
NUMMER 52 • VOORJAAR 2022

R E D A C T I E
Frans Goddijn, gangmaker
Taco Hoekwater

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

N E D E R L A N D S T A L I G E TEX G E B R U I K E R S G R O E P

Voorzitter
Hans Hagen

voorzitter@ntg.nl

Secretaris
Taco Hoekwater

secretaris@ntg.nl

Penningmeester
Robbert Schwippert

penningmeester@ntg.nl

Bestuursleden
Frans Goddijn

Pieter van Oostrum
Postadres

Nederlandstalige TEX Gebruikersgroep
Baarsjesweg 268-I

1058 AD Amsterdam
ING bankrekening

IBAN: NL53INGB0001306238
BIC: INGBNL2A
E-mail bestuur
ntg@ntg.nl

E-mail MAPS redactie
maps@ntg.nl

WWW
www.ntg.nl

Copyright © 2022 NTG

De Nederlandstalige TEX Gebruikersgroep (NTG) is een vereniging die tot doel
heeft de kennis en het gebruik van TEX te bevorderen. De NTG fungeert als een
forum voor nieuwe ontwikkelingen met betrekking tot computergebaseerde document-
opmaak in het algemeen en de ontwikkeling van ‘TEX and friends’ in het bijzonder.
De doelstellingen probeert de NTG te realiseren door onder meer het uitwisselen van
informatie, het organiseren van conferenties en symposia met betrekking tot TEX en
daarmee verwante programmatuur.
De NTG biedt haar leden ondermeer:

@ Tweemaal per jaar een NTG-bijeenkomst.
@ Het NTG-tijdschrift MAPS.
@ De ‘TEX Live’-distributie op DVD/CDROM inclusief de complete CTAN

software-archieven.
@ Verschillende discussielijsten (mailing lists) over TEX-gerelateerde onderwerpen,

zowel voor beginners als gevorderden, algemeen en specialistisch.
@ De FTP server ftp.ntg.nl waarop vele honderden megabytes aan algemeen

te gebruiken ‘TEX-producten’ staan.
@ De WWW server www.ntg.nl waarop algemene informatie staat over de NTG,

bijeenkomsten, publicaties en links naar andere TEX sites.
@ Korting op (buitenlandse) TEX-conferenties en -cursussen en op het lidmaatschap

van andere TEX-gebruikersgroepen.

Lid worden kan door overmaking van de verschuldigde contributie naar de NTG-giro
(zie links); vermeld IBAN zowel als SWIFT/BIC en selecteer shared cost. Daarnaast
dient via www.ntg.nl een informatieformulier te worden ingevuld. Zonodig kan
ook een papieren formulier bij het secretariaat worden opgevraagd.
De contributie bedraagt ¤ 35. Voor studenten geldt een tarief van ¤ 18. Dit geeft alle
lidmaatschapsvoordelen maar geen stemrecht. Een bewijs van inschrijving is vereist. Een
gecombineerd NTG/TUG-lidmaatschap levert een korting van 10% op beide contributies
op. De prijs in euro’s wordt bepaald door de dollarkoers aan het begin van het jaar. De
ongekorte TUG-contributie is momenteel $105.

Afmelding kan met ingang van het volgende kalenderjaar door opzegging per e-mail
aan de penningmeester.

MAPS bijdragen kunt u opsturen naar maps@ntg.nl, bij voorkeur in LATEX- of
ConTEXt formaat. Bijdragen op alle niveaus van expertise zijn welkom.

Productie. De Maps wordt gezet met behulp van een LATEX class �le en een ConTEXt
module. Het pdf bestand voor de drukker wordt aangemaakt met behulp van pdf-
tex 1.40.20 en luatex 1.13.0 draaiend onder MacOS X 12.2. De gebruikte fonts zijn Linux
Libertine, het niet-proportionele font Inconsolata, schree�oze fonts uit de Latin Modern
collectie, en de Euler wiskunde fonts, alle vrij beschikbaar.

TEX is een door professor Donald E. Knuth ontwikkelde ‘opmaaktaal’ voor het let-
terzetten van documenten, een documentopmaaksysteem. Met TEX is het mogelijk
om kwalitatief hoogstaand drukwerk te vervaardigen. Het is eveneens zeer geschikt
voor formules in mathematische teksten.
Er is een aantal op TEX gebaseerde producten, waarmee ook de logische structuur van
een document beschreven kan worden, met behoud van de letterzet-mogelijkheden
van TEX. Voorbeelden zijn LATEX van Leslie Lamport, AMS-TEX van Michael Spivak,
en ConTEXt van Hans Hagen.

Contents

Welcome 1
Dutch Government Math rendering, Hans Hagen 3
A di�erent approach to math spacing, Hans Hagen & Mikael Sundqvist 9
Danlan type by Adriaan Goddijn, Frans Goddijn & Taco Hoekwater 37
Finding all intersections of paths in MetaPost, Mikael Sundqvist 47
Cyrillisch in publieke fonts, Hans Hagen 71
Tante Lenie weet raad. . . , Yuri Robbers 73
Dice3D OpenType, Taco Hoekwater 76
The art of Maps proofreading, Hans Hagen 77
MetaFun for generative art, Fabrice Larribe 82
Afscheid, Jos Winnink 91

maps redactie VOORJAAR 2022 1

Welcome

Abstract
Door middel van de Maps willen we u op de hoogte houden van ontwikkelingen, ook om
daarmee onze leden te danken voor hun trouwe steun aan de TEX ontwikkelaars. Verder
bieden we ruimte aan lezers die anderen laten delen in hun ervaringen met TEX, MetaPost,
fonts en aanverwanten. Aarzel dus niet ons artikelen te sturen. Een halve pagina is al heel
leuk, meer mag ook, graag zelfs. Het hoeft geen ‚zware kost’ te zijn want het is voor lezers
bijvoorbeeld al heel interessant te lezen hoe anderen TEX gebruiken. Dus een artikeltje als
„dit doe ik met TEX, zo doe ik dat en nu kun jij het ook” is zeer welkom!
Hoewel het internet tegenwoordig een belangrijke bron van informatie is, blijft papier een
functie vervullen binnen de vereniging. Dat past immers bij TEX!

The TEX ecosystem has evolved in a typesetting environment that can be used for a
wide variety of documents. But, in this maps there are some articles that, as can be
expected given TEX's objectives, discuss rendering math.

In the Lincos book, the Dutch mathematician Hans Freudenthal describes a lan
guage (system) that can be used to communicate with aliens. There is a strong focus
on communicating math. Just browsing the book is fun already. Now, imagine that
you have to typeset this or an article based on it. Say that Hans writes it, then Taco
has to make sure it gets rendered properly in the maps style. After that Frans starts
proofreading. All three need to check proper spacing of the formulas. That can
become a tedious cycle.

But . . . this document was published in the 1960s when there was no TEX! How
much easier life has become. On the next page we show an example: page 98, defi
nition 3 01 8, about commenting. More on this book can be found at

https://en.wikipedia.org/wiki/Lincos_language

and a scan of this book can be downloaded from:

https://monoskop.org/images/8/85/Freudenthal_Hans_Lincos_Design
_of_a_Language_for_Cosmic_Intercourse_Part_I.pdf

Given the care that Don Knuth paid to his books and TEX being able to do well
there is very little excuse for authors that embed math in documents today to produce
sloppy output. Nevertheless we can easily run into badly rendered math on the web
today. However, it is all about paying attention and Freudenthal and Knuth both
show us the way. Hopefully this Maps will pass your quality criteria.

2 MAPS 52 maps redactie

98 B E H A V I O U R [CH. I11

X &Ha Inq Hb . tl t z Fit @*a : Hb Inq He - t a t4 Ha Inq Hb . tl t z Fit pt6
Hc Inq Hd ' t 4 f 5 Hb Inq Hc : t 3 t 4 Ha Inq Hb . tl tzFit p +

are better suited for this purpose. We shall send a great many
texts from which this will become still more evident.

3 01 8. Comments on some texts may be very useful. E.g. on the first
talk of 3 01 2:

+ Hc Inq Hd : tl t z Hb Inq H a * 10 x = 101 . --f . 2 = 101 / lo .

A comment on the second talk of 3 01 2 :

+ HcInqHd'

Hd Inq Hc Ben +

tl t z Ha Inq Hb - ? x . 10 x = 101 : A : t z f3 Hb Inq Ha. 101/ 10
Hd Inq Hc Ben +

Another comment on the second talk of 3 01 2:

Hc Inq Hd ' t 3 t 4 Ha Inq Hb : yx. t 2 t 3 Fit x - €Ben :

A comment on the third talk of 3 01 2 :

* Hc Inq Hd ' t~ f3 Ha Inq Hb : Hb Inq Ha l O l / l O . E Ben I
Hd Inq Hc i Fa1 : tzt3HuInqHb : yz - tlt2Fit z E Ben :

Hd Inq Hc Ben +

t z t3 Ha InqHb : Hb Inq Ha l O l / l O . E Ben *
e ' t z t 3 Ha Inq Hb : yx. tl t z Fit x - E Ben *

From these comments the receiver will learn what liberties a
person may take when quoting other people. One could add a
hypercomment put into the mouth of still other persons and
containing behaviour rules on honest quoting.

In a former version of Lincos we distinguished between literal
and free quotations by means of a special notation which was
dropped later on. Literal quotation is a rather unimportant limit
position. We shall develop a means of comparing the exactness
of quotations ('Err', 3 09 1, 3 19 1). This will prove to be more
useful. If needed, literal quotations may be characterized by
'Em. . . = O ' .

3 02 0. We shall here treat interrogative sentences :

3 02 1. Many interrogative pronouns and adverbs can be treated in the
following manner :
+ t lHaInqHb.?x. 100x=lOIOt~:

Hb InqHc ' ? y : tltzy Inq Hb . ? x .I00 z = 1010
Hc Inq Hb Ha +

Uw redactie

Hans Hagen VOORJAAR 2022 3

Dutch Government Math rendering

End 2021 and beginning 2022Mikael Sundqvist and I spent quite some time on an up
grade of the math engine. Because TEX itself is frozen that was done in LuaMetaTEX,
which is our follow up on LuaTEX. That effort was all about consistency, avoiding
side effects, optimized spacing and line breaks, compensating for issues in OpenType
math fonts, interfaces and more. The TEX engine already does a good job on math,
if only because it's one of the reasons for its existence and when looking at the way
it's done one always needs to keep in mind the limitations of those days: memory,
performance, font technology, etc. But with the arrival of OpenType math and after
many years of working with TEX we took the opportunity to discuss and improve
math typesetting in ConTEXt using new features of LuaMetaTEX.
When one spends so much time on something that is sort of a niche application

(math) a valid question is “Who will benefit from it?”. Decades of observing TEX
usage has made clear that it's mostly for users who like to make their document look
nice. I'm not sure if publishers still care, as they outsource composition and often
demand usage of word processors or visual markup tools. Even academic usage in
for instance reports, course materials and thesis is questionable because not every
TEX user cares for an non-voluntary usage of some program just for the sake of
getting something on paper.
So, in the end all that effort on an upgraded engine is for the happy few who love

to see things done right. Because ConTEXt has some focus on educational usage it
is no surprise that I occasionally run into a document that targets education and
also has some math. In this case I will show some usage of math in a document
that describes what school kids have to learn. We're talking vocational education so
one can imagine that a lot of attention is paid to lowering the boundaries, easing
understanding, and being consistent in presenting the learning objectives. Alas.

4 MAPS 52 Hans Hagen

This 34 page document is published by the Dutch government as can be derived from
the logo shown next. And, as is usual today in documents, a reference to the website
is there too, and (also as usual) it's likely some bitmap clip of some web page. We
will see that the two lions in the banner don't represent the TEX lion here.

Now that we made clear that we're dealing with an official document, we can have
a closer look at the math. From the examples here it will be clear that programs like
TEX are wasted here and that such documents should never be used to determine
the specifications of a typesetting program. There was a time that such a document
would be in a typewriter font with handwritten formulas and I bet that it would look
way better than what we will see here. It might even be easier to produce because
I don't want to imagine what effort it takes to get this crappy output. The snippets
shown are just selections from the document exported in png format. We keep the
order of occurrence and scale a bit so that we can see clearly what we have.

In this example we see a verbose example of a formula, which it itself is quite okay.
It is however puzzling why in the second line the subscript text is in bold. The first
line has some curious spacing, so it is definitely not done in so called math mode
(assuming that the used word processor has that concept at all). A sans serif font is
used so given that this is an example for school kids, one can wonder if the times (×)
is experienced different from an x (𝑥), and we will see x's being used later. For the
record, amath font setup hasmany variants: x+𝐱+𝑥+𝒙+𝗑+𝘅+𝘹+𝙭+𝚡+𝚡+x+x =
We stick a bit with verbosemath and give another example. Let us be tolerant with

respect to the interline spacing and just look at the math: we suddenly get a serif font
here but definitely with a weight that does not really match the sans, so it is unlikely
that a proper OpenType math font, with matching alphabets, has been used here so
let's from now on assume that those responsible for rendering are unaware of the
existence of such fonts. We can always blame the application.

The next snippet shows an ‘x’ and as long as it is in an italic shape it will be different
from the times symbol, but unfortunately in this document we see an interesting mix
of upright, italic, sans and serif characters being used. At this point we probably no
longer need to wonder why students in that segment of education have problems
with math and why it is not that popular.

An example of a different ‘x’ comes next. Also watch the somewhat out of proportion
radical compared to the ‘x’. In TEX one really has to bend rules to get that. One cannot
select the root symbol so it might as well be some overlayed bitmap.

Hans Hagen VOORJAAR 2022 5

We stay with the ‘x’ and get a slightly different italic serif this time. It is combined
with a sans serif ‘y’ and upright somewhat bold ‘a’. Again, for this to be done in
TEX one needs to exercise some effort because normally all come out in a math italic
font. Spacing fractions is not always trivial especially when you see different ones
alongside but consistency is nevertheless important.

That the ‘x’ brings some artistic freedom is clear, but at least we have two similar
shapes here. I'm not sure how one can explain to a student that this time we use an
upright sans. It's probably all about the ‘x’ being smaller and raised.

It is possible to have all symbols in italic, as is seen from the next snippet. Spacing
could be a bit better but at least there is some consistency here.

However, when one reads on this shows up:

We do have two (this time serif) italic ordinary characters ‘x’ and ‘y’ but the number
‘1500’ made of digits is somewhat large and probably is typeset as an independent
quantity.
As awelcome distractionwe now show a table.The alignment in the first column is

peculiar. As with much in this document it looks like there has been no proofreading
at all. The numbers in the other cells are not (right) aligned and sit high in the cells
and of course frames around the cells are used. A student might wonder if there is a
difference between three and five dots. Nomater how one abuses TEX, the commands
that produce dots always produce the same amount: it's a proper glyph (shape)!

Sometimes two successive lines indicate some concept (I guess) but that is no reason
for this rendering. I cannot imagine that students are supposed to interpret such
formulas depending on the inconsistent mix of fonts and weights being used. (In the
following case using opp could have saved some space.)

6 MAPS 52 Hans Hagen

Here comes another beauty, a mix of digit ‘0’ (or is it the letter ‘O’) and a degrees ‘°’
symbol (I assume). In a decent (OpenType) math font the script symbols can have a
shape optimized for the smaller size so one can't know I guess.

It is time again for a larger blob of text. Do you recognize the symbol pi (𝜋) (it's not
an ‘n’ but it comes close)? And what about the superscript digits ‘2’ and ‘3’ that also
get special spacing? Weren't the digits upright in previous examples? The fractions
look like some small image squeezed in with a non proportional scale.

By now you get the picture, so we show a few more in one go:

In TEX there is a concept of a math axis, but not in the next example, and again one
can wonder if the ‘a’ and ‘x’ come from the same font. I did not bother to disassemble
the pdf. In TEX you can mess up the spacing too, but I get the impression that the ‘x’
is way below what a strut would enforce.

We started with a radical symbol that was somewhat high relative to what went
under it. But it can't be worse than this. Not only do we have a squeezed radical
symbol, the whole assembly also moved below the baseline: that takes some effort.

It is not uncommon to see some upright words in math formulas, think of sine and
cosine operators, often used in conjunction with parentheses sin(𝑥). But the inverse
operator in the next example is special: it is not only in bold, but also negated. And
it seems not to be an issue to show it combined with an upright bold ‘y’ raised to
the power bold ‘y’ in spite of a previous also upright regular variant. If in this case
calculator operations are meant, a more appropriate font or symbol should have been
used.

Hans Hagen VOORJAAR 2022 7

At some point one gets accustomed to this kind of rendering and maybe when that
happens those who are supposed to (proof) read this will not notice anything weird
and inconsistent in the larger clip below:

Not only are all ‘x’ and ‘y’ letters different, so are the digits and equal signs. It is
hard to imagine that the thousands of readers of a document like this who have an
education in math don't find this amusing. Personally it makes me sad. How can we
expect students to pay attention to anything they have to produce if this kind of crap
comes from the government. There was a time when such official documents were
typeset by the state publisher that employed famous typesetters and proper printers.
Even when much got delegated to departments responsible for communication that
used typewriters with these math specific symbol bulbs there was professional pride
involved. One can onlywonder about the quality criteria that get applied today.There
is simply no excuse for this and also not for the interline and inter atom spacing in
the next one:

But maybe spacing has some meaning that I don't grasp because I cannot imagine
that proof reading did not catch the next snippet, one that also uses very thin under
lining:

Maybe documents like this don't get proofread. In fact, maybe they are not even (sup
posed to be) read. Maybe it's just some outsourced effort that ends up on a website
and leaves the actual content to the teachers. Maybe one only has to look at some
exams and drill and practice for what is in there. Maybe no one really cares.

8 MAPS 52 Hans Hagen

The table above actually starts the document and again proves that no one checked
it, because I cannot imagine anyone not noticing the line breaks in the pre-last cells
where the (this time) eight dots would have fit quite well.
So, what conclusion can we draw from this? First of all that there is a total lack

of attention to how something looks and feels and thereby is perceived. Personally I
am not willing to even consider this a serious document at all. If textual consistency
is lacking then for sure the content is also not consistent and checked. And I did
not even discuss the text, punctuation, spacing, usage of quotes and excessive use of
frames around pages. We can only hope that documents like these get lost over time
so that no one can wonder how badly typesetting has evolved since the middle ages.
It also reveals to me that working on TEX is really dedicated to users who do care

and not to this kind of institutionalized math usage. But above all, it makes me aware
of the fact that it is no wonder that math is unpopular among kids. If it looks like
crap, it must be crap. We really should make math look ‘cool’ and ‘super’ these days
and only using these buzz words when talking to kids is not enough! The good news
is that after many decades TEX users can still produce nicely looking documents with
plenty of math.
Like: 𝑦 =

√
𝑥 + 4 and 𝑦 = 𝑎

𝑥 and 𝑦𝑥 and ℎ = 2𝑡 − 9 and 𝑦 = 1500
𝑥 and 𝑦 = 𝑎𝑥𝑛 + 𝑏

and inv(−𝑦𝑥) and 0° as well as: inhoudkegel =
1
3×oppervlakte grondvlak×hoogte, or:

inhoudkegel =
oppervlakte grondvlak×hoogte

3 .
And you can mix in some colors, emoji, graphics and still be consistent. If you

don't pay attention to your readers, don't expect your readers to pay attention to
what you bring to the table. And, once you know how to use TEX it's pretty easy
and even saves time, because even getting a handful of formulas as bad as seen here
takes time.
If you still wonder why we should care about these matters, imagine that you

need new tires for a car and get it back with four differently sized ones. How would
driving that car feel to you and would you be willing to keep that configuration for
the time it takes to wear them off? Given that math (and teaching it) is pretty much
about consistency, I suppose that when the rendering of math as shown here doesn't
disturb you, you will also happily keep those different tires.

Hans Hagen

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 9

A different approach to math spacing

Introduction
The TEX engine is famous for its rendering of math and even after decades there is
no real contender. And so there also is no real pressure to see if we can do better.
However, when Mikael Sundqvist ran into a Swedish math rendering specification
and we started discussing a possible support for that in ConTEXt, it quickly became
clear that the way TEX does spacing is a bit less flexible than one wishes for. We
already have much of what is needed in place but it also has to work well with how
TEX sees things:

1. Math is made from a sequence of atoms: a quantity with a nucleus, superscript
subscript.1 Atoms are spaced by \thinmuskip, \medmuskip and \thickmuskip or
nothing, and that is sort of hard coded.

2. Atoms are organized by class and there are seven (or eight, depending on how
you look at it) of them visible: binary symbols, relations, etc. The invisible ones,
composites like fractions and fenced material (we call them molecules) are at
some point mapped onto the core set. Molecules like fences have a different
class left and right of the fenced material.

3. In addition the engine itself has all kind of spacing related parameters and these
kick in automatically and sometimes have side effects. The same is true for
penalties.

The normal approach to spacing other than imposed by the engine is to use correc
tion space, like \, and I think that quite some TEX users think that this is how it is
supposed to be. The standard way to enter math relates to scientific publishing and
there the standards are often chiseled in stone so why should users tweak anyway.
However, in ConTEXt we tend to start from the users and not the publishers end so
there we can decide to follow different routes. Users can always work around some
thing they don't like but we focus on reliable input giving predictable output. Also,
when reading on, it is good to realize that it is all about the user experience here:
it should look nice (which then of course makes one become aware of issues else
where) and we don't care much about specific demands of publishers in the scientific
field: the fact that they often re-key content doesn't go well with users paying atten
tion themselves, let alone the fact that nowadays they can demand word processor
formats.

The three mentioned steps are fine for the average case but sometimes make no
sense. It was definitely the best approach given time and resources but when LuaTEX
went OpenType a lot of parameters were added and at that time we therefore added
spacing by class pair. That not only decoupled the relation between the three (con
figurable) muskip parameters but also made it possible to use plenty of them. Now
it must be said that for consistency having these three skips works great but given
the tweaking expected from users consistency is not always what comes out.

This situation is very well comparable to the proclaimed qualities of the typeset
ting of text by TEX. Yes, it can do a great job, and often does, but users can mess
up quite well. I remember that when we did tests with hz the outcomes were pretty

1. I suddenly realize why in the engine noads have a nucleus field: they are atoms . . . but what does that
make super and subscripts.

10 MAPS 52 Hans Hagen & Mikael Sundqvist

unimpressive. When you give an audience a set of sample renderings, where each
sample is slightly different and each user gets a randomized subset, the sudden lack
of being able to compare (and agree) with another TEXie makes for interesting con
clusions. They look for the opposites of what is claimed to be perfect. So, two lines
with hyphens rate low, even if not doing it would look worse. The same for a few
short words in the last line of a paragraph. Excessive spacing is also seen as bad. So,
when asked why some paragraphs looked okay noticing (excessive and troublesome)
expansion was not seen as a problem; instead it were hyphens that got the attraction.

The same is probably true for math: the input with lots of correction spaces or
commands where characters would do can be horrible but it's just the way it is sup
posed to be.The therefore expected output can only be perfect, right, independent of
how one actually messed up spacing. But personally I think that it is often spacing
messed up by users that make a TEX document recognizable. It compares to word
processor results that one can sometimes identify by multiple consecutive spaces in
the typeset text instead of using a glue model like TEX. Reaching perfection is not
always trivial, but fortunately we can also find plenty of nice looking documents
done with TEX.

The TEXbook has an excellent and intriguing chapter on the fine points of math
and it definitely shows why Don Knuth wrote TEX as a tool for his books. He pays a
lot of attention to detail and that is also why it all works out so well. If you need to
render from unseen sources (as happens in an xml workflow) coming from several
authors and have time nor money to check everything, you're off worse. And I'm
not even talking of input where invisible Unicode spacing characters are injected. It
is the TEX book(s) that has drawn me to this program and believe it or not, in the
first project I was involved in that demanded typeset (quantummechanics) math the
ibm typewriter with changing bulbs ruled the scenery. In fact, our involvement was
quickly cut off when we dared to show a chapter done in TEX that looked better.

Apart from an occasional tweak, in ConTEXt we never really used this opened
up math atom pair spacing mechanism available in LuaTEX extensively. So, when I
was pondering how to proceed it stroke me that it would make sense to generalize
this mechanism. It was already possible (via a mode parameter) to bypass the sec
ond step mentioned above, but we definitely needed more than the visible classes
that the engine had. In ConTEXt we already had more classes but those were meant
for assigning characters and commands to specific math constructs (think of fences,
fractions and radicals) so in the end they were not really classes. Considering this
option was made easier by the fact that Mikael would do the testing and help con
figuring the defaults, which all will result in a new math user manual.

There are extensions introduced in LuaTEX and later LuaMetaTEX that are not
discussed here. In this expose we concentrate on the features that were explored,
extended and introduced while we worked on updating math support in LMTX.

An example
Before we go into details, let's give an example of unnoticed spacing effects. We use
three simple formulas all using fractions:

\ruledhbox{$\frac{x^2}{a+1}$}

and:

\ruledhbox{$x + \frac{x^2}{a+1} = 10$}

as well as:

\ruledhbox{$\frac{1}{2}\frac{1}{2}x$}

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 11

𝑥2
𝑎+1 𝑥 + 𝑥2

𝑎+1 = 10 1
2
1
2 𝑥

If you look closely you see that the fraction has a little space at the left and right.
Where does that come from? Because we normally don't put a tight frame around a
fraction, we are not really aware of it. The spacing between what are called ordinary,
operator, binary, relation and other classes of atoms is explained in the TEXbook (or
“TEX by Topic” if you want a summary) and basically we have a class by class matrix
that is built into TEX. The engine looks at successive items and spacing depends on
their (perceived) class. Because the number of classes is limited, and because the
spacing pairs are hard coded, the engine cheats a little. Depending on what came
before or comes next the class of an atom is adapted to suit the spacing matrix. One
can say that a “reading mathematician” is built in. And most of the decisions are
okay. If needed one can always wrap something in e.g. \mathrel but of course that
also can interfere with grouping. All this is true for TEX, pdfTEX, X ETEX and LuaTEX,
but a bit different in LuaMetaTEX as we will see.

The little spacing on both edges of the fraction is a side effect of the way they are
built internally: fractions are actually a generalized form of “stuff put on top of other
stuff” and they can have left and/or right delimiters: this is driven by primitives that
have names like \atop and \atopwithdelims. The way the components are placed is
(especially in the case of OpenType) driven by lots of parameters and I will leave
that out of the discussion.

When there are no delimiters, a so called \nulldelimiterspace will be injected.
That parameter is set to 1.2 points and I have to admit that in ConTEXt I never con
sidered letting that one adapt to the body font size, which means that, as we default
to a 12 point body font, the value there should have been 1.44 points: mea culpa.
When we set this parameter to zero point, we get this:

𝑥2
𝑎+1 𝑥 +

𝑥2
𝑎+1 = 10 1

2
1
2𝑥

As intermezzo and moment of contemplation I show some examples of fractions
mixed into text. When we have the delimiter space set we get this:

test 1
1 test 1

2 test 1
3 test 1

4 test 1
5 test 1

6 test 1
7 test 1

8 test 1
9 test 1

10 test 1
11 test

1
12 test 1

13 test 1
14 test 1

15 test 1
16 test 1

17 test 1
18 test 1

19 test 1
20 test 1

21 test 1
22

test 1
23 test

1
24 test

1
25 test

1
26 test

1
27 test 1

28 test
1
29 test

1
30 test

1
31 test

1
32 test

1
33 test 1

34 test 1
35 test 1

36 test 1
37 test 1

38 test 1
39 test 1

40 test 1
41 test 1

42 test 1
43

test 1
44 test

1
45 test

1
46 test

1
47 test 1

48 test
1
49 test

1
50 test

1
51 test

1
52 test

1
53 test

1
54 test 1

55 test 1
56 test 1

57 test 1
58 test 1

59 test 1
60 test 1

61 test 1
62 test 1

63 test 1
64

test 1
65 test

1
66 test

1
67 test 1

68 test
1
69 test

1
70 test

1
71 test

1
72 test

1
73 test

1
74 test

1
75 test 1

76 test 1
77 test 1

78 test 1
79 test 1

80 test 1
81 test 1

82 test 1
83 test 1

84 test 1
85

test 1
86 test

1
87 test 1

88 test
1
89 test

1
90 test

1
91 test

1
92 test

1
93 test

1
94 test

1
95 test

1
96 test 1

97 test 1
98 test 1

99 test 1
100

12 MAPS 52 Hans Hagen & Mikael Sundqvist

While with zero it looks like this, quite a different outcome:

test 11 test
1
2 test

1
3 test

1
4 test

1
5 test

1
6 test

1
7 test

1
8 test

1
9 test

1
10 test

1
11 test

1
12 test

1
13 test

1
14 test

1
15 test

1
16 test

1
17 test

1
18 test

1
19 test

1
20 test

1
21 test

1
22 test

1
23 test

1
24

test 1
25 test

1
26 test

1
27 test

1
28 test

1
29 test

1
30 test

1
31 test

1
32 test

1
33 test

1
34 test

1
35

test 1
36 test

1
37 test

1
38 test

1
39 test

1
40 test

1
41 test

1
42 test

1
43 test

1
44 test

1
45 test

1
46

test 1
47 test

1
48 test

1
49 test

1
50 test

1
51 test

1
52 test

1
53 test

1
54 test

1
55 test

1
56 test

1
57

test 1
58 test

1
59 test

1
60 test

1
61 test

1
62 test

1
63 test

1
64 test

1
65 test

1
66 test

1
67 test

1
68

test 1
69 test

1
70 test

1
71 test

1
72 test

1
73 test

1
74 test

1
75 test

1
76 test

1
77 test

1
78 test

1
79

test 1
80 test

1
81 test

1
82 test

1
83 test

1
84 test

1
85 test

1
86 test

1
87 test

1
88 test

1
89 test

1
90

test 1
91 test

1
92 test

1
93 test

1
94 test

1
95 test

1
96 test

1
97 test

1
98 test

1
99 test

1
100

A little tracing shows it more clearly:

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test

1H__

12H__
__VH__H__ test 1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__ test 1H__

16H__
__VH__H__ test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__

test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__ test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test 1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test 1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test

1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__ test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__ test 1H__

43H__
__VH__H__

test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__ test 1H__

46H__
__VH__H__ test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test

1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test 1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__ test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test 1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__

test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__ test 1H__

69H__
__VH__H__ test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__ test

1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__ test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test 1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__

test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test 1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__ test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test

1H__

96H__
__VH__H__ test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

You can zoom in and see where it interferes with margin alignment.

test 1H__

1H__
__VH__H__ test 1H__

2H__
__VH__H__ test 1H__

3H__
__VH__H__ test 1H__

4H__
__VH__H__ test 1H__

5H__
__VH__H__ test 1H__

6H__
__VH__H__ test 1H__

7H__
__VH__H__ test 1H__

8H__
__VH__H__ test 1H__

9H__
__VH__H__ test 1H__

10H__
__VH__H__ test 1H__

11H__
__VH__H__ test 1H__

12H__
__VH__H__ test

1H__

13H__
__VH__H__ test 1H__

14H__
__VH__H__ test 1H__

15H__
__VH__H__ test 1H__

16H__
__VH__H__ test 1H__

17H__
__VH__H__ test 1H__

18H__
__VH__H__ test 1H__

19H__
__VH__H__ test 1H__

20H__
__VH__H__ test 1H__

21H__
__VH__H__ test 1H__

22H__
__VH__H__ test 1H__

23H__
__VH__H__ test 1H__

24H__
__VH__H__

test 1H__

25H__
__VH__H__ test 1H__

26H__
__VH__H__ test 1H__

27H__
__VH__H__ test 1H__

28H__
__VH__H__ test 1H__

29H__
__VH__H__ test 1H__

30H__
__VH__H__ test 1H__

31H__
__VH__H__ test 1H__

32H__
__VH__H__ test 1H__

33H__
__VH__H__ test 1H__

34H__
__VH__H__ test 1H__

35H__
__VH__H__

test 1H__

36H__
__VH__H__ test 1H__

37H__
__VH__H__ test 1H__

38H__
__VH__H__ test 1H__

39H__
__VH__H__ test 1H__

40H__
__VH__H__ test 1H__

41H__
__VH__H__ test 1H__

42H__
__VH__H__ test 1H__

43H__
__VH__H__ test 1H__

44H__
__VH__H__ test 1H__

45H__
__VH__H__ test 1H__

46H__
__VH__H__

test 1H__

47H__
__VH__H__ test 1H__

48H__
__VH__H__ test 1H__

49H__
__VH__H__ test 1H__

50H__
__VH__H__ test 1H__

51H__
__VH__H__ test 1H__

52H__
__VH__H__ test 1H__

53H__
__VH__H__ test 1H__

54H__
__VH__H__ test 1H__

55H__
__VH__H__ test 1H__

56H__
__VH__H__ test 1H__

57H__
__VH__H__

test 1H__

58H__
__VH__H__ test 1H__

59H__
__VH__H__ test 1H__

60H__
__VH__H__ test 1H__

61H__
__VH__H__ test 1H__

62H__
__VH__H__ test 1H__

63H__
__VH__H__ test 1H__

64H__
__VH__H__ test 1H__

65H__
__VH__H__ test 1H__

66H__
__VH__H__ test 1H__

67H__
__VH__H__ test 1H__

68H__
__VH__H__

test 1H__

69H__
__VH__H__ test 1H__

70H__
__VH__H__ test 1H__

71H__
__VH__H__ test 1H__

72H__
__VH__H__ test 1H__

73H__
__VH__H__ test 1H__

74H__
__VH__H__ test 1H__

75H__
__VH__H__ test 1H__

76H__
__VH__H__ test 1H__

77H__
__VH__H__ test 1H__

78H__
__VH__H__ test 1H__

79H__
__VH__H__

test 1H__

80H__
__VH__H__ test 1H__

81H__
__VH__H__ test 1H__

82H__
__VH__H__ test 1H__

83H__
__VH__H__ test 1H__

84H__
__VH__H__ test 1H__

85H__
__VH__H__ test 1H__

86H__
__VH__H__ test 1H__

87H__
__VH__H__ test 1H__

88H__
__VH__H__ test 1H__

89H__
__VH__H__ test 1H__

90H__
__VH__H__

test 1H__

91H__
__VH__H__ test 1H__

92H__
__VH__H__ test 1H__

93H__
__VH__H__ test 1H__

94H__
__VH__H__ test 1H__

95H__
__VH__H__ test 1H__

96H__
__VH__H__ test 1H__

97H__
__VH__H__ test 1H__

98H__
__VH__H__ test 1H__

99H__
__VH__H__ test 1H__

100H__
__VH__H__

So, if you ever meet a user who claims perfection and superiority of typesetting,
check out her/his work which might have inline fractions done the spacy way. It
might make other visually typesetting claims less trustworthy. And yes, one can
wonder if margin kerning could help here but as this content is wrapped in boxes it
is unlikely to work out well (and not worth the effort).

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 13

In order to get a better picture of the spacing, two more renderings are shown.
This time we show the bounding boxes of the characters too (you might need to
zoom in to see it):

𝑥2
𝑎+1 𝑥 + 𝑥2

𝑎+1 = 10 1
2
1
2 𝑥

Again we also show the zero case

𝑥2
𝑎+1 𝑥 +

𝑥2
𝑎+1 = 10 1

2
1
2𝑥

This makes clear why there actually is this extra space around a fraction: regular
operators have side bearings and thereby have some added space. And when we put
a fraction in front of a symbol we need that little extra space. Of course a proper
class pair spacing value could do the job but there is no fraction class. The engine
cheats by changing the class depending on what follows or came before and this is
why on the average it looks okay. However, these examples demonstrate that there
are some assumptions with regard to for instance fonts and this is one of the reasons
why the more or less official expected OpenType behavior as dictated by the Cam
bria font doesn't always work out well for fonts that evolved from the ones used in
the TEX community. Also imagine how this interferes with the fact that traditional
TEX fonts and the machinery do magic with cheating about width combined with
italic correction (all plausible and quite clever but somewhat tricky with respect to
OpenType).

Because here we discuss the way LuaMetaTEX and ConTEXt deal with this, the
following examples show a probably unexpected outcome. Again first the non-zero
case:

𝑥2
right𝑎

ordbin
+

bindig
1 𝑥

ordbin
+

binfra

𝑥2
right𝑎

ordbin
+

bindig
1 frarel
=

reldig
10 1

2 frafra

1
2 fraord
𝑥

And here the zero case:

𝑥2
right𝑎

ordbin
+

bindig
1 𝑥ordbin

+
binfra

𝑥2
right𝑎

ordbin
+

bindig
1frarel
=

reldig
10 1

2frafra

1
2fraord
𝑥

I will not go into details about the way fractions are supported in the engine because
some extensions are already around for quite a while. The main observation here is
that in LuaMetaTEXwe have alternative primitives that assume forward scanning, as
if the numerator and denominator are arguments. The engine also supports skewed
(vulgar) fractions natively where numerator and denominator are raised and lowered
relative to the (often) slash. Many aspects of the rendering can be tuned in the so
called font goodie files, which is also the place where we define the additional font
parameters.

14 MAPS 52 Hans Hagen & Mikael Sundqvist

Atom spacing
If you are familiar with traditional TEX you know that there is some built in ordbin
spacing. But there is no such pair for a fraction and a relation, simply because there
is no fraction class. However, in LuaMetaTEX there is one, and we'd better set it up
if we zero the margins of a fraction.

It is worth noticing that fractions are sort of special anyway. The official syn
tax is n \over m and numerator and denominator can be sub formulas. This is the
one case where the parser sort of has to look back, which is tricky because the ma
chinery is a forward looking one. Therefore, in order to get the expected styling
(or avoid unexpected side effects) one will normally wrap all in braces as in: { {n}
\over{m} } which of course kind defeats the simple syntax which probably is sup
ported for 1\over2 kind of usage, so a next challenge is to make 1/2 come out right.
All this means that in practice we have wrappers like \frac which accidentally in
LuaMetaTEX can be defined using forward looking primitives with plenty extra prop
erties driven by keywords. It also means that fractions as expected by the engine due
to wrapping actually can be a different kind of atom, which can have puzzling side
effects with respect to spacing (because the remapping happens unseen).

Interesting is that adapting LuaMetaTEX to a more extensive model was quite
doable, also because the code base had already been made more configurable. Of
course it involved quite a bit of tedious editing and throwing out already nice and
clean code that had taken some effort, but that's the way it is. Of course more classes
also means that some storage properties had to be adapted within the available space
but by sacrificing families that was possible. With 64 potential classes we now are
back to 64 families compared to 7 classes and 256 families in LuaTEX and 7 classes
and 16 families in traditional TEX.

Also interesting is that the new implementation is actually somewhat simpler and
therefore the binary is a tad smaller too. But does all that mean that there were no
pitfalls? Sure there were! It is worth noticing that doing all this reminded me of the
early days of LuaTEX development, where Taco and I exchanged binaries and TEX
code in a more or less constant way using Skype. For LuaMetaTEX we used good
old mail for files and Mojca's build farm for binaries and Mikael and I spent many
months exchanging information and testing out alternatives on a daily basis: it is in
my opinion the only way to do this and it's fun too. It has been a lot of work but
once we got going there was nothing that could stop us. A side effect was that there
were no updates during this period, which was something users noticed.

In the spacing matrix there is inner and internally there's also some care to be
taken of vcenter. The inner class is actually shared with the variable class which is
not so much a real class but more a signal to the engine that when an alphabetic or
numeric character is included it has to come from a specific family: upright family
zero or math italic family one in traditional speak. But, what if we don't have that
setup?Well, then one has tomake sure that this special class number is not associated
(which is no big deal). It does mean that when we extend the repertoire of classes
we cannot use slot seven. Always keep in mind that classes (and thereby signals) get
assigned to characters (some defaults by the engine, others by the macro package).
It is why in ConTEXt we use abstract class numbers, just in case the engine gets
adapted.

We also cannot use slot eight because that one is a signal too: for a possible active
math character, a feature somewhat complicated by the fact that it should not inter
fere with passing around such active characters in arguments. In math mode where
we have lots of macros passing around content, this special class works around these
side effects. We don't need this feature in ConTEXt because contrary to other macro
packages we don't handle primes, pseudo superscripts potentially followed by other
super and subscripts by making the ' an active character and thereby a macro in
math mode. This trickery again closely relates to preferable input, font properties,

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 15

and limitations of memory and such at the time TEX showed up (much has to fit into
8, 16 or 32 bits, so there is not much room for e.g. more than 8 classes). Since we
started with MkIV the way math is dealt with is a bit different than normally done
in TEX anyway.

Atom rules
We can now control the spacing between every atom but unfortunately that is not
good enough. Therefore, we arrive at yet another feature built into the engine: turn
ing classes into other classes depending on neighbors. And this is precisely why we
have certain classes. Let's quote “TEX by Topic”:The cases * (in the atom spacing ma
trix) cannot occur, because a bin object is converted to ord if it is the first in the list,
preceded by bin, op, open, punct, rel, or followed by close, punct, or rel; also, a rel is
converted to ord when it is followed by close or punct.

We can of course keep these hard coded heuristics but can as well make that bit
of code configurable, which we did. Below is demonstrated how one can set up the
defaults at the TEX end. We use symbolic names for the classes.

\setmathatomrule \mathbegincode \mathbinarycode % old
\allmathstyles \mathordinarycode \mathordinarycode % new

\setmathatomrule \mathbinarycode \mathbinarycode
\allmathstyles \mathbinarycode \mathordinarycode

\setmathatomrule \mathoperatorcode \mathbinarycode
\allmathstyles \mathoperatorcode \mathordinarycode

\setmathatomrule \mathopencode \mathbinarycode
\allmathstyles \mathopencode \mathordinarycode

\setmathatomrule \mathpunctuationcode \mathbinarycode
\allmathstyles \mathpunctuationcode \mathordinarycode

\setmathatomrule \mathrelationcode \mathbinarycode
\allmathstyles \mathrelationcode \mathordinarycode

\setmathatomrule \mathbinarycode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathbinarycode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

\setmathatomrule \mathbinarycode \mathrelationcode
\allmathstyles \mathordinarycode \mathrelationcode

\setmathatomrule \mathrelationcode \mathclosecode
\allmathstyles \mathordinarycode \mathclosecode

\setmathatomrule \mathrelationcode \mathpunctuationcode
\allmathstyles \mathordinarycode \mathpunctuationcode

Watch the special class with \mathbegincode. This is actually class 62 so you don't
need much fantasy to imagine that class 63 is \mathendcode, but that one is not yet
used. In a similar fashion we can initialize the spacing itself:2

\setmathspacing\mathordcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathordcode \mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathordcode \mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathordcode \mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathopcode \mathordcode \allmathstyles \thinmuskip
\setmathspacing\mathopcode \mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathopcode \mathrelcode \allsplitstyles\thickmuskip

2. Constant, engine specific, numbers like these are available in tables at the Lua end so we can change
them and users can check that.

16 MAPS 52 Hans Hagen & Mikael Sundqvist

\setmathspacing\mathopcode \mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathbincode \mathordcode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathopcode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathopencode \allsplitstyles\medmuskip
\setmathspacing\mathbincode \mathinnercode \allsplitstyles\medmuskip

\setmathspacing\mathrelcode \mathordcode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathopcode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathopencode \allsplitstyles\thickmuskip
\setmathspacing\mathrelcode \mathinnercode \allsplitstyles\thickmuskip

\setmathspacing\mathclosecode\mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathclosecode\mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathclosecode\mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathclosecode\mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathpunctcode\mathordcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathopcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathrelcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathopencode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathclosecode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathpunctcode \allsplitstyles\thinmuskip
\setmathspacing\mathpunctcode\mathinnercode \allsplitstyles\thinmuskip

\setmathspacing\mathinnercode\mathordcode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathopcode \allmathstyles \thinmuskip
\setmathspacing\mathinnercode\mathbincode \allsplitstyles\medmuskip
\setmathspacing\mathinnercode\mathrelcode \allsplitstyles\thickmuskip
\setmathspacing\mathinnercode\mathopencode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathpunctcode \allsplitstyles\thinmuskip
\setmathspacing\mathinnercode\mathinnercode \allsplitstyles\thinmuskip

And because we have a few more atom classes this also needs to happen:

\letmathspacing \mathactivecode \mathordinarycode
\letmathspacing \mathvariablecode \mathordinarycode
\letmathspacing \mathovercode \mathordinarycode
\letmathspacing \mathundercode \mathordinarycode
\letmathspacing \mathfractioncode \mathordinarycode
\letmathspacing \mathradicalcode \mathordinarycode
\letmathspacing \mathmiddlecode \mathopencode
\letmathspacing \mathaccentcode \mathordinarycode

\letmathatomrule \mathactivecode \mathordinarycode
\letmathatomrule \mathvariablecode \mathordinarycode
\letmathatomrule \mathovercode \mathordinarycode
\letmathatomrule \mathundercode \mathordinarycode
\letmathatomrule \mathfractioncode \mathordinarycode
\letmathatomrule \mathradicalcode \mathordinarycode
\letmathatomrule \mathmiddlecode \mathopencode
\letmathatomrule \mathaccentcode \mathordinarycode

With \resetmathspacingwe get an all-zero state but that might becomemore refined
in the future. What is not clear from the above is that there is also an inheritance
mechanism. The three special muskip registers are actually shortcuts so that chang
ing the register value is reflected in the spacing. When a regular muskip value is
(verbose or as register) that value is sort of frozen. However, the \inherited pre
fix will turn references to registers and constants into a delayed value: as with the

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 17

predefined we now have a more dynamic behavior which means that we can for in
stance use reserved muskip registers as we can use the predefined. A bonus is that
one can also use regular glue or dimensions, just in case one wants the same spacing
in all styles (a muskip adapts to the size).

When you look at all of the above you might wonder how users are supposed
to deal with math spacing. The answer is that often they can just assume that TEX
does the right thing. If something somehow doesn't feel right, looking at solutions by
others will probably lead a new user to just copy a trick, like injecting a \thinmuskip.
But it can be that atoms depend on the already applied (or not) spacing, which in
turn depends on values in the atom spacing matrix that probably only a few users
have seen. So, in the end it all boils down to trust in the engine and one's eyesight
combined with hopefully some consistency in adding space directives and often with
TEX it is consistency that makes documents look right. In ConTEXt we have many
more classes even if only a few characters fit in, like differential, exponential and
imaginary.

Fractions again
We now return to the fraction molecule. With the mechanisms at our disposal we
can change the fixed margins to more adaptive ones:

\inherited\setmathspacing \mathbinarycode \mathfractioncode
\allmathstyles \thickermuskip

\inherited\setmathspacing \mathfractioncode \mathbinarycode
\allmathstyles \thickermuskip

\nulldelimiterspace\zeropoint
$x + \frac{1}{x+2} + x$

Here \thickermuskip is defined as 7mu plus 5mu where the stretch is the same as a
\thickmuskip and the width 2mu more. We start out with three variants, where the
last two have \nulldelimiterspace set to 0pt and the first one uses the 1.2pt.

𝑥 + 1
𝑥+2 + 𝑥

𝑥 + 1
𝑥+2 + 𝑥

𝑥 + 1
𝑥+2 + 𝑥

When we now apply the new settings to the last one, and overlay them we get the
following output: the first and last case are rather similar which is why this effort
was started in the first place.

𝑥 + 1
𝑥+2 + 𝑥𝑥 + 1
𝑥+2 + 𝑥𝑥 + 1
𝑥+2 + 𝑥

18 MAPS 52 Hans Hagen & Mikael Sundqvist

Of course these changes are not upward compatible but as they are tiny they are not
that likely to change the number of lines in a paragraph. In display mode changes in
horizontal dimensions also have little effect.

Penalties
An inline formula can be broken across lines, and for sure there are places where
you don't want to break or prefer to break. In TEX line breaks can be influenced by
using penalties. At the outer level of an inline math formula, we can have a specific
penalty before and after a binary and/or relation. The defaults are such that there
are no penalties set, but most macro packages set the so called \relpenalty and
\binoppenalty (the op in this name does not relate to the operator class) so a value
between zero and 1000. In LuaTEX we also have \pre variants of these, so we have
four penalties that can be set, but that is not enough in our new approach.

These penalties are class bound and don't relate to styles, like atom spacing does.
That means that while atom spacing involves 64×64×8 potential values, an amount
that we can manage by using the discussed inheritance. The inheritance takes less
values because which store 4 style values per class in one number. For penalties we
only need to keep 64 × 2 in mind, plus a range of inheritance numbers. Therefore it
was decided to also generalize penalties so that each class can have them. The magic
commands are shown with some useless examples:

\letmathparent \mathdigitcode
\mathbincode % pre penalty
\mathbincode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

By default the penalties are on their own, like:

\letmathparent \mathdigitcode
\mathdigitcode % pre penalty
\mathdigitcode % post penalty
\mathdigitcode % options
\mathdigitcode % reserved

The options and reserved parent mapping are not (yet) discussed here. Unless values
are assigned they are ignored.

\setmathprepenalty \mathordcode 100
\setmathpostpenalty \mathordcode 600
\setmathprepenalty \mathbincode 200
\setmathpostpenalty \mathbincode 700
\setmathprepenalty \mathrelcode 300
\setmathpostpenalty \mathrelcode 800

As with spacing, when there is no known value, the parent will be consulted. An
unset penalty has a value of 10000.

After discussing the implications of inline math crossing lines, Mikael and I de
cided there can be two solutions. Both can of course be implemented in Lua, but on
the other hand, they make good extensions, also because it sort of standardized it.
The first advanced control feature tweaks penalties:

\mathforwardpenalties 2 200 100
\mathbackwardpenalties 2 100 50

This will add 200 and 100 to the first two math related penalties, and 100 and 50 to
the last two (watch out: the 100 will be assigned to the last one found, the 50 to the
one before it). As with all things penalty and line break related, you need to have

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 19

some awareness of how non-linear the badness calculation is as well of the fact that
the tolerance and stretch related parameters play a role here.

The second tweak is setting \maththreshold to some value. When set to for in
stance 40pt, formulas that take less space than this will be wrapped in a \hbox and
thereby will never break across a page.3 Actually that second tweak has a variant so
we have three tweaks! Say that we have this sample formula wrapped in some bogus
text and repeat that snippet a lot of times:
x xx xxx xxxx $1 + x$ x xx xxx xxxx

Now look at the example below. You will notice that the red and blue text have
different line breaks. This is because we have given the threshold some stretch and
shrink. The red text has a zero threshold so it doesn't do any magic at all, while the
second has this setup:
\setupmathematics[threshold=medium]

That setting set the threshold to 4em plus 0.75em minus 0.50em and when the for
mula size exceeds the four quads the line break code will use the real formula width
but with the given stretch and shrink. Eventually the calculated size will be used to
repackage the formula. In the future we will also provide a way to define slack more
relative to the size and/or number of atoms.

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx
xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx
xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx
x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx
xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx
xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx

x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx
xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx
xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx x xx xxx xxxx
x xx xxx xxxx x xx xxx xxxx 1 + 𝑥 x xx xxx xxxx

Another way to influence line breaks is to use the two inline math related penalties
that have been added at Mikael's suggestion:
\setupalign[verytolerant]
{\dorecurse{25}{test $\darkred #1^{#1} + x_{#1}^{#1}$ test }\blank}
{\preinlinepenalty 500 \postinlinepenalty -500
\dorecurse{25}{test $\darkgreen #1^{#1} + x_{#1}^{#1}$ test }\blank}

{\postinlinepenalty 500 \preinlinepenalty -500
\dorecurse{25}{test $\darkblue #1^{#1} + x_{#1}^{#1}$ test }\blank}

To get an example that shows the effect takes a bit of trial and error because TEX
does a very good job in line breaking. This is why we've set the tolerance and also
use negative penalties.

In addition to the \mathsurround (kern) and \mathsurroundskip (glue) parameters
this is a property of the nodes that mark the beginning and end of an inline math
formula.
test 11 + 𝑥11 test test 2

2 + 𝑥22 test test 3
3 + 𝑥33 test test 4

4 + 𝑥44 test test 5
5 + 𝑥55 test test

66 + 𝑥66 test test 7
7 + 𝑥77 test test 8

8 + 𝑥88 test test 9
9 + 𝑥99 test test 10

10 + 𝑥1010 test test
1111+𝑥1111 test test 12

12+𝑥1212 test test 13
13+𝑥1313 test test 14

14+𝑥1414 test test 15
15+𝑥1515

test test 1616+𝑥1616 test test 17
17+𝑥1717 test test 18

18+𝑥1818 test test 19
19+𝑥1919 test test

3. A future version might inject severe penalties instead, time will learn.

20 MAPS 52 Hans Hagen & Mikael Sundqvist

2020+𝑥2020 test test 21
21+𝑥2121 test test 22

22+𝑥2222 test test 23
23+𝑥2323 test test 24

24+𝑥2424
test test 2525 + 𝑥2525 test

test 11+𝑥11 test test 2
2+𝑥22 test test 3

3+𝑥33 test test 4
4+𝑥44 test test 5

5+𝑥55 test test 6
6+𝑥66

test test 77+𝑥77 test test 8
8+𝑥88 test test 9

9+𝑥99 test test 10
10+𝑥1010 test test 11

11+𝑥1111
test test 1212+𝑥1212 test test 13

13+𝑥1313 test test 14
14+𝑥1414 test test 15

15+𝑥1515 test test
1616+𝑥1616 test test 17

17+𝑥1717 test test 18
18+𝑥1818 test test 19

19+𝑥1919 test test 20
20+𝑥2020

test test 2121+𝑥2121 test test 22
22+𝑥2222 test test 23

23+𝑥2323 test test 24
24+𝑥2424 test test

2525 + 𝑥2525 test

test 11 + 𝑥11 test test 22 + 𝑥22 test test 33 + 𝑥33 test test 44 + 𝑥44 test test 55 + 𝑥55 test
test 66 + 𝑥66 test test 7

7 + 𝑥77 test test 8
8 + 𝑥88 test test 9

9 + 𝑥99 test test 10
10 + 𝑥1010 test

test 1111 + 𝑥1111 test test 1212 + 𝑥1212 test test 1313 + 𝑥1313 test test 1414 + 𝑥1414 test test
1515+𝑥1515 test test 16

16+𝑥1616 test test 17
17+𝑥1717 test test 18

18+𝑥1818 test test 19
19+𝑥1919

test test 2020+𝑥2020 test test 21
21+𝑥2121 test test 22

22+𝑥2222 test test 23
23+𝑥2323 test test

2424 + 𝑥2424 test test 25
25 + 𝑥2525 test

Flattening
The traditional engine has some code for flattening math constructs that in the end
are just one character. So in the end, \tilde{u} and \tilde {uu} become different
objects even if both are in fact accents. In fact, when an accent is constructed there is
a special code path for single characters so that script placement adapts to the shape
of that character.

However because of interaction with primes, which themselves are sort of super
scripts and due to the somewhat weird way fonts provide them when it comes to
positioning and sizes, in ConTEXt we already are fooling around a bit with these
characters. For understandable reasons of memory usage, complexity and eightbit
ness primes are not a native TEX thing but more something that is handled at the
macro level (although not in MkIV and LMTX).

In the end it was script placements on (widely) accented math characters that
made us introduce a dedicated \Umathprime primitive that adds a prime to a math
atom. It permits an uninterrupted treatment of scripts while in the final assembly of
the molecule the prime, superscript, subscript and maybe even prescripts that prime
gets squeezed in. Because the concept of primes is missing in OpenType math an
additional font parameter PrimeTopRaisePercent has been introduced as well as an
\Umathprimeraise primitive. In retrospect I should have done that earlier but one
tends to stick to the original as much as possible. However, at some point Mikael
and I reached a state where we decided that proper (clean) engine extensions make
way more sense than struggling with border cases and explaining users why things
are so complicated.

The input $ X \Uprimescript{'} ^2 _3 $ gives this:

𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__ 𝑋2H__

3H____V

′H__

Latin Modern Cambria Pagella Dejavu

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 21

With \tracingmath = 1 this nicely traces as:
> \inlinemath=
\noad[ord][...]
.\nucleus
..\mathchar[ord] family "0, character "58
.\superscript
..\mathchar[dig] family "0, character "32
.\subscript
..\mathchar[dig] family "0, character "32
.\primescript
..\mathchar[ord] family "0, character "27

Of course this feature can also be used for other prime like ornaments and who
knows how it will evolve over time.

You can influence the positioning with \Umathprimesupshift which adds some
kern between a prime and superscript. The \Umathextraprimeshift moves a prime
up.The \Umathprimeraise is a font parameter that defaults to 25 which means a raise
of 25%of the height. These are all (still) experimental parameters.
Fences
Fences can be good for headaches. Because the math that I (or actually my col
league) deal with is mostly school math encoded in presentation MathML (sort or
predictable) or some form of sequential ascii based input (often rather messy and
therefore unpredictable due to ambiguity) fences are a pain. A TEXie can make sure
that left and right fences are matched. A TEXie also knows when something is an
inline parenthesis or when a more high level structure is needed, for instance when
parentheses have to scale with what they wrap. In that case the \left and \right
mechanism is used. In arbitrary input missing one of those is fatal. Therefore, han
dling of fences in ConTEXt is one of the more complex sub mechanisms: we not only
need to scale when needed, but also catch asymmetrical usage.

A side effect of the encapsulating fencing construct is that it wraps the content in
a so called inner (as in \mathinner) which means that we get a box, and it is a well
known property of boxes that they don't break across lines. With respect to fences,
a way out is to not really fence content, but do something like this:
\left(\strut\right. x + 1 \left.\strut\right)

and hope for the best. Both pairs are coupled in the sense that their sizes will match
and the strut is what determines the size. So, as long as there is a proper match of
struts all is well, but it is definitely a decent hack. The drawback is in the size of the
strut: if a formula needs a higher one, larger struts have to be used. This is why in
plain TEX we have these commands:
\def\bigl {\mathopen \big } \def\bigm {\mathrel\big } \def\bigr {\mathclose\big }
\def\Bigl {\mathopen \Big } \def\Bigm {\mathrel\Big } \def\Bigr {\mathclose\Big }
\def\biggl{\mathopen \bigg} \def\biggm{\mathrel\bigg} \def\biggr{\mathclose\bigg}
\def\Biggl{\mathopen \Bigg} \def\Biggm{\mathrel\Bigg} \def\Biggr{\mathclose\Bigg}

\def\big #1{{\hbox{$\left#1\vbox to 8.5pt{}\right.\nomathspacing$}}}
\def\Big #1{{\hbox{$\left#1\vbox to 11.5pt{}\right.\nomathspacing$}}}
\def\bigg#1{{\hbox{$\left#1\vbox to 14.5pt{}\right.\nomathspacing$}}}
\def\Bigg#1{{\hbox{$\left#1\vbox to 17.5pt{}\right.\nomathspacing$}}}

\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt} % renamed

Themiddle is kind of interesting because it has relation properties, while the \middle
introduced in 𝜀-TEX got open properties, but we leave that aside.

In ConTEXt we have plenty of alternatives, including these commands, but they
are defined differently. For instance they adapt to the font size. The hard coded point
sizes in the plain TEX code relates to the font and steps available in there (either by

22 MAPS 52 Hans Hagen & Mikael Sundqvist

next larger or by extensible). The values thereby need to be adapted to the chosen
body font as well as the body font size. In MkIV and even better in LMTX we can
actually consult the font and get more specific sizes.

But, this section is not about how to get these fixed sizes. Actually, the need to
choose explicitly is not what we want, especially because TEX can size delimiters so
well. So, take this code snippet:

$ x = \left(\dorecurse{40}{\frac{x}{x+#1} +} x \right) $

When we typeset this inline, as in 𝑥 = (𝑥
𝑥+1 +

𝑥
𝑥+2 +

𝑥
𝑥+3 +

𝑥
𝑥+4 +

𝑥
𝑥+5 +

𝑥
𝑥+6 +

𝑥
𝑥+7 +

𝑥
𝑥+8+

𝑥
𝑥+9+

𝑥
𝑥+10 +

𝑥
𝑥+11 +

𝑥
𝑥+12 +

𝑥
𝑥+13 +

𝑥
𝑥+14 +

𝑥
𝑥+15 +

𝑥
𝑥+16 +

𝑥
𝑥+17 +

𝑥
𝑥+18 +

𝑥
𝑥+19 +

𝑥
𝑥+20+

𝑥
𝑥+21+

𝑥
𝑥+22+

𝑥
𝑥+23+

𝑥
𝑥+24+

𝑥
𝑥+25+

𝑥
𝑥+26+

𝑥
𝑥+27+

𝑥
𝑥+28+

𝑥
𝑥+29+

𝑥
𝑥+30+

𝑥
𝑥+31+

𝑥
𝑥+32 +

𝑥
𝑥+33 +

𝑥
𝑥+34 +

𝑥
𝑥+35 +

𝑥
𝑥+36 +

𝑥
𝑥+37 +

𝑥
𝑥+38 +

𝑥
𝑥+39 +

𝑥
𝑥+40 + 𝑥), we get nicely

scaled fences but in a way that permits line breaks. The reason is that the engine
has been extended with a fenced class so that we can recognize later on, when TEX
comes to injecting spaces and penalties, that we need to unpack the construct. It is
another beneficial side effect of the generalization.

The Plain TEX code can be used to illustrate some of what we discussed before
about fractions. In the next code we use excessive delimiter spacing:

\def\Bigg#1{% watch the wrapping in a box
{%

\hbox {%
$\normalleft#1\vbox to 17.5pt{}\normalright.\nomathspacing$%

}%
}%

}

\nulldelimiterspace0pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\nulldelimiterspace0pt\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

\nulldelimiterspace10pt
\def\nomathspacing{\mathsurround0pt}

$\Bigg(1 + x\Bigg) \quad \Bigg(\frac{1}{x}\Bigg)$\par

This renders as follows. We explicitly set \nulldelimiterspace to values because in
ConTEXt it is now zero by default.

⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__
⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__

⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__ 1 + 𝑥⎞H__⎟H__

⎠H____V

__VH__H__
⎛H__⎜H__

⎝H____V

__VH__H__
1H__

𝑥H__
__VH__H__

⎞H__⎟H__

⎠H____V

__VH__H__

0pt with
reset at end

10pt with
reset at end

10pt without reset at end

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 23

Radicals
In traditional TEX a radical with degree is defined as macro. That macro does some
measurements and typesets the result in four sizes for a choice. The macro typesets
the degree in a box that contains the degree as formula. There is a less guesswork
going on than with respect to how the radical symbol is shaped but as we're talking
plain TEX here it works out okay because the default font is well known.

Radicals are a nice example of a two dimensional ‘extender’ but only the vertical
dimension uses the extension mechanism, which itself operates either horizontally
or vertically, although in principle it could go both ways. The horizontal extension
is a rule and the fact that the shape is below the baseline (as are other large symbols)
will make the rule connect well: the radical shape sticks out a little, so one can think
of the height reflecting the rule height.4 In OpenType fonts there is a parameter and
in LuaTEX we use the default rule thickness for traditional fonts, which is correct
for Latin Modern. There are more places in the fonts where the design relates to this
thickness, for instance fraction rules are supposed to match the minus, but this is a
bit erratic if you compare fonts. This is one of the corrections we apply in the goodie
files.

In OpenType the specification of the radical also includes spacing properties of the
degree and that is why we have a primitive in LuaTEX that also handles the degree. It
is what we used in ConTEXt MkIV. But . . . we actually end up with a situation that
compares to the already discussed fraction: there is space added before a radical when
there is a degree. However, because we now have a radical atom class, we can avoid
using that one and use the new pairwise spacing. Some fuzzy spacing logic in the
engine could therefore be removed and we assume that \Umathradicaldegreebefore
is zero. For the record: the \Umathradicaldegreeafter sort of tells how much space
there is above the low part of the root, which means that we can compensate for
multi-digit degrees.

Zeroing a parameter is something that relates to a font which means that it has
to happen for each math font which in turn can mean a family-style combination. In
order to avoid that complication (or better: to avoid tracing clutter) we have a way
to disable a parameter:

\ruledhbox{$x + \sqrt[123]{b}^1_2$}
\ruledhbox{$x + \sqrt[12] {b}^1_2$}
\ruledhbox{$x + \sqrt[1] {b}^1_2$}
\ruledhbox{$x + \sqrt {b}^1_2$}

𝑥 + 123
√
𝑏12 𝑥 +

12
√
𝑏12 𝑥 +

1
√
𝑏12 𝑥 +

√
𝑏12

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123
√
𝑏12 𝑥 +

12
√
𝑏12 𝑥 +

1
√
𝑏12 𝑥 +

√
𝑏12

\setmathignore\Umathradicaldegreebefore 1

Latin Modern

One problemwith these spacing parameters is that they are inconsistent across fonts.
The Latin Modern has a rather large space before the degree, while Cambria and
Pagella have little. That means that when you prototype a mechanism the chosen
solution can look great but not so much when at some point you use another font.

4. When you zoom in you will notice that this is not always optimal because of the way the slope touched
the rule.

24 MAPS 52 Hans Hagen & Mikael Sundqvist

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 0

𝑥 + 123√𝑏
1
2 𝑥 +

12√𝑏
1
2 𝑥 +

1√𝑏
1
2 𝑥 + √𝑏

1
2

\setmathignore\Umathradicaldegreebefore 1

Cambria

More fences
One of the reasons why the MkII and MkIV fence related mechanism is somewhat
complex is that we want a clean solution for filtering fences like parenthesis by size,
something that in the traditional happens via a fake fence pair that encapsulates
a strut of a certain size. In LMTX we use the same approach but have made the
sequence more configurable. In practice that means that the values 1 up to 4 are just
that but for some fonts we use the sequence 1 3 5 7. There was no need to adapt the
engine as it already worked quite well.
Integrals
The Latin Modern fonts have only one size of big operators and one reason can be
that there is no need for more. Another reason can be that there was just no space
in the font. However, an OpenType font has plenty slots available and the reference
font Cambria has integral signs in sizes as well as extensibles.

In LuaTEX we already have generic vertical extensibles but that only works well
with specified sizes. And, cheating with delimiters has the side effect that we get
the wrong spacing. In LuaMetaTEX however we have ways to adapt the size to what
came or what comes. In fact, it is a mechanism that is available for any atom that
we support. However, it doesn't play well with script and this whole \limits and
\nolimits is a bit clumsy so Mikael and I decided that different route had to be
followed. For adaptive large operators we provide this interface:
$ x + \integral [color=darkred,top={t},bottom={b}] {\frac{1}{x}} = 10 $

$ x + \startintegral [color=darkblue,top={t},bottom={b}]
\frac{1}{x} \stopintegral = 10 $

$ x + \startintegral [color=darkgreen,top={t},bottom={b},method=vertical]
\frac{1}{x} \stopintegral= 10 $

This text is not about the user interface so we won't discuss how to define additional
large operators using one-liners.

𝑥 +∫
𝑡

𝑏

1
𝑥 = 10 𝑥 +∫

𝑡

𝑏

1
𝑥 = 10 𝑥 +

𝑡

∫
𝑏

1
𝑥 = 10

The low level LuaMetaTEX implementation handles this input:
\Uoperator \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator limits \Udelimiter "0 \fam "222B {top} {bottom} {...}
\Uoperator nolimits \Udelimiter "0 \fam "222B {top} {bottom} {...}

plus the usual keywords that fenced accept, because after all, this is just a special
case of fencing.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 25

Currently these special left operators are implemented as a special case of fences
because that mechanism does the scaling. It means that we need a (bogus) right
fence, or need to brace the content (basically create an atom). When no right fence
is found one is added automatically. Because there is no real fencing, right fences
are removed when processing takes place. When you specify a class that one will
be used for the left and right spacing, otherwise we have open/close spacing.
Going details
When the next feature was explored Mikael tagged it as math micro typography and
the reason is that you need not only to set up the engine for it but also need to be
aware of this kind of spacing. Because we wanted to get rid of this script spacing
that the font imposes we configured ConTEXt with:
\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone

This basically nils all these tiny spaces. But the latest configuration has this instead:
% \setmathignore \Umathspacebeforescript\zerocount % default
% \setmathignore \Umathspaceafterscript \zerocount % default

\mathslackmode \plusone

\setmathoptions\mathopcode \plusthree
\setmathoptions\mathbinarycode \plusthree
\setmathoptions\mathrelationcode\plusthree
\setmathoptions\mathopencode \plusthree
\setmathoptions\mathclosecode \plusthree
\setmathoptions\mathpunctcode \plusthree

This tells the engine to convert these spaces into what we call slack: disposable kerns
at the edges. But it also converts these kerns into a glue component when possible.
As with all these extensions it complicates the machinery but users will never see
that. Now, the last six lines do the magic that made us return to honoring the spaces:
we can tell the engine to ignore this slack when there are specific classes at the edges.
These options are a bitset and 1 means “no slack left” and 2 means “no slack right”
so 3 sets both.
\def\TestSlack#1%

{\vbox\bgroup
\mathslackmode\zerocount
\hbox\bgroup

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\red

\setmathignore\Umathspacebeforescript\plusone
\setmathignore\Umathspaceafterscript \plusone
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

26 MAPS 52 Hans Hagen & Mikael Sundqvist

𝑓2 >𝑓2 > > 𝑓2> 𝑓2 𝑓2 > 𝑓2𝑓2 > 𝑓2
Because this overall removal of slack is not granular enough a while later we intro
duced a way to set this per class, as is demonstrated in the following example.

\def\TestSlack#1%
{\vbox\bgroup

\mathslackmode\plusone
\hbox\bgroup\red

\setmathignore\Umathspacebeforescript\zerocount
\setmathignore\Umathspaceafterscript \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\green

\setmathoptions\mathrelationcode \zerocount
#1

\egroup
\vskip-.9\lineheight
\hbox\bgroup\blue

\setmathoptions\mathrelationcode \plusthree
#1

\egroup
\egroup}

\startcombination[nx=3]
{\showglyphs\TestSlack{$f^2 > $}} {}
{\showglyphs\TestSlack{$ > f^^2$}} {}
{\showglyphs\TestSlack{$f^2 > f^^2$}} {}

\stopcombination

𝑓2 >𝑓2 >𝑓2 > > 𝑓2> 𝑓2> 𝑓2 𝑓2 > 𝑓2𝑓2 > 𝑓2𝑓2 > 𝑓2
Of course we need to experiment a lot with real documents and it might take a while
before all this is stable (in the engine and in ConTEXt). And as we don't need to
conform to the decades old golden TEX math standards we have some degrees of
freedom in this: for Mikael and me it is pretty much a visual thing where we look
closely at large samples. Of course in practice details get lost when we print at 10
point but that doesn't mean we can't provide the best experience.5

Ghosts
As plain TEX has macros like \vphantom you also find them in macro packages that
came later.These create a boxes that have their content removed after the dimensions
are set. They take space and are invisible but there's also nothing there.

A variant in the upgraded math machinery are ghosts: these are visible in the
sense that they show up but ignored when it comes to spacing. Here is an example.
The option bit set here tells the engine that we ghost at the right, so we have ghosts
around the relation (it controls where the spacing ends up).

5. Whenever I look at (my) old (math) school books I realize that Don Knuth had very good reasons to
come up with TEX and, it being hard to beat, TEX still sets the standard!

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 27

$
x
\mathatom class \mathghostcode {!!}
>
\mathatom class \mathghostcode options "00000020 {!!}
1
\quad
x
\mathatom class \mathghostcode {\hbox{\smallinfofont ord}}
>
\mathatom class \mathghostcode options "00000020

{\hbox{\smallinfofont dig}}
1

$

You never know when this comes in handy but it fits in the new, more granular ap
proach to spacing. The code above shows that it's just a class, this time with number
17.

𝑥!!
ordrel
>

reldig
!!1 𝑥ord

ordrel
>

reldig
dig1

Struts
In order to get consistent spacing the ConTEXtmacro packagemakes extensive use of
struts in text mode as well as math mode.The normal way to implement that is either
an empty box or a zero width rule, both with a specifically set height and depth. In
ConTEXt MkII and MkIV (and for a long time in LMTX too) they were rules so that
we could visualize them: they get some width and kerns around them to compensate
for that.

In order to not let them interfere with spacing we could wrap them into a ghost
atom but it is kind of ugly. Anyway, before we had these ghost atoms an alterna
tive to struts was already implemented: a special kind of rule. The reason is that I
wanted a cleaner and more predictable way to adapt struts to the math style uses
and sometimes predicting that is fragile. What we want is a delayed assignment of
dimensions.

We have two solutions. The first one uses two math parameters that themselves
adapt to the style, as do other parameters: \Umathruleheight and \Umathruledepth.
The other solution relates a font (or family) and character with the strut rule which
is then used as measure for the height and depth. Just for the record: this also works
in text mode, which is why a recent LMTX also does use that for struts now. The
optional visualization is just part of the regular visualization mechanism in ConTEXt
which already had provisions for struts. A side effect of this is that the rule primitives
now accept three more keywords: font, fam and char, in addition to the already
present traditional ones width, height and depth, the (backend) margin ones left (or
top) and right (or bottom) options, as well as xoffset and yoffset). The command
that creates a rule with subtype strut is simply \srule. Because struts are rather
macro package specific I leave it to this.

One positive side effect is that we could simplify the ConTEXt fraction mechanism
a bit. Over time control over the (font driven) gaps was introduced but that is not
really needed because we zero the gaps anyway. There was also a tolerance mecha
nism which again was not used. However, for skewed fractions we do use the new
tolerance mechanism as well as gap control.

28 MAPS 52 Hans Hagen & Mikael Sundqvist

Atoms
Now that we have generic atoms (\mathatom) another, sometimes confusing aspect
of the math parsing can be solved. Take this:

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ \MyBin _ \MyBin $

The parser just doesn't like that which means that one has to use

\def\MyBin{\mathbin{\tt mybin}}
$ x ^ {\MyBin} _ {\MyBin} $

or:

\def\MyBin{{\mathbin{\tt mybin}}}
$ x ^ \MyBin _ \MyBin $

But the later has side effects: it creates a list that can influence spacing. It is for that
reason that we do accept atoms where they were not accepted before. Of course that
itself can have side effects but at least we don't get an error message. It fits well into
the additional (user) classes model. And, given that in ConTEXt the \frac command
is actually wrapped as \mathfrac the next will work too:

$ x^\frac{1}{2} + x^{\frac{1}{2}} $

but in practice you should probably use the braced version here for clarity.

The vcenter primitive
Traditionally this primitive is bound to math but it had already been adapted to
also work in text mode. As part of the upgrade of math we can now also pass all
the options that normal boxed take and we can also cheat with the axis. Here is an
example:

\def\TEST{\hbox\bgroup
\darkred \vrule width 2pt height 4pt
\darkgreen \vrule width 10pt depth 2pt

\egroup}
$

x - \mathatom \mathvcentercode {!!!} -
+ \ruledvcenter {\TEST}
+ \ruledvcenter {\TEST}
+ \ruledvcenter axis 1 {\TEST}
+ \ruledvcenter xoffset 2pt yoffset 2pt {\TEST}
+ \ruledvcenter xoffset -2pt yoffset -2pt {\TEST}
+ x

$

There was already a vcenter class available before we did this:

𝑥
ordbin
−

binvce
!!!

vcebin
−

binord
+

vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binvce vcebin
+

binord
𝑥

Text
Sometimes you want text in math, for instance sin or cos but text in math is not
really text:

$\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu fin(x)$

The result demonstrates that what looks like a word actually becomes three math
atoms:

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 29

𝑓
ordord
𝑖

ordord
𝑛(𝑥)

Okay, so how about then wrapping it into a text box:
$

\setmathspacing\mathordinarycode\mathordinarycode\textstyle 10mu
fin(x) \quad \hbox{fin}(x)

$

Here we get:

𝑓
ordord
𝑖

ordord
𝑛(𝑥) fin(𝑥)

We even get a ligature which might be an indication that we're not using a math font
which indeed is the case: the box is typeset in the regular text font.
\def\Test#1%

{\setmathspacing\mathordinarycode\mathordinarycode\textstyle 5mu
$\showglyphs
#1% style
{\tf fin} \quad
\hbox{fin} \quad
\mathatom class \mathordinarycode textfont {fin}
\mathatom class \mathordinarycode textfont {\tf fin}
\mathatom class \mathordinarycode textfont {\hbox{fin}}
\mathatom class \mathordinarycode mathfont {\hbox{fin}}
$}

When we feed this macro with the \textstyle, \scriptstyle and
\scriptscriptstyle we get:

f i n fin 𝑓 𝑖 𝑛 f i n fin fin
text

fin fin 𝑓𝑖𝑛finfinfin
script

fin fin 𝑓𝑖𝑛finfinfin
scriptscript

Here you see a new atom option action: textfont which does as much as setting
the font to the current family font and the size to the one used in the style. For the

30 MAPS 52 Hans Hagen & Mikael Sundqvist

record: you only get ligatures when they are configured and provided by the font
(and as math is a script itself it is unlikely to work).6

Tracing
I won't discuss the tracing features in ConTEXt here but for sure the visualizer helps
a lot in figuring out all this. In LuaMetaTEX we carry a bit more information with
the resulting nodes so we can provide more details, for instance about the applied
spacing and penalties. Some is shown in the examples. A more recent tracing feature
is this:

\tracingmath 1
\tracingonline 1
$

\mathord (
\mathord {(}
\mathord \Udelimiter"4 0 `(
\Udelimiter"4 0 `(

$

That gives us on the console (the dots represent detailed attribute info that we omit
here):

7:3: > \inlinemath=
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathlist
7:3: ...\noad[open][...]
7:3:\nucleus
7:3:\mathchar[open] family "0, character "28
7:3: \noad[ord][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28
7:3: \noad[open][...]
7:3: .\nucleus
7:3: ..\mathchar[open] family "0, character "28

A tracing level of 2 will spit out some information about applied spacing and penal
ties between atoms (when set) and level 3 will show the math list before the first
and second pass (a mix of nodes and noads) we well as the result (nodes) plus return
some details about rules, spacing and penalties applied.

Is there more?
The engine already provides the option to circumvent the side effect of a change in a
parameter acting sort of global: the last value given is also the one that a second pass
starts with. The \frozen prefix will turn settings into local ones but that's another
(already old) topic. There are many such improvements and options not mentioned
here but you can find them mentioned and explained in older development stories.
A lot has been around for a while but not been applied in ConTEXt yet.

When TEX was written one important property (likely related to memory con
sumption) is that node lists have only forward pointers. That means that the state
of preceding material has to be kept track of: there is no going (or looking) back. In

6. The existing mechanisms in ConTEXt already dealt with this but it is nevertheless nice to have it as a
clean engine feature.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 31

LuaTEX we have double linked lists so in principle we can try to be more clever but
so far I decided not to touch the math machinery in that way. But who knows what
comes next.

Those italics
Right from the start of LuaTEX it became clear that the fact that TEX assumes the
actual width of glyphs to be incremented by the italic correction that then selectively
is removed has been an issue. It made for successive attempts to improve spacing in
ConTEXt by providing pseudo features. But, when we moved from assembled Uni
code math fonts to ‘real’ ones that becamemessy: what trick to apply when and even
worse where? In the end there are only a very few shapes that actually are affected
in the sense that when we don't deal with them it looks bad. It also happens that one
of those shapes is the italic ‘f’, a letter that is used frequently in math. It might even
be safe to say that the simple fact that the math italic f has this excessively wrong
width and thereby pretty large italic correction is the cause of many problems.

In the LMTX approach Mikael and I settled on patching shapes in the so called
font goodie files, aka lfg files and only a handful of entries needed a treatment. This
makes a good case for removing the traditional font code path from LuaMetaTEX.

modern: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2

𝑥12 𝑦
1
2 𝑧

1
2 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏

𝟐 𝒏𝟏
𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐 𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏

𝟐
𝒗𝟏𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

cambria: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓

1
2 𝑔12 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2

𝑦12 𝑧
1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐

𝒛𝟏𝟐
pagella: 𝑎12 𝑏

1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗

1
2 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝

1
2 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2

𝑦12 𝑧
1
2 𝒂𝟏𝟐 𝒃

𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

termes: 𝑎12 𝑏
1
2 𝑐

1
2 𝑑

1
2 𝑒

1
2 𝑓 12 𝑔

1
2 ℎ

1
2 𝑖

1
2 𝑗12 𝑘

1
2 𝑙

1
2 𝑚

1
2 𝑛

1
2 𝑜

1
2 𝑝12 𝑞

1
2 𝑟

1
2 𝑠

1
2 𝑡

1
2 𝑢

1
2 𝑣

1
2 𝑤

1
2 𝑥

1
2 𝑦

1
2

𝑧12 𝒂𝟏𝟐 𝒃
𝟏
𝟐 𝒄

𝟏
𝟐 𝒅

𝟏
𝟐 𝒆

𝟏
𝟐 𝒇

𝟏
𝟐 𝒈

𝟏
𝟐 𝒉

𝟏
𝟐 𝒊

𝟏
𝟐 𝒋

𝟏
𝟐 𝒌

𝟏
𝟐 𝒍

𝟏
𝟐 𝒎

𝟏
𝟐 𝒏

𝟏
𝟐 𝒐

𝟏
𝟐 𝒑

𝟏
𝟐 𝒒

𝟏
𝟐 𝒓

𝟏
𝟐 𝒔

𝟏
𝟐 𝒕

𝟏
𝟐 𝒖

𝟏
𝟐 𝒗

𝟏
𝟐 𝒘

𝟏
𝟐 𝒙

𝟏
𝟐 𝒚

𝟏
𝟐 𝒛

𝟏
𝟐

bonum: 𝑎12 𝑏12 𝑐12 𝑑1
2 𝑒12 𝑓 12 𝑔12 ℎ12 𝑖12 𝑗12 𝑘12 𝑙12 𝑚1

2 𝑛12 𝑜12 𝑝12 𝑞12 𝑟12 𝑠12 𝑡12
𝑢12 𝑣12 𝑤1

2 𝑥12 𝑦12 𝑧12 𝒂𝟏𝟐 𝒃𝟏𝟐 𝒄𝟏𝟐 𝒅𝟏𝟐 𝒆𝟏𝟐 𝒇 𝟏𝟐 𝒈𝟏𝟐 𝒉𝟏𝟐 𝒊𝟏𝟐 𝒋𝟏𝟐 𝒌𝟏𝟐 𝒍𝟏𝟐 𝒎𝟏
𝟐 𝒏𝟏

𝟐 𝒐𝟏𝟐 𝒑𝟏𝟐 𝒒𝟏𝟐
𝒓𝟏𝟐 𝒔𝟏𝟐 𝒕𝟏𝟐 𝒖𝟏

𝟐 𝒗𝟏𝟐 𝒘𝟏
𝟐 𝒙𝟏𝟐 𝒚𝟏𝟐 𝒛𝟏𝟐

One of the other very sloped symbol is the integral, althoughmost fonts have them
more upright than tex has. Of course there are many variants of these integrals in a
math font. Here we also have some font parameters that we can tune, which is what
we do.

Accents
Accents are common in languages other than English and it's English that TEX was
made for. Although the seven bit variant became eight bit handling accents neverwas
sophisticated and one of the main reasons is of course that one could use pre-built
composed characters. The OpenType format brought proper anchoring (aka marks)
to font formats and when LuaTEX deals with text those kick in. In OpenType math
however, anchoring is kind of limited to the top position only. Because the TEX Gyre
fonts are based on traditional TEX fonts, their accents have not become better suited.

$\hat{x} \enspace \widehat{x} \enspace \widehat{xx} \enspace \widehat{xxx}
\enspace \hat{f} \enspace \widehat{f} $

32 MAPS 52 Hans Hagen & Mikael Sundqvist

When looking at examples you need to be aware of the fact hat fonts can have been
adapted in the goodie files.7 So, for instance bounding boxes and such can differ from
the original. Anyway, the previous code in Cambria looks as follows.

�̂� �𝑥 �𝑥𝑥 �𝑥𝑥𝑥 𝑓 �𝑓
With Latin Modern we get:

𝑥 ̂𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 ̂𝑓
And Dejavu comes out as:

�̂� 𝑥 𝑥𝑥 𝑥𝑥𝑥 𝑓 𝑓
As you can see there are some differences. In for instance Latin Modern the shape of
the hat and smallest wide hat are different and the first wide one has zero dimensions
combined with a negative anchor. When an accented character is followed by a su
perscript or prime the italic correction of the base kicks in but that cannot be enough
to not let this small wide hat overflow into the script. We could compensate for it but
then we need to know the dimensions. Of course we can consult the bounding box
but it makes no sense to let heuristics enter the machinery here while we're in the
process generalization. One option is to have two extra parameters that can be used
when the width of the accent comes close to the width of the base (we then assume
that zero accent width means that it has base width) we add an additional kern. In
the end we settled for a (semi automatic) correction option in the goodie files.

There are actually three categories of extensible accents to consider: those that
resemble the ones used in text (like tildes and hats), those wrapping something (like
braces and bracket but also arrows) and rules (that in traditional TEX indeed are
rules). In ConTEXt we have different interfaces for each of these in order to have a
more extensive control. The text related ones are the simplest and closest to what
the engine supports out of the box but even there we use tweaked glyphs to get
better spacing because (of course) fonts have different and inconsistent spacing in
the boundingbox above and below the real shape. This is again some tweak that we
moved from being automatic to being under goodie file control. But this is all too
ConTEXt specific to discuss here in more detail.
Decision time
After lots of tests Mikael and I came to the conclusion that we're facing the following
situation. When typesetting math most single characters are italic and we already
knew from the start of the LuaTEX project that the italics shapes are problematic
when it comes to typesetting math. But it looks like even some upright characters
can have italic correction: in TexGyreBonum for instance the bold upright f has
italic correction, probably because it then can (somehow) kern with a following i. It
anyhow assumes no italic correction to be applied between these characters.

7. Extreme examples can be found for Lucida Bright where we not only have to fix the extensible parts
of horizontal braces but also have to provide horizontal brackets.

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 33

In the end the mixed math font model model got more and more stressed so one
decision was to simply assume fonts to be used that are either Cambria like Open
Type, or mostly traditional in metrics, or a hybrid of both. It then made more sense
to change the engine control options that we have into ones that simply enable cer
tain code paths, independent of the fact if a font is OpenType or not. It then become
a bit “crap in, crap out”, but because we already tweak fonts in the goodie files it's
quite okay. Some fonts have bad metrics anyway or miss characters and it makes no
sense to support abandoned fonts either. Also, when a traditional font is assembled
one can set up the engine with different flags and we can deal with it as we wish. In
the end it is all up to the macro package to configure things right, which is what we
tried to do for months when rooting out all the artifacts that fonts bring.8

That said, the reason why some (fuzzy) mixed model works out okay (also in
LuaTEX) is that proper OpenType fonts use staircase kerns instead of italic correc
tion. They also have no ligatures and kerns. We also suspect that not that much
attention is paid to the rendering. It's a bit like these “How many f's do you count in
this sentence?” tests where people tend to overlook of, if and similar short words.
Mathematicians loves f's but probably also overlook the occasionally weird spacing
and kerning.

A side effect is that mixing OpenType and traditional fonts is also no longer as
sumed which in turn made a few (newly introduced) state variables obsolete. Once
everything is stable (including extensions discussed before) some further cleanup
can happen. Another side effect is that one needs to tell the engine what to apply
and where, like this:

\mathfontcontrol\numexpr \zerocount
+\overrulemathcontrolcode
+\underrulemathcontrolcode
+\fractionrulemathcontrolcode
+\radicalrulemathcontrolcode
+\accentskewhalfmathcontrolcode
+\accentskewapplymathcontrolcode

% + checkligatureandkernmathcontrolcode
+\applyverticalitalickernmathcontrolcode
+\applyordinaryitalickernmathcontrolcode
+\staircasekernmathcontrolcode

% +\applycharitalickernmathcontrolcode
% +\reboxcharitalickernmathcontrolcode

+\applyboxeditalickernmathcontrolcode
+\applytextitalickernmathcontrolcode
+\checktextitalickernmathcontrolcode

% +\checkspaceitalickernmathcontrolcode
+\applyscriptitalickernmathcontrolcode
+\italicshapekernmathcontrolcode

\relax

There might be more control options (also for tracing purposes) and some of the
symbolic (ConTEXt) names might change for the better. As usual it will take some
years before all is stable but because most users use the latest greatest version it will
be tested well.

After this was decided and effective I also decided to drop the mapping from tradi
tional font parameters to the OpenType derives engine ones: we now assume that the
latter ones are set. After all, we already did that in ConTEXt for the virtual assemblies
that we started out with in the beginning of LuaTEX and MkIV.

8. In previous versions one could configure this per font but that has been dropped.

34 MAPS 52 Hans Hagen & Mikael Sundqvist

Dirty tricks
Once you start playing with edge cases you also start wondering if some otherwise
complex things can be done easier. The next macro brings together a couple of fea
tures discussed in previous sections. It also uses two state variables: \lastleftclass
and \lastrightclass that hold the most recent edge classes.
\tolerant\permanent\protected\def\NiceHack[#1]#:#2% special arg. parsing

{\begingroup
\setmathatomrule

\mathbegincode\mathbincode % context constants
\allmathstyles
\mathbegincode\mathbincode

\normalexpanded
{\setbox\scratchbox\hpack

ymove \Umathaxis\Ustyle\mathstyle % an additional box property
\bgroup

\framed % a context macro
[location=middle,#1]
{$\Ustyle\mathstyle#2$}%

\egroup}%
\mathatom

class 32 % an unused class
\ifnum\lastleftclass <\zerocount\else leftclass \lastleftclass\fi
\ifnum\lastrightclass<\zerocount\else rightclass \lastrightclass\fi
\bgroup

\box\scratchbox
\egroup

\endgroup}

\def\MyTest#1%
{$ x #1 x $\quad
$ x \NiceHack[offset=0pt]{#1} x $\quad
$\displaystyle x #1 x $\quad
$\displaystyle x \NiceHack[offset=0pt]{#1} x $}

\scale[scale=1500]{\MyTest{>}} \blank
\scale[scale=1500]{\MyTest{+}} \blank
\scale[scale=1500]{\MyTest{!}} \blank
\scale[scale=1500]{\MyTest{+\frac{1}{2}+}}\blank
\scale[scale=1500]{\MyTest{\frac{1}{2}}} \blank

Of course this is not code you immediately come up with after reading this text, also
because you need to know a bit of ConTEXt.

𝑥
ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥 𝑥

ordrel
>

relord
𝑥

𝑥
ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥 𝑥

ordbin
+

binord
𝑥

𝑥!
facord
𝑥 𝑥!

facord
𝑥 𝑥!

facord
𝑥 𝑥!

facord
𝑥

𝑥
ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥 𝑥

ordbin
+

binfra

1
2frabin
+

binord
𝑥

𝑥
ordfra

1
2fraord
𝑥 𝑥

ordfra

1
2 fraord
𝑥 𝑥

ordfra

1
2fraord
𝑥 𝑥

ordfra

1
2 fraord
𝑥

Hans Hagen & Mikael Sundqvist VOORJAAR 2022 35

There are a few control options, like \noatomruling that can be used to prevent rules
being applied to the next atom. We can use these in order to achieve more advanced
alignment results, but discussing math alignments would demand many more pages
than make sense here.

Tuned kerning
The ConTEXt distribution has dedicated code for typesetting units that dates back to
the mid nineties of the previous century but was (code wise) upgraded from MkII to
MkIV which made it end up in the physics name space. There is not much reason to
redo that code but when we talk new spacing classes it might make sense at some
point to see if we can use less code for spacing by using a ‘unit’ class. When Mikael
pointed out that, for instance in Pagella:

𝑚3/ 𝑠2
doesn't space well the obvious answer is: use the units mechanism because this kind
of rendering was why it was made in the first place. However, the question is of
course, can we do better anyway. The chosen solution uses a combination of class
options and tweaked shape kerning:

𝑚3/ 𝑠2
An example of a class setup in ConTEXt is:

\setmathoptions\mathdivisioncode\numexpr
\nopreslackclassoptioncode +\nopostslackclassoptioncode

+\lefttopkernclassoptioncode +\righttopkernclassoptioncode
+\leftbottomkernclassoptioncode +\rightbottomkernclassoptioncode

\relax

and, although we don't go into the details of tweaking here, this is the kind if code
you will find in the goodie file:

{
tweak = "kerns",
list = {

[0x2F] = {
topleft = -0.3,
bottomright = 0.2,

}
}

}

where the numbers are a percentage of the width. This specification translates in a
math staircase kerning recipe.

More font tweaks
Once you start looking into the details of these fonts you are likely to notice more
issues. For instance, in the nice looking Lucida math fonts the relations have incon
sistent widths and even shapes. This can partially be corrected by using a stylistic
alternate but even that forced us to come up with a mechanism to selectively re
place ‘bad’ shapes because there is not that much granularity in the alternates. And

36 MAPS 52 Hans Hagen & Mikael Sundqvist

once we looked at these alternates we noticed that the definition of of script versus
calligraphic is also somewhat fuzzy and font dependent. That made for yet another
tweakwhere we can swap alphabets and let themathmachinery choose the expected
shape. In Unicode this is handled by variant selectors which is rather cumbersome.
Because these two styles are used mixed in the same document, a proper additional
alphabet would have made more sense. As we already support variant selectors it
was no big deal to combine that mechanism with a variant selector features over a
range of calligraphic or script characters, which indeed is what mathematicians use
(Mikael can be very convincing). With this kind of tweaks the engine doesn't really
play a role: we always could and did deal with it. It's just that upgrading the engine
made us look again at this.

Final words
One can argue that all these new features can make a document look better. But you
only have to look at what Don Knuth produces himself to see that one always could
do a good job with TEX, although maybe at the cost of some extra spacing directives.
It is the fact that OpenType showed up as well as many more math fonts, all with
their own (sometimes surprising) special effects, that made us adapt the engine. Of
course there are also new possibilities that permit better and more robust macro
support. The TEXbook has a chapter on “the fine points of mathematics typesetting”
for a reason.

There has never been an excuse to produce bad looking documents. It is all about
care. For sure there is a category of users who are forced to use TEX, so they are
excused.There are also those who have no eye for typography and rely on the macro
package, so there we can to some extent blame the authors of those packages. And
there are of course the sloppy users, those who don't enter a revision loop at all.
They could as well use any system that in some way can handle math. One can also
wonder in what way massive remote editing as well as collaborative working on
documents make things better. It probably becomes less personal. At meetings and
platforms TEX users like to bash the alternatives but in the end they are part of the
same landscape and when it comes to math they dominate. Maybe there is less to
brag about then we like: just do your thing and try to do it as good as possible. Rely
on your eyes and pay attention to the details, which is possible because the engine
provided the means. The previous text shows a few things to pay attention to.

Once all the basics that have to do with proper dimensions, spacing, penalties and
logic are dealt with, we will move on to the more high level constructs. So, expect
more.

Hans Hagen & Mikael Sundqvist

Frans Goddijn VOORJAAR 2022 37

Danlan type
by Adriaan Goddijn
(and a salacious gnome)

Themarketing mechanism of a Dutch Ebay version notified me that an article linked
to a person with my surname had come up for sale. Usually that means an old book
about the workings of electronic organs in the sixties by one Goddijn or history
books about Catholic sociology by another Goddijn (both unrelated) but now an
other, more obscure Goddijn popped up as the maker of a slightly scandalous and
weird colour pencil work depicting a garden gnome and his concubine.
It's an art piece of cylindrical anamorphosis, meaning that the perspective of the

image has been distorted to disguise an erotic image while enabling someone with
a cylindrical mirror to recreate the ‘hidden picture.’

38 MAPS 52 Frans Goddijn

To me, it seems a waste of valuable time and resources to create a rather silly
gnome image which needs a special tool to see it. Nevertheless, Adriaan Goddijn
(1925–2008), a painter and typesetter who studied in The Hague and taught at the
Kopenhagen university, had fun doing it since he was fascinated by the chance re
flection, in a reflective tin can, of a tobacco pouch.
I went on and purchased the drawing, not for the image but to

have a close look at the way the artist signed it, namely with his
initials in a font he had created himself over the course of twenty
years, in which every character of the alphabet is depicted using
just seven glyphs. He named it DANLAN because he worked on it
in the country of Denmark and the Dutch province of Friesland.

Frans Goddijn VOORJAAR 2022 39

As a young man, he gold tooled the leather spines of books in his father's book
binder's workshop and when he did his own book binding later in life he missed
having the vast collection of handle letters he had had at his disposal at his father's
place. Hewanted to engrave his own letters but decided to limit the number of glyphs
to save time. He never got around to actually engrave but he did design a font which
needs an absolute minimum of glyphs, inspired by the Roman Capitalis Quadrata
(upper caps) but simplified. Six of his glyphs can depict four characters each and
the seventh can depict two, depending on how they are turned, left, right, upside
down. Each glyph has the same width and height, fitting in a square so any side of
the square can be the bottom line.

40 MAPS 52 Frans Goddijn

It takes a little bit of practice but the characters are just familiar enough to our eyes
to be able to quickly recognize the words:

[bron o.a. Arthesis, mededelingenblad van de Stichting Art et Mathesis, Jaargang 5,
nummer 2, april 1991]

Frans Goddijn

Taco Hoekwater VOORJAAR 2022 41

Danlan type
by Adriaan Goddijn
(quick font hack)

Abstract
When Frans Goddijn first showed me the Danlan font article in September 2019, I immedi
ately thought that it would be fun to play with those letters a bit in TEX and MetaPost.

But then the almost inevitable thing happened that so often happens to me: I got distracted
by other things, and forgot about Danlan completely. Until this spring, when Frans reminded
me that I had promised an article for the Maps. This is that promised article: it will show
what a few days playing around with a specification and MetaPost, FontForge, and ConTEXt
got me. I have not created a complete font by any means, but it is just enough of one to
show off a little bit and document how the creation process worked out for me.

Preliminaries
My first attempt was to bitmap-trace the seven glyphs from the demonstration image
straight into FontForge. I tried that first because at the time I did not quite understand
the design helper images. The plan was to have the glyphs drawn in FontForge, then
convert back to MetaPost input format afterwards for playing around with them.

However, the results were very underwhelming. The resolution of the bitmaps
was just not high enough for a clean trace. So, just using FontForge did not work
out. But as I originally wanted to play with MetaPost anyway that was not a big
deal. In this early stage I was clearly trying to cut too many corners.

In preparation for a second attempt, I decided to recreate the two design images
in MetaPost, and then continue work from those. I should probably apologize for
the sloppiness of the MetaPost code shown below, but I won't! This messy stuff is
how I typically work, and then if something needs publishing, I clean it up after its
functionality is already at 100%.

Here are the two drawings I created:

42 MAPS 52 Taco Hoekwater

Not quite the same as the example drawings, but that is OK, as these contain all the
lines that I needed. The few extra lines and curves are fine, I just needed to recreate
the image to understand the design.Theywere never intended to be used as anything
else than a quick reference for myself, and the MetaPost code clearly shows that.
This is the left image; this one is used for H and I as well as A, K, V, and X:
d = 130;
w = cosd(22.5);
e = d * 1/(w*w);
path leftup;
pickup pencircle scaled 3;
draw unitsquare scaled 1000;
leftup = (0, 500-(d/w))--(1000,1000-(d/w))--(1000,1000)--(0,500)--cycle;
draw leftup;
draw leftup reflectedabout ((0,500),(1000,500));
draw (0,0)--(d,0)--(d,1000)--(0,1000)--cycle;
draw (500-(d)/2,0)--(500+(d)/2,0)--(500+(d)/2,1000)--(500-(d)/2,1000)

--cycle;
draw (1000-d,0)--(1000,0)--(1000,1000)--(1000-d,1000)--cycle;
draw (0,500-e/2)--(1000, 500-e/2)--(1000, 500+e/2)--(0,500+e/2)--cycle;
draw fullcircle scaled 1000 shifted (500,500);
draw fullcircle scaled (1000-2*d) shifted (500,500);

The interesting things in this drawing are:
d, which is the width of the vertical bars. This becomes an actual font meta-ness
parameter (the only one).

w, which is a MetaPost shortcut. It makes the diagonals the same apparent width as
the vertical bars.

e, which is the width of the horizontal middle bar. The definition is a bit odd, but
this most closely matches Adriaan Goddijn's drawing.

And the units are simply set up for ease of use.
Here is the right image, which is used for all the other letters in the alphabet:
v = cosd(45);
save diam,x,y,p;
path p[];
p1 = ((0+d/v,0)--(1000,1000-(d/v)));
z5 = ((1000,0)--(0,1000)) intersectionpoint p1;
z6 = ((1000-d/v,0)--(0,1000-d/v)) intersectionpoint p1;
z1 = (d+d, 1000-d); z1' = (x1 + 1000,y1 - 1000);
z2 = (1000-d-d,y1); z2' = (x2 - 1000,y2 - 1000);
z3 = (z1--z1') intersectionpoint (z2--z2');
z4 = (z1--z1') intersectionpoint ((0,0)--(1000,1000));
diam = arclength (z3--z4);
draw (0,0)--(0,1000)--(1000,1000)--(1000,0);
draw (0,0)--(d/v,0);
draw (1000,0)--(1000-d/v,0);
draw quartercircle scaled 2000;
draw quartercircle scaled (2000-2*d);
draw (quartercircle scaled 2000) rotatedaround((500,500), 180);
draw (quartercircle scaled (2000-2*d)) rotatedaround((500,500), 180);
draw (0,0)--(1000,1000);
draw (0+d/v,0)--(1000,1000-(d/v));
draw (d,0)--(d,1000);
draw (1000-d,0)--(1000-d,1000);

Taco Hoekwater VOORJAAR 2022 43

draw (0,1000-d)--(1000,1000-d);
draw (1000,0)--z5;
draw (1000-d/v,0)--z6;
x7 = 500-d/2;
x7'= 500+d/2;
y7'= 1000 -(x7'/2);
draw (x7, 1000)--(x7, y5)--(x7',y5)--(x7',1000);
draw halfcircle scaled x7' shifted (x7'/2,y7');
draw (halfcircle scaled x7' shifted (x7'/2,y7')) shifted (x7,0);
draw fullcircle scaled (x7'-2*d) shifted (x7'/2,y7');
draw (halfcircle scaled (x7'-2*d) shifted (x7'/2,y7')) shifted (x7,0);
draw z1--z3--z2;
draw fullcircle scaled (2*d) shifted (1000-d, 1000-d);
draw fullcircle scaled diam shifted (x2+v*(diam/3.1415), 1000-d-diam/2);

That one is a bit more involved. By far the most interesting object in that drawing is
that little circle in the top right. Deducing its diameter and (especially) its location
was a bit tricky. I am still not sure I have done it completely right, but the current
definition produces a result that – I think – is good enough.

Implementation
With the two design images done, it became a simple exercise to code the sevenmain
glyphs in MetaPost. For example, here is the basic definition of one of them:

def letter_k =
begingroup
save e,leftup,leftdown,vb,vt;
path leftup, leftdown;
e = d * 1/(w*w);
leftup = (0, 500-(d/w))--(1000,1000-(d/w));
leftdown = leftup reflectedabout ((0,500),(1000,500));
vb = 500-e/2;
vt = 500+e/2;
z1 = ((d,0)--(d,1000)) intersectionpoint ((0,vb)--(1000,vb));
z2 = ((0,vb)--(1000,vb)) intersectionpoint ((0,500)--(1000,0));
z3 = ((d,0)--(d,1000)) intersectionpoint ((0,vt)--(1000,vt));
z4 = ((0,vt)--(1000,vt)) intersectionpoint ((0,500)--(1000,1000));
z5 = leftup intersectionpoint leftdown;
(0,0)--(d,0)--z1--z2--(1000,0)--(1000,(d/w))--z5--(1000,1000-(d/w))--

(1000,1000)--z4--z3--(d,1000)--(0,1000)--cycle
endgroup

enddef;

In total, there were seven of these definitions. Each of these is called two times: once
for a filled-in style, and once for an outline style:

beginchar(107, "k")
fill letter_k;
endchar;

beginchar(75, "K")
fill letter_k withcolor white withpen pencircle scaled ministrokew;
draw letter_k withpen pencircle scaled strokew;
currentpicture := currentpicture shifted(strokew/2, strokew/2);
endchar;

44 MAPS 52 Taco Hoekwater

Finally, there is a bit of a preamble to that file needed:
d := stem;
w := cosd(22.5);
v := cosd(45);
ministrokew := (stem/11); % just to give width to the eraser

linejoin := mitered;
miterlimit := infinity;
linecap := butt;

def beginchar(expr c, s) =
if string s:

outputtemplate := "%j-%c-"&s&".%o";
else:

outputtemplate := "%j-%c.%o";
fi
beginfig(c)

enddef;

def endchar =
currentpicture := currentpicture scaled 0.8;
currentpicture := currentpicture shifted (lsidebearing,0) ;
endfig

enddef;

All those macros were saved in a MetaPost file, and then a driver file is used to set
the small amount of variables:
stem = 130;
lsidebearing = 70;
strokew = (stem/4);

input danlan-design;

end.

Processing one of these driver files produces the raw EPS images of the base glyphs.
For example, here are the ‘k’ and ‘K’ versions in the regular width:

At that point, the ‘real’ work was done. What was left was to import to glyphs in
FontForge, do some visual manipulation like adding the rotated versions, adding
points at extrema, rounding all points to integers, and setting the right sidebearings.

Taco Hoekwater VOORJAAR 2022 45

eadingthisyouareRintroducedtoanew

type-face, `danelan'.

basedontheancient

typeofthe `trajan-

column',whichhasits

rootsinhistory.the

26facesaredesigned

onsevenformsonly.

eachmouldgiving4

typesbyturningit

tooneofthefour@'s

(bwem).thebasicform

isconstructedin

suchrelationtoits

squarebody,thata

perfectharmonybe-

tweenbudy &faceto

faceisubtained.

abcehikmnrsvwz: are

similar,dgloptju,rec-

ugnizable,onlyfqtx,

and,y aredifferent.

afterreadingthis

scriptyouarefamil-

iarwithamodernlet-

terofthefuture.

Figure 1. Regular version.

eading this you areRintroduced to a new

Figure 2. Bold version.

46 MAPS 52 Taco Hoekwater

Final touches and result
There are a few glyphs in the demonstration text that were not based on the design,
like the punctuation marks, the digits, and the rotation symbol. Those were simply
created in FontForge directly for the ‘regular’ version of the font. My capital letters
are less elaborate than single ‘R’ initial from the demonstration text, but I wanted
to create all of the uppercase letters and it was not obvious from the demonstration
how many and which of the helper lines should be added as the decorative backdrop
to the initial, so I chose to skip all of them.

\definefont[danlannormal][Danlan at 12pt]
\definefont[danlaninit] [Danlan at 40pt]
\definefont[danlanx] [Danlan at 8pt]

After generating an OpenType font from FontForge, it was time to prepare a TEX
version of that textual demonstration:

\danlannormal

\setbox1=\hbox
{\kern -18pt
\smash{\hbox{\danlaninit R}}}

\blank[2*line]
\setuplocalinterlinespace

[line=14pt]

\startlines
\dontleavehmode %
\kern\wd1 eading this you are
\dontleavehmode %
\box1 introduced to a new
type-face, `danelan'.
based on the ancient
type of the `trajan-
column',which has its
roots in history.the
26 faces are designed
on seven forms only.

each mould giving 4
types by turning it
to one of the four @'{\danlanx s}
(bwem).the basic form
is constructed in
such relation to its
square body,that a
perfect harmony be-
tween budy & face to
face is ubtained.

abcehikmnrsvwz: are
similar,dgloptju,rec-
ugnizable,only fqtx,
and,y are different.
after reading this
script you are famil-
iar with a modern let-
ter of the future.
\stoplines

The text above in a faithful representation of the demonstration image. Interestingly,
it has a number of typos. The typeface name is actually OK (it was initially named
‘danelan’ instead of ‘danlan’) but there are a few mistakes with u instead of o, and in
the alphabetic list at the end, the ‘t’ is mentioned twice!

The typeset result is in figure 1.
Using a slightly different driver file with a wider stem, it was possible to create a

bold version of the font as well. This one only has the 52 main glyphs, and its effect
can be seen in figure 2.
Afterthoughts
Having spent two days on the fonts in the end creating something that is of extremely
limited use, I have to wonder whether this was worthwhile. The chance of anyone
extending my MetaPost code to a complete, usable font family seems infinitesimally
small.

On the other hand, it did result in this article and perhaps most importantly: I had
a lot of fun playing around!
Taco Hoekwater

Mikael P. Sundqvist VOORJAAR 2022 47

Finding all
intersections of paths in MetaPost

Abstract
In this article we will discuss different ways to implement macros to find all intersections of
paths in MetaPost. We will first work out some rather simple ideas, providing partial solu
tions on the macro level. We then show by an example how the intersectiontimes macro
works, and describe how it was extended in the engine by Hans Hagen.

Introduction
In MetaPost the fundamental way to find intersections of paths is to first find the
times of the intersections by running

p intersectiontimes q

If the paths p and q intersect, this will return a pair of times (t1,t2) such that the
path p at time t1 intersect the path q at time t2. Often, but not always, this will
return the first intersection point of the paths p and q, in the sense that t1will be the
smallest time along p for which the paths intersect. The uncertainty comes from the
implementation, that relies on a bisection algorithm for finding intersection points
of Bézier curves. The algorithm is inherited from MetaFont, and described in detail
in [Knu86], but we will also illustrate it later.

In Figure 1 we have drawn a path p in blue. Along this path we have placed ten
different circles, each playing the rôle of q. We run p intersectiontimes q and draw
with a green dot the point that correspond to the time returned. For the first four
circles and for the tenth circle, intersectiontimes returns the second intersection
point. For the fifth to ninth circle it returns the first intersection point.1

\startMPcode[instance=doublefun]
numeric n ; n:=10 ;
path p,q ;

p = (0,0) .. (6cm,4cm){dir 20} .. {up}(6cm,0) ;
drawarrow p withcolor darkblue ;

for i = 1 upto n :
q := fullcircle scaled 30bp shifted point (i/(n+1)) along p ;
drawarrow q withcolor darkred ;
tone := xpart (p intersectiontimes q) ;
drawdot point tone of p withpen pencircle scaled 6bp

withcolor darkgreen ;
endfor ;
\stopMPcode

1. We will often work with pairs of paths p and q, and since the order will be important, we will always
draw the first one (p) in blue and the second one (q) in red. Moreover, green dots will be used for the
built-in macros (or ones written by others). We use orange dots to show our constructed points.

48 MAPS 52 Mikael P. Sundqvist

Figure 1.

This is sometimes inconvenient. For example, if we want to cut one path after it in
tersects another path for the first time (usually done with cutafter), or if we want
to find all intersection points of two paths (how to loop?), and it would be desir
able to have a more reliable algorithm for finding the first intersection point (or all
intersection points) of two paths. We are not alone in thinking so2.

The macro cutbefore is used as p cutbefore q; it is supposed to return the part
of the path p that remains after the first intersection of p and q. It often does, but in
the MetaPost manual [Hob20] we can read that p cutbefore q is equivalent to
subpath (xpart(p intersectiontimes q), length p) of q

As intersectiontimes is used, wewill not always get the first intersection, and there
fore the user must be careful to see that the result is the intended.
\startMPcode[instance=doublefun]
path p, q;
p := (0,0) -- (5cm,0) ;
q := fullcircle rotated -20 scaled 2cm xshifted 2.5cm ;
pair b ; b := (p intersectiontimes q) ;
drawarrow p withcolor darkblue ;
drawarrow q withcolor darkred ;
drawdot point xpart b of p withpen pencircle scaled 6bp

withcolor darkgreen ;
\stopMPcode

(a) (b)

Figure 2. (a) For this pair of curves intersectiontimes returns the times for the second intersection
point. (b) As a consequence cutbefore cuts at the time that intersectiontimes returned.

2. See for example the questions https://tex.stackexchange.com/q/79256/52406 and https://tex.stackexchange
.com/q/180510/52406.

Mikael P. Sundqvist VOORJAAR 2022 49

MetaPost paths are piecewise built with help of Bézier curves, polynomials of degree
three. For us it is convenient to think of a path p as a parametrized path where the
parameter t, which we usually call time, runs over a certain interval with endpoints
0 and length p. For the path p in figure 1 it holds that length p equals 2; the three
points used in the definition correspond to time 0, time 1 and time 2. We call the
parts between the points the segments of the path. Each segment corresponds to a
unit time interval.

In the search for solutions
At TEX StackExchange, in an answer3 to the question mentioned before, we find
a suggestion on how to find all intersection points of two paths. It is based on a
suggestion on the MetaPost mailing list [Hen08].

\startMPcode[instance=doublefun]
path p, q, r ;
p := fullcircle xscaled 144 yscaled 72 ;
q := fullcircle xscaled 72 yscaled 144 ;
r := p ;
drawarrow p withcolor darkblue ;
drawarrow q withcolor darkred ;
n := 0 ;
forever :

r := r cutbefore q ;
exitif length cuttings = 0 ;
r := subpath(epsilon, length r) of r ;
z[n] = point 0 of r ;
drawdot z[n] withpen pencircle scaled 6bp

withcolor darkgreen ;
n := n + 1 ;

endfor;
\stopMPcode

As you can see in Figure 3(a) the intersection points are found. In Figure 3(b) we use
the same method, but with the paths p and q changed into

p:= (0, 0) -- (5cm, 0) ;
q:= fullcircle rotated -20 scaled 2cm xshifted 2.5cm ;

only the right intersection point is found, which is not a surprise to you by now.

(a) (b)

Figure 3.

3. https://tex.stackexchange.com/a/79332/52406

50 MAPS 52 Mikael P. Sundqvist

The document [Thu17] contains a lot of beautiful MetaPost graphics to get inspira
tion from. It contains also a nice discussion on the difficulty of finding all intersection
points of two curves (Sections 9.4.1 and 9.4.1), concluding with essentially the same
suggestion as the one given above.

To find the first intersection time, a first try
One way to find all intersection points of two paths could be to first have a method
to find the first intersection point. We will try to find the first intersection point by
repeating the use of intersectiontimes on smaller and smaller subpaths.

We illustrate the idea by looking at the line and the circle again. First we use p
intersectiontimes q to find one (any) intersection point, see Figure 4(a). Then we
cut away the part of the path p that comes after that intersection. This is shown in
Figure 4(b). In fact, we cut just a bit more, to be sure not to arrive at the point we
just got. Once that is done, we repeat, see Figure 4(c), where a second intersection
is found. In our example, this is the last one, since once we cut again, the paths do
not intersect any more, see Figure 4(d). The algorithm returns the time of the last
intersection point that was found, in our case the time of the orange dot marked in
Figure 4(c).

(a) (b)

(c) (d)

Figure 4.

We implement this algorithm below.

\startMPdefinitions{doublefun}
tertiarydef p firstintersectiontimetryone q =

begingroup;
save tres, tmpt, tmpp, tmpl ;
pair tres ; tres := (-1, -1) ;
pair tmpt ; tmpt := (length p, 0) ;
path tmpp ; tmpp:=p;
numeric tmpl ;
forever :

tmpt := tmpp intersectiontimes q ;
exitif xpart tmpt < 0 ;
tmpl := arclength subpath(0, xpart tmpt) of tmpp ;
tres := (arctime tmpl of p, ypart tmpt) ;
tmpp := subpath(0, (xpart tres) - epsilon) of p ;

endfor ;
tres
endgroup

enddef ;
\stopMPdefinitions

Mikael P. Sundqvist VOORJAAR 2022 51

It might be helpful to make a few comments.The tmpl variable might at a first glance
seem superfluous. But the tmpt variable calculates the time along tmpp. It doesn't
necessarily hold that this time is the same as the time along the original path p. So,
we work with lengths instead, since they do not change with parametrizations. We
first use arclength set tmpl to the length of the part of the temporary path tmpp
before the cut. Then we use arctime to calculate the time on the original path p that
corresponds to this length. This is probably a stupid thing to do numerically, since
there are several points where inaccuracies might be introduced, but at least it seems
to work for simple examples. When the conversion is done we update the temporary
path tmpp, and cut away an epsilon (that is 1/65536) of it in the end, not to get stuck
in an infinite loop.

We test this definition on the different combinations of p and q from Figure 1. This
is done with the following code4, and the result is shown in Figure 5.

\startMPcode[instance=doublefun]
numeric n, standardfirst, ourfirst ; n := 10 ;
path p,q ; p := (0, 0) .. (6cm, 4cm){dir 20} .. {up}(6cm, 0) ;
drawarrow p withcolor darkblue ;

for i = 1 upto n :
q := fullcircle scaled 30bp shifted point (i / (n + 1)) along p ;
drawarrow q withcolor darkred ;
standardfirst := xpart (p intersectiontimes q) ;
drawdot point standardfirst of p withpen pencircle scaled 6bp

withcolor darkgreen ;
ourfirst := xpart (p firstintersectiontimetryone q) ;
drawdot point ourfirst of p withpen pencircle scaled 4bp

withcolor "orange" ;
endfor;
\stopMPcode

Figure 5.

4. Note thatwewrite darkred and darkblue but "orange".The orange color is undefined inMetaPost/Meta
Fun, so we borrow the definition from ConTEXt.

52 MAPS 52 Mikael P. Sundqvist

As you can see, the new macro returns the first intersection points in all ten cases.
This could have been the happy end, but, as we will see, it is not. Not to be too
crestfallen at this point, we show in Figure 6 some examples where the algorithm
works.

(a) (b)

(c) (d)

Figure 6.

To find the first intersection time, a second try
If the paths p and q start at the same point we have a problem. Our algorithm gets
stuck in an infinite loop. This happens for example for the paths
p := (0, 0){dir 45} .. (5cm, 1cm) ;
q := (0, 0) -- (5cm, 0cm) ;

The standard solution with p intersectiontimes q returns the intersection at time
zero, and we have marked that point in Figure 7.

Figure 7.

To overcome this problem we introduce a test to check if we have ended up at the
beginning of the path. We introduce a boolean tzero that we set to true if the inter
section time found is less than a certain value, which we have chosen to be epsilon.
\startMPdefinitions{doublefun}
tertiarydef p firstintersectiontimetrytwo q =

Mikael P. Sundqvist VOORJAAR 2022 53

begingroup ;
save tres, tmpt, tmpp, tmpl, tzero ;
pair tres ; tres := (-1, -1) ;
pair tmpt ; tmpt := (length p, 0) ;
path tmpp ; tmpp := p ;
numeric tmpl ;
boolean tzero ; tzero := false ;
forever :

tmpt := tmpp intersectiontimes q ;
exitif xpart tmpt < 0 ;
if xpart tmpt < epsilon :

tzero := true ;
exitif true ;

fi
tmpl := arclength subpath(0, xpart tmpt) of tmpp ;
tres := (arctime tmpl of p, ypart tmpt) ;
tmpp := subpath(0, (xpart tres) - epsilon) of p ;

endfor ;
if tzero :

tmpt
else :

tres
fi
endgroup

enddef ;
\stopMPdefinitions

In Figure 8(a) we see that our new approach works well, the first point is found.
In Figure 8(b) we have just included an example where the paths intersect at the
endpoint of p. No problem!

(a) (b)

Figure 8.

We will not refine the algorithm for finding the first intersection time further here,
but leave only some comments.

The constant epsilon is the time stepwe take from a previously found intersection
time. If the path p consists of many points (this is the case for the case of the sin(1/𝑥)
path above, where very small sampling step is chosen) then this means that two
points in the path can lie very close to each other. The time step between them is still
one, so an epsilon time step away along the path might result in indistinguishable
points, and that might result in an infinite loop. One way to solve such an issue could
be to add a new variable to the macro that replaces epsilon. That would require
more from the user; for example it would be necessary to have the sampling step in
function graphs in mind while working with intersections.

Instead of removing an epsilon time part of the path, one could convert to lengths
and remove an epsilon length of the path. That would lead to a potential lost of
accuracy in the calculations, but it could at the same time be easier for the user to
set a threshold in terms of length instead of time.

54 MAPS 52 Mikael P. Sundqvist

To find all intersection times, a first try
With the time for the first intersection at hand, it is in principle straightforward to
find all intersection times. We illustrate with the line and the circle again. In Fig
ure 9(a) we have marked the first intersection point. This time we cut away the part
of the path p before the intersection point. This is done in Figure 9(b). Again, we
need to cut a bit more, not to end up with an infinite loop. So, in Figure 9(c) we
have cut just a bit more, and the next intersection is found. Finally, in Figure 9(d) we
have cut away so much that the paths do not intersect anymore. We have found all
intersections.

(a) (b)

(c) (d)

Figure 9.

We try with the following algorithm.
\startMPdefinitions{doublefun}
tertiarydef p allintersectiontimestryone q =

begingroup ;
save tmpt, tmpp, tmpptmp, tmpl, it, n ;
pair tmpt ;
path tmpp, tmpptmp ; tmpp := p ;
numeric tmpl ;
pair it[] ;
numeric n ; n := 0 ;
forever :

tmpt := tmpp firstintersectiontimetrytwo q ;
exitif xpart tmpt < 0 ;
tmpptmp := subpath(xpart tmpt, length tmpp) of tmpp ;
tmpl := arclength p - arclength tmpptmp ;
it[incr n] := (arctime tmpl of p, ypart tmpt) ;
tmpp := subpath(xpart tmpt + eps, length tmpp) of tmpp ;

endfor ;
topath(it, --) % it[1] -- it[2] -- ... -- it[n]
endgroup

enddef ;
\stopMPdefinitions

We first test it on the examples from Figure 6. The code for the ellipses is shown
below, the other are similar. As you can see in Figure 10 it works in all cases.
\startMPcode[instance=doublefun]
path p ; p := fullcircle xscaled 144 yscaled 72 ;
path q ; q := fullcircle xscaled 72 yscaled 144 ;

Mikael P. Sundqvist VOORJAAR 2022 55

drawarrow p withcolor darkblue ;
drawarrow q withcolor darkred ;

path b ; b := p allintersectiontimestryone q ;

for i = 0 upto length b :
drawdot point xpart (point i of b) of p

withpen pencircle scaled 6bp
withcolor "orange" ;

endfor ;
\stopMPcode

(a) (b)

(c) (d)

Figure 10.

We also try it on the paths from Figure 5, the result can be seen in Figure 11. Again
we get all intersections.

The name of this section suggests that this implementation has problems, and
indeed it has. This time it is not the first point of the path p that is the problem, but
the last.

To find all intersection times, a second try
The macro allintersectiontimestryone works fine for the paths Figure 8(a) that
intersect at the first point of p, but it hangs with an infinite loop for the paths in
Figure 8(b). The reason is that the paths intersect at the endpoint of p. We must,
similarily as we did when we found the first intersection point, check if we are at
the end of the path. We rewrite the macro like this.

56 MAPS 52 Mikael P. Sundqvist

\startMPdefinitions{doublefun}
tertiarydef p allintersectiontimes q =

begingroup ;
save tmpt, tmpp, tmpptmp, tmpl, tmpL, it, n, a, cuttime ;
pair tmpt, it[] ;
path tmpp, tmpptmp ;
numeric tmpl, tmpL, n ; n := 0 ;
tmpp := p ;
tmpt := tmpp firstintersectiontimetrytwo q ;
forever:

exitif xpart tmpt < 0 ;
exitif length(tmpp) = 0 ;
tmpptmp := subpath(xpart tmpt, length tmpp) of tmpp ;
tmpl := arclength p - arclength tmpptmp ;
it[incr n] := (arctime tmpl of p, ypart tmpt) ;
tmpL := arclength(subpath(0, xpart tmpt) of tmpp) + eps ;
if tmpL > arclength tmpp :

exitif true ;
else :

cuttime := arctime (tmpL) of tmpp ;
tmpp := subpath(cuttime, length tmpp) of tmpp ;

fi ;
tmpt := tmpp firstintersectiontimetrytwo q ;

endfor ;
topath(it, --)
endgroup

enddef ;
\stopMPdefinitions

Figure 11.

Mikael P. Sundqvist VOORJAAR 2022 57

Here we have introduced tmpL to check if we are at the endpoint of the path p. As
we see in Figure 12 we now catch intersections both at the beginning and at the end
of the path p.

(a) (b)

Figure 12.

We could continue here with refinements. We could for example condition on if p is
a loop or not, we could tune the size of the steps5 with which we jump ahead after
finding an intersection point, and so on. But our final way of solving the problem
will be different, so we stop here. You have a macro that works well in most cases.

Returning to the intersectiontimes algorithm
I was discussing the problem of finding all intersection points with Hans Hagen, and
he had a slightly different idea than the one we have described above. Instead of first
iterating to get the first intersection point and then to cut and iterate, Hans wanted
to tweak the existing intersectiontimes algorithm in order to find all intersection
times. Let us first discuss the intersectiontimes algorithm in more detail.

We recall that a path in metapost can be thought of as an array6 of points and con
trol points that together describe the segments that build the path. In Figure 13(a)
we have drawn a path with three segments and labeled the four points that define it.
Each segment correspond to a unit time interval, and it can mathematically be de
scribed by a Bézier curve. In Figure 13(b) we have emphasized the segment between
time 2 and time 3, that is subpath (2,3) of p. We have also drawn the two control
points and control lines of this segment.

0

1

2

3

0

1

2

3

(a) (b)

Figure 13.

The intersectiontimes macro iterates as mentioned over the different segments of
the paths.This reduces the problem of finding all intersection times into the problem
of finding the intersection times for every pair of segments.This is done via bisection
of the time intervals, working with certain extended boundingboxes (see below). If
the parts7 pX of p and qY of q have extended boundingboxes that intersect, they are

5. The eps (not epsilon) is not a mistake. It will make our examples work. This sensitivity suggests that
the method we use is non-optimal.
6. It is in fact a circular linked list. These are more dynamic in memory, and fits well with the use of
control points when paths are cycled.
7. Here you can think of X and Y as a given sequence of zeros and ones. We add 0 for the subpath corre
sponding to smaller time values, and 1 for larger.

58 MAPS 52 Mikael P. Sundqvist

halved (with respect to time) into pX0, pX1, qY0 and qY1, and the algorithm works on
the new parts in the following order:

1. pX0 is tested against qY0,
2. pX0 is tested against qY1,
3. pX1 is tested against qY0,
4. pX1 is tested against qY1.

We give an example to show how the intersectiontimes macro works on a pair of
paths consisting of two points each (that is of time length 1, or, if we want, with one
segment). We have drawn p and q in Figure 14; the paths intersect at three points.
We follow the first few steps of the algorithm in Figures 15–30.

Figure 14.

Figure 15. The starting point. For each path we draw its extended boundingbox, that is the smallest axis-
parallel rectangle that includes both the points and the control points of the path. The extended boundingbox
always contains its path, so if the two extended boundinboxes don't intersect8 then the paths cannot intersect.
Here the rectangles intersect. This does not guarantee that the paths intersect; it only means that we should
continue with the next step.

8. We say here that two rectangles intersect if they have points (interior, or on the rectangle) in common

Mikael P. Sundqvist VOORJAAR 2022 59

Figure 16. We divide p and q into two pieces at time 1/2, and call the new paths p0, p1, q0 and q1.
The darkblue path is p0 and the darkred one is q1. Since their extended boundingboxes intersect again, we
continue with the division.

Figure 17. We divide p0 in the middle into p00 and p01. We also divide q0 into two paths q00 and q11.
Here we have drawn p00 and q00. Again, we notice that their extended boundingboxes intersect.

Figure 18. We have divided p00 and q00 in halves. Here we have drawn the paths p000 and q000, and
their extended boundingboxes. We note that the boxes do not intersect.

Figure 19. The previous extended boundingboxes did not intersect. We change one of the subpaths, and
since we want to have the intersection point as early as possible on the first path p we try first to change
the subpath of q. We see that the extended boundingboxes of p000 and q001 do intersect.

60 MAPS 52 Mikael P. Sundqvist

Figure 20. The extended boundingboxes of p0000 and q0010 do not intersect.

Figure 21. The extended boundingboxes of p0000 and q0011 do not intersect.

Figure 22. The extended boundingboxes of p0001 and q0010 do intersect.

Figure 23. The extended boundingboxes of p00010 and q00100 do not intersect.

Figure 24. The extended boundingboxes of p00010 and q00101 do not intersect.

Mikael P. Sundqvist VOORJAAR 2022 61

Figure 25. The extended boundingboxes of p00011 and q00100 do not intersect.

Figure 26. The extended boundingboxes of p00011 and q00101 do not intersect. This means that we did
enter a dead-end.

Figure 27. The dead-end pushed us back here. The extended boundingboxes of p001 and q000 do not
intersect.

Figure 28. The extended boundingboxes of p001 and q001 do intersect.

Figure 29. The extended boundingboxes of p0010 and q0010 also intersect.

62 MAPS 52 Mikael P. Sundqvist

Figure 30. The extended boundingboxes of p00100 and q00100 also intersect.

We could in principle continue this iteration as long as it is numerically mean
ingful, but we stop here. In Figure 30 we note that the small subpaths actually do
intersect. This happens along the path p00100, which means that the time 𝑡 along p
satisfies the inequality

4
32 = 0.001002 ≤ 𝑡 ≤ 0.001012 =

5
32.

Hence, if we set 𝑡 to be the mean value

𝑡 = 1
2(

4
32 +

5
32) =

9
64,

then the error (in time!) we make is bounded by

1
2(

5
32 −

4
32) =

1
64.

In practice the intersectiontimesmacro has some predefined tolerance, and checks
if the size of the extended boundingboxes are smaller than that tolerance. Once the
sizes are smaller than the tolerance, it considers the paths to intersect, exits the loop
and returns a pair with the times along the paths p and q. If it does not find an
intersection, it returns the pair (-1,-1).

The final(?) solution
We saw in the previous section how p intersectiontimes q works with bisections
to find one intersection of p and q. We have seen that often, but not always, it returns
the first intersection (measured in time along p).

HansHagen realised that instead of exiting the loopwhen an intersection is found,
one could try again with the same pair segments, but this time neglecting the inter
section time that was found. In the code in the engine version the crossing is located
with a dedicated function that communicates via variables that are global to the in
stance.

One could perhaps argue that it would be better to cut and run on the differ
ent subpaths, or to just continue directly when the intersection was found. But that
would introduce other complications and inaccuracies.

Becausewe suffer from the same issues as themacro approachwe described above,
there are three extra tricks used: we have an extra counter that makes sure that when
we have some deadlock we can get out of it (like deadcycles in TEX). We also need
to ignore duplicates that we get because of the small step and inaccuracies; for that
we need to trim 8 bits resolution in order be on the safe side. The test examples of
the macro variant was instrumental here. Finally we explicitly need to check the end
points because otherwise wemiss them, which again sounds familiar from themacro
variant.

Mikael P. Sundqvist VOORJAAR 2022 63

Figure 31. The extended boundingboxes of p0 and q1 do intersect.

In the step-by-step example we have shown above, we only look at the first halves
of p and q. All subpaths are followed by a zero, p0X and q0Y. This is what we get
in the first run. If we would have continued, we would have got sufficiently small
rectangles that meet, and the first intersection time. In the next run, we first end up
at the same intersection time, but reject it, and then, eventually, we would end up in
the second half of q. The first pair of rectangles will be the ones given in Figure 31.
These rectangles intersect, so the loop will continue; in fact it will find the second
intersection point here. That would be run two on the segments.

In the third iteration, we will end up at, and skip, the first two intersections. We
will then eventually continue by comparing the second half of p with the first half
of q. This is seen in Figure 32; the extended bounding boxes do not intersect, so we
get no intersection.

Figure 32. The extended boundingboxes of p1 and q0 do not intersect.

The third iteration continues, and we finally end up in the second half of p and the
second half of q, see Figure 33.These intersect, and we will find the third intersection
point.

Figure 33. The extended boundingboxes of p1 and q1 do intersect.

When the third intersection point is found, we start the fourth one.This time, we will
meet the previous three intersections, and then we will not find any more. The loop
is complete. In Figure 34 we have marked the intersections found by the algorithm.

64 MAPS 52 Mikael P. Sundqvist

Figure 34.

The new macros
To sum up, we now proudly present a set of new macros. First of all

p intersectiontimeslist q

This one takes two paths p and q and returns a path with the intersection times,
where the first coordinate of each point is the time along p and the second the time
along q. Then we have

p sortedintersectiontimes q

that also returns a path with the intersection times of the paths p and q, sorted in
increasing order with respect to the times of p.

To find all intersection points, there is

p intersectionpath q

that returns a path consisting of the points where p and q intersect, sorted so that
the points appear in increasing order with respect to time along p. In fact, this macro
first uses intersectiontimes to find the times, and then for each pair t of intersection
times it returns the middle point of the paths, that is 0.5[xpart t of p,ypart t of
q]. This is the classical approach of intersectionpoint. It might not always be what
we want, since the points might not be on any of the two paths. To use the points of
p or q one can instead use

p firstintersectionpath q

or

p secondintersectionpath q

Since the macros cutbefore and cutafter are relying on intersectionpoints we
have also introduced

p cutbeforefirst q

that returns the part of p that remains when the part before the first intersection
point with q is cut away, and

p cutafterfirst q

that returns the part of p that remains when the part after the first intersection point
with q is cut away. Similarily, there are

p cutbeforelast q

and

p cutafterlast q

that work on the last intersection (along the first path p) of p and q.

Mikael P. Sundqvist VOORJAAR 2022 65

Other tools
It is also possible to find all intersection points by using some other common drawing
tools. In Figure 35 we show the intersectionpoints of the curves 𝑦 = 2 sin(2𝜋𝑥) and
𝑦 = 1/(1 + 2𝑥) for 0 ≤ 𝑥 ≤ 5. We say something about each tool below, and provide
the code used in each case.

Asymptote
Asymptote is a relative to MetaPost, and it seems that its macro intersection uses
a similar approach as intersectiontimes, inherited from MetaFont. We find the fol
lowing in Section 6.2 on Paths and guides of the manual [HBP22]:

“If p and q have at least one intersection point, return a real array of length 2
containing the times representing the respective path times along p and q, in
the sense of point(path, real), for one such intersection point (as chosen by
the algorithm described on page 137 of The MetaFont book). The computations
are performed to the absolute error specified by fuzz, or if fuzz < 0, to machine
precision. If the paths do not intersect, return a real array of length 0.”

The intersections (plural!) macro is used to find all intersection points of two
paths. It is not mentioned in the just cited document how it obtains all the intersec
tion points. The code below was placed in a file, and then we ran asy on it.

unitsize(1cm) ;
import graph ;

real f(real x) { return 2*(sin(2*pi*x)+1) ; }
path A = graph(f,0,5,n=200) ;
draw(A, arrow = Arrow(size = 5), rgb(0, 0, 0.5) + linewidth(1bp)) ;

real g(real x) { return 4/(1+2*x) ; }
path B = graph(g,0,5,n=200) ;
draw(B, rgb(0.5, 0, 0) + linewidth(1bp)) ;

pair vert[] = intersectionpoints(A, B) ;
for(int k = 0 ; k <= vert.length-1; ++k){

dot(vert[k], orange + linewidth(6bp)) ; }

MetaPost/MetaFun
We use the newmacro intersectionpath to find all intersections between two paths.

\startMPcode[instance=doublefun]
path A, B, C ;
A := function(1, "x", "2*sin(2*pi*x) + 2" ,0 ,5 ,1/40) scaled(1cm) ;
B := function(1, "x", "4/(1 + 2*x)" , 0, 5, 1/40) scaled(1cm) ;
C := (A intersectionpath B) ;
drawarrow A withcolor darkblue ;
draw B withcolor darkred ;
drawpoints C withpen pencircle scaled 6bp withcolor "orange" ;
\stopMPcode

Pstricks
For pstricks one can use the pst-intersect package [Ber14]. It is not clear from the
manual how it finds the intersections, but skimming the code, there seems to be some
kind of bisection going on, with the clipping of paths (my brain is not constructed to
read PostScript code). It is mentioned in themanual that it borrowed the Graham Scal
algorithm to calculate the convex hull of a set of points from Bill Casselman's won
derful book Mathematical Illustrations (kindly made available online [Cas05]). The
implementation in pst-intersect can also handle higher order Bézier curves, and

66 MAPS 52 Mikael P. Sundqvist

perhaps it is for these that the convex hull algorithm is needed. The LATEX packages
multi-do, pst-intersect and xcolor were loaded in the example below.

\begin{pspicture}(5,4.4)
\pssavepath[linecolor=blue!50!black,linewidth=1bp]{A}{

\psplot[plotpoints=200,arrows=->]{0}{5}{x 360 mul sin 1 add 2 mul} }
\pssavepath[linecolor=red!50!black,linewidth=1bp]{B}{

\psplot[plotpoints=50]{0}{5}{4 2 x mul 1 add div} }
\psintersect[linecolor=orange,showpoints,linewidth=2bp]{A}{B}
\end{pspicture}

Tikz
Tikz has in the intersections library support for finding all intersections of two
arbitrary paths. It is not clear from the manual [Tan22] how it works, but in Section
13.3.2 we can read

“This library enables the calculation of intersections of two arbitrary paths. How
ever, due to the low accuracy of TEX, the paths should not be ‘too complicated’.
In particular, you should not try to intersect paths consisting of lots of very small
segments such as plots or decorated paths.”

In the example belowwe have loaded the tikz package, the intersections library
and also defined two colors

\definecolor{darkblue}{rgb}{0, 0, 0.5}
\definecolor{darkred}{rgb}{0.5, 0, 0}

Then we used this code.

\begin{tikzpicture}
\draw[name path=A, variable=\x, domain=0:5, samples=200,

line width=1bp, smooth, color=darkblue, ->]
plot (\x, {2*sin(2*pi*\x r) + 2});

\draw[name path=B, variable=\x, domain=0:5, samples=200,
line width=1bp, smooth, color=darkred]

plot (\x, {4/(1+2*\x)});
\fill[name intersections={of=A and B, sort by=line,

name=i, total=\t}, color=orange]
\foreach \s in {1,...,\t}{(i-\s) circle (3bp)};

\end{tikzpicture}

Mikael P. Sundqvist VOORJAAR 2022 67

(a) asymptote (b) metapost

bbbb
bb

b
b

b

b

b

(c) pstricks (d) tikz

Figure 35.

68 MAPS 52 Mikael P. Sundqvist

Final words
Aswe have seen, to find all intersections of two paths is not a trivial task, but nowwe
MetaPost users have reliable engine macros that work. Even with our new macros,
however, things can gowrong. Some paths are simply tricky to workwith, and some
times some manual tweaking is required. Let us give one such example.

We try to find the intersections of 𝑦 = 4 cos(𝑥) + cos(2𝑥) and 𝑦 = 5 cos(𝑥), for
0 ≤ 𝑥 ≤ 8𝜋. The problem with these curves is that they coincide to order two at the
maximas, located at 𝑥 = 2𝜋𝑘 for 𝑘 ∈ {0, 1, 2, 3, 4}. This means that the curves are not
really crossing there. One could probably find good arguments both for and against
that these points should be returned by the algorithm. As the situation is, it returns
some, and it depends on how many points we use when constructing the paths. In
the code below we use a step size of 0.05 for 𝑥. As can be seen in Figure 36, some
points are missing. If we change the step size to 0.01 we will see that all the points
except the last one is there.

\startMPcode
path p, q, b ;
p := function(2, "x", "4*cos(x)+cos(2*x)", epsed(0), epsed(8*pi), 0.05)

scaled 15 ;
q := function(2, "x", "5*cos(x)", epsed(0), epsed(8*pi), 0.05) scaled 15;
b := (p intersectionpath q) ;

drawarrow p withcolor darkblue;
drawarrow q withcolor darkred;
drawpoints b withcolor "orange" ;
\stopMPcode

Figure 36.

Mikael P. Sundqvist VOORJAAR 2022 69

It would feel wrong to end this article, that is written with a big smile in the face,
with a negative example. We give instead an example where all is going well, and
why not use the nice feature to extract outlines of characters?

\startMPcode
picture p ; p := lmt_outline [text = "THE"] scaled 15 ;
picture q ; q := lmt_outline [text = "END"] scaled 15 ;
q := q shifted (60, -50) ;

for pp within p :
fill pathpart pp withcolor 0.75white ;
draw pathpart pp withpen pencircle scaled 1bp withcolor darkblue ;

endfor ;

for qq within q :
fill pathpart qq withcolor 0.25white withtransparency (2, 0.5) ;
draw pathpart qq withpen pencircle scaled 1bp withcolor darkred ;

endfor ;

for pp within p :
for qq within q :

path r ; r := (pathpart pp) intersectionpath (pathpart qq) ;
if known r :

drawpoints r withpen pencircle scaled 4bp withcolor "orange" ;
fi ;

endfor ;
endfor ;
\stopMPcode

70 MAPS 52 Mikael P. Sundqvist

Acknowledgements
Neither the new engine macros nor this article would have existed if it not were for
Hans Hagen, and his open mind to new ideas. Thank you!

References
[HBP22] A. Hammerlindl, J. Bowman, and T. Prince, Asymptote, https://asymp

tote.sourceforge.io/doc/index.html (2022). (version: 2.80-35)

[Cas05] B. Casselman, http://www.math.ubc.ca/ cass/graphics/text/www/ (2005).

[Hen08] T. Henderson, https://tug.org/pipermail/metapost/2008-October/001467.html
(2008). (version: October, 2008)

[Hob20] J.D. Hobby,METAPOST: A users's manual, https://www.tug.org/docs/meta
post/mpman.pdf (2020). (version: 2020)

[Knu86] D. Knuth, METAFONT: The Program (Addison Wesley Pub. Co, Reading,
Mass, 1986).

[Ber14] C. Bersch, Pst-intersect: Intersecting arbitrary curves, https://github.com/cber
sch/pst-intersect (2014). (version: March 16, 2014)

[Thu17] T. Thurston, Drawing with Metapost, https://github.com/thruston/Draw
ing-with-Metapost (2017). (version: March 2017)

[Tan22] T. Tantau, The TikZ and PGF Packages: Manual for Version 3.1.9a,
https://github.com/pgf-tikz/pgf (2022). (version: March 29, 2022)

Mikael P. Sundqvist
mickep@gmail.com

Hans Hagen VOORJAAR 2022 71

Cyrillisch in publieke fonts

In deze dagen zien we meer cyrillisch om ons heen en het is waarschijnlijk dat met
het toetreden tot de EU we dit script wat meer zullen tegenkomen in publicaties.
Er zijn destijds wel discussies geweest over het al dan niet toevoegen van grieks en
cyrillisch aan bijvoorbeeld de TEXgyre collectie, maar veel is daar niet van terecht
gekomen. Een van de redenen was dat er geen goede publieke fonts waren die als
startpunt konden dienen, een andere was dat niemand zich opwierp om de kwali
teitscontrole te doen. Zoals veel in de TEX wereld afhangt van vrijwilligers bleek er
gewoon geen draagvlak te zijn: een kar moet wel getrokken worden.

Een gevolg is dat in TEX distributies er niet zo heel veel fonts zijn die zowel ‚Latin’
(latn in OpenType speak) als ‚Cyrillic’ (cyrl) ondersteunen. Echter, het geval wil
dat het font dat we gebruiken voor de Maps het wel ondersteunt. Hieronder laten
we vijf fonts zien die men kan gebruiken. De tekst komt uit de Universele Verklaring
van de Rechten van de Mens.

Libertinus: Стаття 15.
1. Кожна людина має право на громадянство.
2. Ніхто не може бути безпідставно позбавлений громадянства або права змі

нити своє громадянство.

Libertinus: Artikel 15
1. Een ieder heeft het recht op een nationaliteit.
2. Aan niemandmagwillekeurig zijn nationaliteit worden ontnomen, noch het recht

worden ontzegd om van nationaliteit te veranderen.

Libertinus: Article 15
1. Everyone has the right to a nationality.
2. No one shall be arbitrarily deprived of his nationality nor denied the right to

change his nationality.

Plex: Стаття 15.
1. Кожна людина має право на громадянство.
2. Ніхто не може бути безпідставно позбавлений громадянства або права

змінити своє громадянство.

Plex: Artikel 15
1. Een ieder heeft het recht op een nationaliteit.
2. Aan niemand mag willekeurig zijn nationaliteit worden ontnomen, noch het

recht worden ontzegd om van nationaliteit te veranderen.

Plex: Article 15
1. Everyone has the right to a nationality.
2. No one shall be arbitrarily deprived of his nationality nor denied the right to

change his nationality.

72 MAPS 52 Hans Hagen

Dejavu: Стаття 15.
1. Кожна людина має право на громадянство.
2. Ніхто не може бути безпідставно позбавлений громадянства або пра

ва змінити своє громадянство.

dejavu: Artikel 15
1. Een ieder heeft het recht op een nationaliteit.
2. Aan niemand mag willekeurig zijn nationaliteit worden ontnomen, noch

het recht worden ontzegd om van nationaliteit te veranderen.

Dejavu: Article 15
1. Everyone has the right to a nationality.
2. No one shall be arbitrarily deprived of his nationality nor denied the right

to change his nationality.

Xits: Стаття 15.
1. Кожна людина має право на громадянство.
2. Ніхто не може бути безпідставно позбавлений громадянства або права зміни

ти своє громадянство.

Xits: Artikel 15
1. Een ieder heeft het recht op een nationaliteit.
2. Aan niemand mag willekeurig zijn nationaliteit worden ontnomen, noch het recht

worden ontzegd om van nationaliteit te veranderen.

Xits: Article 15
1. Everyone has the right to a nationality.
2. No one shall be arbitrarily deprived of his nationality nor denied the right to change

his nationality.

Iwona: Стаття 15.
1. Кожна людина має право на громадянство.
2. Ніхто не може бути безпідставно позбавлений громадянства або права змі

нити своє громадянство.

Iwona: Artikel 15
1. Een ieder heeft het recht op een nationaliteit.
2. Aan niemand mag willekeurig zijn nationaliteit worden ontnomen, noch het

recht worden ontzegd om van nationaliteit te veranderen.

Iwona: Article 15
1. Everyone has the right to a nationality.
2. No one shall be arbitrarily deprived of his nationality nor denied the right to

change his nationality.

Zoals gezegd, de TEXgyre fonts zouden een uitbreiding kunnen gebruiken, maar dan
moet het font team wel worden aangemoedigd en ondersteund. Vanuit de ntg zijn
in het verleden substantieel financiële middelen vrijgemaakt voor font projecten en
de reserves staan toe dat we een aan een project voor meer scripts in deze fonts bij
dragen aan de Gust Font project. Misschien dat de tijd er nu wel rijp voor is. Maar
we hebben dan vrijwilligers (lees: gebruikers) nodig die het font team daarin onder
steunen.

Hans Hagen

Y. Robbers VOORJAAR 2022 73

Tante Lenie weet raad...
Uw trouwe steun en toeverlaat voor al uw problemen

Abstract
Deze keer helpt Tante Lenie enkele NTG-leden met hun
TEX-problemen en andere diepe zieleroerselen. Zo helpt
ze Tamara J., ontwerpster van bordspellen, om mooie
dobbelstenen af te beelden in de handleiding voor haar
nieuwe spel, met behulp van LATEX, en helpt ze docent
klassieke talen Jaap T. om woorden te markeren in een
tekst voor een proefwerk dat hij in XƎLATEX maakt.
Tenslotte helpt ze Herman R., een wiskundige die vastliep
met boldfaced wiskundeformules in sectietitels in plain TEX.

Lieve lezers,

Ieder zichzelf respecterend tijdschrift, krant of zelfs te
levisieprogramma heeft een oudere damemet wat meer
levenservaring dan gemiddeld bij wie mensen terecht
kunnen met hun problemen. Ware liefde? Medische
problemen? Puistjes? The Guardian en de Daily Mirror
hebben Philippa Perry, Tina heeft Djamila, en Oprah
heeftDr. Phil. En vanaf dit nummer heeftMAPS haar ei
gen Tante Lenie bereid gevonden deze rol te vervullen!
Niets is te gek, je hoeft je nergens meer voor te scha
men. Of je nu problemen hebt met een obscuur accent
in het Tochaars dat je zelfgedefiniee4erde afbreekregels
verprutst (slordig in je nieuwste boek dat je met LATEX
maakt), of dat je bijdrage voor de MAPS niet compileert
in ConTEXt (omdat je per ongeluk \startarticle in
plaats van \startArticle hebt gebruikt, misschien?).
Tante Lenie weet raad, en helpt je, desnoods geheel
anoniem!

Dobbelsteentjes
Lieve Tante Lenie,

Voor mijn nieuwe bordspel ben ik de handleiding aan
het schrijven. In de handleiding wil ik graag dobbelste
nen afbeelden. In plaatjes is dat geen probleem, maar
hoe doe ik dat in lopende tekst zonder gehannes met
plaatjes waardoor m'n regelhoogte verandert? Oh ja, ik
gebruik pdfLATEX.

Liefs van
Tamara J.

Lieve Tamara,

Wat leuk! Ik hou erg van bordspellen. Voor jouw pro
bleem zijn reeds diverse oplossingen beschikbaar. Op
basis van eps, op basis van TikZ, maar ook gewoon op
basis van een dobbelsteen-font, gemaakt in Metafont.
De laatste lijkt me voor jou het meest geschikt. In de
meeste TEX-distributies is dit font gewoon meegele
verd, maar anders vind je het op CTAN1. Dus alles wat
je moet doen is het in de preamble van je document een
naam geven:
\newfont\dice{dice3d}

Vervolgens kun je in de lopende tekst dobbelsteentjes
opnemen met het commando \dice. Bijvoorbeeld:
Rol je een {\dice 1}, dan mislukt je aanval sowieso,
bij een {\dice 6} win je sowieso, en bij een
{\dice 2345} mag je tegenstander een dobbelsteen
rollen ter verdediging.

Rol je een1 dan mislukt je aanval sowieso, bij een6
win je sowieso, en bij een2345 mag je tegenstan
der een dobbelsteen rollen ter verdediging.
Wil je dobbelsteentje in 3D afbeelden, gebruik dan
{\dice 1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d

4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 6d}

a b c d e f g h i j k l

m n o p q r s t u v w x
waarbij het getal bepaalt wat er op de bovenkant van
de dobbelsteen staat, en de letter wat er op de voorkant
staat (daar zijn natuurlijk maar 4 opties voor, want de
bovenkant ligt al vast, en daarmee de onderkant ook:
de som is immers altijd zeven. Omdat ook de verdere
nummering van dobbelstenen is vastgelegd, is de derde
afgebeelde zijde duidelijk zodra je de andere twee hebt
bepaald.
Ik hoop dat dit helpt, Tamara. Mocht je behoefte hebben
aan andere dobbelstenen, twintigzijdige bijvoorbeeld,
dan is daar nog geen pasklare oplossing voor, maar
wellicht is dit een leuke uitdaging voor een van onze
lezertjes?

Liefs,
je tante Lenie.

74 MAPS 52 Y. Robbers

Sleutelwoorden onderstrepen
Beste Tante Lenie,

Ik ben een docent klassieke talen aan een bekend Gym
nasium. Alweer enkele jaren geleden heeft een collega
Biologie mij laten kennismaken met XƎLATEX en sinds
dien wil ik niets anders meer! Het is zo gemakkelijk om
teksten in het oud-Grieks te maken en ze er prachtig
uit te laten zien! Alleen, als ik een proefwerk Latijn of
Grieks maak, staat daar vaak een klein aantal voor mijn
leerlingen nieuwe woorden in. Die onderstrepen we
altijd (ja, ik weet het: dat is lelijk, maar tradities zijn nu
eenmaal heilig bij ons classici), zodat leerlingen weten
dat ze die in het bijgevoegde woordenlijstje kunnen
vinden. Alleen soms onderstreep ik zo'n woord wel een
paar keer, maar niet elke keer. Is daar een oplossing
voor? Kan ik die woorden bijvoorbeeld automatisch
laten onderstrepen? M'n collega Wouter die Engels
geeft wist geen oplossing, maar zou dit zelf ook graag
kunnen!

Groetjes,
Jaap T.

Lieve Jaap,

Ik snap je probleem... één zo'n woord zie je nu eenmaal
gemakkelijk over het hoofd in een tekst. Gelukkig is
TEX gemaakt voor het manipuleren van tekst, en zou
dit dus eenvoudig te automatiseren moeten zijn. En je
hoeft het niet eens zelf te doen, er is al een pakketje
voor geschreven! Het heet xesearch2, werkt met elke
taal die je maar wilt — dus ook polutoniko-grieks — en
heeft een duidelijke handleiding. Het kan echter veel
meer dan jij wilt, dus ik zal de essentie even voor je
samenvatten. In de preamble van je document laad je
het pakketje in, en definieer je de lijst met woorden
waar het om gaat. Die lijst moet een naam hebben, en
elke woord dat je wilt markeren zet je erin. Je definieert
ook wat er met dat woord moet gebeuren, in jouw geval
onderstrepen.
\usepackage{xesearch}
\SearchList{woordenlijst}{underline{#1}}

{serpens,hortus,horto}

En vervolgens gaat de rest vanzelf: Serpens in horto.
Marcus et Cornelia in horto ambulant. Etcetera, etcete
ra. Je ziet dat de hoofdletters automatisch ook herkend
worden, maar de verschillende naamvallen moet je
natuurlijk zelf wel even elk apart in de lijst zetten. Je
kunt het overigens net zo gemakkelijk inladen in LATEX
(met dezelfde syntax), plain TEX of ConTEXt.

Voor plain TEX:
\input xesearch.sty

En voor ConTEXt:
\usemodule[xesearch]

En dit werkt natuurlijk in alle ondersteunde talen, dus
ook in het oud-Grieks!

liefs,
je tante Lenie.

Wiskunsten
Lieve Tante Lenie,

Voor mijn proefschrift over oneindigdimensionale el
liptische curven met complexe parameters wil ik graag
formules opnemen in sommige hoofdstuktitels. Die
hoofdstuktitels gebruiken een bold font, maar m'n for
mules blijven in roman verschijnen, wat ik ook doe.
Kunt u mij helpen? Oh ja, ik gebruik plain TEX en de
Computer Modern fonts.

Liefs,
Herman R.

Lieve Herman,

Natuurlijk kan ik je helpen! Belangrijk is dat je eerst
even de boldmath fonts definieert. Dat kan bijvoorbeeld
zo:
\font\tenib=cmmib10
\font\sevenib=cmmib7
\font\fiveib=cmmib5
\font\tensyb=cmbsy10
\font\sevensyb=cmbsy7
\font\fivesyb=cmbsy5
\font\tenexb=cmexb10

en dan vervolgens zorgen we dat we deze fonts met
het \boldmath-commando gemakkelijk kunnen ge
bruiken.
\def\boldmath{%
\textfont0=\tenbf
\textfont1=\tenib
\textfont2=\tensyb
\textfont3=\tenexb
\scriptfont0=\sevenbf
\scriptfont1=\sevenib
\scriptfont2=\sevensyb
\scriptfont3=\tenexb
\scriptscriptfont0=\fivebf
\scriptscriptfont1=\fiveib
\scriptscriptfont2=\fivesyb
\scriptscriptfont3=\tenexb }

Y. Robbers VOORJAAR 2022 75

En het enige dat je dan nog moet doen, is je sectiebegin
op de juiste manier definiëren om ook gebruik te maken
van de boldmath fonts:
\catcode`@=11
\outer\def\beginsection#1\par{\vskip\z@
plus.3\vsize\penalty-250
\vskip\z@ plus-.3\vsize\bigskip\vskip\parskip
\message{#1}\leftline{\bf\boldmath#1}
\nobreak\smallskip\noindent}

\catcode`@=12

En kun je aan de slag! Even een voorbeeldje:
\beginsection
De formule $\oint_{-1}^1 {\sin x \over x} dx$

De formule $\oint_{-1}^1 {\sin x \over x} dx$

En dat ziet er dan zo uit:

De formule
∮ 1

−1
sinx
x

dx

De formule
∮ 1

−1
sin x
x dx

1

Hopelijk lost dit je probleem op, Herman!

Liefs,
je tante Lenie

Slotwoord
En dat was het weer voor deze keer! Heb je zelf een
vraag? Stuur hem aan de MAPS-redactie, en zij zullen
hem aan mij doorsturen. Pas goed op jezelf en TEX
vrolijk verder!

Liefs,
jullie tante Lenie

Note

Footnotes
1. https://ctan.org/pkg/dice
2. https://ctan.org/pkg/xesearch

Yuri Robbers

76 MAPS 52 Taco Hoekwater

Dice3D OpenType
(quick font hack two)

Abstract
The previous article by Yuri Robbers shows simulated 3D
dice. That font existed only as a MetaFont source file, so
for the ConTEXt-format Maps article, I had to quickly create
an OpenType version.

Using MetaPost instead of MetaFont
The font comes as a single file called dice3d.mf, which
contains all needed definitions. It is intended for the
plain.mfmacros with no extra macro packages needed.
This makes it possible to run the file directly in Meta
Post, which a slightly complicated command line:

mpost --mem=mfplain
-s outputtemplate='"%j-%c.eps"'
'\\mag=36; mode=lowres; input dice3d.mf'

the bits and pieces:

--mem=mfplain
This preloads the mfplain.mp file, which mimics the
MetaFont plain macros.

-s outputtemplate='"%j-%c.eps"'
This make MetaPost produce eps files with nice
names like dice3d-99.eps instead of dice3d.99.

'\mag=36; mode=lowres; input dice3d.mf'
For font-making, it is necessary to set up the Meta
Font ‘mode’ and magnification. This magnification
setting ensures that the output images are such
that they fit the typical 1000-units-per-em for a
PostScript-type font. The mode is a predefined
mode in mfplain that distorts the image as little
as possible while still being a font-making mode
(as opposed to ‘proof’ mode).

This part of the command line is enclosed in
quotes and starts with a backslash so that we can
set these parameters without having to alter the
actual font source. The backslash prevents the
assumed input command at the start of the line.
The internal jobname is then set by the next actual
input command.

After running the command,
there are 30 eps files.

Here is one as an example:

A bit of FontForge
Those images are then imported into FontForge in their
respective slots. Once all 30 are imported, they are
tweaked a little as usual:

� All the points are rounded to integers
� All overlap is removed
� All right side-bearings are set to be equal to the left

side-bearings.

All those actions are single commands after selecting
all font glyphs, which makes this process really fast.

Then, as this font as some ligatures, a liga table
needs to be created. I did this manually for this font
because it is so simple (the ligature table is listed at the
end of dice3d.mf):
% ligature tables for 3D dice:
% #a, #b, #c, #d, where # is the value on the top face,
% and the letter indicates the value on
% the front face: "a" -> smallest,
% "d" -> largest
ligtable "1": "a" =: "a", "b" =: "b", "c" =: "c", "d" =: "d";
ligtable "2": "a" =: "e", "b" =: "f", "c" =: "g", "d" =: "h";
ligtable "3": "a" =: "i", "b" =: "j", "c" =: "k", "d" =: "l";
ligtable "4": "a" =: "m", "b" =: "n", "c" =: "o", "d" =: "p";
ligtable "5": "a" =: "q", "b" =: "r", "c" =: "s", "d" =: "t";
ligtable "6": "a" =: "u", "b" =: "v", "c" =: "w", "d" =: "x";

Finally, I adjusted the font name and generated an
OpenType version.

Usage
Using the OpenType version is quite straightforward:

\font\contextdice=dice3d*default
{\contextdice 1 2 3 4 5 6 \crlf
1a 1b 1c 1d 2a 2b 2c 2d 3a 3b 3c 3d \crlf
4a 4b 4c 4d 5a 5b 5c 5d 6a 6b 6c 6d}

1 2 3 4 5 6

a b c d e f g h i j k l

m n o p q r s t u v w x

Taco Hoekwater

Hans Hagen VOORJAAR 2022 77

The art of Maps proofreading

When Taco had to turn Yuri's article into the Maps format the problem was that
the tutorial about dice was using aMetaFont and as theMaps prefers outlines it made
sense to go that way. So, as follow up Taco made the three dimensional dice into a
font and wondered if we should add a typescript to the distribution. And who can
deny Taco. especially when also Frans wants to use these shapes. While pondering
this I realized that we already had dice in ConTEXt so I took a look at the MetaFont
code to see what magic was needed for going 3D. The file used by Yuri and Taco is
DICE3D.MF by Thomas A. Heim and dates from 1998.

The OpenType font that Taco made shows some inaccuracies with respect to the
way the three sides are connected. At first I though that there was some issue with
the transform but it more looks like it is in the definitions of the paths. I won't go
into details but using scaled fullsquare's works well so that is what we do here.

In the code below we start with the simple dice shapes. We just define the six
variants as macros. Because we later will reuse the dots we save them in a picture
list. The definitions have been simplified a bit because in the MetaFun module we
also define the reversed variants two and three as well as dominos.

\startMPcalculation{simplefun}

picture DiceDots[] ;

pickup pencircle scaled 3/2 ;

DiceDots[1] := image (draw(4,4) ;) ;

DiceDots[2] := image (draw(2,6) ; draw(6,2) ;) ;

DiceDots[3] := image (draw(2,6) ; draw(4,4) ; draw(6,2) ;) ;

DiceDots[4] := image (draw(2,6) ; draw(6,6) ; draw(2,2) ; draw(6,2) ;) ;

DiceDots[5] := image (draw(2,6) ; draw(6,6) ; draw(4,4) ; draw(2,2) ; draw(6,2) ;) ;

DiceDots[6] := image (draw(2,6) ; draw(6,6) ; draw(2,4) ; draw(6,4) ; draw(2,2) ;

draw(6,2) ;) ;

def DiceFrame =

pickup pencircle scaled 1/2 ;

draw unitsquare scaled 8 ;

enddef ;

vardef DiceOne = DiceFrame ; draw DiceDots[1] ; enddef ;

vardef DiceTwo = DiceFrame ; draw DiceDots[2] ; enddef ;

vardef DiceThree = DiceFrame ; draw DiceDots[3] ; enddef ;

vardef DiceFour = DiceFrame ; draw DiceDots[4] ; enddef ;

vardef DiceFive = DiceFrame ; draw DiceDots[5] ; enddef ;

vardef DiceSix = DiceFrame ; draw DiceDots[6] ; enddef ;

vardef DiceBad =

DiceFrame ; draw (1,7) -- (7,1) ; draw (1,1) -- (7,7) ;

enddef ;

\stopMPcalculation

Next we define a Type3 font. The lmt_ prefix is used for a collection of macros in
LuaMetaFun. It is an example of how we enhance the user interface with parsers
written in Lua; these sort of extend the MetaPost syntax. These glyphs all have the

78 MAPS 53 Hans Hagen

same dimensions. A Type3 font consists of bitmap or outline drawing operators and
with some Lua magic we can create these in LuaTEX and LuaMetaTEX. One just has
to make sure to plug them into the pdf backend.

\startMPcalculation{simplefun}

lmt_registerglyphs [

name = "dice",

units = 12,

width = 8,

height = 8,

depth = 0,

usecolor = true,

] ;

lmt_registerglyph [category = "dice", unicode = "0x2680", code = "DiceOne;"] ;

lmt_registerglyph [category = "dice", unicode = "0x2681", code = "DiceTwo;"] ;

lmt_registerglyph [category = "dice", unicode = "0x2682", code = "DiceThree;"] ;

lmt_registerglyph [category = "dice", unicode = "0x2683", code = "DiceFour;"] ;

lmt_registerglyph [category = "dice", unicode = "0x2684", code = "DiceFive;"] ;

lmt_registerglyph [category = "dice", unicode = "0x2685", code = "DiceSix;"] ;

lmt_registerglyph [category = "dice", private = "invaliddice", code = "DiceBad;"] ;

\stopMPcalculation

We now will add the three dimensional variants for which we need a few transfor
mations that we borrow from the MetaFont original. It is the only code we had to
take but it is also the most magical.

\startMPcalculation{simplefun}

transform t[] ; numeric r ; r := sqrt(1/4) ;

hide((0,0) transformed t1 = (0,0)) ;

hide((1,0) transformed t1 = (r,r)) ;

hide((0,1) transformed t1 = (0,1)) ;

hide((0,0) transformed t2 = (0,0)) ;

hide((1,0) transformed t2 = (1,0)) ;

hide((0,1) transformed t2 = (r,r)) ;

t3 := t1 shifted (8,0) ; % front to right side

t4 := t2 shifted (0,8) ; % front to top

\stopMPcalculation

Next we define the extra variants. The list of combinations (of three digits) come
from the mentioned MetaFont file:

\startMPcalculation{simplefun}

vardef Diced(expr a, b, c) =

draw image (

pickup pencircle scaled 1/2 ;

draw image (

nodraw unitsquare scaled 8 transformed t4 ;

nodraw unitsquare scaled 8 transformed t3 ;

nodraw unitsquare scaled 8 ;

dodraw unitsquare scaled 8 ;

) ;

draw DiceDots[a] ;

draw DiceDots[b] transformed t3 ;

draw DiceDots[c] transformed t4 ;

Hans Hagen VOORJAAR 2022 79

) ;

enddef ;

\stopMPcalculation

We use this macro when we register the shapes. The Unicode's are of course wrong
but we don't care too much about them here. We could have used private slots.

\startMPcalculation{simplefun}

lmt_registerglyph [category = "dice", unicode = "123", code = "Diced(1,2,3);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "135", code = "Diced(1,3,5);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "142", code = "Diced(1,4,2);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "154", code = "Diced(1,5,4);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "214", code = "Diced(2,1,4);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "231", code = "Diced(2,3,1);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "246", code = "Diced(2,4,6);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "263", code = "Diced(2,6,3);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "312", code = "Diced(3,1,2);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "326", code = "Diced(3,2,6);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "351", code = "Diced(3,5,1);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "365", code = "Diced(3,6,5);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "415", code = "Diced(4,1,5);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "421", code = "Diced(4,2,1);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "456", code = "Diced(4,5,6);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "462", code = "Diced(4,6,2);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "513", code = "Diced(5,1,3);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "536", code = "Diced(5,3,6);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "541", code = "Diced(5,4,1);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "564", code = "Diced(5,6,4);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "624", code = "Diced(6,2,4);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "632", code = "Diced(6,3,2);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "645", code = "Diced(6,4,5);", width = 12, height = 12] ;

lmt_registerglyph [category = "dice", unicode = "653", code = "Diced(6,5,3);", width = 12, height = 12] ;

\stopMPcalculation

At the ConTEXt (read: TEX) end we define three font features. The digits features will
map digits onto dice and the ligatures, when enabled, come from sequences of thee
digits. The metapost feature pushes the graphics into the font instead of already
present characters.

\definefontfeature

[dice:normal] % no reverse in this example

[default]

[metapost={category=dice}]

\definefontfeature

[dice:digits]

[dice:digits=yes]

\definefontfeature

[dice:three]

[dice:three=yes]

The dice:digits and dice:three features are implemented as follows. The liga
ture definitions have to come before the digit remapping because we process features
in order.

\startluacode

fonts.handlers.otf.addfeature("dice:three", {

type = "ligature",

80 MAPS 53 Hans Hagen

order = { "dice:three" },

nocheck = true,

data = {

[123] = { 0x31, 0x32, 0x33 }, [135] = { 0x31, 0x33, 0x35 },

[142] = { 0x31, 0x34, 0x32 }, [154] = { 0x31, 0x35, 0x34 },

[214] = { 0x32, 0x31, 0x34 }, [231] = { 0x32, 0x33, 0x31 },

[246] = { 0x32, 0x34, 0x36 }, [263] = { 0x32, 0x36, 0x33 },

[312] = { 0x33, 0x31, 0x32 }, [326] = { 0x33, 0x32, 0x36 },

[351] = { 0x33, 0x35, 0x31 }, [365] = { 0x33, 0x36, 0x35 },

[415] = { 0x34, 0x31, 0x35 }, [421] = { 0x34, 0x32, 0x31 },

[456] = { 0x34, 0x35, 0x36 }, [462] = { 0x34, 0x36, 0x32 },

[513] = { 0x35, 0x31, 0x33 }, [536] = { 0x35, 0x33, 0x36 },

[541] = { 0x35, 0x34, 0x31 }, [564] = { 0x35, 0x36, 0x34 },

[624] = { 0x36, 0x32, 0x34 }, [632] = { 0x36, 0x33, 0x32 },

[645] = { 0x36, 0x34, 0x35 }, [653] = { 0x36, 0x35, 0x33 },

}

})

fonts.handlers.otf.addfeature("dice:digits", {

type = "substitution",

order = { "dice:digits" },

nocheck = true,

data = {

[0x30] = "invaliddice",

[0x31] = 0x2680, [0x32] = 0x2681, [0x33] = 0x2682,

[0x34] = 0x2683, [0x35] = 0x2684, [0x36] = 0x2685,

[0x37] = "invaliddice",

[0x38] = "invaliddice",

[0x39] = "invaliddice",

},

})

\stopluacode

We now can use these fonts so we define a few font instances with different features:
\definefont[DiceN][Serif*dice:normal]
\definefont[DiceD][Serif*dice:normal,dice:digits]
\definefont[DiceT][Serif*dice:normal,dice:three,dice:digits]

The next few lines give simple two dimensional dice:
\DiceN \dostepwiserecurse{"2680}{"2685}{1}{\char#1\quad}%
\DiceD 2\quad5\quad3\quad0

⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ⚁ ⚄ ⚂ �

As we can see in the next character run, a nice aspect is that the digits are also
transformed so there is some perspective in it.
\DiceT 1 2 3 4 5 6
\DiceT 653 421 142 263 541

⚀ ⚁ ⚂ ⚃ ⚄ ⚅ ʍƥ�ćȝ

One of the probably unseen details is that we use nodraw to combine all paths into
one which gives nicer shapes. Contrary to the original we don't use rounded cor
ners but that could be achieved by replacing the unitsquares by for instance unit
square smoothed 1/10. Another enhancement could be filled dice with white dots.

Hans Hagen VOORJAAR 2022 81

We come now to the title of this article. When a Maps is being composed, the
workflow is as follows. An author send an article, and when it's in pdf format, Frans
will read it carefully and feedback issues. When all is okay, Taco kicks in and turns
it into the Maps format which involves looking at page breaks, scaling of images,
checking fonts and color etc. Then Frans again takes a look at it. It cannot be denied
that in my personal case I actually rely on Frans to prevent me from mistakes.

How serious the Maps proofreading is done is demonstrated in the next image.
It shows us that not only an article gets printed but that there is some handy work
involved too. In this case Frans took real dice as reference. It shows how I get bitten
by not showing the complete implementation here.

These show the mirrored variants of two and three and if you really want a con
sistent set of dice you need to have some use these variants. I will not do that here
because we then also have to discuss influencing the variants. It makes sense to
use Unicode modifiers to control this. The dice definition in the ConTEXt module
actually also have these mirrored shapes and a dice:reverse feature:

\startMPcalculation{simplefun}

DiceDots[-2] := image (draw(6,6) ; draw(2,2) ;) ;

DiceDots[-3] := image (draw(6,6) ; draw(4,4) ; draw(2,2) ;) ;

\stopMPcalculation

But first I have to find me some dice or borrow Frans his reference set. We leave that
for the ConTEXt meeting later this year.

Hans Hagen

82 MAPS 52 Fabrice Larribe

MetaFun for generative art

Abstract
This article shows how MetaFun can be used to create
generative art, by showing the construction of three
projects, step by step.

Keywords
MetaFun, art, creation

Introduction
The idea of making generative art with MetaFun was
for me a convolution of several elements. The first is a
painting by Niele Toroni seen at the Museum of Mod
ern Art of New-York (MOMA) showing imperfect red
squares on a canvas: it was incredible. I recently redid
a version with circles (not to copy the original version)
shown in figure 1. The second element is that I used to
make regular representations of random processes in
Tikz, to illustrate lecture notes on stochastic processes.
Not only these representations are useful, but some
times beautiful too ! The third and last element is
probably the beautiful covers of the ConTEXt manuals,
combined with the discovery of the MetaFun manual.

Figure 1. Left a version of Niele Toroni piece with circles instead of
squares. Right a zoom on the first circle.

It seemed so easy and beautiful to represent random
representations in MetaFun that I explored it. After
making many drawings, simple at first, and then more
advanced, I discovered that this activity had a name:
this art form is called generative art. We can borrow the
definition from Galenter (2013):

“Generative art refers to any art practice where the
artist uses a system, such as a set of natural language
rules, a computer program, a machine, or other proce

dural invention, which is set intomotionwith some degree
of autonomy contributing to or resulting in a completed
work of art.”

The key for generative art made by a drawing lan
guage, is to have random components. Usually, in my
drawings, every part, even a tiny one is randomized:
position, form, color, etc. An example of this is shown in
the right part of figure 1, presenting a small part of the
whole piece. As you can see, instead of filling the circle
with a unique color, dozens of lines are used trying to
give the feeling a real brush, using a randomized color.
The accumulation of these details bring organicity to
the piece.

So a such a drawing is nothing more than an algo
rithm with some random components. That means that
the same algorithm will produce different results. In
general, the more you leave room for randomness, the
less predictable the result will be, the more surprising
and interesting it will be, but the longer it will take
to sort out the successful results among the ten or
a hundred drawings made by the same algorithm. So
more randomness equals more curation.

It is interesting to note that MetaFun can also be
used to make movies (animations) with the help of
ConTEXt : a loop in ConTEXt permits to generate easily
several hundreds of pages, where some parameters of
a drawing change from one page to the next. We can
combine these frames, at a rate for example of 30 frames
by second, to make a movie, where we can of course
add music. Finally, before drawing, let's add that most
generative artists use a javascript library named p5.js.

The randomized operator
The MetaFun manual is the document to read to learn
properly the language, and I assume the reader has a
familiarity with the basics of the language, although
explanations will be as detailed as possible. I emphasize
here a particular aspect of MetaFun, the randomized
operator, heavily used for generative art. Briefly, this
operator adds randomness to almost everything, and
this randomness is the key for generative art.

Let's draw a square of size 60, it will be centered at
position (0, 0), and a point at position (0, 0) in color

Fabrice Larribe VOORJAAR 2022 83

magenta; then we will draw 50 randomized points
around the (0, 0) point, in blue, randomized (60,30) :

draw fullsquare scaled 60 ;
for i=1 upto 50:

draw (0,0) randomized (60,30)
withcolor blue randomized(0.1,2) ;

endfor;
draw (0,0) withcolor magenta ;

As you can see, the pair of numeric values fol
lowing the randomized operator gives the amount of
randomness in both directions, express in regular unit;
moreover the color can be randomized too. In fact,
as described in the MetaFun manual, “randomized can
handle a numeric, pair, path and color, and its specifica
tion can be a numeric, pair or color, depending on what
we’re dealing with.”

Project one : delirious circles
MetaFun (MetaPost) is a vectorial language; it is then
really easy and natural to draw smooth lines and
curves, but it is a little more work to draw agitated
(i.e. not smooth, chaotic, erratic…) paths. Of course,
this is possible, because so many things are possible
with MetaFun ! So we begin by building a simple piece
illustrating agitated paths. Once this first piece is built,
we will see how we can use this work to create a more
complex piece. Our first objective is to build a piece
similar to this :

The first thing to realize this piece is to be able
to draw these agitated paths. This algorithm is now
described and illustrated in figure 2, using a simple
circle. In order to agitate a path 𝑃 , the first step is to
take a number of points 𝑛1 along 𝑃 (here 𝑛1 = 8)

and randomize these points by a quantity 𝑡1 (𝑡 for
turbulence); then build a path with these 𝑛1 points,
and we obtain a new path illustrated as “Step 1” in the
illustration. We then repeat this strategy recursively
a number of times 𝑆 (for Steps), using the result of
the previous step as the path to be randomized in the
current step, taking more points and less noise at each
step; this way, the first steps give the global form of
the resulting path, and the last steps add some little
noise along the path. Varying these parameters, we will
obtain different results. Please note that the following
MetaFun code is made to be comprehensive more than
computationally optimal; let's do it:

numeric n[] , t[]; path P;
% Initial values ----------------- ;
n[1] := 8 ; t[1] := 10 ;
% Calculations of t_s and n_s ---- ;
for i=2 upto 5:

n[i] := n[i-1] * 2 ;
t[i] := t[i-1] * .8 ;

endfor;
% Initial shape ------------------ ;
P := fullcircle scaled 40;
% Let's add turbulence in S=5 steps ---- ;
for s=1 upto 5 :
P := for i=1 upto n[s]:
point (i/(n[s])) along P randomized t[s] ..

endfor cycle ;
draw P ;
drawpoints P withpen pencircle scaled 2

withcolor red;
endfor;

Step 1 Step 2

Step 3 Step 4 Step 5

Figure 2. Illustration of the algorithm to agitate a path.

We can wrap this in a macro; to keep this simple here,
we will assume that the path is a cycle (i.e a closed path),
and that the number of points and the noise level at
each step are given respectively by

𝑛𝑠 = 𝑛0 × 𝑓𝑠𝑛, 𝑡𝑠 = 𝑡0 × 𝑓𝑠𝑡, for 𝑠 ≥ 1, 𝑛0 𝑡0 known.

84 MAPS 52 Fabrice Larribe

but of course, the macro can be modified for non cycled
paths, and others expressions for 𝑛𝑠 are 𝑡𝑠 are possible.
Here is our macro taking a path and others parameters
as input and returning an agitated path (R):

vardef agitate(expr thepath, S, n, fn, t, ft) =
save R , nbpoints , noiselevel ;
path R ; nbpoints := n ; noiselevel := t ;
R := thepath ;
for s=0 upto S :
nbpoints := nbpoints * fn ;
noiselevel := noiselevel * ft ;
R := for i=1 upto nbpoints:

point (i/nbpoints) along R
randomized noiselevel ..

endfor cycle ;
endfor ;
R

enddef ;

Please note that the variables S and f_n need to be rea
sonable… The processing time is exponential regarding
these values, so caution is necessary in experimenting !
Some examples of realizations (starting with a circle
again) :

n0 = 8, fn = 2, t0 = 10, ft = 0.6

S = 2 S = 4 S = 8

S = 3, n0 = 8, fn = 2, ft = 0.6

t0 = 5 t0 = 10 t0 = 15

S = 3, n0 = 8, fn = 2, t0 = 10

ft = 0.4 ft = 0.6 ft = 0.8

S = 3, n0 = 8, fn = 2, t0 = 10, ft = 0.6

n0 = 4 n0 = 8 n0 = 12

S = 3, n0 = 8, fn = 2, t0 = 10, ft = 0.6

fn = 1.1 fn = 2 fn = 4

Now we can go back to our objective. Of course
we want random colors, but not completely random
(it would not be pretty in general). It is useful to use
palettes, so you can change easily from one set of colors
to another set. Let's build a palette :

color MyPalette[] ; Ncolors := 5 ;
MyPalette[1] := (215/255,233/255,244/255);
MyPalette[2] := (234/255,187/255,076/255);
MyPalette[3] := (238/255,148/255,056/255);
MyPalette[4] := (199/255,066/255,033/255);
MyPalette[5] := (033/255,061/255,085/255);

To choose a random color, we need to choose an integer
between 1 and Ncolors; a simple, useful and more
general macro is made to choose a random integer in
the interval [𝑚𝑖𝑛𝑖,𝑚𝑎𝑥𝑖]:

vardef ranint (expr mini , maxi) =
floor(uniformdeviate (maxi - mini +1) + mini)

enddef ;

For illustration, let's fill squares of random colors in our
palette:

for i=1 upto 2:
for j=1 upto 8:
fill fullsquare randomized 0.1 scaled 15

shifted (j*20,i*20)
withcolor MyPalette[ranint(1,Ncolors)] ;

endfor;
endfor;

We have now all the elements for our project. We just
need to draw agitated circles decreasing in size, and fill

Fabrice Larribe VOORJAAR 2022 85

them with different color. There is just one detail we
need to pay attention to : the initial number of points
used to agitate our circles should depend on the length
of each path; so we add to the code in the loop nzero
:= floor(arclength(P)/4.5); the factor 4.5 is found
by trial and error to obtain what we are looking for, and
the function floor is too assure that nzero is an integer.
In such code, we usually try to parametrize as much
as possible, so it will be easier later to search optimal
parameters.

randomseed := 1241 ; color AColor ;
path P, Q ;
NbCircles := 6 ; S := 8 ; f_n := 1.1 ;
tzero := 6 ; f_t := 0.80 ;
for c=NbCircles downto 1 :
P := fullcircle scaled (c*30) ;
AColor := MyPalette[ranint(1,Ncolors)] ;
nzero := floor(arclength(P)*0.30);
Q := agitate(P , S , nzero , f_n , tzero, f_t);
eofill Q withcolor AColor ;
draw Q withcolor .5[black,AColor];

endfor;

Now that we have succeeded, we can try to explore
the possibilities of the algorithm. We can randomly
generate some drawings selecting some parameters in
a certain range. One could draw several pieces on the
same page, but an easier way is to generate several
pieces one piece per page. The complete code is below,
and explanations follows.

1 \starttext
2 % Inclusions ------------------------------- ;
3 \startMPinclusions
4 vardef agitate(expr apath, S, n, fn, t, ft) =
5 save R , nbpoints , noiselevel ;
6 path R ; nbpoints := n ; noiselevel := t ;
7 R := apath ;
8 for s=0 upto S :

9nbpoints := nbpoints * fn ;
10noiselevel := noiselevel * ft ;
11R := for i=1 upto nbpoints:
12point (i/nbpoints) along R randomized
13noiselevel .. endfor cycle ;
14endfor ;
15R
16enddef ;
17
18color MyPalette[] ; Ncolors := 5 ;
19MyPalette[1] := (215/255,233/255,244/255);
20MyPalette[2] := (234/255,187/255,076/255);
21MyPalette[3] := (238/255,148/255,056/255);
22MyPalette[4] := (199/255,066/255,033/255);
23MyPalette[5] := (033/255,061/255,085/255);
24
25vardef ranint (expr mini , maxi) =
26floor(uniformdeviate (maxi - mini +1) + mini)
27enddef ;
28vardef ranuni (expr mini , maxi) =
29uniformdeviate (maxi - mini) + mini
30enddef ;
31\stopMPinclusions
32
33\dorecurse{16}{ %
34% MP page -- ------------------------------- ;
35\startMPpage
36
37randomseed := 100*#1 ;
38
39path O, P , Q ;
40O := fullcircle scaled 200 ;
41color AColor ;
42NbCircles := ranint(3,15) ;
43S := ranint(2,3) ; fn := ranuni(1.1,1.5) ;
44tzero := ranuni(3,8) ; ft := ranuni(0.5,0.9) ;
45CurrentColor := ranint(1,Ncolors) ;
46for c=NbCircles downto 1 :
47P := O scaled (c/NbCircles) ;
48AColor := MyPalette[CurrentColor] ;
49nzero := floor(arclength(P)*ranuni(0.2,0.8));
50Q := agitate(P , S , nzero , fn , tzero, ft);
51eofill Q withcolor AColor ;
52draw Q withcolor .5[black,AColor];
53
54forever:
55AnotherColor := ranint(1,Ncolors) ;
56exitif CurrentColor <> AnotherColor ;
57endfor;
58CurrentColor := AnotherColor ;
59endfor;
60
61\stopMPpage
62}
63\stoptext

86 MAPS 52 Fabrice Larribe

Some remarks about this code:

a. Lines 2-32: functions already defined are placed
between:

\startMPinclusions

Definitions of functions here..
\stopMPinclusions

b. Line 37: this instruction is a way to keep track
of what random seed is giving which piece. For
exemple, if you do 100 drawings and you want to
reproduce only the 90th page, the same code with
randomseed := 90*100; will suffice. This is useful to
debug sometimes too.

c. Lines 35-61: the code which produce each
page is between the two braces inside the
\dorecurse{16}{}; here 16 pages will be created:

\dorecurse{16}{

\startMPpage

The code for the drawing itself
\stopMPpage }

d. Lines 40,47: we have modified the previous code
in order to have an algorithm able to manage a
randomized path. At line 40, an original path O is
created, here a circle, and this path is scaled down
at line 47 at each step.

e. Lines 55-59: we have improved our previous
algorithm by changing the color for each new
circle, so two consecutive circles have not the
same color; this is done in this loop by selecting a
number in (1,Ncolors) until this result is different
than the number of the current color.

Here are the 16 pages that the previous code produces:

Continuing to play with our project, it is now very
easy to change the color palette. Imagine you have ac
cess to say 100 color palettes, we can choose randomly a
palette (after the randomseed instruction on line 37), and
here is a sample of what is possible (code not shown):

Now, continuing our experimentation, if we change

40O := fullcircle scaled 200 ;

by

40O := fullsquare scaled 200 ;

we could obtain something like this:

As you can see, once a drawing algorithm is made,
it is quite easy to modify the parameters, the shapes,
the colors… to explore the possibilities of the algorithm,
and maybe discover an amazing creation resulting from
the combination of a human idea and chance.

Project two : a sun
We can try to exploit our new function agitate() to
create more lively pieces. We would like the piece to
have the spirit of a cell, or a sun, something like this. So
the strategy here is be to fill several agitated circles one
above the other, like before, but this time, the border
of the circles will be more chaotic, we will use more
circles, and we will fill them with a transparent color.

Fabrice Larribe VOORJAAR 2022 87

Here a sketch of the structure :

It is a matter of seconds to run this code:

vardef agitate(expr thepath, S, n, fn, t, ft) =
(...)

enddef ;
path P , Q ;
color AColor ;
NbCircles := 20; S := 1; nzero:= 10; fn := 1.3;
tzero := 5; ft := 0.8;

% with \usecolors[crayola] ;
AColor := \MPcolor{MidnightBlue};

for c=NbCircles downto 1 :

P := fullcircle scaled (c*10.5) ;
nzero := floor(arclength(P)*0.5);
Q := agitate(P , S , nzero , fn , tzero, ft);
eofill Q

withcolor transparent(1,2/NbCircles,AColor);
draw Q withpen pencircle scaled 0.1

transparent(1,4/NbCircles,.90[black,AColor]);

endfor;

and to obtain this result :

But the borders are too smooth. So increasing the
number of steps of the agitate() function so 15, after
approximately one hour, we have this result :

Increasing the number of circles to 40, and changing
the color (to explore), but this time every circle will
have the same size, we obtain this nice blurry effect :

It is tempting to try a donut by simply adding in the
center a series nbrep := 25; of white circles. Caution :
this code is very computationally intensive. if you try it,
reduce the value of S and nbrep, and increase it slowly.

88 MAPS 52 Fabrice Larribe

The code look like this :

path P , Q ;
color AColor ;
S := 18; nzero:= 10; fn := 1.3; tzero := 5;
ft := 0.8;

AColor := \MPcolor{Razzmatazz} ;
P := fullcircle scaled 60 ;
nzero := floor(arclength(P)*0.5);
nbrep := 25;
for rep = 1 upto nbrep:

Q := agitate(P, S, nzero, fn, tzero, ft);
eofill Q

withcolor transparent(2,2/nbrep,AColor);
draw Q withpen pencircle scaled 0.1

transparent(9,1/nbrep,.90[black,AColor]);
endfor;

P := fullcircle scaled 22 ;
nzero := floor(arclength(P)*0.5);
for rep = 1 upto nbrep:

Q := agitate(P, S, nzero, fn, tzero, ft);
eofill Q

withcolor transparent(3,3/nbrep,white);
draw Q withpen pencircle scaled 0.1

transparent(9,1/nbrep,.90[black,AColor]);
endfor;

This last piece is very satisfying. One has an impres
sion of bubbling, of life, like a gaseous planet. Satisfied,
let us stop the exploration here!

Project three : a fabric
Finally we will use the same function, in a very different
way, and use a simple technique to create a form that
looks like a fabric. The first step is to create an agitated
circle, a simple one this time, and scale it down a few
times (here 10 times), to obtain this sketch :

path P, Q;
S := 1; nzero:= 10; fn := 1.2; tzero := 15;
ft :=0.8;
P := fullcircle scaled 170 ;
nzero := floor(arclength(P)*0.5);
Q := agitate(P , S , nzero , fn , tzero, ft);
draw Q withpen pencircle scaled 0.2

withcolor red;
path R ; nblines := 10 ;
for i=1 upto nblines:

R := Q scaled ((nblines-i)/nblines) ;
draw R withpen pencircle scaled 0.2

withcolor blue;
endfor;

Now we will do the same strategy, increasing the
number of lines, and changing color over time, ran
domly of course :

randomseed := 3354 ;
S :=1; nzero :=10; fn :=1.1; tzero :=15; ft :=0.8;

P := fullcircle scaled 180 ;
nzero := floor(arclength(P)*0.12);
Q := agitate(P , S , nzero , fn , tzero, ft) ;
draw Q withpen pencircle scaled 0.2 withcolor red;
path R ;
color CurrentColor , RealColor;
CurrentColor := MyPalette[ranint(1,Ncolors)];
nblines := 100 ;

Fabrice Larribe VOORJAAR 2022 89

for i=1 upto nblines:
CurrentColor := CurrentColor

randomized(0.95,1.05);
R := Q scaled ((nblines-i)/nblines) ;

if uniformdeviate(1) < 0.08:
CurrentColor := MyPalette[ranint(1,Ncolors)];

fi;
RealColor := CurrentColor ;
draw R withpen pencircle scaled .8

withcolor RealColor;
endfor;

And finally, we increase dramatically the number of
lines, randomized the same color en epsilon at each line,
and add transparency to create relief :

randomseed := 2562 ;
S := 1 ; fn := 1.05 ; tzero := 20 ; ft := 0.8 ;

P := fullcircle scaled 180 ;
nzero := floor(arclength(P)*0.18);
Q := agitate(P , S , nzero , fn , tzero, ft) ;
draw Q withpen pencircle scaled 0.2

withcolor red;
path R ;
color CurrentColor , RealColor;
CurrentColor := MyPalette[ranint(1,Ncolors)];
nblines := 750 ;

for i=1 upto nblines:
CurrentColor :=

CurrentColor randomized(0.98,1.02);
R := Q scaled ((nblines-i)/nblines) ;

if uniformdeviate(1) < 0.025:
CurrentColor :=

MyPalette[ranint(1,Ncolors)];
fi;
RealColor := CurrentColor ;
draw R withpen pencircle scaled .2
withcolor transparent(2,.8,RealColor);

endfor;

Here are other examples changing the random seed :

90 MAPS 52 Fabrice Larribe

And a last example decreasing the number of points
nzero, and increasing a bit the turbulence tzero :

It just seems extraordinary to me that a few simple
lines of code, using such elementary functions, can give
such rich and varied results.

Technical addendum
Hans Hagen made a remark that the agitate code could
be improved; in the agitate() macro we can find this
instruction :

R := for i=1 upto nbpoints:
point (i/nbpoints) along R

randomized noiselevel ..
endfor cycle ;

At each step of the loop for i=1 upto nbpoints, the in
struction along is used, which means that the function
arclength is called nbpoints times, and this function
takes time. As the length of the path R does not change,
a better way to do is to calculate this length only one
time outside the loop :

rlength := (arclength R) / nbpoints;
R := for i=1 upto nbpoints:

(point (arctime (i * rlength) of R) of R)
randomized noiselevel ..

endfor cycle ;

This improvement speed up the processing time signif
icantly. A second improvement is possible, using the
“double” mode improve the processing time. So all the
code of this paper can be adapted like this:

\startMPinclusions{doublefun}
(...)

\stopMPinclusions
\startMPpage[instance=doublefun]

(...)
\stopMPage

These two modifications together speedup processing
time by a factor 5 on project 2.

Conclusion
We have presented in this article how MetaFun can
be used to do generative art. The randomized operator
is simple but powerful, and can be used on several
types of objects. Moreover, macros are easy to define in
order to introduce new creation tools, as we did for the
agitate() function. The ability to draw one result per
page is very useful when producing a large number of
results from a given algorithm, and the vector nature of
the PDF output makes each drawing easily scalable and
printable on a large scale. All of this makes MetaFun
definitely a powerful tool, allowing to create drawings
or artworks with few limitations.

Bibiography
Galenter, Phillip. 2013. What is Generative Art? Com
plexity Theory as a Context for Art Theory. In GA2003
– 6th Generative Art Conference.

I would like to thank Frans Goddijn for his helpful
comments on the article, as well as Hans Hagen and
Taco Hoekwater for their enlightenment on technical
aspects of MetaFun.

Fabrice Larribe

Jos Winnink VOORJAAR 2022 91

Afscheid
Abstract
Sinds 1990 ben ik lid geweest van de NTG. Nu ik gepensioneerd ben is het gebruik van
TEX zodanig verminderd dat ik mijzelf niet langer zie als een actieve gebruiker. In dit
artikel kijk ik terug op ruim 30 jaar TEX en met name LaTEX gerelateerde activiteiten.

De aanloop
In de periode tot ongeveer 1990 hield ik mij incidenteel bezig met het elektronisch
opmaken van documenten. Hiervoor maakte ik gebruik van de in de UNIX-wereld
bekende systemen TROFF/NROFF, Eqn en Tbl. TROFF is bedoeld om documenten
te kunnen produceren met behulp van foto-typesetters en NROFF is de variant die
gebruikt kon worden op andere printers, zoals matrixprinters, daisywheelprinters
(wie kent ze nog?) en laserprinters. Van deze programmatuur was een commerciële
versie voor de PC beschikbaar.

In 1989/1990 was ik, namens het CPB, betrokken bij het opzetten en schrijven
van een gebruikershandleiding voor het gebruik van de Control Data mainframe
computers van het ECN. Gerard van Nes, vanaf het eerste uur betrokken bij de NTG,
was de trekker van dit project en de drijvende en coördinerende kracht achter dit
gezamenlijke project. Besloten werd om voor deze uitgebreide handleiding LaTEX als
tekstopmaaksysteem te gebruiken. Door deze keuze was ik gedwongen om mij in de
TEX-wereld te verdiepen en werd dan ook spoedig lid van de NTG en niet lang daarna
bestuurslid. Mijn activiteiten binnen de NTG lagen met name op het gebied van
TEX-implementaties voor PCs en werkzaamheden in het redigeren van de NTG-Maps
onder leiding van Gerard van Nes.

De beschikbaarheid van TEX buiten de wereld van mainframes en mini-computers
was destijds nog beperkt en het gebruik was beperkt tot de academische wereld.

TEX-distributies voor PCs
Eenmaal actief binnen TEX-gemeenschap heb ik mij met name beziggehouden met
beschikbaar maken van TEX-implementaties voor PCs en dan met name op MS-Dos
computers. In het begin bestond de mogelijkheid voor NTG-leden om TEX distributies
voor PC op 5 1

4 -inch �oppy disks te krijgen. Destijds waren er meerdere min of meer
complete distributies beschikbaar waaronder SbTeX en DosTex.

Als een poging van de NTG om het gebruik van TEX te propageren heb ik in die
tijd een werkende, zij het beperkte distributie gemaakt op basis van de beschikbare
systemen. Deze versie paste op twee 51/4 inch �oppy disks. Deze versie was bedoeld
als demonstratie-systeem en derhalve met name beperkt in het aantal beschikbare
lettertypen, alleen de C-fonts. We hebben op een NTG-bijeenkomst deze versie ook
gepresenteerd aan Barbara Beeton en later ook aan Donald Knuth. Zoals gezegd dit
was slechts een systeem om een deel van de mogelijkheden van TEX te presenteren.

Een aanzienlijke verbetering was de door Eberhard Mattes geproduceerde emTEX-
distributie. Toen dit eenmaal voldoende stabiel was werd deze versie door de NTG
als standaard PC-versie verkozen. emTEX werd door de NTG rondgestuurd aan
belangstellenden door een doosje met benodigde 3 1

2 -inch diskettes.

92 MAPS 52 Jos Winnink

Door Wietse Dol en Erik Frambach werd in de tweede helft van de 90-er jaren van
de vorige eeuw als NTG-activiteit het op CD-roms gebaseerde 4TEX for Windows
geproduceerd.

Mijn overige NTG-activiteiten
Naast mijn activiteiten om de PC-distributies te verspreiden ben ik een aantal ja-
ren bestuurslid geweest en als zodanig betrokken geweest bij de voorbereiding en
productie van de MAPS. Zoals bij uitgevers wel bekend is het produceren van een
tekstdocument waaraan verschillende auteurs werken soms een tijdrovende en onder
tijdsdruk staande zaak. Zeker als aan bijdragen geen stringente eisen worden gesteld
aan de wijze van opmaak van de manuscripten. Met name het omzetten van teksten
van native TEX naar de voor de MAPS gehanteerde LaTEX-layout heeft soms de nodige
hoofdbrekens gekost. Naast de MAPS heeft de NTG in overleg met David Salomon
ook een eerste versie van diens boek —de syllabus van de cursus die hij voor de NTG
heeft gegeven— geproduceerd.

Terugblik
Op basis van het door Donald Knuth ontwikkelde systeem is in de loop van de tijd
een heel arsenaal aan kwalitatief hoogstaande systemen ontwikkeld. Het gaat dan
niet alleen om macro-pakketten voor LaTEX maar bijvoorbeeld ook om het door Hans
Hagen ontwikkelde ConTEXt.

Jarenlang heb ikzelf in door WYSIWYG-systemen overheerste omgevingen gewerkt.
Wanneer er geen interacties met andere auteurs waren dan kon ik mijn eigen gang
gaan en publicaties, zoals mijn proefschrift, in LaTEX produceren. De uitwisseling van
in TEX opgemaakte teksten met WYSIWYG-systemen is lastig en vergt veel kennis
en handwerk, waardoor gebruik van TEX ondanks de kwaliteiten altijd beperkt zal
blijven. De kwaliteiten van op TEX gebaseerde systemen blijken bij het opmaken van
complexe documenten. Mijn eigen ervaring met een rapport met tientallen tabellen
en vele �guren is dat dit soort complexe documenten betrekkelijk eenvoudig en
e�ciënt in een op TEX gebaseerd systeem is op te zetten. Dergelijke documenten van
tientallen pagina’s met vele tabellen en �guren kunnen in een WYSIWYG-omgeving
slechts moeizaam en met veel handwerk worden opgezet.

Voor mij is een eind gekomen een een interessante en leerzame periode.

Jos Winnink

