
Hans Hagen & Mikael Sundqvist VOORJAAR 2022 9

A different approach to math spacing

Introduction
The TEX engine is famous for its rendering of math and even after decades there is
no real contender. And so there also is no real pressure to see if we can do better.
However, when Mikael Sundqvist ran into a Swedish math rendering specification
and we started discussing a possible support for that in ConTEXt, it quickly became
clear that the way TEX does spacing is a bit less flexible than one wishes for. We
already have much of what is needed in place but it also has to work well with how
TEX sees things:

1. Math is made from a sequence of atoms: a quantity with a nucleus, superscript
subscript.1 Atoms are spaced by \thinmuskip, \medmuskip and \thickmuskip or
nothing, and that is sort of hard coded.

2. Atoms are organized by class and there are seven (or eight, depending on how
you look at it) of them visible: binary symbols, relations, etc. The invisible ones,
composites like fractions and fenced material (we call them molecules) are at
some point mapped onto the core set. Molecules like fences have a different
class left and right of the fenced material.

3. In addition the engine itself has all kind of spacing related parameters and these
kick in automatically and sometimes have side effects. The same is true for
penalties.

The normal approach to spacing other than imposed by the engine is to use correc
tion space, like \, and I think that quite some TEX users think that this is how it is
supposed to be. The standard way to enter math relates to scientific publishing and
there the standards are often chiseled in stone so why should users tweak anyway.
However, in ConTEXt we tend to start from the users and not the publishers end so
there we can decide to follow different routes. Users can always work around some
thing they don't like but we focus on reliable input giving predictable output. Also,
when reading on, it is good to realize that it is all about the user experience here:
it should look nice (which then of course makes one become aware of issues else
where) and we don't care much about specific demands of publishers in the scientific
field: the fact that they often re-key content doesn't go well with users paying atten
tion themselves, let alone the fact that nowadays they can demand word processor
formats.

The three mentioned steps are fine for the average case but sometimes make no
sense. It was definitely the best approach given time and resources but when LuaTEX
went OpenType a lot of parameters were added and at that time we therefore added
spacing by class pair. That not only decoupled the relation between the three (con
figurable) muskip parameters but also made it possible to use plenty of them. Now
it must be said that for consistency having these three skips works great but given
the tweaking expected from users consistency is not always what comes out.

This situation is very well comparable to the proclaimed qualities of the typeset
ting of text by TEX. Yes, it can do a great job, and often does, but users can mess
up quite well. I remember that when we did tests with hz the outcomes were pretty

1. I suddenly realize why in the engine noads have a nucleus field: they are atoms . . . but what does that
make super and subscripts.

10 MAPS 52 Hans Hagen & Mikael Sundqvist

unimpressive. When you give an audience a set of sample renderings, where each
sample is slightly different and each user gets a randomized subset, the sudden lack
of being able to compare (and agree) with another TEXie makes for interesting con
clusions. They look for the opposites of what is claimed to be perfect. So, two lines
with hyphens rate low, even if not doing it would look worse. The same for a few
short words in the last line of a paragraph. Excessive spacing is also seen as bad. So,
when asked why some paragraphs looked okay noticing (excessive and troublesome)
expansion was not seen as a problem; instead it were hyphens that got the attraction.

The same is probably true for math: the input with lots of correction spaces or
commands where characters would do can be horrible but it's just the way it is sup
posed to be.The therefore expected output can only be perfect, right, independent of
how one actually messed up spacing. But personally I think that it is often spacing
messed up by users that make a TEX document recognizable. It compares to word
processor results that one can sometimes identify by multiple consecutive spaces in
the typeset text instead of using a glue model like TEX. Reaching perfection is not
always trivial, but fortunately we can also find plenty of nice looking documents
done with TEX.

The TEXbook has an excellent and intriguing chapter on the fine points of math
and it definitely shows why Don Knuth wrote TEX as a tool for his books. He pays a
lot of attention to detail and that is also why it all works out so well. If you need to
render from unseen sources (as happens in an xml workflow) coming from several
authors and have time nor money to check everything, you're off worse. And I'm
not even talking of input where invisible Unicode spacing characters are injected. It
is the TEX book(s) that has drawn me to this program and believe it or not, in the
first project I was involved in that demanded typeset (quantummechanics) math the
ibm typewriter with changing bulbs ruled the scenery. In fact, our involvement was
quickly cut off when we dared to show a chapter done in TEX that looked better.

Apart from an occasional tweak, in ConTEXt we never really used this opened
up math atom pair spacing mechanism available in LuaTEX extensively. So, when I
was pondering how to proceed it stroke me that it would make sense to generalize
this mechanism. It was already possible (via a mode parameter) to bypass the sec
ond step mentioned above, but we definitely needed more than the visible classes
that the engine had. In ConTEXt we already had more classes but those were meant
for assigning characters and commands to specific math constructs (think of fences,
fractions and radicals) so in the end they were not really classes. Considering this
option was made easier by the fact that Mikael would do the testing and help con
figuring the defaults, which all will result in a new math user manual.

There are extensions introduced in LuaTEX and later LuaMetaTEX that are not
discussed here. In this expose we concentrate on the features that were explored,
extended and introduced while we worked on updating math support in LMTX.

An example
Before we go into details, let's give an example of unnoticed spacing effects. We use
three simple formulas all using fractions:

\ruledhbox{$\frac{x^2}{a+1}$}

and:

\ruledhbox{$x + \frac{x^2}{a+1} = 10$}

as well as:

\ruledhbox{$\frac{1}{2}\frac{1}{2}x$}

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 11

𝑥2
𝑎+1 𝑥 + 𝑥2

𝑎+1 = 10 1
2
1
2 𝑥

If you look closely you see that the fraction has a little space at the left and right.
Where does that come from? Because we normally don't put a tight frame around a
fraction, we are not really aware of it. The spacing between what are called ordinary,
operator, binary, relation and other classes of atoms is explained in the TEXbook (or
“TEX by Topic” if you want a summary) and basically we have a class by class matrix
that is built into TEX. The engine looks at successive items and spacing depends on
their (perceived) class. Because the number of classes is limited, and because the
spacing pairs are hard coded, the engine cheats a little. Depending on what came
before or comes next the class of an atom is adapted to suit the spacing matrix. One
can say that a “reading mathematician” is built in. And most of the decisions are
okay. If needed one can always wrap something in e.g. \mathrel but of course that
also can interfere with grouping. All this is true for TEX, pdfTEX, X ETEX and LuaTEX,
but a bit different in LuaMetaTEX as we will see.

The little spacing on both edges of the fraction is a side effect of the way they are
built internally: fractions are actually a generalized form of “stuff put on top of other
stuff” and they can have left and/or right delimiters: this is driven by primitives that
have names like \atop and \atopwithdelims. The way the components are placed is
(especially in the case of OpenType) driven by lots of parameters and I will leave
that out of the discussion.

When there are no delimiters, a so called \nulldelimiterspace will be injected.
That parameter is set to 1.2 points and I have to admit that in ConTEXt I never con
sidered letting that one adapt to the body font size, which means that, as we default
to a 12 point body font, the value there should have been 1.44 points: mea culpa.
When we set this parameter to zero point, we get this:

𝑥2
𝑎+1 𝑥 +

𝑥2
𝑎+1 = 10 1

2
1
2𝑥

As intermezzo and moment of contemplation I show some examples of fractions
mixed into text. When we have the delimiter space set we get this:

test 1
1 test 1

2 test 1
3 test 1

4 test 1
5 test 1

6 test 1
7 test 1

8 test 1
9 test 1

10 test 1
11 test

1
12 test 1

13 test 1
14 test 1

15 test 1
16 test 1

17 test 1
18 test 1

19 test 1
20 test 1

21 test 1
22

test 1
23 test

1
24 test

1
25 test

1
26 test

1
27 test 1

28 test
1
29 test

1
30 test

1
31 test

1
32 test

1
33 test 1

34 test 1
35 test 1

36 test 1
37 test 1

38 test 1
39 test 1

40 test 1
41 test 1

42 test 1
43

test 1
44 test

1
45 test

1
46 test

1
47 test 1

48 test
1
49 test

1
50 test

1
51 test

1
52 test

1
53 test

1
54 test 1

55 test 1
56 test 1

57 test 1
58 test 1

59 test 1
60 test 1

61 test 1
62 test 1

63 test 1
64

test 1
65 test

1
66 test

1
67 test 1

68 test
1
69 test

1
70 test

1
71 test

1
72 test

1
73 test

1
74 test

1
75 test 1

76 test 1
77 test 1

78 test 1
79 test 1

80 test 1
81 test 1

82 test 1
83 test 1

84 test 1
85

test 1
86 test

1
87 test 1

88 test
1
89 test

1
90 test

1
91 test

1
92 test

1
93 test

1
94 test

1
95 test

1
96 test 1

97 test 1
98 test 1

99 test 1
100

12 MAPS 52 Hans Hagen & Mikael Sundqvist

While with zero it looks like this, quite a different outcome:

test 11 test
1
2 test

1
3 test

1
4 test

1
5 test

1
6 test

1
7 test

1
8 test

1
9 test

1
10 test

1
11 test

1
12 test

1
13 test

1
14 test

1
15 test

1
16 test

1
17 test

1
18 test

1
19 test

1
20 test

1
21 test

1
22 test

1
23 test

1
24

test 1
25 test

1
26 test

1
27 test

1
28 test

1
29 test

1
30 test

1
31 test

1
32 test

1
33 test

1
34 test

1
35

test 1
36 test

1
37 test

1
38 test

1
39 test

1
40 test

1
41 test

1
42 test

1
43 test

1
44 test

1
45 test

1
46

test 1
47 test

1
48 test

1
49 test

1
50 test

1
51 test

1
52 test

1
53 test

1
54 test

1
55 test

1
56 test

1
57

test 1
58 test

1
59 test

1
60 test

1
61 test

1
62 test

1
63 test

1
64 test

1
65 test

1
66 test

1
67 test

1
68

test 1
69 test

1
70 test

1
71 test

1
72 test

1
73 test

1
74 test

1
75 test

1
76 test

1
77 test

1
78 test

1
79

test 1
80 test

1
81 test

1
82 test

1
83 test

1
84 test

1
85 test

1
86 test

1
87 test

1
88 test

1
89 test

1
90

test 1
91 test

1
92 test

1
93 test

1
94 test

1
95 test

1
96 test

1
97 test

1
98 test

1
99 test

1
100

A little tracing shows it more clearly:

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test

1H__

12H__
__VH__H__ test 1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__ test 1H__

16H__
__VH__H__ test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__

test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__ test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test 1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test 1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test

1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__ test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__ test 1H__

43H__
__VH__H__

test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__ test 1H__

46H__
__VH__H__ test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test

1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test 1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__ test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test 1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__

test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__ test 1H__

69H__
__VH__H__ test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__ test

1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__ test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test 1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__

test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test 1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__ test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test

1H__

96H__
__VH__H__ test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

You can zoom in and see where it interferes with margin alignment.

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test 1H__

12H__
__VH__H__ test

1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__ test 1H__

16H__
__VH__H__ test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__ test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__

test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test 1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test 1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test 1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__

test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__ test 1H__

43H__
__VH__H__ test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__ test 1H__

46H__
__VH__H__

test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test 1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test 1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__

test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test 1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__ test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__

test 1H__

69H__
__VH__H__ test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__ test 1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__

test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test 1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__ test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test 1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__

test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test 1H__

96H__
__VH__H__ test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

So, if you ever meet a user who claims perfection and superiority of typesetting,
check out her/his work which might have inline fractions done the spacy way. It
might make other visually typesetting claims less trustworthy. And yes, one can
wonder if margin kerning could help here but as this content is wrapped in boxes it
is unlikely to work out well (and not worth the effort).

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 13

In order to get a better picture of the spacing, two more renderings are shown.
This time we show the bounding boxes of the characters too (you might need to
zoom in to see it):

𝑥2
𝑎+1 𝑥 + 𝑥2

𝑎+1 = 10 1
2
1
2 𝑥

Again we also show the zero case

𝑥2
𝑎+1 𝑥 +

𝑥2
𝑎+1 = 10 1

2
1
2𝑥

This makes clear why there actually is this extra space around a fraction: regular
operators have side bearings and thereby have some added space. And when we put
a fraction in front of a symbol we need that little extra space. Of course a proper
class pair spacing value could do the job but there is no fraction class. The engine
cheats by changing the class depending on what follows or came before and this is
why on the average it looks okay. However, these examples demonstrate that there
are some assumptions with regard to for instance fonts and this is one of the reasons
why the more or less official expected OpenType behavior as dictated by the Cam
bria font doesn't always work out well for fonts that evolved from the ones used in
the TEX community. Also imagine how this interferes with the fact that traditional
TEX fonts and the machinery do magic with cheating about width combined with
italic correction (all plausible and quite clever but somewhat tricky with respect to
OpenType).

Because here we discuss the way LuaMetaTEX and ConTEXt deal with this, the
following examples show a probably unexpected outcome. Again first the non-zero
case:

𝑥2
right𝑎

ordbin
+

bindig
1 𝑥

ordbin
+

binfra

𝑥2
right𝑎

ordbin
+

bindig
1 frarel
=

reldig
10 1

2 frafra

1
2 fraord
𝑥

And here the zero case:

𝑥2
right𝑎

ordbin
+

bindig
1 𝑥ordbin

+
binfra

𝑥2
right𝑎

ordbin
+

bindig
1frarel
=

reldig
10 1

2frafra

1
2fraord
𝑥

I will not go into details about the way fractions are supported in the engine because
some extensions are already around for quite a while. The main observation here is
that in LuaMetaTEXwe have alternative primitives that assume forward scanning, as
if the numerator and denominator are arguments. The engine also supports skewed
(vulgar) fractions natively where numerator and denominator are raised and lowered
relative to the (often) slash. Many aspects of the rendering can be tuned in the so
called font goodie files, which is also the place where we define the additional font
parameters.

14 MAPS 52 Hans Hagen & Mikael Sundqvist

Atom spacing
If you are familiar with traditional TEX you know that there is some built in ordbin
spacing. But there is no such pair for a fraction and a relation, simply because there
is no fraction class. However, in LuaMetaTEX there is one, and we'd better set it up
if we zero the margins of a fraction.

It is worth noticing that fractions are sort of special anyway. The official syn
tax is n \over m and numerator and denominator can be sub formulas. This is the
one case where the parser sort of has to look back, which is tricky because the ma
chinery is a forward looking one. Therefore, in order to get the expected styling
(or avoid unexpected side effects) one will normally wrap all in braces as in: { {n}
\over{m} } which of course kind defeats the simple syntax which probably is sup
ported for 1\over2 kind of usage, so a next challenge is to make 1/2 come out right.
All this means that in practice we have wrappers like \frac which accidentally in
LuaMetaTEX can be defined using forward looking primitives with plenty extra prop
erties driven by keywords. It also means that fractions as expected by the engine due
to wrapping actually can be a different kind of atom, which can have puzzling side
effects with respect to spacing (because the remapping happens unseen).

Interesting is that adapting LuaMetaTEX to a more extensive model was quite
doable, also because the code base had already been made more configurable. Of
course it involved quite a bit of tedious editing and throwing out already nice and
clean code that had taken some effort, but that's the way it is. Of course more classes
also means that some storage properties had to be adapted within the available space
but by sacrificing families that was possible. With 64 potential classes we now are
back to 64 families compared to 7 classes and 256 families in LuaTEX and 7 classes
and 16 families in traditional TEX.

Also interesting is that the new implementation is actually somewhat simpler and
therefore the binary is a tad smaller too. But does all that mean that there were no
pitfalls? Sure there were! It is worth noticing that doing all this reminded me of the
early days of LuaTEX development, where Taco and I exchanged binaries and TEX
code in a more or less constant way using Skype. For LuaMetaTEX we used good
old mail for files and Mojca's build farm for binaries and Mikael and I spent many
months exchanging information and testing out alternatives on a daily basis: it is in
my opinion the only way to do this and it's fun too. It has been a lot of work but
once we got going there was nothing that could stop us. A side effect was that there
were no updates during this period, which was something users noticed.

In the spacing matrix there is inner and internally there's also some care to be
taken of vcenter. The inner class is actually shared with the variable class which is
not so much a real class but more a signal to the engine that when an alphabetic or
numeric character is included it has to come from a specific family: upright family
zero or math italic family one in traditional speak. But, what if we don't have that
setup?Well, then one has tomake sure that this special class number is not associated
(which is no big deal). It does mean that when we extend the repertoire of classes
we cannot use slot seven. Always keep in mind that classes (and thereby signals) get
assigned to characters (some defaults by the engine, others by the macro package).
It is why in ConTEXt we use abstract class numbers, just in case the engine gets
adapted.

We also cannot use slot eight because that one is a signal too: for a possible active
math character, a feature somewhat complicated by the fact that it should not inter
fere with passing around such active characters in arguments. In math mode where
we have lots of macros passing around content, this special class works around these
side effects. We don't need this feature in ConTEXt because contrary to other macro
packages we don't handle primes, pseudo superscripts potentially followed by other
super and subscripts by making the ' an active character and thereby a macro in
math mode. This trickery again closely relates to preferable input, font properties,

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 15

and limitations of memory and such at the time TEX showed up (much has to fit into
8, 16 or 32 bits, so there is not much room for e.g. more than 8 classes). Since we
started with MkIV the way math is dealt with is a bit different than normally done
in TEX anyway.

Atom rules
We can now control the spacing between every atom but unfortunately that is not
good enough. Therefore, we arrive at yet another feature built into the engine: turn
ing classes into other classes depending on neighbors. And this is precisely why we
have certain classes. Let's quote “TEX by Topic”:The cases * (in the atom spacing ma
trix) cannot occur, because a bin object is converted to ord if it is the first in the list,
preceded by bin, op, open, punct, rel, or followed by close, punct, or rel; also, a rel is
converted to ord when it is followed by close or punct.

We can of course keep these hard coded heuristics but can as well make that bit
of code configurable, which we did. Below is demonstrated how one can set up the
defaults at the TEX end. We use symbolic names for the classes.

\setmathatomrule \mathbegincode \mathbinarycode % old
\allmathstyles \mathordinarycode \mathordinarycode % new

\setmathatomrule \mathbinarycode \mathbinarycode
\allmathstyles \mathbinarycode \mathordinarycode

\setmathatomrule \mathoperatorcode \mathbinarycode
\allmathstyles \mathoperatorcode \mathordinarycode

\setmathatomrule \mathopencode \mathbinarycode
\allmathstyles \mathopencode \mathordinarycode

\setmathatomrule \mathpunctuationcode \mathbinarycode
\allmathstyles \mathpunctuationcode \mathordinarycode

\setmathatomrule \mathrelationcode \mathbinarycode
\allmathstyles \mathrelationcode \mathordinarycode

\setmathatomrule \mathbinarycode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathbinarycode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

\setmathatomrule \mathbinarycode \mathrelationcode
\allmathstyles \mathordinarycode \mathrelationcode

\setmathatomrule \mathrelationcode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathrelationcode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

Watch the special class with \mathbegincode. This is actually class 62 so you don't
need much fantasy to imagine that class 63 is \mathendcode, but that one is not yet
used. In a similar fashion we can initialize the spacing itself:2

\setmathspacing\mathordcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathordcode \mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathordcode \mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathordcode \mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathopcode \mathordcode \allmathstyles \thinmuskip
\setmathspacing\mathopcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathopcode \mathrelcode \allsplitstyles\thickmuskip

2. Constant, engine specific, numbers like these are available in tables at the Lua end so we can change
them and users can check that.

16 MAPS 52 Hans Hagen & Mikael Sundqvist

\setmathspacing\mathopcode \mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathbincode \mathordcode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathopcode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathopencode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathinnercode \allsplitstyles\medmuskip

\setmathspacing\mathrelcode \mathordcode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathopcode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathopencode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathinnercode \allsplitstyles\thickmuskip

\setmathspacing\mathclosecode\mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathclosecode\mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathclosecode\mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathclosecode\mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathpunctcode\mathordcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathopcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathrelcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathopencode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathclosecode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathpunctcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathinnercode\mathordcode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathinnercode\mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathinnercode\mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathinnercode\mathopencode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathpunctcode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathinnercode \allsplitstyles\thinmuskip

And because we have a few more atom classes this also needs to happen:

\letmathspacing \mathactivecode \mathordinarycode
\letmathspacing \mathvariablecode \mathordinarycode
\letmathspacing \mathovercode \mathordinarycode
\letmathspacing \mathundercode \mathordinarycode
\letmathspacing \mathfractioncode \mathordinarycode
\letmathspacing \mathradicalcode \mathordinarycode
\letmathspacing \mathmiddlecode \mathopencode
\letmathspacing \mathaccentcode \mathordinarycode

\letmathatomrule \mathactivecode \mathordinarycode
\letmathatomrule \mathvariablecode \mathordinarycode
\letmathatomrule \mathovercode \mathordinarycode
\letmathatomrule \mathundercode \mathordinarycode
\letmathatomrule \mathfractioncode \mathordinarycode
\letmathatomrule \mathradicalcode \mathordinarycode
\letmathatomrule \mathmiddlecode \mathopencode
\letmathatomrule \mathaccentcode \mathordinarycode

With \resetmathspacingwe get an all-zero state but that might becomemore refined
in the future. What is not clear from the above is that there is also an inheritance
mechanism. The three special muskip registers are actually shortcuts so that chang
ing the register value is reflected in the spacing. When a regular muskip value is
(verbose or as register) that value is sort of frozen. However, the \inherited pre
fix will turn references to registers and constants into a delayed value: as with the

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 17

predefined we now have a more dynamic behavior which means that we can for in
stance use reserved muskip registers as we can use the predefined. A bonus is that
one can also use regular glue or dimensions, just in case one wants the same spacing
in all styles (a muskip adapts to the size).

When you look at all of the above you might wonder how users are supposed
to deal with math spacing. The answer is that often they can just assume that TEX
does the right thing. If something somehow doesn't feel right, looking at solutions by
others will probably lead a new user to just copy a trick, like injecting a \thinmuskip.
But it can be that atoms depend on the already applied (or not) spacing, which in
turn depends on values in the atom spacing matrix that probably only a few users
have seen. So, in the end it all boils down to trust in the engine and one's eyesight
combined with hopefully some consistency in adding space directives and often with
TEX it is consistency that makes documents look right. In ConTEXt we have many
more classes even if only a few characters fit in, like differential, exponential and
imaginary.

Fractions again
We now return to the fraction molecule. With the mechanisms at our disposal we
can change the fixed margins to more adaptive ones:

\inherited\setmathspacing \mathbinarycode \mathfractioncode
\allmathstyles \thickermuskip

\inherited\setmathspacing \mathfractioncode \mathbinarycode
\allmathstyles \thickermuskip

\nulldelimiterspace\zeropoint
$x + \frac{1}{x+2} + x$

Here \thickermuskip is defined as 7mu plus 5mu where the stretch is the same as a
\thickmuskip and the width 2mu more. We start out with three variants, where the
last two have \nulldelimiterspace set to 0pt and the first one uses the 1.2pt.

𝑥 + 1
𝑥+2 + 𝑥

𝑥 + 1
𝑥+2 + 𝑥

𝑥 + 1
𝑥+2 + 𝑥

When we now apply the new settings to the last one, and overlay them we get the
following output: the first and last case are rather similar which is why this effort
was started in the first place.

𝑥 + 1
𝑥+2 + 𝑥𝑥 + 1
𝑥+2 + 𝑥𝑥 + 1
𝑥+2 + 𝑥

18 MAPS 52 Hans Hagen & Mikael Sundqvist

Of course these changes are not upward compatible but as they are tiny they are not
that likely to change the number of lines in a paragraph. In display mode changes in
horizontal dimensions also have little effect.

Penalties
An inline formula can be broken across lines, and for sure there are places where
you don't want to break or prefer to break. In TEX line breaks can be influenced by
using penalties. At the outer level of an inline math formula, we can have a specific
penalty before and after a binary and/or relation. The defaults are such that there
are no penalties set, but most macro packages set the so called \relpenalty and
\binoppenalty (the op in this name does not relate to the operator class) so a value
between zero and 1000. In LuaTEX we also have \pre variants of these, so we have
four penalties that can be set, but that is not enough in our new approach.

These penalties are class bound and don't relate to styles, like atom spacing does.
That means that while atom spacing involves 64×64×8 potential values, an amount
that we can manage by using the discussed inheritance. The inheritance takes less
values because which store 4 style values per class in one number. For penalties we
only need to keep 64 × 2 in mind, plus a range of inheritance numbers. Therefore it
was decided to also generalize penalties so that each class can have them. The magic
commands are shown with some useless examples:

\letmathparent \mathdigitcode
\mathbincode % pre penalty
\mathbincode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

By default the penalties are on their own, like:

\letmathparent \mathdigitcode
\mathdigitcode % pre penalty
\mathdigitcode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

The options and reserved parent mapping are not (yet) discussed here. Unless values
are assigned they are ignored.

\setmathprepenalty \mathordcode 100
\setmathpostpenalty \mathordcode 600
\setmathprepenalty \mathbincode 200
\setmathpostpenalty \mathbincode 700
\setmathprepenalty \mathrelcode 300
\setmathpostpenalty \mathrelcode 800

As with spacing, when there is no known value, the parent will be consulted. An
unset penalty has a value of 10000.

After discussing the implications of inline math crossing lines, Mikael and I de
cided there can be two solutions. Both can of course be implemented in Lua, but on
the other hand, they make good extensions, also because it sort of standardized it.
The first advanced control feature tweaks penalties:

\mathforwardpenalties 2 200 100
\mathbackwardpenalties 2 100 50

This will add 200 and 100 to the first two math related penalties, and 100 and 50 to
the last two (watch out: the 100 will be assigned to the last one found, the 50 to the
one before it). As with all things penalty and line break related, you need to have

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 19

some awareness of how non-linear the badness calculation is as well of the fact that
the tolerance and stretch related parameters play a role here.

The second tweak is setting \maththreshold to some value. When set to for in
stance 40pt, formulas that take less space than this will be wrapped in a \hbox and
thereby will never break across a page.3 Actually that second tweak has a variant so
we have three tweaks! Say that we have this sample formula wrapped in some bogus
text and repeat that snippet a lot of times:
x xx xxx xxxx $1 + x$ x xx xxx xxxx

Now look at the example below. You will notice that the red and blue text have
different line breaks. This is because we have given the threshold some stretch and
shrink. The red text has a zero threshold so it doesn't do any magic at all, while the
second has this setup:
\setupmathematics[threshold=medium]

That setting set the threshold to 4em plus 0.75em minus 0.50em and when the for
mula size exceeds the four quads the line break code will use the real formula width
but with the given stretch and shrink. Eventually the calculated size will be used to
repackage the formula. In the future we will also provide a way to define slack more
relative to the size and/or number of atoms.

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx
xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx
xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx
x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx
xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx
xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx

Another way to influence line breaks is to use the two inline math related penalties
that have been added at Mikael's suggestion:
\setupalign[verytolerant]
{\dorecurse{25}{test $\darkred #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\preinlinepenalty 500 \postinlinepenalty -500
\dorecurse{25}{test $\darkgreen #1^{#1} + x_{#1}^{#1}$ test }\blank}

{\postinlinepenalty 500 \preinlinepenalty -500
\dorecurse{25}{test $\darkblue #1^{#1} + x_{#1}^{#1}$ test }\blank}

To get an example that shows the effect takes a bit of trial and error because TEX
does a very good job in line breaking. This is why we've set the tolerance and also
use negative penalties.

In addition to the \mathsurround (kern) and \mathsurroundskip (glue) parameters
this is a property of the nodes that mark the beginning and end of an inline math
formula.
test 11 + 𝑥11 test test 2

2 + 𝑥22 test test 3
3 + 𝑥33 test test 4

4 + 𝑥44 test test 5
5 + 𝑥55 test test

66 + 𝑥66 test test 7
7 + 𝑥77 test test 8

8 + 𝑥88 test test 9
9 + 𝑥99 test test 10

10 + 𝑥1010 test test
1111+𝑥1111 test test 12

12+𝑥1212 test test 13
13+𝑥1313 test test 14

14+𝑥1414 test test 15
15+𝑥1515

test test 1616+𝑥1616 test test 17
17+𝑥1717 test test 18

18+𝑥1818 test test 19
19+𝑥1919 test test

3. A future version might inject severe penalties instead, time will learn.

20 MAPS 52 Hans Hagen & Mikael Sundqvist

2020+𝑥2020 test test 21
21+𝑥2121 test test 22

22+𝑥2222 test test 23
23+𝑥2323 test test 24

24+𝑥2424
test test 2525 + 𝑥2525 test

test 11+𝑥11 test test 2
2+𝑥22 test test 3

3+𝑥33 test test 4
4+𝑥44 test test 5

5+𝑥55 test test 6
6+𝑥66

test test 77+𝑥77 test test 8
8+𝑥88 test test 9

9+𝑥99 test test 10
10+𝑥1010 test test 11

11+𝑥1111
test test 1212+𝑥1212 test test 13

13+𝑥1313 test test 14
14+𝑥1414 test test 15

15+𝑥1515 test test
1616+𝑥1616 test test 17

17+𝑥1717 test test 18
18+𝑥1818 test test 19

19+𝑥1919 test test 20
20+𝑥2020

test test 2121+𝑥2121 test test 22
22+𝑥2222 test test 23

23+𝑥2323 test test 24
24+𝑥2424 test test

2525 + 𝑥2525 test

test 11 + 𝑥11 test test 22 + 𝑥22 test test 33 + 𝑥33 test test 44 + 𝑥44 test test 55 + 𝑥55 test
test 66 + 𝑥66 test test 7

7 + 𝑥77 test test 8
8 + 𝑥88 test test 9

9 + 𝑥99 test test 10
10 + 𝑥1010 test

test 1111 + 𝑥1111 test test 1212 + 𝑥1212 test test 1313 + 𝑥1313 test test 1414 + 𝑥1414 test test
1515+𝑥1515 test test 16

16+𝑥1616 test test 17
17+𝑥1717 test test 18

18+𝑥1818 test test 19
19+𝑥1919

test test 2020+𝑥2020 test test 21
21+𝑥2121 test test 22

22+𝑥2222 test test 23
23+𝑥2323 test test

2424 + 𝑥2424 test test 25
25 + 𝑥2525 test

Flattening
The traditional engine has some code for flattening math constructs that in the end
are just one character. So in the end, \tilde{u} and \tilde {uu} become different
objects even if both are in fact accents. In fact, when an accent is constructed there is
a special code path for single characters so that script placement adapts to the shape
of that character.

However because of interaction with primes, which themselves are sort of super
scripts and due to the somewhat weird way fonts provide them when it comes to
positioning and sizes, in ConTEXt we already are fooling around a bit with these
characters. For understandable reasons of memory usage, complexity and eightbit
ness primes are not a native TEX thing but more something that is handled at the
macro level (although not in MkIV and LMTX).

In the end it was script placements on (widely) accented math characters that
made us introduce a dedicated \Umathprime primitive that adds a prime to a math
atom. It permits an uninterrupted treatment of scripts while in the final assembly of
the molecule the prime, superscript, subscript and maybe even prescripts that prime
gets squeezed in. Because the concept of primes is missing in OpenType math an
additional font parameter PrimeTopRaisePercent has been introduced as well as an
\Umathprimeraise primitive. In retrospect I should have done that earlier but one
tends to stick to the original as much as possible. However, at some point Mikael
and I reached a state where we decided that proper (clean) engine extensions make
way more sense than struggling with border cases and explaining users why things
are so complicated.

The input $ X \Uprimescript{'} ^2 _3 $ gives this:

𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__

Latin Modern Cambria Pagella Dejavu

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 21

With \tracingmath = 1 this nicely traces as:
> \inlinemath=
\noad[ord][...]
.\nucleus
..\mathchar[ord] family "0, character "58
.\superscript
..\mathchar[dig] family "0, character "32
.\subscript
..\mathchar[dig] family "0, character "32
.\primescript
..\mathchar[ord] family "0, character "27

Of course this feature can also be used for other prime like ornaments and who
knows how it will evolve over time.

You can influence the positioning with \Umathprimesupshift which adds some
kern between a prime and superscript. The \Umathextraprimeshift moves a prime
up.The \Umathprimeraise is a font parameter that defaults to 25 which means a raise
of 25%of the height. These are all (still) experimental parameters.
Fences
Fences can be good for headaches. Because the math that I (or actually my col
league) deal with is mostly school math encoded in presentation MathML (sort or
predictable) or some form of sequential ascii based input (often rather messy and
therefore unpredictable due to ambiguity) fences are a pain. A TEXie can make sure
that left and right fences are matched. A TEXie also knows when something is an
inline parenthesis or when a more high level structure is needed, for instance when
parentheses have to scale with what they wrap. In that case the \left and \right
mechanism is used. In arbitrary input missing one of those is fatal. Therefore, han
dling of fences in ConTEXt is one of the more complex sub mechanisms: we not only
need to scale when needed, but also catch asymmetrical usage.

A side effect of the encapsulating fencing construct is that it wraps the content in
a so called inner (as in \mathinner) which means that we get a box, and it is a well
known property of boxes that they don't break across lines. With respect to fences,
a way out is to not really fence content, but do something like this:
\left(\strut\right. x + 1 \left.\strut\right)

and hope for the best. Both pairs are coupled in the sense that their sizes will match
and the strut is what determines the size. So, as long as there is a proper match of
struts all is well, but it is definitely a decent hack. The drawback is in the size of the
strut: if a formula needs a higher one, larger struts have to be used. This is why in
plain TEX we have these commands:
\def\bigl {\mathopen \big } \def\bigm {\mathrel\big } \def\bigr {\mathclose\big }
\def\Bigl {\mathopen \Big } \def\Bigm {\mathrel\Big } \def\Bigr {\mathclose\Big }
\def\biggl{\mathopen \bigg} \def\biggm{\mathrel\bigg} \def\biggr{\mathclose\bigg}
\def\Biggl{\mathopen \Bigg} \def\Biggm{\mathrel\Bigg} \def\Biggr{\mathclose\Bigg}

\def\big #1{{\hbox{$\left#1\vbox to 8.5pt{}\right.\nomathspacing$}}}
\def\Big #1{{\hbox{$\left#1\vbox to 11.5pt{}\right.\nomathspacing$}}}
\def\bigg#1{{\hbox{$\left#1\vbox to 14.5pt{}\right.\nomathspacing$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox to 17.5pt{}\right.\nomathspacing$}}}

\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt} % renamed

Themiddle is kind of interesting because it has relation properties, while the \middle
introduced in 𝜀-TEX got open properties, but we leave that aside.

In ConTEXt we have plenty of alternatives, including these commands, but they
are defined differently. For instance they adapt to the font size. The hard coded point
sizes in the plain TEX code relates to the font and steps available in there (either by

22 MAPS 52 Hans Hagen & Mikael Sundqvist

next larger or by extensible). The values thereby need to be adapted to the chosen
body font as well as the body font size. In MkIV and even better in LMTX we can
actually consult the font and get more specific sizes.

But, this section is not about how to get these fixed sizes. Actually, the need to
choose explicitly is not what we want, especially because TEX can size delimiters so
well. So, take this code snippet:

$ x = \left(\dorecurse{40}{\frac{x}{x+#1} +} x \right) $

When we typeset this inline, as in 𝑥 = (𝑥
𝑥+1 +

𝑥
𝑥+2 +

𝑥
𝑥+3 +

𝑥
𝑥+4 +

𝑥
𝑥+5 +

𝑥
𝑥+6 +

𝑥
𝑥+7 +

𝑥
𝑥+8+

𝑥
𝑥+9+

𝑥
𝑥+10 +

𝑥
𝑥+11 +

𝑥
𝑥+12 +

𝑥
𝑥+13 +

𝑥
𝑥+14 +

𝑥
𝑥+15 +

𝑥
𝑥+16 +

𝑥
𝑥+17 +

𝑥
𝑥+18 +

𝑥
𝑥+19 +

𝑥
𝑥+20+

𝑥
𝑥+21+

𝑥
𝑥+22+

𝑥
𝑥+23+

𝑥
𝑥+24+

𝑥
𝑥+25+

𝑥
𝑥+26+

𝑥
𝑥+27+

𝑥
𝑥+28+

𝑥
𝑥+29+

𝑥
𝑥+30+

𝑥
𝑥+31+

𝑥
𝑥+32 +

𝑥
𝑥+33 +

𝑥
𝑥+34 +

𝑥
𝑥+35 +

𝑥
𝑥+36 +

𝑥
𝑥+37 +

𝑥
𝑥+38 +

𝑥
𝑥+39 +

𝑥
𝑥+40 + 𝑥), we get nicely

scaled fences but in a way that permits line breaks. The reason is that the engine
has been extended with a fenced class so that we can recognize later on, when TEX
comes to injecting spaces and penalties, that we need to unpack the construct. It is
another beneficial side effect of the generalization.

The Plain TEX code can be used to illustrate some of what we discussed before
about fractions. In the next code we use excessive delimiter spacing:

\def\Bigg#1{% watch the wrapping in a box
{%

\hbox {%
$\normalleft#1\vbox to 17.5pt{}\normalright.\nomathspacing$%

}%
}%

}

\nulldelimiterspace0pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

This renders as follows. We explicitly set \nulldelimiterspace to values because in
ConTEXt it is now zero by default.

⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__
⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__

⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__

⎞H__⎟H__

⎠H____V

__VH__H__

0pt with
reset at end

10pt with
reset at end

10pt without reset at end

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 23

Radicals
In traditional TEX a radical with degree is defined as macro. That macro does some
measurements and typesets the result in four sizes for a choice. The macro typesets
the degree in a box that contains the degree as formula. There is a less guesswork
going on than with respect to how the radical symbol is shaped but as we're talking
plain TEX here it works out okay because the default font is well known.

Radicals are a nice example of a two dimensional ‘extender’ but only the vertical
dimension uses the extension mechanism, which itself operates either horizontally
or vertically, although in principle it could go both ways. The horizontal extension
is a rule and the fact that the shape is below the baseline (as are other large symbols)
will make the rule connect well: the radical shape sticks out a little, so one can think
of the height reflecting the rule height.4 In OpenType fonts there is a parameter and
in LuaTEX we use the default rule thickness for traditional fonts, which is correct
for Latin Modern. There are more places in the fonts where the design relates to this
thickness, for instance fraction rules are supposed to match the minus, but this is a
bit erratic if you compare fonts. This is one of the corrections we apply in the goodie
files.

In OpenType the specification of the radical also includes spacing properties of the
degree and that is why we have a primitive in LuaTEX that also handles the degree. It
is what we used in ConTEXt MkIV. But . . . we actually end up with a situation that
compares to the already discussed fraction: there is space added before a radical when
there is a degree. However, because we now have a radical atom class, we can avoid
using that one and use the new pairwise spacing. Some fuzzy spacing logic in the
engine could therefore be removed and we assume that \Umathradicaldegreebefore
is zero. For the record: the \Umathradicaldegreeafter sort of tells how much space
there is above the low part of the root, which means that we can compensate for
multi-digit degrees.

Zeroing a parameter is something that relates to a font which means that it has
to happen for each math font which in turn can mean a family-style combination. In
order to avoid that complication (or better: to avoid tracing clutter) we have a way
to disable a parameter:

\ruledhbox{$x + \sqrt[123]{b}^1_2$}
\ruledhbox{$x + \sqrt[12] {b}^1_2$}
\ruledhbox{$x + \sqrt[1] {b}^1_2$}
\ruledhbox{$x + \sqrt {b}^1_2$}

𝑥 + 123
√
𝑏12 𝑥 +

12
√
𝑏12 𝑥 +

1
√
𝑏12 𝑥 +

√
𝑏12

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123
√
𝑏12 𝑥 +

12
√
𝑏12 𝑥 +

1
√
𝑏12 𝑥 +

√
𝑏12

\setmathignore\Umathradicaldegreebefore 1

Latin Modern

One problemwith these spacing parameters is that they are inconsistent across fonts.
The Latin Modern has a rather large space before the degree, while Cambria and
Pagella have little. That means that when you prototype a mechanism the chosen
solution can look great but not so much when at some point you use another font.

4. When you zoom in you will notice that this is not always optimal because of the way the slope touched
the rule.

24 MAPS 52 Hans Hagen & Mikael Sundqvist

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 1

Cambria

More fences
One of the reasons why the MkII and MkIV fence related mechanism is somewhat
complex is that we want a clean solution for filtering fences like parenthesis by size,
something that in the traditional happens via a fake fence pair that encapsulates
a strut of a certain size. In LMTX we use the same approach but have made the
sequence more configurable. In practice that means that the values 1 up to 4 are just
that but for some fonts we use the sequence 1 3 5 7. There was no need to adapt the
engine as it already worked quite well.
Integrals
The Latin Modern fonts have only one size of big operators and one reason can be
that there is no need for more. Another reason can be that there was just no space
in the font. However, an OpenType font has plenty slots available and the reference
font Cambria has integral signs in sizes as well as extensibles.

In LuaTEX we already have generic vertical extensibles but that only works well
with specified sizes. And, cheating with delimiters has the side effect that we get
the wrong spacing. In LuaMetaTEX however we have ways to adapt the size to what
came or what comes. In fact, it is a mechanism that is available for any atom that
we support. However, it doesn't play well with script and this whole \limits and
\nolimits is a bit clumsy so Mikael and I decided that different route had to be
followed. For adaptive large operators we provide this interface:
$ x + \integral [color=darkred,top={t},bottom={b}] {\frac{1}{x}} = 10 $

$ x + \startintegral [color=darkblue,top={t},bottom={b}]
\frac{1}{x} \stopintegral = 10 $

$ x + \startintegral [color=darkgreen,top={t},bottom={b},method=vertical]
\frac{1}{x} \stopintegral= 10 $

This text is not about the user interface so we won't discuss how to define additional
large operators using one-liners.

𝑥 +∫
𝑡

𝑏

1
𝑥 = 10 𝑥 +∫

𝑡

𝑏

1
𝑥 = 10 𝑥 +

𝑡

∫
𝑏

1
𝑥 = 10

The low level LuaMetaTEX implementation handles this input:
\Uoperator \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator limits \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator nolimits \Udelimiter "0 \fam "222B {top} {bottom} {...}

plus the usual keywords that fenced accept, because after all, this is just a special
case of fencing.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 25

Currently these special left operators are implemented as a special case of fences
because that mechanism does the scaling. It means that we need a (bogus) right
fence, or need to brace the content (basically create an atom). When no right fence
is found one is added automatically. Because there is no real fencing, right fences
are removed when processing takes place. When you specify a class that one will
be used for the left and right spacing, otherwise we have open/close spacing.
Going details
When the next feature was explored Mikael tagged it as math micro typography and
the reason is that you need not only to set up the engine for it but also need to be
aware of this kind of spacing. Because we wanted to get rid of this script spacing
that the font imposes we configured ConTEXt with:
\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone

This basically nils all these tiny spaces. But the latest configuration has this instead:
% \setmathignore \Umathspacebeforescript\zerocount % default
% \setmathignore \Umathspaceafterscript \zerocount % default

\mathslackmode \plusone

\setmathoptions\mathopcode \plusthree
\setmathoptions\mathbinarycode \plusthree
\setmathoptions\mathrelationcode\plusthree
\setmathoptions\mathopencode \plusthree
\setmathoptions\mathclosecode \plusthree
\setmathoptions\mathpunctcode \plusthree

This tells the engine to convert these spaces into what we call slack: disposable kerns
at the edges. But it also converts these kerns into a glue component when possible.
As with all these extensions it complicates the machinery but users will never see
that. Now, the last six lines do the magic that made us return to honoring the spaces:
we can tell the engine to ignore this slack when there are specific classes at the edges.
These options are a bitset and 1 means “no slack left” and 2 means “no slack right”
so 3 sets both.
\def\TestSlack#1%

{\vbox\bgroup
\mathslackmode\zerocount
\hbox\bgroup

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\red

\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

26 MAPS 52 Hans Hagen & Mikael Sundqvist

𝑓2 >𝑓2 > > 𝑓2> 𝑓2 𝑓2 > 𝑓2𝑓2 > 𝑓2
Because this overall removal of slack is not granular enough a while later we intro
duced a way to set this per class, as is demonstrated in the following example.

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\plusone
\hbox\bgroup\red

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\green

\setmathoptions\mathrelationcode \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\blue

\setmathoptions\mathrelationcode \plusthree
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

𝑓2 >𝑓2 >𝑓2 > > 𝑓2> 𝑓2> 𝑓2 𝑓2 > 𝑓2𝑓2 > 𝑓2𝑓2 > 𝑓2
Of course we need to experiment a lot with real documents and it might take a while
before all this is stable (in the engine and in ConTEXt). And as we don't need to
conform to the decades old golden TEX math standards we have some degrees of
freedom in this: for Mikael and me it is pretty much a visual thing where we look
closely at large samples. Of course in practice details get lost when we print at 10
point but that doesn't mean we can't provide the best experience.5

Ghosts
As plain TEX has macros like \vphantom you also find them in macro packages that
came later.These create a boxes that have their content removed after the dimensions
are set. They take space and are invisible but there's also nothing there.

A variant in the upgraded math machinery are ghosts: these are visible in the
sense that they show up but ignored when it comes to spacing. Here is an example.
The option bit set here tells the engine that we ghost at the right, so we have ghosts
around the relation (it controls where the spacing ends up).

5. Whenever I look at (my) old (math) school books I realize that Don Knuth had very good reasons to
come up with TEX and, it being hard to beat, TEX still sets the standard!

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 27

$
x
\mathatom class \mathghostcode {!!}
>
\mathatom class \mathghostcode options "00000020 {!!}
1
\quad
x
\mathatom class \mathghostcode {\hbox{\smallinfofont ord}}
>
\mathatom class \mathghostcode options "00000020

{\hbox{\smallinfofont dig}}
1

$

You never know when this comes in handy but it fits in the new, more granular ap
proach to spacing. The code above shows that it's just a class, this time with number
17.

𝑥!!
ordrel
>

reldig
!!1 𝑥ord

ordrel
>

reldig
dig1

Struts
In order to get consistent spacing the ConTEXtmacro packagemakes extensive use of
struts in text mode as well as math mode.The normal way to implement that is either
an empty box or a zero width rule, both with a specifically set height and depth. In
ConTEXt MkII and MkIV (and for a long time in LMTX too) they were rules so that
we could visualize them: they get some width and kerns around them to compensate
for that.

In order to not let them interfere with spacing we could wrap them into a ghost
atom but it is kind of ugly. Anyway, before we had these ghost atoms an alterna
tive to struts was already implemented: a special kind of rule. The reason is that I
wanted a cleaner and more predictable way to adapt struts to the math style uses
and sometimes predicting that is fragile. What we want is a delayed assignment of
dimensions.

We have two solutions. The first one uses two math parameters that themselves
adapt to the style, as do other parameters: \Umathruleheight and \Umathruledepth.
The other solution relates a font (or family) and character with the strut rule which
is then used as measure for the height and depth. Just for the record: this also works
in text mode, which is why a recent LMTX also does use that for struts now. The
optional visualization is just part of the regular visualization mechanism in ConTEXt
which already had provisions for struts. A side effect of this is that the rule primitives
now accept three more keywords: font, fam and char, in addition to the already
present traditional ones width, height and depth, the (backend) margin ones left (or
top) and right (or bottom) options, as well as xoffset and yoffset). The command
that creates a rule with subtype strut is simply \srule. Because struts are rather
macro package specific I leave it to this.

One positive side effect is that we could simplify the ConTEXt fraction mechanism
a bit. Over time control over the (font driven) gaps was introduced but that is not
really needed because we zero the gaps anyway. There was also a tolerance mecha
nism which again was not used. However, for skewed fractions we do use the new
tolerance mechanism as well as gap control.

28 MAPS 52 Hans Hagen & Mikael Sundqvist

Atoms
Now that we have generic atoms (\mathatom) another, sometimes confusing aspect
of the math parsing can be solved. Take this:

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ \MyBin _ \MyBin $

The parser just doesn't like that which means that one has to use

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ {\MyBin} _ {\MyBin} $

or:

\def\MyBin{{\mathbin{\tt mybin}}}
$ x ^ \MyBin _ \MyBin $

But the later has side effects: it creates a list that can influence spacing. It is for that
reason that we do accept atoms where they were not accepted before. Of course that
itself can have side effects but at least we don't get an error message. It fits well into
the additional (user) classes model. And, given that in ConTEXt the \frac command
is actually wrapped as \mathfrac the next will work too:

$ x^\frac{1}{2} + x^{\frac{1}{2}} $

but in practice you should probably use the braced version here for clarity.

The vcenter primitive
Traditionally this primitive is bound to math but it had already been adapted to
also work in text mode. As part of the upgrade of math we can now also pass all
the options that normal boxed take and we can also cheat with the axis. Here is an
example:

\def\TEST{\hbox\bgroup
\darkred \vrule width 2pt height 4pt
\darkgreen \vrule width 10pt depth 2pt

\egroup}
$

x - \mathatom \mathvcentercode {!!!} -
+ \ruledvcenter {\TEST}
+ \ruledvcenter {\TEST}
+ \ruledvcenter axis 1 {\TEST}
+ \ruledvcenter xoffset 2pt yoffset 2pt {\TEST}
+ \ruledvcenter xoffset -2pt yoffset -2pt {\TEST}
+ x

$

There was already a vcenter class available before we did this:

𝑥
ordbin
−

binvce
!!!

vcebin
−

binord
+

vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binord
𝑥

Text
Sometimes you want text in math, for instance sin or cos but text in math is not
really text:

$\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu fin(x)$

The result demonstrates that what looks like a word actually becomes three math
atoms:

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 29

𝑓
ordord
𝑖

ordord
𝑛(𝑥)

Okay, so how about then wrapping it into a text box:
$

\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu
fin(x) \quad \hbox{fin}(x)

$

Here we get:

𝑓
ordord
𝑖

ordord
𝑛(𝑥) fin(𝑥)

We even get a ligature which might be an indication that we're not using a math font
which indeed is the case: the box is typeset in the regular text font.
\def\Test#1%

{\setmathspacing\mathordinarycode\mathordinarycode\textstyle 5mu
$\showglyphs
#1% style
{\tf fin} \quad
\hbox{fin} \quad
\mathatom class \mathordinarycode textfont {fin}
\mathatom class \mathordinarycode textfont {\tf fin}
\mathatom class \mathordinarycode textfont {\hbox{fin}}
\mathatom class \mathordinarycode mathfont {\hbox{fin}}
$}

When we feed this macro with the \textstyle, \scriptstyle and
\scriptscriptstyle we get:

f i n fin 𝑓 𝑖 𝑛 f i n fin fin
text

fin fin 𝑓𝑖𝑛finfinfin
script

fin fin 𝑓𝑖𝑛finfinfin
scriptscript

Here you see a new atom option action: textfont which does as much as setting
the font to the current family font and the size to the one used in the style. For the

30 MAPS 52 Hans Hagen & Mikael Sundqvist

record: you only get ligatures when they are configured and provided by the font
(and as math is a script itself it is unlikely to work).6

Tracing
I won't discuss the tracing features in ConTEXt here but for sure the visualizer helps
a lot in figuring out all this. In LuaMetaTEX we carry a bit more information with
the resulting nodes so we can provide more details, for instance about the applied
spacing and penalties. Some is shown in the examples. A more recent tracing feature
is this:

\tracingmath 1
\tracingonline 1
$

\mathord (
\mathord {(}
\mathord \Udelimiter"4 0 `(
\Udelimiter"4 0 `(

$

That gives us on the console (the dots represent detailed attribute info that we omit
here):

7:3: > \inlinemath=
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathlist
7:3: ...\noad[open][...]
7:3:\nucleus
7:3:\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[open][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28

A tracing level of 2 will spit out some information about applied spacing and penal
ties between atoms (when set) and level 3 will show the math list before the first
and second pass (a mix of nodes and noads) we well as the result (nodes) plus return
some details about rules, spacing and penalties applied.

Is there more?
The engine already provides the option to circumvent the side effect of a change in a
parameter acting sort of global: the last value given is also the one that a second pass
starts with. The \frozen prefix will turn settings into local ones but that's another
(already old) topic. There are many such improvements and options not mentioned
here but you can find them mentioned and explained in older development stories.
A lot has been around for a while but not been applied in ConTEXt yet.

When TEX was written one important property (likely related to memory con
sumption) is that node lists have only forward pointers. That means that the state
of preceding material has to be kept track of: there is no going (or looking) back. In

6. The existing mechanisms in ConTEXt already dealt with this but it is nevertheless nice to have it as a
clean engine feature.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 31

LuaTEX we have double linked lists so in principle we can try to be more clever but
so far I decided not to touch the math machinery in that way. But who knows what
comes next.

Those italics
Right from the start of LuaTEX it became clear that the fact that TEX assumes the
actual width of glyphs to be incremented by the italic correction that then selectively
is removed has been an issue. It made for successive attempts to improve spacing in
ConTEXt by providing pseudo features. But, when we moved from assembled Uni
code math fonts to ‘real’ ones that becamemessy: what trick to apply when and even
worse where? In the end there are only a very few shapes that actually are affected
in the sense that when we don't deal with them it looks bad. It also happens that one
of those shapes is the italic ‘f’, a letter that is used frequently in math. It might even
be safe to say that the simple fact that the math italic f has this excessively wrong
width and thereby pretty large italic correction is the cause of many problems.

In the LMTX approach Mikael and I settled on patching shapes in the so called
font goodie files, aka lfg files and only a handful of entries needed a treatment. This
makes a good case for removing the traditional font code path from LuaMetaTEX.

modern: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2

𝑥12 𝑦
1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏

𝟐 𝒏𝟏
𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏

𝟐
𝒗𝟏𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

cambria: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔12 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2

𝑦12 𝑧
1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐

𝒛𝟏𝟐
pagella: 𝑎12 𝑏

1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2

𝑦12 𝑧
1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

termes: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗12 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝12 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2

𝑧12 𝒂𝟏𝟐 𝒃
𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

bonum: 𝑎12 𝑏12 𝑐12 𝑑1
2 𝑒12 𝑓 12 𝑔12 ℎ12 𝑖12 𝑗12 𝑘12 𝑙12 𝑚1

2 𝑛12 𝑜12 𝑝12 𝑞12 𝑟12 𝑠12 𝑡12
𝑢12 𝑣12 𝑤1

2 𝑥12 𝑦12 𝑧12 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇 𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐 𝒏𝟏

𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐
𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏

𝟐 𝒗𝟏𝟐 𝒘𝟏
𝟐 𝒙𝟏𝟐 𝒚𝟏𝟐 𝒛𝟏𝟐

One of the other very sloped symbol is the integral, althoughmost fonts have them
more upright than tex has. Of course there are many variants of these integrals in a
math font. Here we also have some font parameters that we can tune, which is what
we do.

Accents
Accents are common in languages other than English and it's English that TEX was
made for. Although the seven bit variant became eight bit handling accents neverwas
sophisticated and one of the main reasons is of course that one could use pre-built
composed characters. The OpenType format brought proper anchoring (aka marks)
to font formats and when LuaTEX deals with text those kick in. In OpenType math
however, anchoring is kind of limited to the top position only. Because the TEX Gyre
fonts are based on traditional TEX fonts, their accents have not become better suited.

$\hat{x} \enspace \widehat{x} \enspace \widehat{xx} \enspace \widehat{xxx}
\enspace \hat{f} \enspace \widehat{f} $

32 MAPS 52 Hans Hagen & Mikael Sundqvist

When looking at examples you need to be aware of the fact hat fonts can have been
adapted in the goodie files.7 So, for instance bounding boxes and such can differ from
the original. Anyway, the previous code in Cambria looks as follows.

�̂� �𝑥 �𝑥𝑥 �𝑥𝑥𝑥 𝑓 �𝑓
With Latin Modern we get:

𝑥 ̂𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 ̂𝑓
And Dejavu comes out as:

�̂� 𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 𝑓
As you can see there are some differences. In for instance Latin Modern the shape of
the hat and smallest wide hat are different and the first wide one has zero dimensions
combined with a negative anchor. When an accented character is followed by a su
perscript or prime the italic correction of the base kicks in but that cannot be enough
to not let this small wide hat overflow into the script. We could compensate for it but
then we need to know the dimensions. Of course we can consult the bounding box
but it makes no sense to let heuristics enter the machinery here while we're in the
process generalization. One option is to have two extra parameters that can be used
when the width of the accent comes close to the width of the base (we then assume
that zero accent width means that it has base width) we add an additional kern. In
the end we settled for a (semi automatic) correction option in the goodie files.

There are actually three categories of extensible accents to consider: those that
resemble the ones used in text (like tildes and hats), those wrapping something (like
braces and bracket but also arrows) and rules (that in traditional TEX indeed are
rules). In ConTEXt we have different interfaces for each of these in order to have a
more extensive control. The text related ones are the simplest and closest to what
the engine supports out of the box but even there we use tweaked glyphs to get
better spacing because (of course) fonts have different and inconsistent spacing in
the boundingbox above and below the real shape. This is again some tweak that we
moved from being automatic to being under goodie file control. But this is all too
ConTEXt specific to discuss here in more detail.
Decision time
After lots of tests Mikael and I came to the conclusion that we're facing the following
situation. When typesetting math most single characters are italic and we already
knew from the start of the LuaTEX project that the italics shapes are problematic
when it comes to typesetting math. But it looks like even some upright characters
can have italic correction: in TexGyreBonum for instance the bold upright f has
italic correction, probably because it then can (somehow) kern with a following i. It
anyhow assumes no italic correction to be applied between these characters.

7. Extreme examples can be found for Lucida Bright where we not only have to fix the extensible parts
of horizontal braces but also have to provide horizontal brackets.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 33

In the end the mixed math font model model got more and more stressed so one
decision was to simply assume fonts to be used that are either Cambria like Open
Type, or mostly traditional in metrics, or a hybrid of both. It then made more sense
to change the engine control options that we have into ones that simply enable cer
tain code paths, independent of the fact if a font is OpenType or not. It then become
a bit “crap in, crap out”, but because we already tweak fonts in the goodie files it's
quite okay. Some fonts have bad metrics anyway or miss characters and it makes no
sense to support abandoned fonts either. Also, when a traditional font is assembled
one can set up the engine with different flags and we can deal with it as we wish. In
the end it is all up to the macro package to configure things right, which is what we
tried to do for months when rooting out all the artifacts that fonts bring.8

That said, the reason why some (fuzzy) mixed model works out okay (also in
LuaTEX) is that proper OpenType fonts use staircase kerns instead of italic correc
tion. They also have no ligatures and kerns. We also suspect that not that much
attention is paid to the rendering. It's a bit like these “How many f's do you count in
this sentence?” tests where people tend to overlook of, if and similar short words.
Mathematicians loves f's but probably also overlook the occasionally weird spacing
and kerning.

A side effect is that mixing OpenType and traditional fonts is also no longer as
sumed which in turn made a few (newly introduced) state variables obsolete. Once
everything is stable (including extensions discussed before) some further cleanup
can happen. Another side effect is that one needs to tell the engine what to apply
and where, like this:

\mathfontcontrol\numexpr \zerocount
+\overrulemathcontrolcode
+\underrulemathcontrolcode
+\fractionrulemathcontrolcode
+\radicalrulemathcontrolcode
+\accentskewhalfmathcontrolcode
+\accentskewapplymathcontrolcode

% + checkligatureandkernmathcontrolcode
+\applyverticalitalickernmathcontrolcode
+\applyordinaryitalickernmathcontrolcode
+\staircasekernmathcontrolcode

% +\applycharitalickernmathcontrolcode
% +\reboxcharitalickernmathcontrolcode

+\applyboxeditalickernmathcontrolcode
+\applytextitalickernmathcontrolcode
+\checktextitalickernmathcontrolcode

% +\checkspaceitalickernmathcontrolcode
+\applyscriptitalickernmathcontrolcode
+\italicshapekernmathcontrolcode

\relax

There might be more control options (also for tracing purposes) and some of the
symbolic (ConTEXt) names might change for the better. As usual it will take some
years before all is stable but because most users use the latest greatest version it will
be tested well.

After this was decided and effective I also decided to drop the mapping from tradi
tional font parameters to the OpenType derives engine ones: we now assume that the
latter ones are set. After all, we already did that in ConTEXt for the virtual assemblies
that we started out with in the beginning of LuaTEX and MkIV.

8. In previous versions one could configure this per font but that has been dropped.

34 MAPS 52 Hans Hagen & Mikael Sundqvist

Dirty tricks
Once you start playing with edge cases you also start wondering if some otherwise
complex things can be done easier. The next macro brings together a couple of fea
tures discussed in previous sections. It also uses two state variables: \lastleftclass
and \lastrightclass that hold the most recent edge classes.
\tolerant\permanent\protected\def\NiceHack[#1]#:#2% special arg. parsing

{\begingroup
\setmathatomrule

\mathbegincode\mathbincode % context constants
\allmathstyles
\mathbegincode\mathbincode

\normalexpanded
{\setbox\scratchbox\hpack

ymove \Umathaxis\Ustyle\mathstyle % an additional box property
\bgroup

\framed % a context macro
[location=middle,#1]
{$\Ustyle\mathstyle#2$}%

\egroup}%
\mathatom

class 32 % an unused class
\ifnum\lastleftclass <\zerocount\else leftclass \lastleftclass\fi
\ifnum\lastrightclass<\zerocount\else rightclass \lastrightclass\fi
\bgroup

\box\scratchbox
\egroup

\endgroup}

\def\MyTest#1%
{$ x #1 x $\quad
$ x \NiceHack[offset=0pt]{#1} x $\quad
$\displaystyle x #1 x $\quad
$\displaystyle x \NiceHack[offset=0pt]{#1} x $}

\scale[scale=1500]{\MyTest{>}} \blank
\scale[scale=1500]{\MyTest{+}} \blank
\scale[scale=1500]{\MyTest{!}} \blank
\scale[scale=1500]{\MyTest{+\frac{1}{2}+}}\blank
\scale[scale=1500]{\MyTest{\frac{1}{2}}} \blank

Of course this is not code you immediately come up with after reading this text, also
because you need to know a bit of ConTEXt.

𝑥
ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥

𝑥
ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥

𝑥!
facord
𝑥 𝑥!

facord
𝑥 𝑥!

facord
𝑥 𝑥!

facord
𝑥

𝑥
ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥

𝑥
ordfra

1
2fraord
𝑥 𝑥

ordfra

1
2 fraord
𝑥 𝑥

ordfra

1
2fraord
𝑥 𝑥

ordfra

1
2 fraord
𝑥

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 35

There are a few control options, like \noatomruling that can be used to prevent rules
being applied to the next atom. We can use these in order to achieve more advanced
alignment results, but discussing math alignments would demand many more pages
than make sense here.

Tuned kerning
The ConTEXt distribution has dedicated code for typesetting units that dates back to
the mid nineties of the previous century but was (code wise) upgraded from MkII to
MkIV which made it end up in the physics name space. There is not much reason to
redo that code but when we talk new spacing classes it might make sense at some
point to see if we can use less code for spacing by using a ‘unit’ class. When Mikael
pointed out that, for instance in Pagella:

𝑚3/ 𝑠2
doesn't space well the obvious answer is: use the units mechanism because this kind
of rendering was why it was made in the first place. However, the question is of
course, can we do better anyway. The chosen solution uses a combination of class
options and tweaked shape kerning:

𝑚3/ 𝑠2
An example of a class setup in ConTEXt is:

\setmathoptions\mathdivisioncode\numexpr
\nopreslackclassoptioncode +\nopostslackclassoptioncode

+\lefttopkernclassoptioncode +\righttopkernclassoptioncode
+\leftbottomkernclassoptioncode +\rightbottomkernclassoptioncode

\relax

and, although we don't go into the details of tweaking here, this is the kind if code
you will find in the goodie file:

{
tweak = "kerns",
list = {

[0x2F] = {
topleft = -0.3,
bottomright = 0.2,

}
}

}

where the numbers are a percentage of the width. This specification translates in a
math staircase kerning recipe.

More font tweaks
Once you start looking into the details of these fonts you are likely to notice more
issues. For instance, in the nice looking Lucida math fonts the relations have incon
sistent widths and even shapes. This can partially be corrected by using a stylistic
alternate but even that forced us to come up with a mechanism to selectively re
place ‘bad’ shapes because there is not that much granularity in the alternates. And

36 MAPS 52 Hans Hagen & Mikael Sundqvist

once we looked at these alternates we noticed that the definition of of script versus
calligraphic is also somewhat fuzzy and font dependent. That made for yet another
tweakwhere we can swap alphabets and let themathmachinery choose the expected
shape. In Unicode this is handled by variant selectors which is rather cumbersome.
Because these two styles are used mixed in the same document, a proper additional
alphabet would have made more sense. As we already support variant selectors it
was no big deal to combine that mechanism with a variant selector features over a
range of calligraphic or script characters, which indeed is what mathematicians use
(Mikael can be very convincing). With this kind of tweaks the engine doesn't really
play a role: we always could and did deal with it. It's just that upgrading the engine
made us look again at this.

Final words
One can argue that all these new features can make a document look better. But you
only have to look at what Don Knuth produces himself to see that one always could
do a good job with TEX, although maybe at the cost of some extra spacing directives.
It is the fact that OpenType showed up as well as many more math fonts, all with
their own (sometimes surprising) special effects, that made us adapt the engine. Of
course there are also new possibilities that permit better and more robust macro
support. The TEXbook has a chapter on “the fine points of mathematics typesetting”
for a reason.

There has never been an excuse to produce bad looking documents. It is all about
care. For sure there is a category of users who are forced to use TEX, so they are
excused.There are also those who have no eye for typography and rely on the macro
package, so there we can to some extent blame the authors of those packages. And
there are of course the sloppy users, those who don't enter a revision loop at all.
They could as well use any system that in some way can handle math. One can also
wonder in what way massive remote editing as well as collaborative working on
documents make things better. It probably becomes less personal. At meetings and
platforms TEX users like to bash the alternatives but in the end they are part of the
same landscape and when it comes to math they dominate. Maybe there is less to
brag about then we like: just do your thing and try to do it as good as possible. Rely
on your eyes and pay attention to the details, which is possible because the engine
provided the means. The previous text shows a few things to pay attention to.

Once all the basics that have to do with proper dimensions, spacing, penalties and
logic are dealt with, we will move on to the more high level constructs. So, expect
more.

Hans Hagen & Mikael Sundqvist

