82 MAPS 52

Fabrice Larribe

MetaFun for generative art

Abstract

This article shows how MetaFun can be used to create
generative art, by showing the construction of three
projects, step by step.

Keywords
MetaFun, art, creation

Introduction

The idea of making generative art with MetaFun was
for me a convolution of several elements. The first is a
painting by Niele Toroni seen at the Museum of Mod-
ern Art of New-York (MOMA) showing imperfect red
squares on a canvas: it was incredible. I recently redid
a version with circles (not to copy the original version)
shown in figure 1. The second element is that I used to
make regular representations of random processes in
Tikz, to illustrate lecture notes on stochastic processes.
Not only these representations are useful, but some-
times beautiful too ! The third and last element is
probably the beautiful covers of the ConTgXt manuals,
combined with the discovery of the MetaFun manual.

L

Figure 1. Left a version of Niele Toroni piece with circles instead of
squares. Right a zoom on the first circle.

It seemed so easy and beautiful to represent random
representations in MetaFun that I explored it. After
making many drawings, simple at first, and then more
advanced, I discovered that this activity had a name:
this art form is called generative art. We can borrow the
definition from Galenter (2013):

“Generative art refers to any art practice where the
artist uses a system, such as a set of natural language
rules, a computer program, a machine, or other proce-

dural invention, which is set into motion with some degree
of autonomy contributing to or resulting in a completed
work of art.”

The key for generative art made by a drawing lan-
guage, is to have random components. Usually, in my
drawings, every part, even a tiny one is randomized:
position, form, color, etc. An example of this is shown in
the right part of figure 1, presenting a small part of the
whole piece. As you can see, instead of filling the circle
with a unique color, dozens of lines are used trying to
give the feeling a real brush, using a randomized color.
The accumulation of these details bring organicity to
the piece.

So a such a drawing is nothing more than an algo-
rithm with some random components. That means that
the same algorithm will produce different results. In
general, the more you leave room for randomness, the
less predictable the result will be, the more surprising
and interesting it will be, but the longer it will take
to sort out the successful results among the ten or
a hundred drawings made by the same algorithm. So
more randomness equals more curation.

It is interesting to note that MetaFun can also be
used to make movies (animations) with the help of
ConTgXt: a loop in ConTgXt permits to generate easily
several hundreds of pages, where some parameters of
a drawing change from one page to the next. We can
combine these frames, at a rate for example of 30 frames
by second, to make a movie, where we can of course
add music. Finally, before drawing, let's add that most
generative artists use a javascript library named p5.js.

The randomized operator

The MetaFun manual is the document to read to learn
properly the language, and I assume the reader has a
familiarity with the basics of the language, although
explanations will be as detailed as possible. I emphasize
here a particular aspect of MetaFun, the randomized
operator, heavily used for generative art. Briefly, this
operator adds randomness to almost everything, and
this randomness is the key for generative art.

Let's draw a square of size 60, it will be centered at
position (0,0), and a point at position (0,0) in color

Fabrice Larribe

magenta; then we will draw 50 randomized points
around the (0, 0) point, in blue, randomized (60,30) :

draw fullsquare scaled 60 ;
for i=1 upto 50:
draw (0,0) randomized (60,30)
withcolor blue randomized(@.1,2) ;
endfor;
draw (0,0) withcolor magenta ;

As you can see, the pair of numeric values fol-
lowing the randomized operator gives the amount of
randomness in both directions, express in regular unit;
moreover the color can be randomized too. In fact,
as described in the MetaFun manual, “randomized can
handle a numeric, pair, path and color, and its specifica-
tion can be a numeric, pair or color, depending on what
we’re dealing with.”

Project one : delirious circles

MetaFun (MetaPost) is a vectorial language; it is then
really easy and natural to draw smooth lines and
curves, but it is a little more work to draw agitated
(i.e. not smooth, chaotic, erratic...) paths. Of course,
this is possible, because so many things are possible
with MetaFun ! So we begin by building a simple piece
illustrating agitated paths. Once this first piece is built,
we will see how we can use this work to create a more
complex piece. Our first objective is to build a piece
similar to this :

The first thing to realize this piece is to be able
to draw these agitated paths. This algorithm is now
described and illustrated in figure 2, using a simple
circle. In order to agitate a path P, the first step is to
take a number of points n; along P (here n; = 8)

VOORJAAR 2022

and randomize these points by a quantity ¢, (¢ for
turbulence); then build a path with these n; points,
and we obtain a new path illustrated as “Step 1” in the
illustration. We then repeat this strategy recursively
a number of times S (for Steps), using the result of
the previous step as the path to be randomized in the
current step, taking more points and less noise at each
step; this way, the first steps give the global form of
the resulting path, and the last steps add some little
noise along the path. Varying these parameters, we will
obtain different results. Please note that the following
MetaFun code is made to be comprehensive more than
computationally optimal; let's do it:

numeric n[] , t[1; path P;
% Initial values ----------------—- ;
n[1] := 8 ; t[1] := 10 ;
% Calculations of t_s and n_s ---- ;
for i=2 upto 5:
nfil := n[i-1] * 2 ;
t[i] t[i-1] = .8 ;
endfor;
% Initial shape -----------------—- ;
P := fullcircle scaled 40;
% Let's add turbulence in S=5 steps ---- ;
for s=1 upto 5 :
P := for i=1 upto n[s]:
point (i/(n[s])) along P randomized t[s] ..
endfor cycle ;
draw P ;
drawpoints P withpen pencircle scaled 2
withcolor red;
endfor;

Step 1 Step 2

Step 3 Step 4 Step, 5

Figure 2. lllustration of the algorithm to agitate a path.

We can wrap this in a macro; to keep this simple here,
we will assume that the path is a cycle (i.e a closed path),
and that the number of points and the noise level at
each step are given respectively by

ng=mngx f5, ty=tox f}, fors>1ngtyknown.

83

84 MAPS 52

but of course, the macro can be modified for non cycled
paths, and others expressions for n are ¢, are possible.
Here is our macro taking a path and others parameters
as input and returning an agitated path (R):

vardef agitate(expr thepath, S, n, fn, t, ft) =
save R , nbpoints , noiselevel ;
path R ; nbpoints := n ; noiselevel :=t ;
R := thepath ;
for s=0@ upto S :
nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;

R := for i=1 upto nbpoints:
point (i/nbpoints) along R
randomized noiselevel ..
endfor cycle ;
endfor ;
R
enddef ;

Please note that the variables S and f_n need to be rea-
sonable... The processing time is exponential regarding
these values, so caution is necessary in experimenting !
Some examples of realizations (starting with a circle
again) :

n, =8, £, =2t =10, f = 0.6
S=2

S=4 S=

S=3,n,=81f =2t =10
f,=04 f,=06 f,=08

S8 +.

Fabrice Larribe

S=3,n,=8f =2t =101 =06

n,=4

P E4

S=3,n,=8,f,=2,t,=10, f, =
£ =2

n, =8 n, = 12

f,=11

O

Now we can go back to our objective. Of course
we want random colors, but not completely random
(it would not be pretty in general). It is useful to use
palettes, so you can change easily from one set of colors
to another set. Let's build a palette :

color MyPalette[] ; Ncolors :=5 ;

MyPalette[1] := (215/255,233/255,244/255);
MyPalette[2] := (234/255,187/255,076/255);
MyPalette[3] := (238/255,148/255,056/255);
MyPalette[4] := (199/255,066/255,033/255);
MyPalette[5] := (033/255,061/255,085/255);

To choose a random color, we need to choose an integer
between 1 and Ncolors; a simple, useful and more
general macro is made to choose a random integer in
the interval [mini, maxi):

vardef ranint (expr mini , maxi) =
floor(uniformdeviate (maxi - mini +1) + mini)
enddef ;

For illustration, let's fill squares of random colors in our
palette:

for i=1 upto 2:
for j=1 upto 8:
fill fullsquare randomized @.1 scaled 15
shifted (j*20,1i*20)
withcolor MyPalette[ranint(1,Ncolors)] ;
endfor;
endfor;

We have now all the elements for our project. We just
need to draw agitated circles decreasing in size, and fill

0T U W=

Fabrice Larribe

them with different color. There is just one detail we
need to pay attention to : the initial number of points
used to agitate our circles should depend on the length
of each path; so we add to the code in the loop nzero
:= floor(arclength(P)/4.5); the factor 4.5 is found
by trial and error to obtain what we are looking for, and
the function floor is too assure that nzero is an integer.
In such code, we usually try to parametrize as much
as possible, so it will be easier later to search optimal
parameters.

randomseed := 1241 ; color AColor ;
path P, Q ;
NbCircles := 6 ; S :=8 ; f_n :=1.1 ;
tzero := 6 ; f_t := 0.80 ;
for c=NbCircles downto 1

P := fullcircle scaled (c*30) ;

AColor := MyPalette[ranint(1,Ncolors)] ;
nzero := floor(arclength(P)*@.30);

Q := agitate(P , S, nzero , f_n , tzero, f_t);
eofill Q withcolor AColor ;

draw Q withcolor .5[black,AColor];
endfor;

Now that we have succeeded, we can try to explore
the possibilities of the algorithm. We can randomly
generate some drawings selecting some parameters in
a certain range. One could draw several pieces on the
same page, but an easier way is to generate several
pieces one piece per page. The complete code is below,
and explanations follows.

\starttext
% Inclusions ——=—-==——==——————-————————— ;
\startMPinclusions
vardef agitate(expr apath, S, n, fn, t, ft)
save R , nbpoints , noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := apath ;
for s=@ upto S :

VOORJAAR 2022

nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := for i=1 upto nbpoints:

point (i/nbpoints) along R randomized

noiselevel .. endfor cycle ;
endfor ;
R
enddef ;

color MyPalette[] ; Ncolors :=5 ;

MyPalette[1] := (215/255,233/255,244/255);
MyPalette[2] := (234/255,187/255,076/255);
MyPalette[3] := (238/255,148/255,056/255);
MyPalette[4] := (199/255,066/255,033/255);
MyPalette[5] := (033/255,061/255,085/255);

vardef ranint (expr mini , maxi) =

floor(uniformdeviate (maxi - mini +1) + mini)

enddef ;

vardef ranuni (expr mini , maxi) =
uniformdeviate (maxi - mini) + mini

enddef ;

\stopMPinclusions

\dorecurse{163}{ %

% MP page —= —-—=-------------o—-o—o——oo—-—o ;

\startMPpage
randomseed := 100%#1 ;

path 0, P, Q ;

0 := fullcircle scaled 200 ;

color AColor

NbCircles := ranint(3,15) ;

S := ranint(2,3) ; fn := ranuni(1.1,1.5) ;

tzero := ranuni(3,8) ; ft := ranuni(0.5,0.9) ;

CurrentColor := ranint(1,Ncolors) ;
for c=NbCircles downto 1
P := 0 scaled (c/NbCircles) ;
AColor := MyPalette[CurrentColor] ;

nzero := floor(arclength(P)*ranuni(@.2,0.8));
Q := agitate(P , S, nzero , fn , tzero, ft);

eofill Q withcolor AColor ;
draw Q withcolor .5[black,AColor];

’

forever:
AnotherColor := ranint(1,Ncolors) ;
exitif CurrentColor <> AnotherColor ;
endfor;
CurrentColor := AnotherColor ;
endfor;
\stopMPpage
}
\stoptext

85

26

86 MAPS 52 Fabrice Larribe

Some remarks about this code: Continuing to play with our project, it is now very
easy to change the color palette. Imagine you have ac-
cess to say 100 color palettes, we can choose randomly a
palette (after the randomseed instruction on line 37), and
\startMPinclusions here is a sample of what is possible (code not shown):
Definitions of functions here..

\stopMPinclusions 2 N ’ '
b. Line 37: this instruction is a way to keep track ! O L @
of what random seed is giving which piece. For : %
exemple, if you do 100 drawings and you want to T .

reproduce only the 90th page, the same code with
randomseed := 90%100; will suffice. This is useful to WEE %
debug sometimes too. o0 % iil
c. Lines 35-61: the code which produce each oA F VoS dy
page is between the two braces inside the ’ ‘
\dorecurse{163}{3}; here 16 pages will be created:

a. Lines 2-32: functions already defined are placed
between:

Now, continuing our experimentation, if we change

\dorecurse{163}{ .
\startMPpage 0 := fullcircle scaled 200 ;
The code for the drawing itself by
\stopMPpage } 0 := fullsquare scaled 200 ;
d. Lines 40,47: we have modified the previous code we could obtain something like this:

in order to have an algorithm able to manage a
randomized path. At line 40, an original path 0 is
created, here a circle, and this path is scaled down
at line 47 at each step.

e. Lines 55-59: we have improved our previous
algorithm by changing the color for each new
circle, so two consecutive circles have not the
same color; this is done in this loop by selecting a
number in (1,Ncolors) until this result is different
than the number of the current color.

2 S F R

As you can see, once a drawing algorithm is made,
it is quite easy to modify the parameters, the shapes,
the colors... to explore the possibilities of the algorithm,
and maybe discover an amazing creation resulting from
the combination of a human idea and chance.

Here are the 16 pages that the previous code produces:

Project two : a sun

We can try to exploit our new function agitate() to
create more lively pieces. We would like the piece to
have the spirit of a cell, or a sun, something like this. So
the strategy here is be to fill several agitated circles one
above the other, like before, but this time, the border
of the circles will be more chaotic, we will use more
circles, and we will fill them with a transparent color.

40

40

Fabrice Larribe VOORJAAR 2022

Here a sketch of the structure : But the borders are too smooth. So increasing the
number of steps of the agitate() function so 15, after
approximately one hour, we have this result :

It is a matter of seconds to run this code:

vardef agitate(expr thepath, S, n, fn, t, ft) =
¢...)

enddef ;

path P , Q ;

color AColor ;

NbCircles := 20; S := 1; nzero:= 10; fn := 1.3;

tzero := 5; ft := 0.8;

% with \usecolors[crayolal] ;
AColor := \MPcolor{MidnightBlue};

for c=NbCircles downto 1

P := fullcircle scaled (cx10.5) ;
nzero := floor(arclength(P)*0.5);
Q := agitate(P, S, nzero , fn , tzero, ft);
eofill Q
withcolor transparent(1,2/NbCircles,AColor);
draw Q withpen pencircle scaled 0.1
transparent(1,4/NbCircles, .90[black,AColor]);

Increasing the number of circles to 40, and changing
the color (to explore), but this time every circle will
have the same size, we obtain this nice blurry effect :

endfor;

and to obtain this result :

It is tempting to try a donut by simply adding in the
center a series nbrep := 25; of white circles. Caution :
this code is very computationally intensive. if you try it,
reduce the value of S and nbrep, and increase it slowly.

88 MAPS 52

The code look like this :

path P , Q ;

color AColor ;

S := 18; nzero:= 10; fn
ft := 0.8;

:= 1.3, tzero := 5;

AColor := \MPcolor{Razzmatazz} ;
P := fullcircle scaled 60 ;
nzero := floor(arclength(P)*0.5);
nbrep := 25;
for rep = 1 upto nbrep:
Q := agitate(P, S, nzero, fn, tzero, ft);
eofill Q
withcolor transparent(2,2/nbrep,AColor);
draw Q withpen pencircle scaled 0.1
transparent(9,1/nbrep, .90[black,AColor]);
endfor;

P := fullcircle scaled 22 ;
nzero := floor(arclength(P)*0.5);
for rep = 1 upto nbrep:
Q := agitate(P, S, nzero, fn, tzero, ft);
eofill Q
withcolor transparent(3,3/nbrep,white);
draw Q withpen pencircle scaled 0.1
transparent(9,1/nbrep, .90[black,AColor]);
endfor;

This last piece is very satisfying. One has an impres-
sion of bubbling, of life, like a gaseous planet. Satisfied,
let us stop the exploration here!

Fabrice Larribe

Project three : a fabric

Finally we will use the same function, in a very different
way, and use a simple technique to create a form that
looks like a fabric. The first step is to create an agitated
circle, a simple one this time, and scale it down a few
times (here 10 times), to obtain this sketch :

path P, Q;
S :=1; nzero:= 10; fn := 1.2; tzero := 15;
ft :=0.8;

P := fullcircle scaled 170 ;

nzero := floor(arclength(P)*0.5);

Q := agitate(P, S, nzero , fn , tzero, ft);

draw Q withpen pencircle scaled 0.2
withcolor red;

path R ; nblines := 10 ;

for i=1 upto nblines:
R := Q scaled ((nblines-i)/nblines) ;
draw R withpen pencircle scaled 0.2

withcolor blue;
endfor;

Q0 F
Pl T

Now we will do the same strategy, increasing the
number of lines, and changing color over time, ran-
domly of course :

randomseed
S :=1; nzero

;= 3354

:=10; fn :=1.1; tzero :=15; ft :=0.8;

P := fullcircle scaled 180 ;

nzero := floor(arclength(P)*0.12);

Q := agitate(P, S, nzero , fn , tzero, ft) ;
draw Q withpen pencircle scaled 0.2 withcolor red;
path R ;

color CurrentColor , RealColor;

CurrentColor := MyPalette[ranint(1,Ncolors)];
nblines := 100 ;

Fabrice Larribe VOORJAAR 2022 89

for i=1 upto nblines: if uniformdeviate(1) < 0.025:
CurrentColor := CurrentColor CurrentColor :=
randomized(@.95,1.05); MyPalette[ranint(1,Ncolors)];
R := Q scaled ((nblines-i)/nblines) ; fi;
RealColor := CurrentColor ;

if uniformdeviate(1) < 0.08:
CurrentColor := MyPalette[ranint(1,Ncolors)];
fi;
RealColor := CurrentColor ;
draw R withpen pencircle scaled .8
withcolor RealColor;
endfor;

draw R withpen pencircle scaled .2
withcolor transparent(2,.8,RealColor);
endfor;

And finally, we increase dramatically the number of
lines, randomized the same color en epsilon at each line,
and add transparency to create relief :

randomseed := 2562 ;
S:=1; fn :=1.05 ; tzero := 20 ; ft := 0.8 ;

P := fullcircle scaled 180 ;
nzero := floor(arclength(P)*0.18);
Q := agitate(P, S, nzero , fn , tzero, ft) ;
draw Q withpen pencircle scaled 0.2
withcolor red;
path R ;
color CurrentColor , RealColor;
CurrentColor := MyPalette[ranint(1,Ncolors)];
nblines := 750 ;

for i=1 upto nblines:
CurrentColor :=
CurrentColor randomized(@.98,1.02);
R := Q scaled ((nblines-i)/nblines) ;

90 MAPS 52

And a last example decreasing the number of points
nzero, and increasing a bit the turbulence tzero :

It just seems extraordinary to me that a few simple
lines of code, using such elementary functions, can give
such rich and varied results.

Technical addendum

Hans Hagen made a remark that the agitate code could
be improved; in the agitate() macro we can find this
instruction :

R := for i=1 upto nbpoints:
point (i/nbpoints) along R

Fabrice Larribe

randomized noiselevel ..
endfor cycle ;

At each step of the loop for i=1 upto nbpoints, the in-
struction along is used, which means that the function
arclength is called nbpoints times, and this function
takes time. As the length of the path R does not change,
a better way to do is to calculate this length only one
time outside the loop :

rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:
(point (arctime (i * rlength) of R) of R)
randomized noiselevel ..
endfor cycle ;

This improvement speed up the processing time signif-
icantly. A second improvement is possible, using the
“double” mode improve the processing time. So all the
code of this paper can be adapted like this:

\startMPinclusions{doublefun}
(...

\stopMPinclusions

\startMPpage[instance=doublefun]
(...)

\stopMPage

These two modifications together speedup processing
time by a factor 5 on project 2.

Conclusion

We have presented in this article how MetaFun can
be used to do generative art. The randomized operator
is simple but powerful, and can be used on several
types of objects. Moreover, macros are easy to define in
order to introduce new creation tools, as we did for the
agitate() function. The ability to draw one result per
page is very useful when producing a large number of
results from a given algorithm, and the vector nature of
the PDF output makes each drawing easily scalable and
printable on a large scale. All of this makes MetaFun
definitely a powerful tool, allowing to create drawings
or artworks with few limitations.

Bibiography
Galenter, Phillip. 2013. What is Generative Art? Com-

plexity Theory as a Context for Art Theory. In GA2003
— 6th Generative Art Conference.

I would like to thank Frans Goddijn for his helpful
comments on the article, as well as Hans Hagen and
Taco Hoekwater for their enlightenment on technical
aspects of MetaFun.

Fabrice Larribe

