proved itself by generating the TG Math
fonts: Bonum, Pagella, Schola, Termes and later De-
jaVu. The engine was also used by the e-foundry team
for Latin Modern fonts in both Type 1 and OpenType
formats along with the LM OpenType math font.

All those changes accumulated over so many years
lead inevitably to MetaType1 being unwieldy and com-
plex. In particular, porting of the system became a night-
mare, which was experienced when Marek Ryćko had
to step in for Piotr Strzelczyk who left the team in early
2019 and MetaType1 had to be installed from scratch in
a di�erent environment.

Leaving by Piotr Strzelczyk was a severe blow and
was bound to a drastical change in priorities: nothing
became more important than a reimplementation and
redesign of the font production line. At BachoTEX 2019
“Redesign of a Metapost-based font generating system”
by Marek Ryćko and Bogusław Jackowski, presented by
Marek Ryćko was awarded the W. J. Martin Prize.

MetaType 1 was rewritten in such a way that only
MetaPost and Python 3 (with some pieces of Python 2
to communicate with the FontForge library) are used.
Moreover, a new way of con�guring of the system was
worked out – the con�guration is now governed by
simple, universal data �les (in JSON format). Exactly the
same scripts can be run both under Linux and Windows
(no tests with Macintosh were performed so far) which
solved the portability problem.

The new engine is called Algotype. The name tries
to stress that fonts are being de�ned algorithmically.
The Python part of Algotype is now available at pypi.
org.

The team is going to publish the Algotype system on
GitHub.

Current and future font works, 2021–. . .
Immediate future:1

• Despite a lot of e�ort already devoted to Algotype,
it still does require work. Nonetheless it is produc-
tive – it was developed and tested doing real work.
Enhanced (see: “What was planned”) TG text fonts
Schola and Termes are close to being released to-
gether with revised versions 2.501 of TG Adventor
and TG Pagella.

• There is hope for a new release of the Latin Modern
fonts with corrections proposed by Frank Mittel-
bach at BachoTEX 2019 to be in time for the 2021
release of TEX Live.

• 2021 should see the rest of the enhancements to
the TEX Gyre family, i.e., the new releases of TG
Bonum, TG Cursor and TG Heros.

The renewed team with Marek Ryćko hopes to be
able to tackle in the near future the remaining tasks
listed in section “What was planned” although prefers
not to make too many promises.

Financing (support) up to date
The following donations to the project were received
and paid out up-to-date:

• ConTEXt Group: 1,500 EUR in the years 2017–2019;

• CSTUG: 2,000 EUR in the years 2017–2018;

• DANTE e.V.: 7,000 EUR in 2018;

• NTG: 18,000 EUR in the years 2015–2020;

• TUG: 2,903 USD in 2017;

• individual persons: 1,960 PLN in the years 2017–
2019.

The total funding amounted to 28,500 EUR, 2,903 USD
and 1,960 PLN.

The GUST e-foundry is really very, very grateful to
its supporters and promises to continue its best e�orts.

Final remarks: feedback craved for
The gentle readers of this report are kindly asked for
feedback: do you like/hate/see faults in/ask for enhance-
ments to/propose �xes to/ . . . the works of the GUST
e-foundry?

Please write! The e-foundry will do its best to satisfy
your request.

Notes
1. It should be noted that the �rst two items would have had
already happened if it were not for the COVID-19 pandemic
and Bogusław Jackowski being hospitalized for over a month
for a COVID-19 infection and a heart surgery.

Jerzy Ludwichowski
GUST, Toruń, Poland
Jerzy.Ludwichowski (@) gust.org.pl

Pieter van Oostrum VOORJAAR 2021 79

De ontwikkeling van het LaTEX
package fancyhdr

Een historisch en technisch overzicht

Abstract
Dit artikel geeft een overzicht van de ontwikkeling van het LaTEX package fancyhdr,
en de hulpmiddelen die ik hiervoor gebruik. Ook wordt een overzicht gegeven van de
manier van testen.

Keywords
LaTEX, package, fancyhdr, headers, footers, versiebeheer, testen

Inleiding
Dit artikel beschrijft kort de technieken die ik gebruik bij het (verder) ontwikkelen
van het LaTEX package fancyhdr. We beginnen met een overzicht van hoe dit package
ontstaan is. Daarna beschrijf ik de wensen die ontstonden voor een nieuwe versie. De
ontwikkelingen noodzaakten om het beheer van verschillende versies goed ter hand
te nemen. Daarom beschrijf ik de verschillende systemen voor versiebeheer, en hoe
ik die toepas in de ontwikkeling. Tenslotte beschrijf ik de manier van testen, wanneer
nieuwe features aan het package toegevoegd worden of wanneer problemen opgelost
worden. In het bijzonder wordt uitgelegd hoe het testen grotendeels geautomatiseerd
kan gebeuren.

Geschiedenis
Ik kan me niet meer herinneren wanneer ik met het ontwikkelen van het package
fancyhdr begonnen ben. Het moet in het begin van mijn escapades met LaTEX zijn
geweest. Ik heb er geen dagboek van bijgehouden. Informatie over de oudste versie
die ik nog heb teruggevonden was die van versie 1.4 van 16 september 1994. Deze
versie zelf heb ik niet meer, maar in oudere versies is dit de oudste versie die vermeld
wordt.

Wat ik me herinner is dat in de begin-dagen van LaTEX er niet veel mogelijkheden
waren om de headers en footers van LaTEX-documenten aan te passen. Er waren
een paar packages die dat deden, o.a. een package met een mogelijkheid om “three-
part header” te maken, d.w.z. een header die bestond uit een linker-, midden- en
rechterdeel (idem voor footers), en een ander package dat de mogelijkheid gaf om een
streep onder de header te zetten. Helaas konden deze beide niet gecombineerd worden,
terwijl dat toch een populaire keuze is. Daar wilde ik verandering in brengen door
deze beide faciliteiten te combineren in één package. De naam werd ‘fancyheadings’.

In het begin was dit een simpel package, maar in de loop van de jaren werd het
uitgebreid, en bovendien robuuster gemaakt, omdat er altijd weer situaties worden
ontdekt waarbij interactie met andere packages, of met bepaalde LaTEX-constructies,
ongewenste e�ecten geven. Voor de huidige faciliteiten die het package biedt, zie de
documentatie (texdoc fancyhdr).

80 MAPS 51 Pieter van Oostrum

Zoals je kunt zien is de naam van het package onderweg veranderd van ‘fancy-
headings’ naar ‘fancyhdr’. De redenen hiertoe geven een interessant kijkje in de
informatica-archeologie. Ik heb het package ontwikkeld op Unix-systemen, die des-
tijds op de universiteit de werkomgeving bepaalden. Echter, de meeste gebruikers
hadden indertijd MS-DOS (ja, zover gaan we terug in de geschiedenis). En MS-DOS
gebruikte bestandsnamen van 8.3, dat wil zeggen 8 tekens voor de punt en 3 erna.
Grotere namen werden wel geaccepteerd (althans vóór de punt), maar wat overtollig
was werd gewoon weggegooid. Dus het package werd op MS-DOS opgeslagen als
fancyhea.sty. Dit bracht sommige lieden ertoe om zich wat typewerk te besparen
door ‘fancyhea’ als package naam te gebruiken. Dit was ook nog in de tijd voor
LaTEX 2ε, zodat het gespeci�ceerd werd als
\documentstyle[fancyhea]{article}

in plaats van
\documentstyle[fancyheadings]{article}

Alle packages (styles genoemd) moesten in die header gespeci�ceerd worden, dus
het is enigszins begrijpelijk dat geprobeerd werd om dat zo compact mogelijk te
houden. Het probleem was echter, dat het fout ging wanneer zo’n document op
een Unix-systeem verwerkt werd omdat daar niet een ‘fancyhea.sty’ aanwezig was.
Daarom heb ik op een gegeven moment besloten om het package een nieuwe naam
te geven die voldeed aan de 8.3 beperking, namelijk fancyhdr.sty. Overigens bevat
de distributie nog steeds een fancyheadings.sty, die je waarschuwt om niet meer
‘fancyheadings’, maar ‘fancyhdr’ te gebruiken.

Versie “management”
Het beheren en uitbrengen van nieuwe versies was in het begin simpel. Er was een
bestand fancyheadings.sty en later dus fancyhdr.sty met de code en een bestand
README of README.txt, waarin de commando’s beschreven waren. Het .sty bestand
bevatte de code met ertussendoor commentaar achter %-tekens. Vooraan werd een
overzicht gegeven van de versies, te beginnen met versie 1.4 zoals hierboven vermeld.
Iedere nieuwe versie kreeg een alinea aan het eind met het versienummer, de datum
en een korte beschrijving van de wijzigingen. Voor een voorbeeld, zie Appendix A.

Documentatie door George Grätzer
Zoals hierboven vermeld bestond de eerste ‘documentatie’ uit een README documentje
met de beschrijving van de commando’s van het package, zonder verdere uitleg erbij.
Het begin van de echte documentatie werd gevormd door een artikel van George
Grätzer (auteur van het boek Math into LaTEX1) in de Notices van de American
Mathematical Society2. Hij bood mij dit artikel ook aan als documentatie voor het
package. Ik heb het stuk uitgebreid en aangepast, maar er zijn nog steeds stukken in
de huidige documentatie die meer of minder lijken op dat oorspronkelijke artikel.

Sinds LaTEX 2ε is de standaard werkwijze voor packages, dat de documentatie en
de code samen in een .dtx bestand worden gezet. Dit levert een vorm van Literate
Programming op zoals gepromoot door Donald Knuth. Ik heb lang gewacht om de
code plus documentatie om te zetten, omdat het systeem van een aparte documentatie
met de code in een fancyhdr.sty bestand prima voldeed, en het best een werk was om
het om te zetten. Uiteindelijk ben ik op 11 oktober 2016 begonnen met het omzetten.
Dat was niet meer dan fancyhdr.sty versie 3.8, ingepakt in fancyhdr.dtx, zonder
de documentatie. Enkele dagen later heb ik ook de documentatie toegevoegd, en het
additionele package extramarks, en het oude fancyheadings. Maar pas op 25 januari
2019 werd de hele distributie gebaseerd op fancyhdr.dtx (versie 3.10).

Fancyhdr Ontwikkeling VOORJAAR 2021 81

Wensen voor versie 4
Aan het einde van versie 3 van fancyhdr was het duidelijk dat er een aantal on-
twerpbeslissingen in zaten die suboptimaal waren. Zo controleert fancyhdr o.a. of er
genoeg verticale ruimte gereserveerd is voor de headers en footers. Zo niet dan wordt
er een waarschuwing gegeven, en in versie 3 werd dan ook die ruimte aangepast voor
de volgende pagina’s (in LaTEX resp. \headheight en \footskip), zodat er daarna geen
meldingen meer werden gegeven. Helaas zorgde dit regelmatig voor onaangename
verrassingen, omdat de paginalayout dan niet meer consistent is.

Een ander gebrek was dat de de�nities die de headers en footers bepalen, globaal
werden gedaan, dus niet beperkt tot de huidige scope (TEX group). Bij het wisselen van
page styles in de loop van het document gaf dat vaak ongewenste e�ecten. Daarom
liep ik al geruime tijd (enige jaren) rond met het idee om een echt verbeterde versie
te maken, dus meer dan wat kleine aanpassingen. Alleen wist ik niet precies hoe dit
aan te passen en eerlijk gezegd vond ik het ook weer te weinig dringend om daar
veel energie in te stoppen. Maar het bleef knagen.

Mail van Frank Mittelbach
Op 15 november 2018 kreeg ik een e-mail van Frank Mittelbach, waarin hij vertelde
dat hij bezig was met een nieuwe editie van The LaTEX Companion. Hij maakte
mij attent op een package nccfancyhdr van Alexander I. Rozhenko, dat een aantal
gebreken van fancyhdr opgelost zou hebben, en vroeg mij of ik van plan was dat in
fancyhdr over te nemen.

Ik kende dat package niet, maar besloot om het te bestuderen. Mijn conclusie was
dat een aantal aspecten hiervan al opgelost waren, en dat er interessante ideeën in
zaten die ik goed kon gebruiken. Ik heb toen een lijst gemaakt met wat ik in versie 4
zou gaan doen, en die heb ik aan Frank gestuurd. Zie de lijst in Appendix B.

Samen met mijn eerdere gedachten heb ik dit gebruikt voor het ontwikkelen van
fancyhdr versie 4. Ook wilde ik de documentatie �ink onder handen nemen. Op 15
maart 2019 begon ik met de ontwikkeling van versie 4.0beta.

Vanaf dat moment waren er enkele parallel lopende lijnen in de ontwikkeling:

• Ontwikkeling van nieuwe features voor versie 4.0

• Verbetering van de documentatie

• Testen van alle voorbeelden en maken van een test suite

Tijdens de eerste Corona-periode in de zomer van 2020 lag het werk grotendeels stil.
Maar in december besloot ik het weer op te pakken. De code voor versie 4 was bijna
klaar, maar de documentatie zou nog veel werk kosten. Ik heb toen besloten om de
code af te maken, en te zorgen dat de documentatie voldoende was voor de nieuwe
versie. Deze werd op 2 januari 2021 vrijgegeven op CTAN.

Het werk ging daarna door. De documentatie moest nog steeds afgemaakt worden,
en een aantal voorbeelden uit deze documentatie waren nog niet gecontroleerd.
Sommige moesten echt verbeterd worden, omdat ze net niet klopten.

Intussen kwamen er toch nog nieuwe tekortkomingen aan het licht, in het bijzonder
door discussies en vragen op tex.stackexchange.com. Daarom heb ik toch weer
enkele nieuwe functies toegevoegd, waarvan er een aantal al wel geïmplementeerd
zijn, maar nog niet voldoende gedocumenteerd. Met andere woorden, versie 4.1 is
nu in zicht. Intussen is er ook nog een versie 4.0.1 uitgebracht met een deel van de
verbeteringen in de documentatie.

82 MAPS 51 Pieter van Oostrum

Versiebeheer
Bij de initiële ontwikkeling waren er twee praktische problemen die met versiebeheer
te maken hebben.

1. Hoe houd ik bij welke versies er geweest zijn en wat de verschillen tussen de
verschillende versies zijn?

2. Naarmate het project groter wordt, en ik aan verschillende aspecten (docu-
mentatie, bug �xes, nieuwe ontwikkelingen) aan het werk ben: hoe houd ik de
verschillende lijnen uit elkaar? Bijvoorbeeld als ik met een nieuwe ontwikkel-
ing bezig ben, die nog maar half voltooid is, en er moet plotseling een bug�x
plaatsvinden op de oude versie.

Hierbij komen versiebeheersystemen (version control/management systems) te hulp.
Dit zijn systemen waarin de geschiedenis van een project bijgehouden wordt, en
waarin ook verschillende lijnen uitgezet, en later weer samengevoegd kunnen worden.
Deze systemen geven ook de mogelijkheid om met verschillende personen samen te
werken aan een project, hoewel dat in mijn geval niet relevant is.

Initiële systemen: RCS en CVS
Er is een lange ontwikkeling geweest van versiebeheersystemen, zowel gratis beschik-
baar (open source) als commerciële systemen. Ik beperk me hierbij tot de gratis syste-
men. De meeste van deze systemen zijn oorspronkelijk ontwikkeld op Unix(-achtige
) systemen en daarna geporteerd naar bijvoorbeeld Windows en MacOS.

RCS was een simpel systeem waarbij je van een aantal bestanden versies kon
bijhouden. Deze versies werden in een aparte map bijgehouden, en je kon een nieuwe
versie van een bestand erin stoppen (checkin), of de laatste of een eerdere versie
eruit halen (checkout). Bij de checkin geef je aan wat de reden ervan is (bijvoorbeeld
een nieuw stuk code, een bug�x) en het systeem houdt ook bij wie dit gedaan heeft.
Als iemand een checkout van een bestand doet met de bedoeling om wijzigingen
aan te brengen, dan wordt er een lock op dat bestand gezet, zodat een ander er niet
bij kan, althans niet met de mogelijkheid om te wijzigen. Dit om te voorkomen
dat verschillende wijzigingen elkaar in de weg zitten of elimineren. Dit maakt het
samenwerken lastiger, want je moet dan afspreken wie er aan de beurt is om aan een
bepaald bestand te werken.

Een ander nadeel van RCS was dat elk bestand een onafhankelijke eenheid was.
Als je een wijziging uitvoerde waarbij twee of meer bestanden betrokken waren, dan
hield het systeem niet bij dat deze een eenheid vormden. Dus als je naar een vorige
toestand terug wilde moest je zelf uitzoeken welke versies van de bestanden bij elkaar
hoorden. De versies waren genummerd maar het ene bestand kon meer wijzigingen
gehad hebben dan het andere, en daardoor ook andere nummers.

Een verbetering was het systeem CVS, dat bovenop RCS gebouwd was. Het
gebruikte dus wel dezelfde bestanden om de versies op te slaan, maar voegde daar
een administratieve laag aan toe. De twee belangrijkste aspecten hiervan waren:

1. Je kon meer dan één bestand tegelijk inchecken, en die vormden dan samen
een nieuwe versie.

2. De uitgecheckte bestanden werden niet meer gelockt. Meerdere personen
konden dezelfde bestanden bewerken. Maar bij het inchecken werd er gecon-
troleerd of er geen con�ict ontstond. Als dat het geval was, ging de checkin
niet door en moest de ontwikkelaar uitzoeken hoe het con�ict opgelost kon
worden. Vaak was daar natuurlijk overleg tussen de betrokken personen voor
nodig. Maar als verschillende mensen aan onafhankelijke delen van een project
werken, is er vaak niets aan de hand, zelfs als ze aan dezelfde bestanden werken.
Hierdoor wordt het werken e�ciënter. Dit proces van het samenbrengen van
verschillende ontwikkelingslijnen heet merging.

Fancyhdr Ontwikkeling VOORJAAR 2021 83

3. RCS bestanden moesten altijd locaal op een computer benaderd worden, maar
CVS had ook de mogelijkheid om op een server te draaien, en kon dan vanaf
andere computers benaderd worden (client-server systeem). Voor gebruik door
één persoon werd het echter meestal in lokale bestanden gezet.

Een collectie van de versies van bij elkaar horende bestanden heet een repository.
Het is mogelijk om verschillende repositories te hebben. Vaak werd er een repository
per project gemaakt.

CVS biedt ook de mogelijkheid om expliciet verschillende onafhankelijke lijnen
van ontwikkeling op te zetten. Dit worden dan branches genoemd. Ook hierbij kan
op een gegeven moment merging gebruikt worden om deze samen te voegen.

CVS werd in 1986 ontwikkeld door Dick Grune aan de Vrije Universiteit in Ams-
terdam. Voor meer informatie over RCS en CVS zie http://linuxdocs.org/HOWTOs/
CVS-RCS-HOWTO.html

Subversion (SVN)
Subversion is een versiebeheersysteem dat ontwikkeld is om een aantal tekortkomin-
gen van CVS op te lossen. CVS bestond uit een verzameling scripts om het RCS
systeem heen; SVN daarentegen is van de grond af aan ontwikkeld. Maar de principes
zijn wel vergelijkbaar. Tegenwoordig is SVN een Apache project.

Een aantal belangrijke verschillen tussen CVS en SVN:
• CVS gebruikte RCS bestanden om de versies op te slaan; SVN gebruikt een

eigen database systeem. Dit geeft de mogelijkheid om meer informatie op te
slaan. Zo kan een gebruiker attributen aan een bestand koppelen.

• SVN is sneller, omdat het geoptimaliseerd geprogrammeerd is.

• CVS was bedoeld voor tekstuele bestanden (ASCII), terwijl SVN goed werkt
met alle soorten bestanden.

Omdat SVN veel e�ciënter en beter gestructureerd was dan CVS, heeft het vrij snel de
functie van CVS overgenomen. Lange tijd is het het populairste versiebeheersysteem
geweest, vooral in de Unix en Open Source wereld. Het wordt nog steeds gebruikt,
omdat het relatief simpel is om ermee te werken. Maar het is intussen ook al weer
ruim 20 jaar oud.

Gedistribueerd versiebeheer
Zowel CVS als SVN gebruiken een centraal repository om de versies op te slaan. Het
repository is via een client-server systeem te benaderen door de gebruikers. Dit heeft
het voordeel dat je op afstand met elkaar kunt samenwerken. Alle versie-informatie
van een project is dus op één locatie aanwezig. Dit geeft een paar nadelen:

• Als er een storing is in de server, of in de internetverbinding van de server of
de client, dan kan er geen nieuwe versie-informatie gemaakt worden. Een on-
twikkelaar die al een kopie heeft van de repositiory (zo’n kopie wordt workspace
genoemd) kan hieraan werken, maar als hij/zij een nieuwe versie wil inchecken,
of een nieuwe branch wil beginnen, kan dat op dat moment niet.

• Alle nieuwe versies en branches moeten in de centrale repository opgeslagen
worden en zijn dus ook voor iedereen zichtbaar. Lang niet alles is voor iedereen
relevant; zo kan een ontwikkelaar even iets nieuws uitproberen, en hiervoor een
branch aanmaken. Dit vervuilt het repository al gauw met informatie die alleen
voor één persoon relevant is, en bij een groot project leidt dat onvermijdelijk tot
een chaotisch geheel. En bovendien kan het leiden tot ongewenste con�icten
in de versies. Om dit te vermijden heeft men dan de neiging om daarvoor maar
geen nieuwe versies of branches aan te maken, maar dat vermindert nu weer
het nut van het versiebeheersysteem.

84 MAPS 51 Pieter van Oostrum

Om deze bezwaren te overwinnen zijn de zogenaamde gedistribueerde versiebe-
heersystemen ontwikkeld. Hierbij heeft een project één (of meer) centrale repositories
waar de informatie (versies en branches) in staat die voor het hele project van belang
is. Daarnaast heeft iedere gebruiker een eigen repository waar hij zijn lokale versies
en branches in opslaat. Hij kan informatie uit de centrale repository naar zijn eigen
repository trekken (pull operatie) en omgekeerd zijn nieuwe informatie naar het
centrale repository uploaden (push operatie). Dit kan per branch apart gedaan worden.
Bij een push operatie kunnen er natuurlijk weer con�icten optreden waarbij een
merge moet plaatsvinden.

Er zijn diverse van deze systemen o.a. Mercurial (hg) en Bazaar (bzr). Dit zijn vrij
simpele systemen, gemakkelijk te gebruiken, maar ze zijn hun populariteit aan het
verliezen. Omdat ze niet teveel ingewikkelde functies hebben maar zich richten op de
basale functies checkin, checkout en het beheer van branches e.d. hebben ze voordelen
voor mensen die niet teveel toeters en bellen willen. Ze hebben echter weinig nieuwe
ontwikkeling. Ze zijn beide geschreven in Python versie 2, en deze versie is gestopt
met ontwikkeling. Verschillende Linux systemen komen bijvoorbeeld niet meer met
Python 2, maar Python3, wat niet compatibel is met Python 2. Alleen van Bazaar is
er een nieuwe kloon ontwikkeld die Breezy heet en wel op Python3 is gebaseerd.

Het meest gebruikte gedistribueerde versiebeheersystemen is tegenwoordig Git.
Het is ontwikkeld voor het beheer van de code van Linux, en wordt daarom door veel
mensen gebruikt. Het heeft veel mogelijkheden die Bazaar en Mercurial niet hebben
(net zomin als SVN) waardoor het voor fulltime ontwikkelaars in grote projecten erg
interessant is, maar daardoor ook moeilijker te gebruiken.

Er zijn een aantal services waar Git repositories kunnen worden opgeslagen, zoals
Github (github.com) en Gitlab (gitlab.com) waar je gratis open source (of andeszins
publieke) repositories kunt aanmaken, en tegen betaling repositories voor particuliere
projecten. Deze zijn zeer populair, o.a. de LaTEX groep heeft hier de repositories van
LaTEX 2ε3 en LaTEX34.

Github en Gitlab hebben een aantal extra faciliteiten, o.a. een web-interface,
waarmee je door de repository kunt browsen, bugs kunt rapporteren en verschillende
versies van een project kunt downloaden als een zip-bestand.

Mijn huidige setup
Voor de ontwikkeling van mijn software en soms ook van gewone tekstuele of TEX-
documenten gebruik ik tegenwoordig Git, vooral omdat dit uitwisseling met anderen
gemakkelijker maakt, en ik de installatie ervan makkelijker vind dan die van Mercurial
en Bazaar.

Ik heb o.a. repositories voor de LaTEX packages fancyhdr en multirow. Deze hebben
ook een repository op Github, waar in ieder geval de (redelijk) stabiele versies resp.
branches in zitten5.

Voor fancyhdr heb ik op dit moment de branches
V3.10 de laatste release van fancyhdr versie 3
V4.0.1 op dit moment de laatste versie die vrijgegeven is
master de hoofdbranch, meestal gelijk aan de laatste release.
V4.1beta werk aan de code van versie 4.1
new-documentation werk aan de documentatie
extramarks2 werk aan een nieuw package extramarks2 (update van het

extramarks package), wat een onderdeel van de fancyhdr distributie is
Het is de bedoeling dat de laatste 3 branches op den duur gemerged worden tot versie
4.1. Maar dit zal nog wel enige maanden duren. En verder gebruik ik af en toe nieuwe

Fancyhdr Ontwikkeling VOORJAAR 2021 85

branches voor wat experimenteel werk maar die verdwijnen meestal na een tijdje,
òf omdat ze niet meer nodig zijn, òf omdat ze geïntegreerd worden in een andere
branch.

De branches master, V3.10, V4.0.1 en extramarks2 zijn ook op Github aanwezig,
en V4.1beta in feite ook omdat die een onderdeel is van de branch extramarks2. Maar
deze branch is tijdelijk.

Examples
Tijdens het ontwikkelen van fancyhdr versie 4, en het aanpassen van de documentatie
ben ik begonnen met alle voorbeelden in de documentatie te testen. Daarvoor heb ik
van elk voorbeeld een LaTEX-document gemaakt gebaseerd op dit voorbeeld, om te
kijken of de code werkelijk de layout produceert die de documentatie eraan toeschrijft.
Dat bleek niet altijd het geval te zijn, wat in de meeste gevallen leidde tot het aanpassen
van de code, of in een enkel geval aanpassen van de beschrijving. Dit proces is nog
niet helemaal voltooid, ik ben ergens aangekomen bij “Example 34”.

Daarnaast heb ik nog een grote verzameling testprogramma’s die soms ontwikkeld
zijn om nieuwe features te testen, en soms gebaseerd zijn op bug reports. Maar
ook heel vaak zijn ze gebaseerd op vragen van gebruikers, vroeger vooral van de
nieuwsgroep comp.text.tex en de mailing lijst TEX-NL, en tegenwoordig vaak van het
forum tex.stackexchange.com. Deze heb ik de laatste twee jaar omgewerkt door ze
vooraf te laten gaan door een inleiding die beschrijft wat het probleem is, en meestal
ook de code noemt die gebruikt is (die natuurlijk ook in het document staat, maar
niet noodzakelijk als tekst). Al deze LaTEX-documenten staan in een apart repository
op Github6. Dit zijn nog niet alle testbestanden die ik heb; er zijn er meer die nog in
die vorm met beschrijving gegoten moeten worden.

In �guur 1 staan een aantal voorbeelden van iets geavanceerder gebruik van
fancyhdr. Deze voorbeelden zijn uit bovengenoemde verzameling gelicht maar zijn
aangepast om in dit artikel te passen. Hier volgt een summiere beschrijving met
de belangrijkste LaTEX-code van elk voorbeeld. In alle voorbeelden is een groter
lettertype gebruikt in de header (en soms in de footer) om het leesbaarder te maken
in de verkleinde versie.
�guur 1a Hierbij wordt een header gebruikt tussen twee horizontale lijnen. De

onderste lijn is de standaard lijn die fancyhdr geeft (maar dan dikker). De
bovenste lijn is een duplicaat ervan, expliciet ingevoegd met het commando
\headrule.
\usepackage{fancyhdr}

\pagestyle{fancy}

\renewcommand{\headrulewidth}{2pt}

\fancyhf{}

\fancyhead[C]{%

\headrule

\vspace{12pt}

{\LARGE Project Description}

\vspace{8pt}

}

\fancyfoot[C]{\thepage}

�guur 1b In dit voorbeeld wordt de lijn onder de header vervangen door een wat
decoratievere met behulp van een ornament uit het fourier-orns font. Boven
de footer wordt ook zo’n lijn toegevoegd. Dit gebeurt door de commando’s
\headrule en \footrule te herde�niëren.
\usepackage{fourier-orns}

\usepackage{fancyhdr}

\pagestyle{fancy}

86 MAPS 51 Pieter van Oostrum

a: header tussen lijnen

Project Description

1 Introduction

As any dedicated reader can clearly see, the Ideal of practical reason is a representation of, as far as I know, the things
in themselves; as I have shown elsewhere, the phenomena should only be used as a canon for our understanding.
The paralogisms of practical reason are what first give rise to the architectonic of practical reason. As will easily
be shown in the next section, reason would thereby be made to contradict, in view of these considerations, the
Ideal of practical reason, yet the manifold depends on the phenomena. Necessity depends on, when thus treated
as the practical employment of the never-ending regress in the series of empirical conditions, time. Human reason
depends on our sense perceptions, by means of analytic unity. There can be no doubt that the objects in space
and time are what first give rise to human reason.

1.1 The Problem

Let us suppose that the noumena have nothing to do with necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of apperception can not take account of the discipline of natural reason,
by means of analytic unity. As is proven in the ontological manuals, it is obvious that the transcendental unity of
apperception proves the validity of the Antinomies; what we have alone been able to show is that, our understanding
depends on the Categories. It remains a mystery why the Ideal stands in need of reason. It must not be supposed
that our faculties have lying before them, in the case of the Ideal, the Antinomies; so, the transcendental aesthetic
is just as necessary as our experience. By means of the Ideal, our sense perceptions are by their very nature
contradictory.

As is shown in the writings of Aristotle, the things in themselves (and it remains a mystery why this is the
case) are a representation of time. Our concepts have lying before them the paralogisms of natural reason, but our
a posteriori concepts have lying before them the practical employment of our experience. Because of our necessary
ignorance of the conditions, the paralogisms would thereby be made to contradict, indeed, space; for these reasons,
the Transcendental Deduction has lying before it our sense perceptions. (Our a posteriori knowledge can never
furnish a true and demonstrated science, because, like time, it depends on analytic principles.) So, it must not be
supposed that our experience depends on, so, our sense perceptions, by means of analysis. Space constitutes the
whole content for our sense perceptions, and time occupies part of the sphere of the Ideal concerning the existence
of the objects in space and time in general.

1

b: gebruik ornament

1 INTRODUCTION
;A<

1 Introduction

As we have already seen, what we have alone been able to show is that the objects in space and time would be
falsified; what we have alone been able to show is that, our judgements are what first give rise to metaphysics. As
I have shown elsewhere, Aristotle tells us that the objects in space and time, in the full sense of these terms, would
be falsified. Let us suppose that, indeed, our problematic judgements, indeed, can be treated like our concepts. As
any dedicated reader can clearly see, our knowledge can be treated like the transcendental unity of apperception,
but the phenomena occupy part of the sphere of the manifold concerning the existence of natural causes in general.
Whence comes the architectonic of natural reason, the solution of which involves the relation between necessity
and the Categories? Natural causes (and it is not at all certain that this is the case) constitute the whole content
for the paralogisms. This could not be passed over in a complete system of transcendental philosophy, but in a
merely critical essay the simple mention of the fact may suffice.

1.1 The Problem

Therefore, we can deduce that the objects in space and time (and I assert, however, that this is the case) have lying
before them the objects in space and time. Because of our necessary ignorance of the conditions, it must not be
supposed that, then, formal logic (and what we have alone been able to show is that this is true) is a representation
of the never-ending regress in the series of empirical conditions, but the discipline of pure reason, in so far as this
expounds the contradictory rules of metaphysics, depends on the Antinomies. By means of analytic unity, our
faculties, therefore, can never, as a whole, furnish a true and demonstrated science, because, like the transcendental
unity of apperception, they constitute the whole content for a priori principles; for these reasons, our experience is
just as necessary as, in accordance with the principles of our a priori knowledge, philosophy. The objects in space
and time abstract from all content of knowledge. Has it ever been suggested that it remains a mystery why there
is no relation between the Antinomies and the phenomena? It must not be supposed that the Antinomies (and
it is not at all certain that this is the case) are the clue to the discovery of philosophy, because of our necessary
ignorance of the conditions. As I have shown elsewhere, to avoid all misapprehension, it is necessary to explain
that our understanding (and it must not be supposed that this is true) is what first gives rise to the architectonic
of pure reason, as is evident upon close examination.

;A<

1

c: woordenboekstijl

1 abdomen–all right

Dit voorbeeld gebruikt headers zoals in een woordenboek. Ieder lemma (item) gebruikt \markboth{#1}{#1} en de
headers gebruiken \rightmark voor het eerste item op de pagina en \leftmark voor de laatste. Als ze gelijk zijn,
dan wordt het woord slechts één keer in de header gezet, anders worden ze gescheiden door een streepje.

abdomen – el abdomen
about – sobre, más o menos
about to do sthg – estar a punto de
above – encima de, arriba
abroad (go ∼) – ir al extranjero (live,go)
absent – ausente
absent-minded – distráıdo
absolutely – absolutamente
abuse – abusar de, insultar
accelerator – el acelerador
accent – acento
accept – aceptar, admitir
access (have ∼) – tener acceso a. . .
accident – accidente
accommodation – alojamiento
accompany – acompañar
accomplish – conseguir, lograr (goal)
according (to) – según
account – la cuenta
accountant – contable
accurate – preciso
accuse – acusar a alguien de algo
ache (n/v) – el dolor, me duele
acid – ácido
action – acción
active – activo
activity – actividad
actor/actress – actor/actriz
adaptor – adaptador
add (v) – añadir
addicted (to) – ser adicto a
address – la dirección
advertisement – anuncio
adjust – ajustar
admission – admisión
admit – confesar
adolescent – adolescente
adopt – adoptar
adult – adulto
adultery – adulterio
advance (in) – por adelantado
advanced – avanzado
advantage – ventaja

adventure – aventura
advice – consejo, aviso
advise – aconsejar, dar consejo.
aerial – antena
affect – afectar (med)
affection – el cariño
afford – poder, permitirse algo
afraid – asustado, con miedo
afraid (of) – tener miedo de
after – después de, que
after (all) – después de todo
afternoon – tarde, de la tarde
afterwards – después
again – otra vez, de nuevo
against – contra, contra de
age – edad
agency – agencia, buró
agent – agente
aggressive – agresivo
ago – hace una semana
agree – estar de acuerdo.
aim – objetivo
air – el aire
air base – base aérea
air filter – el filtro
air force – fuerza aérea
air mail – correo aéreo
air-conditioning (AC)– el aire acondicionado
airline – ĺınea aérea
airplane – el avión
airport – aeropuerto.
aisle – el pasillo
alarm – alarma.
alarm clock – el despertador
album – álbum (phot)
alcohol – alcohol
alcoholic – alcohólico
algebra – álgebra
alibi – coartada, excusa
alien – el extraterrestre, el extranjero
alive – vivo. estar vivo
all – todo, todos.
all right – ¿de acuerdo? está bien

d: detecteer top�oat en voetnoot

Deze pagina heeft een topfloat

Table 1 Test table
\iftopfloat test of er een float bovenaan de pagina staat
\ifbotfloat test of er een float onderaan de pagina staat

\iffloatpage test of deze pagina een z.g. float pagina is
\iffootnote test of er een voetnoot onder de pagina staat

1 Inleiding

Dit voorbeeld demonstreert de commando’s \iftopfloat, \ifbotfloat, \iffloatpage en \iffootnote.
De headers en footers geven aan of de pagina een float pageis, en of er floats bovenaan of onderaan de pagina staan
en of er voetnoten aanwezig zijn.
Er is een lijn onder de header, behalve op pagina’s met eenfloat bovenaan.

1.1 Een subsectie

Hier is wat tekst1

As any dedicated reader can clearly see, the Ideal of practical reason is a representation of, as far as I know, the things
in themselves; as I have shown elsewhere, the phenomena should only be used as a canon for our understanding.
The paralogisms of practical reason are what first give rise to the architectonic of practical reason. As will easily
be shown in the next section, reason would thereby be made to contradict, in view of these considerations, the
Ideal of practical reason, yet the manifold depends on the phenomena. Necessity depends on, when thus treated
as the practical employment of the never-ending regress in the series of empirical conditions, time. Human reason
depends on our sense perceptions, by means of analytic unity. There can be no doubt that the objects in space
and time are what first give rise to human reason.
Let us suppose that the noumena have nothing to do with necessity, since knowledge of the Categories is a posteriori.
Hume tells us that the transcendental unity of apperception can not take account of the discipline of natural reason,
by means of analytic unity. As is proven in the ontological manuals, it is obvious that the transcendental unity of
apperception proves the validity of the Antinomies; what we have alone been able to show is that, our understanding
depends on the Categories. It remains a mystery why the Ideal stands in need of reason. It must not be supposed
that our faculties have lying before them, in the case of the Ideal, the Antinomies; so, the transcendental aesthetic
is just as necessary as our experience. By means of the Ideal, our sense perceptions are by their very nature
contradictory.
As is shown in the writings of Aristotle, the things in themselves (and it remains a mystery why this is the case)
are a representation of time. Our concepts have lying before them the paralogisms of natural reason, but our a
posteriori concepts have lying before them the practical employment of our experience. Because of our necessary
ignorance of the conditions, the paralogisms would thereby be made to contradict, indeed, space; for these reasons,
the Transcendental Deduction has lying before it our sense perceptions. (Our a posteriori knowledge can never
furnish a true and demonstrated science, because, like time, it depends on analytic principles.) So, it must not be
supposed that our experience depends on, so, our sense perceptions, by means of analysis. Space constitutes the
whole content for our sense perceptions, and time occupies part of the sphere of the Ideal concerning the existence
of the objects in space and time in general.
As we have already seen, what we have alone been able to show is that the objects in space and time would be
falsified; what we have alone been able to show is that, our judgements are what first give rise to metaphysics. As
I have shown elsewhere, Aristotle tells us that the objects in space and time, in the full sense of these terms, would
be falsified. Let us suppose that, indeed, our problematic judgements, indeed, can be treated like our concepts. As

1Dit is een voetnoot

Deze pagina heeft een voetnoot 1

Figure 1: Vier voorbeelden van fancyhdr gebruik

Fancyhdr Ontwikkeling VOORJAAR 2021 87

\fancyheadinit{\LARGE}

\renewcommand\headrule{\vspace{-6pt}\hrulefill

\raisebox{-2.1pt}

{\quad\decofourleft\decotwo\decofourright\quad}\hrulefill}

\renewcommand\footrule{\hrulefill

\raisebox{-2.1pt}

{\quad\decofourleft\decotwo\decofourright\quad}\hrulefill}

�guur 1c We gebruiken hier een header in woordenboekstijl, met het eerste en het
laatste woord op de pagina in de header (in de vorm a–b). Hiervoor gebruiken
we het LaTEX mark-mechanisme op een niet-standaard manier. We moeten
dan wel het standaard mark-gebruik uitzetten door \sectionmark en eventuele
andere soortgelijke uit te schakelen.
\usepackage{ifthen}

\usepackage{fancyhdr}

\pagestyle{fancy}

\fancyheadinit{\LARGE}

\newcommand{\mymarks}{

\ifthenelse{\equal{\leftmark}{\rightmark}}

{\rightmark} % if equal

{\rightmark--\leftmark}} % if not equal

\fancyhead[LE,RO]{\mymarks}

\fancyhead[LO,RE]{\thepage}

\fancyfoot{}

\renewcommand{\sectionmark}[1]{}

\newcommand\entry[2]{\makebox[3cm][l]{#1} -- #2\markboth{#1}{#1}\\}

�guur 1d Dit voorbeeld demonstreert de commando’s \iftopfloat, \ifbotfloat,
\iffloatpage en \iffootnote. In de getoonde pagina is overigens alleen
\iftopfloat en \iffootnote actief in gebruik. Deze commando’s maken het
mogelijk om op pagina’s waar een �oat aan de bovenkant of onderkant van de
pagina staat of een pagina die uitsluitend uit �oats bestaat, of een pagina met
voetnoten, andere headers en footers te gebruiken, wat standaard LaTEX niet
kan. Al deze commando’s hebben de vorm
\ifxxx{tekst voor als het waar is}

{tekst voor als het niet waar is}

en ze werken alleen in headers en footers.
\usepackage{float}

\floatstyle{ruled}

\restylefloat{table}

\usepackage{fancyhdr}

\pagestyle{fancy}

\fancyhead[R]{\iftopfloat{Deze pagina heeft een topfloat}

{Deze pagina heeft \textbf{geen} topfloat}}

\fancyfoot[R]{\ifbotfloat{Hier is een float onderaan de pagina}{}}

\fancyfoot[L]{\iffootnote{Deze pagina heeft een voetnoot}

{Deze pagina heeft \textbf{geen} voetnoot}}

\fancyhead[L]{\iffloatpage{Dit is een floatpage}{}}

\renewcommand{\headrulewidth}{\iftopfloat{0pt}{0.4pt}}

\fancyhfinit{\LARGE}

88 MAPS 51 Pieter van Oostrum

Testen
Belangrijk bij het ontwikkelen van software is het testen. Natuurlijk is dit het geval
bij bug�xes, omdat je moet controleren of het probleem opgelost is. Dat is ook de
belangrijkste reden dat ik die bestanden verzameld heb zoals in de vorige sectie
beschreven.

Maar ook bij verdere ontwikkeling is het belangrijk om te controleren of bestaande
dingen blijven werken. Dit is in het bijzonder het geval bij LaTEX code (en TEX in het
algemeen), omdat bijvoorbeeld het toevoegen van een spatie, of het vergeten van een
% aan het eind van een regel subtiele veranderingen kan veroorzaken.

Eerst visueel
In het begin van de ontwikkeling was deze controle puur visueel. Ik verwerkte een
aantal testbestanden (toen veel minder dan nu) en keek of de output visueel klopte
met wat ik verwachtte. Dit werd op den duur onbevredigend, om twee redenen:

• Naarmate er meer functies in het package kwamen en daardoor het aantal
testbestanden toenam, was het een saai en tijdrovend proces.

• Sommige afwijkingen in de output zijn moeilijk met het blote oog te zien, zeker
als het lang geleden is dat je er de vorige keer naar gekeken hebt.

Daarom heb ik besloten om dit proces te automatiseren. Om te beginnen heb ik
de output van de testbestanden genomen (als PDF-bestanden), en deze zorgvuldig
visueel gecontroleerd. Alle bestanden die goedgekeurd zijn worden naar een aparte
map OUTPUT gekopieerd. Elke keer als er getest moet worden, bijvoorbeeld na een
wijziging van de code, worden de testbestanden opnieuw door LaTEX gecompileerd
en de resulterende PDF-bestanden worden vergeleken met hun tegenhanger in de
OUTPUT map. Dit vergelijken gebeurt op bitmap niveau, omdat de interne structuur
van de PDF-bestanden intussen best gewijzigd kan zijn zonder dat dit invloed heeft
op de visuele presentatie.

Diff-pdf
Hiervoor gebruik ik een programma dat ik op het internet gevonden heb: diff-pdf7
van Václav Slavík.

Dit is een command-line programma, wat het gemakkelijk maakt om in geautoma-
tiseerde scripts te kunnen gebruiken. Het heeft twee hoofdmanieren van gebruik:
diff-pdf file1.pdf file2.pdf

Dit commando vergelijkt twee PDF-bestanden maar is verder stil, tenzij een -verbose
optie meegegeven wordt. Maar stilletjes geeft het een code af in de shell die daarna
gebruikt kan worden om te testen. Deze z.g. status geeft aan of de bestanden op pixel
niveau (binnen bepaalde toleranties) gelijk of ongelijk zijn. Er zijn ook opties om de
tolerantie te speci�ceren.
diff-pdf --view file1.pdf file2.pdf

Dit commando laat de bestanden visueel zien, maar gesuperponeerd, en de verschillen
worden in kleur aangegeven. Zie �guur 2. In het linkerdeel worden alle pagina’s
getoond, en in elke pagina worden de verschillen tussen de beide bestanden met rood
aangegeven. In het rechterdeel wordt één pagina getoond, uit het ene bestand in rood,
en uit het andere bestand in groen. In dit voorbeeld heb ik twee bestanden van elk één
pagina genomen die niets met elkaar te maken hebben (uit de test suite van multirow).
De rechter pagina kan in- en uitgezoomd worden en het is ook mogelijk om de rode
en de groene ten opzichte van elkaar te verschuiven om subtielere verschillen te
inspecteren.

Fancyhdr Ontwikkeling VOORJAAR 2021 89

Figure 2: Een (deel van) een diff-pdf scherm

Automatisering
Dit proces werkt alleen handig als het geautomatiseerd wordt. Hiervoor gebruik
ik shell scripts om automatisch commando’s te kunnen uitvoeren, make�les om de
afhankelijkheden tussen bestanden en commando’s te speci�ceren en latexmk om
latex en bijbehorende programma’s aan te sturen.

Latexmk
Latexmk is een programma (Perl script) om automatisch en naar behoefte latex en
bijbehoren programma’s (zoals bibtex en makeindex) uit te voeren. Het commando
latexmk -pdf filenaam

kijkt of het bestand filenaam.pdf ouder is dan filenaam.tex en voert dan pdflatex
filenaam uit. Indien nodig (bijvoorbeeld voor de inhoudsopgave of het verwerken van
referenties naar labels) wordt pdflatex meerdere keren gedraaid. Bovendien wordt
rekening gehouden met de noodzaak om tussendoor makeindex en bibtex te draaien
en evt. nog extra pdflatex runs die daardoor weer nodig zijn. Als er ingewikkeldere
afhankelijkheden zijn kunnen die in een bestand latexmkrc gespeci�ceerd worden.
Dit doe ik bijvoorbeeld voor het verwerken van fancyhdr.dtx waar een speciale
aanroep van makeindex nodig is, omdat de .dtx-bestanden een aparte index nodig
hebben, en bovendien het glossaries package op een ingenieuze manier gebruiken.
Zie hier de inhoud ervan:
$pdf_mode = 1;

$pdflatex = ’pdflatex %O %S’;

90 MAPS 51 Pieter van Oostrum

$makeindex = ’makeindex -s gind -g %S’;

Custom dependency for glossary/glossaries package

if you make custom glossaries you may have to add items

to the @cus_dep_list and corresponding sub-routines

add_cus_dep(’glo’, ’gls’, 0, ’makeglo2gls’);

sub makeglo2gls {

system("makeindex -s gglo -o ’$_[0]’.gls ’$_[0]’.glo");

}

Hierbij staan %S en $_[0}] voor de naam van het TEX-bestand (zonder extensie) en
%O voor meegegeven opties.

Voor de test suite is het gebruik van latexmkrc echter niet nodig.

Make
Make is een al lang bestaand programma om taken uit te voeren waarbij afhankeli-
jkheden tussen bestanden een rol spelen. Dit wordt vooral voor compilaties gebruikt,
om te voorkomen dat onnodig werk uitgevoerd wordt. Compilaties worden alleen
uitgevoerd als het bronbestand nieuwer is dan het gecompileerde bestand. Maar het
is ook geschikt voor andere taken. Een speci�catie in een z.g. makefile ziet er als
volgt uit:
fileout: file1 file2 ...

commando’s om fileout te maken

Het deel voor de dubbele punt (:) wordt target genoemd. Om een target te herbouwen
geef je het commando ‘make 〈target〉’. De commando’s onder het target worden
uitgevoerd als minstens één van de file1 file2 ... bestanden nieuwer is dan
〈target〉 of als 〈target〉 nog niet bestaat. De bestanden file1 file2 ... kunnen
zelf ook weer een speci�catie als 〈target〉 hebben om ze te maken, en 〈target〉 kan
zelf ook in een rechterkant voorkomen, zolang er maar geen cyclus ontstaat.

Make lijkt in dit opzicht op latexmk; de laatste kan beschouwd worden als een
gespecialiseerde versie van make.

Vaak worden in makefiles �ctieve targets opgenomen, bijvoorbeeld in de Makefile
van de fancyhdr testsuite:
all:

cp ../fancyhdr.sty ../extramarks.sty .

for f in *.tex; do echo ’***** Testing ’$$f’ *****’; latexmk -pdf $$f; done

Hierbij is all een �ctief target dat nooit gemaakt wordt. Omdat het niet bestaat zal
het commando ‘make all’ de volgende twee regels gaan uitvoeren. De eerste regel
kopieert de packages fancyhdr.sty en extramarks.sty naar de test-map, zodat we
altijd met de laatste versie werken. Daarna worden alle .tex bestanden door latexmk
verwerkt. De naam all is speciaal in make, omdat het als target gebruikt wordt als
het commando ‘make’ zonder verdere argumenten gegeven wordt.

De makefile in de testsuite heeft nog een �ctief target: check, en het commando
‘make check’ gaat alle PDF-bestanden die door bovenstaande commando gegenereerd
zijn, en die een equivalent in de map OUTPUT hebben met elkaar vergelijken met behulp
van diff-pdf. Dit is een vrij ingewikkeld stuk shell-script, maar de belangrijkste
regels eruit zijn:

if diff-pdf $$f OUTPUT/$$f; \

then echo $$f "- equal"; let ++cntequal; \

else echo $$f "- not equal"; let ++cntnequal; \

diff-pdf --view $$f OUTPUT/$$f; \

fi; \

Hierbij bevat $$f de naam van een PDF-bestand. Dus eerst wordt met diff-pdf het
bestand vergeleken met het bijbehorende bestand in de map OUTPUT. Als ze gelijk
zijn (“then”) dan wordt er alleen een regeltje op het console geschreven en een teller

Fancyhdr Ontwikkeling VOORJAAR 2021 91

van het aantal gelijke bestanden opgehoogd. Als ze ongelijk zijn (“else”) dan wordt
er geschreven dat ze ongelijk zijn, een teller opgehoogd voor het aantal ongelijke
bestanden en daarna ‘diff-pdf --view’ aangeroepen, zodat er een visuele inspectie
kan worden uitgevoerd.

Dit stukje staat dan in een lus die alle PDF-bestanden a�oopt.
In de meeste gevallen is er een bug als de “ongelijk”-tak genomen wordt. Ik ben

echter ook gevallen tegengekomen waar de verschillen miniem waren, waarschijnlijk
veroorzaakt door afrondingen of een vorm van aliasing. In dat geval werk ik gewoon
het bestand in de map OUTPUT bij. In andere gevallen moet ik de bug gaan zoeken.
Deze werkwijze helpt inderdaad om subtiele, en soms minder subtiele, fouten te
vinden.

Conclusie
Bij ontwikkeling van software en documentatie, zelfs in een relatief klein project
als fancyhdr of multirow is het aan te bevelen om gestructureerd te werken met
versiebeheer en geautomatiseerd testen.

Het werken met versiebeheer zorgt ervoor dat je een goed overzicht hebt van welke
wijzigingen in de loop van de tijd zijn opgetreden. Hierdoor is het zelfs mogelijk om
een ongewenste wijziging uit het verleden weer terug te draaien of te verbeteren.
Ook is het makkelijker om met nieuwe wijzigingen te experimenteren, zonder dat dit
nadelig is voor de ‘gewone’ ontwikkeling.

Door het testen te automatiseren is het mogelijk om een grote hoeveelheid tests te
gebruiken zonder dat dit nadelig is voor de hoeveelheid werk die dit veroorzaakt. Dit
komt de kwaliteit van de software ten goede.

Appendix A
Voorbeeld van een versie-overzicht.
% MODIFICATION HISTORY:

% Sep 16, 1994

% version 1.4: Correction for use with \reversemargin

% Sep 29, 1994:

% version 1.5: Added the \iftopfloat, \ifbotfloat and \iffloatpage commands

% Oct 4, 1994:

% version 1.6: Reset single spacing in headers/footers for use with

% setspace.sty or doublespace.sty

% Oct 4, 1994:

% version 1.7: changed \let\@mkboth\markboth to

% \def\@mkboth{\protect\markboth} to make it more robust

% Dec 5, 1994:

% version 1.8: corrections for amsbook/amsart: define \@chapapp and (more

% importantly) use the \chapter/sectionmark definitions from ps@headings if

% they exist (which should be true for all standard classes).

% May 31, 1995:

% version 1.9: The proposed \renewcommand{\headrulewidth}{\iffloatpage...

% construction in the doc did not work properly with the fancyplain style.

% June 1, 1995:

% version 1.91: The definition of \@mkboth wasn’t restored on subsequent

% \pagestyle{fancy}’s.

% June 1, 1995:

% version 1.92: The sequence \pagestyle{fancyplain} \pagestyle{plain}

% \pagestyle{fancy} would erroneously select the plain version.

% June 1, 1995:

92 MAPS 51 Pieter van Oostrum

% version 1.93: \fancypagestyle command added.

% Dec 11, 1995:

% version 1.94: suggested by Conrad Hughes <chughes@maths.tcd.ie>

% CJCH, Dec 11, 1995: added \footruleskip to allow control over footrule

% position (old hardcoded value of .3\normalbaselineskip is far too high

% when used with very small footer fonts).

% Jan 31, 1996:

% version 1.95: call \@normalsize in the reset code if that is defined,

% otherwise \normalsize.

% this is to solve a problem with ucthesis.cls, as this doesn’t

% define \@currsize. Unfortunately for latex209 calling \normalsize doesn’t

% work as this is optimized to do very little, so there \@normalsize should

% be called. Hopefully this code works for all versions of LaTeX known to

% mankind.

% April 25, 1996:

% version 1.96: initialize \headwidth to a magic (negative) value to catch

% most common cases that people change it before calling \pagestyle{fancy}.

% Note it can’t be initialized when reading in this file, because

% \textwidth could be changed afterwards. This is quite probable.

% We also switch to \MakeUppercase rather than \uppercase and introduce a

% \nouppercase command for use in headers. and footers.

% May 3, 1996:

% version 1.97: Two changes:

% 1. Undo the change in version 1.8 (using the pagestyle{headings} defaults

% for the chapter and section marks. The current version of amsbook and

% amsart classes don’t seem to need them anymore. Moreover the standard

% latex classes don’t use \markboth if twoside isn’t selected, and this is

% confusing as \leftmark doesn’t work as expected.

% 2. include a call to \ps@empty in ps@@fancy. This is to solve a problem

% in the amsbook and amsart classes, that make global changes to \topskip,

% which are reset in \ps@empty. Hopefully this doesn’t break other things.

% May 7, 1996:

% version 1.98:

% Added % after the line \def\nouppercase

% May 7, 1996:

% version 1.99: This is the alpha version of fancyhdr 2.0

% Introduced the new commands \fancyhead, \fancyfoot, and \fancyhf.

% Changed \headrulewidth, \footrulewidth, \footruleskip to

% macros rather than length parameters, In this way they can be

% conditionalized and they don’t consume length registers. There is no need

% to have them as length registers unless you want to do calculations with

% them, which is unlikely. Note that this may make some uses of them

% incompatible (i.e. if you have a file that uses \setlength or \xxxx=)

% May 10, 1996:

% version 1.99a:

% Added a few more % signs

% May 10, 1996:

% version 1.99b:

% Changed the syntax of \f@nfor to be resistent to catcode changes of :=

% Removed the [1] from the defs of \lhead etc. because the parameter is

% consumed by the \@[xy]lhead etc. macros.

% June 24, 1997:

% version 1.99c:

% corrected \nouppercase to also include the protected form of \MakeUppercase

% \global added to manipulation of \headwidth.

Fancyhdr Ontwikkeling VOORJAAR 2021 93

% \iffootnote command added.

% Some comments added about \@fancyhead and \@fancyfoot.

% Aug 24, 1998

% version 1.99d

% Changed the default \ps@empty to \ps@@empty in order to allow

% \fancypagestyle{empty} redefinition.

% Oct 11, 2000

% version 2.0

% Added LPPL license clause.

%

% A check for \headheight is added. An errormessage is given (once) if the

% header is too large. Empty headers don’t generate the error even if

% \headheight is very small or even 0pt.

% Warning added for the use of ’E’ option when twoside option is not used.

% In this case the ’E’ fields will never be used.

%

% Mar 10, 2002

% version 2.1beta

% New command: \fancyhfoffset[place]{length}

% defines offsets to be applied to the header/footer to let it stick into

% the margins (if length > 0).

% place is like in fancyhead, except that only E,O,L,R can be used.

% This replaces the old calculation based on \headwidth and the marginpar

% area.

% \headwidth will be dynamically calculated in the headers/footers when

% this is used.

%

% Mar 26, 2002

% version 2.1beta2

% \fancyhfoffset now also takes h,f as possible letters in the argument to

% allow the header and footer widths to be different.

% New commands \fancyheadoffset and \fancyfootoffset added comparable to

% \fancyhead and \fancyfoot.

% Errormessages and warnings have been made more informative.

Appendix B
Changes implemented in fancyhdr version 4.0
Version 4 is a significant rewrite of the package
But, except for the things mentioned under the [compatV3] option, it should be
backwards compatible with version 3.

Introduce package options: \usepackage[〈options〉]{fancyhdr}
Option [nocheck]. This will eliminate the check if the header/footer �ts in the
allocated vertical space (\headheight and \footskip resp.)
Options [compatV3] See below “Eliminate adjustments of \headheight and
\footskip” and “Avoiding global de�nitions in page styling commands”. I have been
thinking of making the name of this option
’I-should-not-do-this-but-I-want-to-be-compatible-with-version-3’. :)
Options [myheadings, headings] These rede�ne those page styles in terms of
fancyhdr (i.e. with the rules applied). Contrary to nccfancyhdr, they will NOT
become the default page style for the document. The nccfancyhdr options [plain]
and [empty] have not been implemented; I think this is useless.

94 MAPS 51 Pieter van Oostrum

Eliminate adjustments of \headheight and \footskip
If the header or footer is too high (more than \headheight or \footskip, resp.),
these values are no longer adjusted for the following pages. It was too confusing.
There will be a warning on each page unless option [nocheck] is given. However,
with the package option [compatV3] the old behaviour is kept. This should only be
used as a temporary measure, not as a �nal solution.

The \fancycenter command
\fancycenter[〈distance〉][〈stretch〉]{〈left-mark〉}{〈center-mark〉}
{〈right-mark〉} (taken from nccfancyhdr). This will �t the three parts in a box of
width \linewidth (which will be \headwidth in a header). This command works like
\hbox to\linewidth{〈left-mark〉\hfil〈center-mark〉\hfil〈right-mark〉} but
does this more carefully trying to exactly center the central part of the text if
possible. The solution for exact centering is applied if the width of 〈center-mark〉 is
less than \linewidth - 2*(〈stretch〉*〈distance〉 +
max(width(〈left-mark〉), width(〈right-mark〉))).
Otherwise the 〈center-mark〉 will slightly migrate to a shorter item (〈left-mark〉 or
〈right-mark〉), but at least 〈distance〉 space between all parts of line is provided. The
default values of 〈distance〉 and 〈stretch〉 are 1em and 3. If the 〈center-mark〉 is
empty, then \fancycenter is equivalent to the following command: \hbox
to\linewidth{〈left-mark〉\hfil〈right-mark〉}

Avoiding global definitions in page styling commands
Eliminated global de�nitions of headers/footers. All de�nitions are now local. The
\global case was originally so that you could do de�nitions in a group and they
would be applied globally. This was a mistake. If you make them locally they should
stay local. And it caused sometimes problems with switching page styles. However,
with the package option [compatV3] it keeps the old behaviour. This is supposed to
be a temporary measure. It will disappear in the future.

\fancypagestyle{〈style-name〉}[〈base-style〉]{〈definitions〉}
The command \fancypagestyle gets an additional optional parameter
[〈base-style〉]. Page style fancy can now also be rede�ned with \fancypagestyle.

Page style fancydefault
Page style fancydefault is page style fancy with all the defaults embedded (i.e. all
the \fancyhead, \fancyfoot defs, \headrule, \footrule, \headrulewidth,
\footrulewidth and the required \chaptermark and \[sub]sectionmark
commands). Page style fancy does not have these embedded, it picks them up from
the environment.

Parameter \headruleskip
This parameter changes the distance between the header text and the decorative line
under it, similar to \footruleskip.

Commands \fancyheadinit, \fancyfootinit and \fancyhfinit
With \fancyheadinit{〈code〉} you can de�ne some code that will be executed just
before the construction of the header. Similarly, the code in \fancyfootinit{〈code〉}
is executed in the footer. And \fancyhfinit{〈code〉} sets its code for both the
header and the footer.

Fancyhdr Ontwikkeling VOORJAAR 2021 95

Changes from the nccfancyhdr comments that will not be
implemented
\headstrutheight and \footstrutheight
From nccfancyhdr:
The distance between rules and headers/footers is controlled with the
\headstrutheight and \footstrutheight commands. We insert special struts in
headers and footers whose depth are calculated using the values of the mentioned
commands. The defaults for both \headstrutheight and \footstrutheight are
0.3\normalbaselineskip. You can rede�ne them in just the same manner as rule
width commands above. (i.e. with \renewcommand).
In fancyhdr this is implemented using \headruleskip and \footruleskip.

incorrect vertical alignment in headers leads to raising headers a bit
The problem is that the header in fancyhdr is at the same height as the traditional
headers, but that includes the rule. I.e. the rule is at the same height as the text in
traditional headers, which means the text is shifted up. In nccfancyhdr the text is
aligned the same as the traditional headers, so the rule comes out lower. But that
means the rule is below the area reserved for the header. In other words, \headsep is
no longer the distance between the header and the page body, but between the
header text and the page body. I don’t want to change that, because it is an
incompatible change.

some features introduced fancyhdr are unsafe
(“a special cycle \@forc is introduced with the \def command”): no longer valid, I
think. I cannot �nd anything wrong here. Maybe it is meant that the name \@forc
could give a con�ict, but now the name is localised.

Notes
1. https://books.google.com/books?id=qsXcBwAAQBAJ
2. George Grätzer, Advances in TEX. IV. Header and footer control in LaTEX.

Notices Amer. Math. Soc. 41 (1994), 772-777,
https://server.math.umanitoba.ca/~gratzer/images/otherarticles/OA5.pdf

3. https://github.com/latex3/latex2e
4. https://github.com/latex3/latex3
5. https://github.com/pietvo/fancyhdr resp. https://github.com/pietvo/multirow
6. https://github.com/pietvo/fancyhdr-examples
7. https://github.com/vslavik/diff-pdf

Pieter van Oostrum
Leidsche Rijn
Utrecht
pieter@vanoostrum.org

96 MAPS 51 Pieter van Oostrum

Siep Kroonenberg VOORJAAR 2021 97

Ontwikkelingen in TEX Live

De 2021 editie van TEX Live wordt verwacht in april. Een goed moment om te kijken
wat er de laatste jaren is veranderd.

Natuurlijk zijn er altijd gebruikers die willen dat ze hun met bloed, zweet en
tranen verworven vaardigheden gewoon kunnen blijven gebruiken. Weliswaar zijn
ze daarvoor bij LaTEX aan het beste adres, maar toch kan het geen kwaad om af en
toe te kijken wat er veranderd is.

TEX Live zelf
Bestanden vinden. TEX kan nu de font- en macro-bestanden van de gebruiker

vinden ongeacht hoofd- of kleine letters, als ze zich tenminste bevinden
onder $HOME/texmf, of voor Windows onder %userpro�le%\texmf. Dit is
con�gureerbaar. Geïntroduceerd in 2018.

MacOS. Sinds de verschijning van Catalina, de voorlaatste MacOS versie, stelt Apple
nieuwe validatie-eisen aan software, waarvoor ze de term hardening gebruiken.
Dick Koch beschrijft in http://tug.org/TUGboat/tb40-2/tb125koch-harden.
pdf wat er allemaal bij kwam kijken om TEX Live daardoorheen te slepen. Voor
dit jaar zijn ghostscript, LaTeXit, TEX Live Utility en TeXShop weer van de
partij, allemaal ‘hardened’ en ‘universal’, i.e. met ondersteuning voor zowel
Intel- als de nieuwe ARM processoren.

Nieuwe GUIs. Voor tlmgr (TEX Live Manager) zijn er nu tlshell en tlcockpit (een
Java programma), beide sinds 2018. Een nieuwe installer GUI verscheen in
2019. De oude tlmgr GUI is nog steeds beschikbaar onder Linux, maar de oude
installer GUIs zijn weg.

Postscript viewer. PSView, the PostScript viewer voor Windows, deed het al
enkele jaren niet meer en is nu echt weg. Er is nu wel een nood-oplossing: je
kunt in de verkenner op een eps- of ps bestand klikken (of rechtsklikken) en
dan ervoor kiezen om het bestand met psviewer te openen. Dit programma zet
het bestand om naar een tijdelijk pdf-bestand en opent deze pdf in de default
pdf-viewer.

64-bit binaries voor Windows. Het blijkt niet eenvoudig om de TEX Live
infrastruktuur geschikt te maken voor 64-bit en 32-bit binaries naast elkaar
onder Windows. Omdat 32-bit prima werkt onder 64-bit Windows is TEX Live
voor Windows nog steeds 32-bit.

Voor zware documenten kan 64-bit wel degelijk de moeite waard zijn. Het is
gelukkig mogelijk om zonder al te veel moeite 64-bit binaries toe te voegen aan
een Windows TEX Live installatie, zie http://tug.org/texlive/windows.html
en http://tug.org/texlive/custom-bin.html#w64.

98 MAPS 51 Siep Kroonenberg

Overig
LuaLaTEX. Wie in het verleden LuaLaTEX links liet liggen vanwege de traagheid

ervan, moet eens (of eigenlijk minstens tweemaal1) proberen hoe compilatie
met LuaLaTEX nu uitpakt. Er is een gerede kans dat er niets aan een voor
XeLaTEX bestemd bron-bestand hoeft te worden veranderd. Maar de huidige
focus van ontwikkeling, LMTX (LuaMetaTeX) is nog niet vertegenwoordigd in
TEX Live.

Unicode. Ook voor LaTEX en pdfLaTEX is de default input encoding tegenwoordig
utf8, wat een superset is van de aloude ascii encoding, maar niet van ansi of
latin-1.

latex-dev. Zowel TEX Live als MiKTEX bevatten de stabiele en de ontwikkel-versie
van LaTEX naast elkaar. De ontwikkel-versie kan worden aangeroepen als
latex-dev, pd�atex-dev etc.

LaTEX Project. En natuurlijk werkt het LaTEX Team gestaag verder aan een betere
basis voor LaTEX, zoveel mogelijk met behoud van compatibiliteit van bestaande
code. De verschillende engines zijn ook waar mogelijk gelijkgetrokken.

Lettertypes. Er komen steeds meer lettertypes beschikbaar, ook met wiskundige
symbolen.

Tenslotte
De TEX Live Guide (online: http://tug.org/texlive/doc/texlive-en/texlive-en.
html#news) bevat een Release history met Karl Berry’s selektie van belangrijke wijzi-
gingen per release, met technische details.

Als je op de hoogte wilt blijven wat betreft nieuwe en bijgewerkte pakketten
dan kun je je op de CTAN Announcements mailing list (https://lists.dante.de/
mailman/listinfo/ctan-ann) abonneren.

Notes
1. Bij de eerste run moet allerlei font-informatie verzameld worden. Dit kan �ink wat vertraging
opleveren.

Siep Kroonenberg

