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Finding all
intersections of paths in MetaPost

Abstract

In this article we will discuss different ways to implement macros to find all intersections of
paths in MetaPost. We will first work out some rather simple ideas, providing partial solu-

tions on the macro level. We then show by an example how the intersectiontimes macro
works, and describe how it was extended in the engine by Hans Hagen.

Introduction

In MetaPost the fundamental way to find intersections of paths is to first find the
times of the intersections by running

p intersectiontimes q

If the paths p and q intersect, this will return a pair of times (t1,t2) such that the
path p at time t1 intersect the path q at time t2. Often, but not always, this will
return the first intersection point of the paths p and g, in the sense that t1 will be the
smallest time along p for which the paths intersect. The uncertainty comes from the
implementation, that relies on a bisection algorithm for finding intersection points
of Bézier curves. The algorithm is inherited from MetaFont, and described in detail
in [Knu86], but we will also illustrate it later.

In Figure 1 we have drawn a path p in blue. Along this path we have placed ten
different circles, each playing the role of . We runp intersectiontimes qand draw
with a green dot the point that correspond to the time returned. For the first four
circles and for the tenth circle, intersectiontimes returns the second intersection
point. For the fifth to ninth circle it returns the first intersection point.!

\startMPcode[instance=doublefun]
numeric n ; n:=10 ;
path p,q ;

p = (0,0) .. (6cm,4cm){dir 20} .. {up}(6cm,Q) ;
drawarrow p withcolor darkblue ;

for i = 1 upto n :
q := fullcircle scaled 30bp shifted point (i/(n+1)) along p ;
drawarrow q withcolor darkred ;
tone := xpart (p intersectiontimes q) ;
drawdot point tone of p withpen pencircle scaled 6bp
withcolor darkgreen ;
endfor ;
\stopMPcode

1. We will often work with pairs of paths p and q, and since the order will be important, we will always
draw the first one (p) in blue and the second one (q) in red. Moreover, green dots will be used for the
built-in macros (or ones written by others). We use orange dots to show our constructed points.



48 MAPS 52 Mikael P. Sundqvist

Figure 1.

This is sometimes inconvenient. For example, if we want to cut one path after it in-
tersects another path for the first time (usually done with cutafter), or if we want
to find all intersection points of two paths (how to loop?), and it would be desir-
able to have a more reliable algorithm for finding the first intersection point (or all
intersection points) of two paths. We are not alone in thinking so?

The macro cutbefore is used as p cutbefore g; it is supposed to return the part
of the path p that remains after the first intersection of p and q. It often does, but in
the MetaPost manual [Hob20] we can read that p cutbefore g is equivalent to

subpath (xpart(p intersectiontimes q), length p) of g

As intersectiontimes is used, we will not always get the first intersection, and there-
fore the user must be careful to see that the result is the intended.

\startMPcode[instance=doublefun]

path p, q;

p := (0,0) -- (5cm,0) ;

g := fullcircle rotated -20 scaled 2cm xshifted 2.5cm

pair b ; b := (p intersectiontimes q) ;

drawarrow p withcolor darkblue ;

drawarrow q withcolor darkred ;

drawdot point xpart b of p withpen pencircle scaled 6bp
withcolor darkgreen ;

\stopMPcode

’

(a) (b)

Figure 2. (a) For this pair of curves intersectiontimes returns the times for the second intersection
point. (b) As a consequence cutbefore cuts at the time that intersectiontimes returned.

2. See for example the questions https://tex.stackexchange.com/q/79256/52406 and https://tex.stackexchange
.com/q/180510/52406.
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MetaPost paths are piecewise built with help of Bézier curves, polynomials of degree
three. For us it is convenient to think of a path p as a parametrized path where the
parameter t, which we usually call time, runs over a certain interval with endpoints
0 and length p. For the path p in figure 1 it holds that length p equals 2; the three
points used in the definition correspond to time 0, time 1 and time 2. We call the
parts between the points the segments of the path. Each segment corresponds to a
unit time interval.

In the search for solutions

At TgX StackExchange, in an answer?® to the question mentioned before, we find
a suggestion on how to find all intersection points of two paths. It is based on a
suggestion on the MetaPost mailing list [Hen08].

\startMPcode[instance=doublefun]
path p, q, r ;
p := fullcircle xscaled 144 yscaled 72 ;
q := fullcircle xscaled 72 yscaled 144 ;
r:=p;
drawarrow p withcolor darkblue ;
drawarrow q withcolor darkred ;
n:=0 ;
forever :
r := r cutbefore q ;
exitif length cuttings = 0 ;
r := subpath(epsilon, length r) of r ;
z[n] = point @ of r ;
drawdot z[n] withpen pencircle scaled 6bp
withcolor darkgreen ;
n:=n+1;
endfor;
\stopMPcode

As you can see in Figure 3(a) the intersection points are found. In Figure 3(b) we use
the same method, but with the paths p and q changed into

p:= (0, 0) -- (5cm, @) ;
q:= fullcircle rotated -20 scaled 2cm xshifted 2.5cm ;

only the right intersection point is found, which is not a surprise to you by now.

(a) (b)

Figure 3.

3. https://tex.stackexchange.com/a/79332/52406
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The document [Thul7] contains a lot of beautiful MetaPost graphics to get inspira-
tion from. It contains also a nice discussion on the difficulty of finding all intersection
points of two curves (Sections 9.4.1 and 9.4.1), concluding with essentially the same
suggestion as the one given above.

To find the first intersection time, a first try

One way to find all intersection points of two paths could be to first have a method
to find the first intersection point. We will try to find the first intersection point by
repeating the use of intersectiontimes on smaller and smaller subpaths.

We illustrate the idea by looking at the line and the circle again. First we use p
intersectiontimes q to find one (any) intersection point, see Figure 4(a). Then we
cut away the part of the path p that comes after that intersection. This is shown in
Figure 4(b). In fact, we cut just a bit more, to be sure not to arrive at the point we
just got. Once that is done, we repeat, see Figure 4(c), where a second intersection
is found. In our example, this is the last one, since once we cut again, the paths do
not intersect any more, see Figure 4(d). The algorithm returns the time of the last
intersection point that was found, in our case the time of the orange dot marked in
Figure 4(c).

£
N

P

(a) (b)
(c) (d)
Figure 4.

We implement this algorithm below.

\startMPdefinitions{doublefun}
tertiarydef p firstintersectiontimetryone q =

begingroup;
save tres, tmpt, tmpp, tmpl ;
pair tres ; tres := (-1, -1) ;

pair tmpt ; tmpt :
path tmpp ; tmpp:=p;
numeric tmpl ;
forever :
tmpt := tmpp intersectiontimes q ;
exitif xpart tmpt < 0 ;
tmpl := arclength subpath(@, xpart tmpt) of tmpp ;
tres := (arctime tmpl of p, ypart tmpt) ;
tmpp := subpath(@, (xpart tres) - epsilon) of p ;
endfor ;
tres
endgroup
enddef ;
\stopMPdefinitions

(length p, 0) ;
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It might be helpful to make a few comments. The tmpl variable might at a first glance
seem superfluous. But the tmpt variable calculates the time along tmpp. It doesn't
necessarily hold that this time is the same as the time along the original path p. So,
we work with lengths instead, since they do not change with parametrizations. We
first use arclength set tmpl to the length of the part of the temporary path tmpp
before the cut. Then we use arctime to calculate the time on the original path p that
corresponds to this length. This is probably a stupid thing to do numerically, since
there are several points where inaccuracies might be introduced, but at least it seems
to work for simple examples. When the conversion is done we update the temporary
path tmpp, and cut away an epsilon (that is 1/65536) of it in the end, not to get stuck
in an infinite loop.

We test this definition on the different combinations of p and q from Figure 1. This
is done with the following code*, and the result is shown in Figure 5.

\startMPcode[instance=doublefun]
numeric n, standardfirst, ourfirst ; n := 10 ;

path p,q ; p := (0, @) .. (6cm, 4cm){dir 20} .. {up}(6cm, 0) ;
drawarrow p withcolor darkblue ;

for i = 1 upto n :
q := fullcircle scaled 30bp shifted point (i / (n + 1)) along p ;
drawarrow q withcolor darkred ;
standardfirst := xpart (p intersectiontimes q) ;
drawdot point standardfirst of p withpen pencircle scaled 6bp
withcolor darkgreen ;
ourfirst := xpart (p firstintersectiontimetryone q) ;
drawdot point ourfirst of p withpen pencircle scaled 4bp
withcolor "orange” ;
endfor;
\stopMPcode

<2

Figure 5.

4. Note that we write darkred and darkblue but "orange”. The orange color is undefined in MetaPost/Meta-
Fun, so we borrow the definition from ConTEXt.
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As you can see, the new macro returns the first intersection points in all ten cases.
This could have been the happy end, but, as we will see, it is not. Not to be too
crestfallen at this point, we show in Figure 6 some examples where the algorithm
works.

(@) (b)

X

() (d)

Figure 6.

To find the first intersection time, a second try

If the paths p and g start at the same point we have a problem. Our algorithm gets
stuck in an infinite loop. This happens for example for the paths

p := (0, @){dir 45} .. (5cm, 1cm) ;

g := (0, ) -- (5cm, @cm) ;

The standard solution with p intersectiontimes q returns the intersection at time
zero, and we have marked that point in Figure 7.

Figure 7.

To overcome this problem we introduce a test to check if we have ended up at the
beginning of the path. We introduce a boolean tzero that we set to true if the inter-
section time found is less than a certain value, which we have chosen to be epsilon.

\startMPdefinitions{doublefun}
tertiarydef p firstintersectiontimetrytwo q =
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begingroup ;
save tres, tmpt, tmpp, tmpl, tzero ;
pair tres ; tres := (-1, -1) ;

pair tmpt ; tmpt := (length p, 0) ;

path tmpp ; tmpp :=p ;
numeric tmpl ;

boolean tzero ; tzero := false ;
forever
tmpt := tmpp intersectiontimes q ;

exitif xpart tmpt < 0 ;
if xpart tmpt < epsilon :
tzero := true ;
exitif true ;
fi
tmpl := arclength subpath(@, xpart tmpt) of tmpp ;
tres (arctime tmpl of p, ypart tmpt) ;
tmpp subpath(0, (xpart tres) - epsilon) of p ;
endfor
if tzero :
tmpt
else :
tres
fi
endgroup
enddef ;
\stopMPdefinitions

In Figure 8(a) we see that our new approach works well, the first point is found.
In Figure 8(b) we have just included an example where the paths intersect at the
endpoint of p. No problem!

(a) (b)

Figure 8.

We will not refine the algorithm for finding the first intersection time further here,
but leave only some comments.

The constant epsilon is the time step we take from a previously found intersection
time. If the path p consists of many points (this is the case for the case of the sin(1/x)
path above, where very small sampling step is chosen) then this means that two
points in the path can lie very close to each other. The time step between them is still
one, so an epsilon time step away along the path might result in indistinguishable
points, and that might result in an infinite loop. One way to solve such an issue could
be to add a new variable to the macro that replaces epsilon. That would require
more from the user; for example it would be necessary to have the sampling step in
function graphs in mind while working with intersections.

Instead of removing an epsilon time part of the path, one could convert to lengths
and remove an epsilon length of the path. That would lead to a potential lost of
accuracy in the calculations, but it could at the same time be easier for the user to
set a threshold in terms of length instead of time.
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To find all intersection times, a first try

With the time for the first intersection at hand, it is in principle straightforward to
find all intersection times. We illustrate with the line and the circle again. In Fig-
ure 9(a) we have marked the first intersection point. This time we cut away the part
of the path p before the intersection point. This is done in Figure 9(b). Again, we
need to cut a bit more, not to end up with an infinite loop. So, in Figure 9(c) we
have cut just a bit more, and the next intersection is found. Finally, in Figure 9(d) we
have cut away so much that the paths do not intersect anymore. We have found all
intersections.

v

L0

v

P

() (d)

Figure 9.

We try with the following algorithm.

\startMPdefinitions{doublefun}

tertiarydef p allintersectiontimestryone q =
begingroup ;
save tmpt, tmpp, tmpptmp, tmpl, it, n ;
pair tmpt ;
path tmpp, tmpptmp ; tmpp := p ;
numeric tmpl ;

pair it[] ;
numeric n ; n := 0 ;
forever :
tmpt := tmpp firstintersectiontimetrytwo q ;

exitif xpart tmpt < 0 ;

tmpptmp := subpath(xpart tmpt, length tmpp) of tmpp ;
tmpl := arclength p - arclength tmpptmp ;

itl[incr n] := (arctime tmpl of p, ypart tmpt) ;

tmpp := subpath(xpart tmpt + eps, length tmpp) of tmpp ;

endfor ;
topath(it, --) % it[1] -- it[2] -- ... -- it[n]
endgroup

enddef ;

\stopMPdefinitions

We first test it on the examples from Figure 6. The code for the ellipses is shown
below, the other are similar. As you can see in Figure 10 it works in all cases.

\startMPcode[instance=doublefun]
path p ; p := fullcircle xscaled 144 yscaled 72 ;
path q ; q := fullcircle xscaled 72 yscaled 144 ;
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drawarrow p withcolor darkblue ;
drawarrow q withcolor darkred ;

path b ; b := p allintersectiontimestryone q ;

for i = 0 upto length b :
drawdot point xpart (point i of b) of p
withpen pencircle scaled 6bp
withcolor "orange"” ;
endfor ;
\stopMPcode

(a) (b)
/ T g /’\— \
_ . \/
(c) (d)
Figure 10.

We also try it on the paths from Figure 5, the result can be seen in Figure 11. Again
we get all intersections.

The name of this section suggests that this implementation has problems, and
indeed it has. This time it is not the first point of the path p that is the problem, but
the last.

To find all intersection times, a second try

The macro allintersectiontimestryone works fine for the paths Figure 8(a) that
intersect at the first point of p, but it hangs with an infinite loop for the paths in
Figure 8(b). The reason is that the paths intersect at the endpoint of p. We must,
similarily as we did when we found the first intersection point, check if we are at
the end of the path. We rewrite the macro like this.
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\startMPdefinitions{doublefun}
tertiarydef p allintersectiontimes q =
begingroup ;
save tmpt, tmpp, tmpptmp, tmpl, tmpL, it, n, a, cuttime ;
pair tmpt, it[] ;
path tmpp, tmpptmp ;

numeric tmpl, tmpL, n ; n := 0 ;

tmpp :=p ;

tmpt := tmpp firstintersectiontimetrytwo q ;
forever:

exitif xpart tmpt < 0 ;
exitif length(tmpp) = 0 ;
tmpptmp := subpath(xpart tmpt, length tmpp) of tmpp ;
tmpl := arclength p - arclength tmpptmp ;
itlincr n] := (arctime tmpl of p, ypart tmpt) ;
tmpL := arclength(subpath(@, xpart tmpt) of tmpp) + eps ;
if tmpL > arclength tmpp :
exitif true ;
else :
cuttime := arctime (tmpL) of tmpp ;
tmpp := subpath(cuttime, length tmpp) of tmpp ;
fi ;
tmpt := tmpp firstintersectiontimetrytwo q ;
endfor ;
topath(it, --)
endgroup
enddef ;
\stopMPdefinitions

Figure 11.
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Here we have introduced tmpL to check if we are at the endpoint of the path p. As
we see in Figure 12 we now catch intersections both at the beginning and at the end
of the path p.

(a) (b)

Figure 12.

We could continue here with refinements. We could for example condition on if p is
a loop or not, we could tune the size of the steps® with which we jump ahead after
finding an intersection point, and so on. But our final way of solving the problem
will be different, so we stop here. You have a macro that works well in most cases.

Returning to the intersectiontimes algorithm

I was discussing the problem of finding all intersection points with Hans Hagen, and
he had a slightly different idea than the one we have described above. Instead of first
iterating to get the first intersection point and then to cut and iterate, Hans wanted
to tweak the existing intersectiontimes algorithm in order to find all intersection
times. Let us first discuss the intersectiontimes algorithm in more detail.

We recall that a path in metapost can be thought of as an array® of points and con-
trol points that together describe the segments that build the path. In Figure 13(a)
we have drawn a path with three segments and labeled the four points that define it.
Each segment correspond to a unit time interval, and it can mathematically be de-
scribed by a Bézier curve. In Figure 13(b) we have emphasized the segment between
time 2 and time 3, that is subpath (2,3) of p. We have also drawn the two control
points and control lines of this segment.

3
1 1
°
0 9 (.)
(a) (b)
Figure 13.

The intersectiontimes macro iterates as mentioned over the different segments of
the paths. This reduces the problem of finding all intersection times into the problem
of finding the intersection times for every pair of segments. This is done via bisection
of the time intervals, working with certain extended boundingboxes (see below). If
the parts” pX of p and qY of q have extended boundingboxes that intersect, they are

5. The eps (not epsilon) is not a mistake. It will make our examples work. This sensitivity suggests that
the method we use is non-optimal.

6. It is in fact a circular linked list. These are more dynamic in memory, and fits well with the use of
control points when paths are cycled.

7. Here you can think of X and Y as a given sequence of zeros and ones. We add o for the subpath corre-
sponding to smaller time values, and 1 for larger.
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halved (with respect to time) into pXe, pX1, q¥@ and qY1, and the algorithm works on
the new parts in the following order:

1. pXo is tested against qY0,
2. pXo is tested against qY1,
3. pX1 is tested against qYo,
4. pX1 is tested against qY1.

We give an example to show how the intersectiontimes macro works on a pair of
paths consisting of two points each (that is of time length 1, or, if we want, with one
segment). We have drawn p and q in Figure 14; the paths intersect at three points.
We follow the first few steps of the algorithm in Figures 15-30.

Figure 14.

Figure 15. The starting point. For each path we draw its extended boundingbox, that is the smallest axis-
parallel rectangle that includes both the points and the control points of the path. The extended boundingbox
always contains its path, so if the two extended boundinboxes don't intersect® then the paths cannot intersect.
Here the rectangles intersect. This does not guarantee that the paths intersect; it only means that we should
continue with the next step.

8. We say here that two rectangles intersect if they have points (interior, or on the rectangle) in common



Mikael P. Sundqvist VOORJAAR 2022

S

Figure 16. We divide p and q into two pieces at time 1/2, and call the new paths po, p1, g2 and q1.
The darkblue path is po and the darkred one is q1. Since their extended boundingboxes intersect again, we
continue with the division.

P

Figure 17. We divide po in the middle into po@ and po1. We also divide g0 into two paths q0@ and q11.
Here we have drawn p0o and q00. Again, we notice that their extended boundingboxes intersect.

>

Figure 18. We have divided p00 and q0@ in halves. Here we have drawn the paths p000 and q0eo, and
their extended boundingboxes. We note that the boxes do not intersect.

N

Figure 19. The previous extended boundingboxes did not intersect. We change one of the subpaths, and
since we want to have the intersection point as early as possible on the first path p we try first to change
the subpath of q. We see that the extended boundingboxes of p200 and q001 do intersect.

59
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Figure 20. The extended boundingboxes of p000@ and q0@10¢ do not intersect.

Figure 21. The extended boundingboxes of p2000 and q0011 do not intersect.

Figure 22. The extended boundingboxes of pe001 and q0010 do intersect.

Figure 23. The extended boundingboxes of p20010 and q0@100 do not intersect.

Figure 24. The extended boundingboxes of pe0010 and q0@101 do not intersect.
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Figure 25. The extended boundingboxes of p00011 and q0@100 do not intersect.

\/

Figure 26. The extended boundingboxes of po0011 and q0@101 do not intersect. This means that we did
enter a dead-end.

.

Figure 27. The dead-end pushed us back here. The extended boundingboxes of p001 and q000 do not
intersect.

~—

Figure 28. The extended boundingboxes of po@1 and qo01 do intersect.

<

Figure 29. The extended boundingboxes of p0010 and q0010 also intersect.
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Figure 30. The extended boundingboxes of po0100 and q0@100 also intersect.

We could in principle continue this iteration as long as it is numerically mean-
ingful, but we stop here. In Figure 30 we note that the small subpaths actually do
intersect. This happens along the path p00100, which means that the time ¢ along p
satisfies the inequality

4 5
35 = 0-001005 < ¢ < 0.001015 = .

Hence, if we set ¢ to be the mean value

t71(4+5>79
—2\32732) 64

then the error (in time!) we make is bounded by

1/5 4\ 1

2\32 32) 64
In practice the intersectiontimes macro has some predefined tolerance, and checks
if the size of the extended boundingboxes are smaller than that tolerance. Once the
sizes are smaller than the tolerance, it considers the paths to intersect, exits the loop

and returns a pair with the times along the paths p and q. If it does not find an
intersection, it returns the pair (-1,-1).

The final(?) solution

We saw in the previous section how p intersectiontimes g works with bisections
to find one intersection of p and q. We have seen that often, but not always, it returns
the first intersection (measured in time along p).

Hans Hagen realised that instead of exiting the loop when an intersection is found,
one could try again with the same pair segments, but this time neglecting the inter-
section time that was found. In the code in the engine version the crossing is located
with a dedicated function that communicates via variables that are global to the in-
stance.

One could perhaps argue that it would be better to cut and run on the differ-
ent subpaths, or to just continue directly when the intersection was found. But that
would introduce other complications and inaccuracies.

Because we suffer from the same issues as the macro approach we described above,
there are three extra tricks used: we have an extra counter that makes sure that when
we have some deadlock we can get out of it (like deadcycles in TgX). We also need
to ignore duplicates that we get because of the small step and inaccuracies; for that
we need to trim 8 bits resolution in order be on the safe side. The test examples of
the macro variant was instrumental here. Finally we explicitly need to check the end
points because otherwise we miss them, which again sounds familiar from the macro
variant.
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Figure 31. The extended boundingboxes of po and q1 do intersect.

In the step-by-step example we have shown above, we only look at the first halves
of p and q. All subpaths are followed by a zero, poX and qoY. This is what we get
in the first run. If we would have continued, we would have got sufficiently small
rectangles that meet, and the first intersection time. In the next run, we first end up
at the same intersection time, but reject it, and then, eventually, we would end up in
the second half of q. The first pair of rectangles will be the ones given in Figure 31.
These rectangles intersect, so the loop will continue; in fact it will find the second
intersection point here. That would be run two on the segments.

In the third iteration, we will end up at, and skip, the first two intersections. We
will then eventually continue by comparing the second half of p with the first half
of q. This is seen in Figure 32; the extended bounding boxes do not intersect, so we
get no intersection.

o

Figure 32. The extended boundingboxes of p1 and q@ do not intersect.

The third iteration continues, and we finally end up in the second half of p and the
second half of g, see Figure 33. These intersect, and we will find the third intersection
point.

Figure 33. The extended boundingboxes of p1 and q1 do intersect.

When the third intersection point is found, we start the fourth one. This time, we will
meet the previous three intersections, and then we will not find any more. The loop
is complete. In Figure 34 we have marked the intersections found by the algorithm.
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The new macros
To sum up, we now proudly present a set of new macros. First of all
p intersectiontimeslist g

This one takes two paths p and q and returns a path with the intersection times,
where the first coordinate of each point is the time along p and the second the time
along g. Then we have

p sortedintersectiontimes q

that also returns a path with the intersection times of the paths p and g, sorted in
increasing order with respect to the times of p.
To find all intersection points, there is

p intersectionpath g

that returns a path consisting of the points where p and q intersect, sorted so that
the points appear in increasing order with respect to time along p. In fact, this macro
first uses intersectiontimes to find the times, and then for each pair t of intersection
times it returns the middle point of the paths, that is .5[xpart t of p,ypart t of
ql. This is the classical approach of intersectionpoint. It might not always be what
we want, since the points might not be on any of the two paths. To use the points of
p or g one can instead use

p firstintersectionpath q
or
p secondintersectionpath q

Since the macros cutbefore and cutafter are relying on intersectionpoints we
have also introduced

p cutbeforefirst q

that returns the part of p that remains when the part before the first intersection
point with q is cut away, and

p cutafterfirst q

that returns the part of p that remains when the part after the first intersection point
with q is cut away. Similarily, there are

p cutbeforelast q

and

p cutafterlast g

that work on the last intersection (along the first path p) of p and q.
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Other tools

It is also possible to find all intersection points by using some other common drawing
tools. In Figure 35 we show the intersectionpoints of the curves y = 2sin(272z) and
y =1/(1+ 2z) for 0 < x < 5. We say something about each tool below, and provide
the code used in each case.

Asymptote

Asymptote is a relative to MetaPost, and it seems that its macro intersection uses
a similar approach as intersectiontimes, inherited from MetaFont. We find the fol-
lowing in Section 6.2 on Paths and guides of the manual [HBP22]:

“If p and q have at least one intersection point, return a real array of length 2
containing the times representing the respective path times along p and q, in
the sense of point(path, real), for one such intersection point (as chosen by
the algorithm described on page 137 of The MetaFont book). The computations
are performed to the absolute error specified by fuzz, or if fuzz < 0, to machine
precision. If the paths do not intersect, return a real array of length 0.”

The intersections (plural!) macro is used to find all intersection points of two
paths. It is not mentioned in the just cited document how it obtains all the intersec-
tion points. The code below was placed in a file, and then we ran asy on it.

unitsize(lcm) ;
import graph ;

real f(real x) { return 2x(sin(2xpi*x)+1) ; }
path A = graph(f,0,5,n=200) ;
draw(A, arrow = Arrow(size = 5), rgb(@, @, 0.5) + linewidth(1bp)) ;

real g(real x) { return 4/(1+2*x) ; %}
path B = graph(g,0,5,n=200) ;
draw(B, rgb(e.5, @, @) + linewidth(1bp)) ;

pair vert[] = intersectionpoints(A, B) ;
for(int k = @ ; k <= vert.length-1; ++k){
dot(vert[k], orange + linewidth(6bp)) ; 3}

MetaPost/MetaFun
We use the new macro intersectionpath to find all intersections between two paths.

\startMPcode[instance=doublefun]

path A, B, C ;

A := function(1, "x", "2xsin(2xpixx) + 2" ,0 ,5 ,1/40) scaled(icm) ;
B := function(l, "x", "4/(1 + 2*x)" , 0, 5, 1/40) scaled(licm) ;

C := (A intersectionpath B) ;

drawarrow A withcolor darkblue ;

draw B withcolor darkred ;

drawpoints C withpen pencircle scaled 6bp withcolor "orange” ;
\stopMPcode

Pstricks

For pstricks one can use the pst-intersect package [Ber14]. It is not clear from the
manual how it finds the intersections, but skimming the code, there seems to be some
kind of bisection going on, with the clipping of paths (my brain is not constructed to
read PostScript code). It is mentioned in the manual that it borrowed the Graham Scal
algorithm to calculate the convex hull of a set of points from Bill Casselman's won-
derful book Mathematical Illlustrations (kindly made available online [Cas05]). The
implementation in pst-intersect can also handle higher order Bézier curves, and
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perhaps it is for these that the convex hull algorithm is needed. The XTEX packages
multi-do, pst-intersect and xcolor were loaded in the example below.

\begin{pspicture}(5,4.4)
\pssavepath[linecolor=blue!50!black,linewidth=1bp]{A}{
\psplot[plotpoints=200,arrows=->]{0}{5}{x 360 mul sin 1 add 2 mul} }
\pssavepath[linecolor=red!50!black,linewidth=1bp]{B}{
\psplot[plotpoints=50]{0}{5}{4 2 x mul 1 add div} }
\psintersect[linecolor=orange, showpoints,linewidth=2bp]{A}{B}
\end{pspicture}

Tikz

Tikz has in the intersections library support for finding all intersections of two
arbitrary paths. It is not clear from the manual [Tan22] how it works, but in Section
13.3.2 we can read

“This library enables the calculation of intersections of two arbitrary paths. How-
ever, due to the low accuracy of TgX, the paths should not be ‘too complicated’.
In particular, you should not try to intersect paths consisting of lots of very small
segments such as plots or decorated paths.”

In the example below we have loaded the tikz package, the intersections library
and also defined two colors

\definecolor{darkblue}{rgh}{o, 0, 0.5}
\definecolor{darkred}{rgbh}{0.5, 0, 0}

Then we used this code.

\begin{tikzpicture}
\draw[name path=A, variable=\x, domain=0:5, samples=200,
line width=1bp, smooth, color=darkblue, ->]
plot (\x, {2*sin(2xpi*\x r) + 23});
\draw[name path=B, variable=\x, domain=0:5, samples=200,
line width=1bp, smooth, color=darkred]
plot (\x, {4/(1+2x\x)});
\fill[name intersections={of=A and B, sort by=line,
name=i, total=\t}, color=orange]
\foreach \s in {1,...,\t}{(i-\s) circle (3bp)};
\end{tikzpicture}
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Final words

As we have seen, to find all intersections of two paths is not a trivial task, but now we
MetaPost users have reliable engine macros that work. Even with our new macros,
however, things can go wrong. Some paths are simply tricky to work with, and some-
times some manual tweaking is required. Let us give one such example.

We try to find the intersections of y = 4cos(z) + cos(2z) and y = 5cos(z), for
0 < z < 8. The problem with these curves is that they coincide to order two at the
maximas, located at x = 27k for k € {0, 1,2, 3,4}. This means that the curves are not
really crossing there. One could probably find good arguments both for and against
that these points should be returned by the algorithm. As the situation is, it returns
some, and it depends on how many points we use when constructing the paths. In
the code below we use a step size of 0.05 for z. As can be seen in Figure 36, some
points are missing. If we change the step size to 0.01 we will see that all the points
except the last one is there.

\startMPcode

path p, g, b ;

p := function(2, "x", "4xcos(x)+cos(2*x)", epsed(Q), epsed(8xpi), 0.05)
scaled 15 ;

g := function(2, "x", "5xcos(x)", epsed(Q), epsed(8*pi), 0.05) scaled 15;

b := (p intersectionpath q) ;

drawarrow p withcolor darkblue;
drawarrow q withcolor darkred;
drawpoints b withcolor "orange” ;
\stopMPcode

VAVAVAY/

[VEAVERAVERAV/

Figure 36.
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It would feel wrong to end this article, that is written with a big smile in the face,
with a negative example. We give instead an example where all is going well, and
why not use the nice feature to extract outlines of characters?

\startMPcode

picture p ; p := Imt_outline [ text = "THE"” ] scaled 15 ;
picture q ; q := lmt_outline [ text = "END"” ] scaled 15 ;
q := g shifted (60, -50) ;

for pp within p :

fill pathpart pp withcolor 0.75white ;

draw pathpart pp withpen pencircle scaled 1bp withcolor darkblue ;
endfor ;

for qq within q :
fill pathpart qq withcolor 0.25white withtransparency (2, 0.5) ;
draw pathpart qg withpen pencircle scaled 1bp withcolor darkred ;
endfor ;

for pp within p :
for gq within q :
path r ; r := (pathpart pp) intersectionpath (pathpart qq) ;
if known r :
drawpoints r withpen pencircle scaled 4bp withcolor "orange"” ;
fi ;
endfor
endfor ;
\stopMPcode
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