
34 Virtual Fonts, Virtuous Fonts Bijlage K

Virtual Fonts, Virtuous Fonts

Alan Hoenig

Abstract

Virtual fonts allow us to use all digital fonts with TEX, even non-TEX ones, and do much more for us. What
are virtual fonts? Several projects grant us necessary experience with them.
This document comprises somewhat less than half of the similarly named chapter which will appear in the
bookTEX Unbound: LATEX and TEXStrategies for Fonts, Graphics, and More, by Alan Hoenig, to be
published in early 1997 by Oxford University Press. This excerpt is simplified so that it may be printed
using the standard suite of TEX fonts; the original depends heavily on PostScript fonts and the author’s style
file for its typesetting. Consequently, some displays could not be included. For any questions or comments,
please contact the author atajhjj@cunyvm.cuny.edu .

When talking about computers, we use the adjective “vir-
tual” to describe a thing that behaves like something else.
Virtual disks are really memory blocks which simulate
hard disks, while virtual memory uses a disk to mimic a
computer’s memory. A virtual font looks to TEX like any
other font, but it really is pieced together from other fonts
or collections of typographic elements. It may be
• a composite of several different fonts somehow mixed

together (in a special way, according to precise rules);
• a single font whose characters are (for very good rea-

sons) scrambled in some new order;
• a collection of constructed characters, each built from

several components (like accented letters are), which
behaves like a font;

• individual horizontal or vertical rules each of which is
treated as a character in a font;

• a collection of text, graphics, or PostScript files, each
of which is treated as a single character within the vir-
tual font;

• a conglomerate of all (or some) of the above.

This and the next few chapters explore virtual fonts, con-
sider occasions that need them, and provide procedures for
constructing them. It’s messy constructing virtual fonts by
hand, but a few freely available resources make it easy.

The box (not included here—sorry) lists some virtual font
projects. For most people, the only application of virtual
fonts may be to perform the proper installation of outline
fonts (that is, PostScript fonts) for use by TEX. (We will
use the terminstallation to describe the entire process of
making fonts usable by TEX.) Many tasks difficult or im-
possible to accomplish with macros become trivial when
implemented via virtual fonts.

The next few sections explain the concept of virtual font,
together with the related concepts of font tables and encod-
ing tables, in detail. Thereafter, we will provide discussion
and procedures for implementing most of the applications
in the list above.

1 The virtual font concept
Let’s begin by journeying to a different planet, one on
which a system like TEX has been developed, but on which
all languages contain only two distinct characters, which
we can call ‘e’ and ‘f’, together with the double-f ligature
‘ff’. A close examination of a font on this hypothetical
planet makes it easier to understand the kinds of problems
arising in real, terrestrial fonts, and how virtual fonts can
solve them.

A table listing the characters of any TEX font would con-
tain only three characters.

0 1 2
e f ff

These three characters have been numbered using the usual
computer science convention which starts with 0. These
numeric labels serve to identify the position in the font of
each character.

These numeric positions also play an important role for
TEX, for dvi files contain typesetting commands based
not on the glyph name (‘A’, ‘B’, ‘comma’, or whatever)
but on each numeric label. For any ‘e’ in the input file, the
dvi file contains the instruction to typeset character 0 in
the current font. The lowercase ‘e’ had better be in that po-
sition! This correspondence between character and charac-
ter number is built into the TEX program, and that’s true for
both the distant planet and for ours.

Difficulties arise when we try to use a commercial font in-
stead of Computer Modern. We will suppose that the com-
mercial font we want contains three characters, but they are
‘e’, ‘f’, and ‘&’. To get the ligature, we need to purchase a
separate font, which contains the ‘ff’ plus two other char-
acters. A further difficulty surfaces when we examine the
layout of the fonts.

0 1 2
f e &

0 1 2
ff % $

Bijlage K Virtual Fonts, Virtuous Fonts 35

The characters in the main font are in the wrong order, and
this leads to disaster. To see why, let’s select the commer-
cial font, and now suppose we typef . TEX expects an ‘f’ to
occupy position 1 of the font table, and so puts an instruc-
tion (in thedvi file) to typeset character 1. But character 1
in the non-TEX font is the glyph ‘e’, and that’s what gets
typeset—not the ‘f’ that we requested. Moreover, it does
not appear that we can typeset the ff without an explicit
call to the auxiliary font. Apparently, the input file will
look different whether we typeset with the usual TEX fonts
or with some other fonts, and this is unacceptable.

Virtual fontshave been created to deal with this (and other)
exigencies. As far as an author is concerned, a virtual font
is just another font. But it provides a mechanism whereby
(behind the scenes), real fonts (raw fonts) can be combined
so that the resultingvirtual fontconforms to the usual TEX
conventions to eliminate any need for marking up the input
file differently. In our example, a virtual font would
1. select the e and f from the main font, and re-order them

in a TEX-acceptable way; and
2. include the ligature from the expert font in the last po-

sition in the table for the virtual font.

We call an auxiliary font containing ligatures and other
special symbols an expert font. Furthermore, we’ll fol-
low the terrestrial convention of labelling raw fonts by ap-
pending ‘8a’ or ‘8x’ (expert) to them. So raw fontfoo8a
and expert fontfoo8x come together in the virtual font
foo7t . (Chapter 6 explains the conventions surrounding
the notations 8a, 8x, and 7t.)

0 1 2
f e &

foo8a

+
0 1 2
ff % $

foo8x

⇒
0 1 2
e f ff

foo7t

Font foo7t uses selected characters from the two raw
fonts, and orders this selection in a way meaningful to TEX.
Not all the characters from raw fonts need be part of the fi-
nal virtual font.

Up until virtual fonts, words containing accents suppressed
TEX’s hyphenation algorithm. We can define an accented
letter in a virtual font to be equivalent to any other letter, so
hyphenation proceeds unimpeded—yet another advantage
of virtual fonts.

To be sure, this unrealistic, alien font provides a contrived
example. But with real commercial fonts, these same
problems—writ large because real fonts have so many
more characters—need the practical solutions that virtual
fonts provide.

2 Digital fonts and font tables
Font tables for the Computer Modern TEX fonts and for
PostScript outline fonts contain a maximum of 256 posi-
tions; 256 is one of the magic numbers of computer sci-
ence. See figure 1 for examples of real font tables. (For
a slightly different representation, refer to the font tables
beginning on page 427 ofThe TEXbook]/. The PostScript
font tables cannot be shown here; pardon.) A casual glance

reveals significant differences between the layouts for the
two fonts. Each slot of the Computer Modern font is filled
(up till character 127), whereas there are many unfilled
slots in the PostScript fonts. Some characters, like the up-
percase Greek letters or the ff, ffi, and ffl ligatures, do not
appear anywhere in the PostScript font while certain Post-
Script characters appear nowhere in the Computer Modern
layout. Other characters are in disparate positions. All
the Scandinavian ligatures (æ, and so on) appear in the
fourth row of the Computer Modern font table, but clus-
ter together near the very end of the PostScript font table.

Positions in any font table are numbered starting from zero
up to 255. We know that terrestrial TEX selects characters
not by the character name but according to its position in
the font table, so a command to typeset an ‘A’ is relayed as
an instruction to

typeset the character from the currently se-
lected font that occupies position 65 in that
font,

since that’s the numeric label of the ‘A’ slot. (All charac-
ter positions are given here in decimal notation. Computer
scientists may be more comfortable with a character’s oc-
tal position, which is why that information also appears in
the tables.)

When using PostScript outline fonts, it’s useful to be able
to typeset in a ‘fake font’—our virtual font—which looks
real to TEX but is in fact an amalgam of one or more raw,
component fonts. We arrange this virtual font so the char-
acters in the virtual font are in the same order as in any
other Computer Modern font. That way, macros will sel-
dom have to be redefined for different fonts, a particularly
important issue for mathematics typesetting.

Associated with a font table is thefont encoding vectoror
just theencoding vectoror code page. The encoding vec-
tor is the list of the character names in the order in which
they occur in the font table. For a TEX font (figure 1), the
encoding vector is the list beginning

Gamma, Delta, Theta, Lambda, Epsilon, Pi, Sigma, Upsilon,
Phi, Psi, Omega, ff, fi, fl, ffi, ffl, dotlessi, . . .

and so on. If we let ‘.notdef ’ designate a font posi-
tion for which no character is defined, then for a PostScript
font, the encoding vector is a list that begins

.notdef, . . . , .notdef (32 times in all),
space, exclam, quotedbl, numbersign, dollar, . . .

3 What comprises a virtual font?
TEX does not deal with any characters beyond the metrics
associated with a font. It expects to find this information in
a tfm file, and so each virtual font must be accompanied
by a font metric file in the usual way. This file should be
placed in a suitable place.

36 Virtual Fonts, Virtuous Fonts Bijlage K

0
Γ 0

1
∆ 1

2
Θ 2

3
Λ 3

4
Ξ 4

5
Π 5

6
Σ 6

7
Υ 7

8
Φ 10

9
Ψ 11

10
Ω 12

11
ff 13

12
fi 14

13
fl 15

14
ffi 16

15
ffl 17

16
ı 20

17
 21

18
` 22

19
´ 23

20
ˇ 24

21
˘ 25

22
¯ 26

23
˚ 27

24
¸ 30

25
ß 31

26
æ 32

27
œ 33

28
ø 34

29
Æ 35

30
Œ 36

31
Ø 37

32
 40

33
! 41

34
” 42

35
43

36
$ 44

37
% 45

38
& 46

39
’ 47

40
(50

41
) 51

42
* 52

43
+ 53

44
, 54

45
- 55

46
. 56

47
/ 57

48
0 60

49
1 61

50
2 62

51
3 63

52
4 64

53
5 65

54
6 66

55
7 67

56
8 70

57
9 71

58
: 72

59
; 73

60
¡ 74

61
= 75

62
¿ 76

63
? 77

64
@ 100

65
A 101

66
B 102

67
C 103

68
D 104

69
E 105

70
F 106

71
G 107

72
H 110

73
I 111

74
J 112

75
K 113

76
L 114

77
M 115

78
N 116

79
O 117

80
P 120

81
Q 121

82
R 122

83
S 123

84
T 124

85
U 125

86
V 126

87
W 127

88
X 130

89
Y 131

90
Z 132

91
[133

92
“ 134

93
] 135

94
ˆ 136

95
˙ 137

96
‘ 140

97
a 141

98
b 142

99
c 143

100
d 144

101
e 145

102
f 146

103
g 147

104
h 150

105
i 151

106
j 152

107
k 153

108
l 154

109
m 155

110
n 156

111
o 157

112
p 160

113
q 161

114
r 162

115
s 163

116
t 164

117
u 165

118
v 166

119
w 167

120
x 170

121
y 171

122
z 172

123
– 173

124
— 174

125
˝ 175

126
˜ 176

127
¨ 177

Figure 1: A font table for Computer Modern Roman fonts (here,cmb10). The Roman numbers in the upper
left of each box give the character number using the usual decimal representation. The italic numbers in the
lower right are the octal equivalents.

The details behind the construction of the virtual charac-
ters appear in the actual virtual font file, a file with the ex-
tensionvf . There needs to be a place place on a hard disk
to store virtual fonts, in the same way that there are places
for tfm files, format files, input files, and so on. The
places have different names depending on whether your
system is traditional or complies with the TDS standard
(see chapter 6).

The actual virtual fontvf file contains fragments ofdvi
language that specify the way that a virtual character
should be created. That means that a character in a virtual
font can be anything that occurs in advi file. In theory,
one virtual character can typeset an entire page or docu-
ment! Typically, virtual characters are not so complex. In
the alien planet example, the virtual font simply remapped
characters (placed them in a different and more suitable
order) and merged characters together from raw fonts.

4 What we will need; preparation
We’ve seen in the previous chapter thatvfinst takes care
of the most common virtual font tasks—the installation of
scalable fonts to make them usable by TEX. However, there
are many more reasons to use virtual fonts, and so we be-
gin a lengthy, conscientious look at virtual fonts. We need
to understand, too, the sequence of steps thatvfinst per-
forms.

Firstly, virtual fonts are a feature of TEX3. In order to pro-
ceed, that version must be installed.

Many authors will be preparing documents for output on
PostScript printing devices. Since TEX only knows how to
write dvi files, we will always need a dvi-to-PostScript
converter. Frequently these programs require an auxiliary
map file to “map” the long font names to the short file
names that are all that some operating systems, notably
MS-DOS and its relatives, can handle. Because it is freely
available, and available for all computer platforms, we will
usually refer todvips and its map filepsfonts.map .

Each of its entries pairs a short, DOS-acceptable name for
a raw font with its long, given font name. These short
aliases are the names that we should use in the process of
virtual font creation. For each short alias in the map file,
there must be atfm file under that name.

The map file may serve other functions. It may aid in the
process of downloading (see below), and it may be where
we specify certain types of transformations on a font.

At print time, how does the printer get the information
about the shapes of the characters in the document? For
bitmap fonts, it’s the responsibility of the printer driver to
include the bitmap information in the instructions it trans-
mits to the printer. For scalable fonts, the situation is dif-
ferent. The outline information on all fonts must be trans-
mitted to the printer, for it is the printer that ultimately
converts the outline to raster form for printing. In most
PostScript-compatible printers, descriptions of 35 or so
common fonts, including Times Roman and Helvetica, are
resident—built-in—to the printer. If you use other, non-
resident fonts, you will need todownload—transmit—this
font information to the printer, and this downloading can
be accomplished in different ways. It is also possible to in-
clude the font information in the PostScript version of the
document.

5 The purpose of a simple installation
If we examine the font tables in this chapter, we see that
the problem of constructing a virtual font from a PostScript
font is not hopeless. Most characters are in the same po-
sitions, including all upper- and lowercase letters, digits,
and much of the punctuation. We may divide the remain-
ing characters in an outline font into two groups:
• special characters like fi, —, ¿, and the American quo-

tation marks “” which are selected by TEX’s ligature
mechanism; and

• characters like æ, Œ, or c¸ which are invoked by con-
trol sequences or control words (here,\ae , \OE, and
\c{c}).

Bijlage K Virtual Fonts, Virtuous Fonts 37

(Actually, there’s a third group—those characters present
in cmr10 but absent entirely from a standard Type1 font,
such as the ligatures ff, ffi, and ffl. We’ll see later how to
deal with these.) We would like to make sure we have ac-
cess tothesemembers of a fontwithout having to change
the rules by which we create our source documents. Actu-
ally, just in case an author has been silly and used a non-
standard convention to typeset a symbol (such as getting ¿
by typing \char62 or \symbol{62} rather than?‘),
we would like the layout of the virtual font to adhere as
closely as possible to the original TEX font layout.

The ligatures of the first group can be handled in a non-
virtual way by adjusting the font metric files so TEX plucks
the ligature from the proper font position; no remapping is
necessary. This requires a modification of thetfm only.

Characters accessed by TEX commands present more of a
challenge. The definition for each such command relies
upon being able to locate special characters by their posi-
tion in the font table. TEX therefore expects œ to be char-
acter 27 in a font, since that’s where it is in the Computer
Modern family. When constructing c¸, it expects the cedilla
to be in position 24 for the same reason. Typically, though,
these characters do not appear in those positions in the
raw PostScript font (œ and cedilla occupy positions 250
and 203). Macros could be redefined, but it’s a bad idea to
have macro definitions depend on the current font. We re-
quire our virtual font utility to reorder—to remap—these
characters in the font. For example, virtual character 27
consists of the raw character 250. That way, when the vir-
tual font is the current font,\oe will correctly typeset the
œ glyph.

Theafm2tfm utility (part ofdvips) is an excellent tool for
creating this elementary kind of virtual font—a font con-
sisting of the remapping of the characters in a single raw
font. Because the source for this program has been made
available,afm2tfm has been ported to every significant
computer architecture, and executable binaries are freely
available from friends or software archives (the same ap-
plies todvips itself). But afm2tfm suffers from several
disabilities: it can’t create a virtual font out of more than
one raw file, it can’t create thefd font descriptors that
LATEX now uses, and it doesn’t mimic the original TEX
font layout as closely as it might. Nevertheless, simple in-
stallations are so common that it is important to detail this
process precisely.

The box (not included here—sorry) summarizes the pro-
cedure to follow to useafm2tfm to create virtual files
from outline fonts. We use this procedure whenever this
simple manipulation is sufficient for our needs. (More
complicated finagling is best carried out withfontinst;
see below.) This process involves using or creating sev-
eral file types. If an outline font ispsfont , that means
the distribution diskette should includepsfont.afm
and psfont.pfb . It is necessary to rename the file
name psfont8a , and from these we will be gen-
erating files psfont7t.vpl , psfont7t.tfm , and
psfont7t.vf , the virtual file. We also generate a

font metric file corresponding to the “raw” PostScript file
psfont8a.tfm .

The programafm2tfm can also create pseudo-small caps
fonts and other fonts which have undergone simple geo-
metric transformations, like slanting or extension. Check
the documentation to learn how.

Once we’ve created the virtual font and placed all the files
where they belong, we access any virtual file just as if it
were a normal TEX font (which it is). For example, we
could declare

\font\foo=psfont7t at 10.5pt

in a plain TEX document and use it via the command
\foo which has become a font changing command like
\it or \tt . Although we never again refer to the raw
font file explicitly, TEX do. Behind the scenes, whenever
a TEX device driver resolves the meaning of a virtual font,
it refers to the component raw fonts, the raw fonts must be
present on our system.

6 Introduction to fontinst
The fontinst package, by Alan Jeffrey, does everything
afm2tfm does and more. It can create a virtual font from
several raw fonts, for example, and it automatically pro-
duces an auxiliaryfd file used by LATEX’s NFSS to se-
lect the font. Thefontinstpackage is written entirely in
TEX, and TEXegetes will enjoy perusingfontinst.sty
to watch TEX do things it was never intended for. Writ-
ing it in the TEX language insuresfontinst runs on every
platform that TEX does. You can retrievefontinstfrom any
CTAN archive, underfonts/utils . The discussion in
this chapter supplementsfontinst.tex , the documen-
tation of the package.

We usefontinst by preparing a simpleplain TEX file.
Typically, this file will be short, and will consist of a com-
mand to\input thefontinst.sty , followed by a va-
riety of commands which tellfontinsthow to create the vir-
tual font. Normally,vf andtfm files are binary files, file
types which TEX cannot write. Therefore,fontinst reads
and writes property list files and special metric and encod-
ing files instead. These are all in Ascii, and the property
files in particular are ASCII equivalents tovf and tfm
files with extensionsvpl andpl . Part of your TEX instal-
lation should include the utilitiesvptovf andpltotf
(together with their inversesvftovp andtftopl), and
we would then use utilities these to create the font files we
need.

After each successful run offontinst there will be three
new kinds of files in your working directory.
• pl files—one for each raw font—which feeds into

pltotf to create atfm file;
• vpl files—one for each virtual font—which feeds into

vptovf to create onevf and onetfm file; and
• a fd font descriptor file—one for each font family—

which NFSS will use to relate the font attributes to in-
dividual fonts.

38 Virtual Fonts, Virtuous Fonts Bijlage K

(There are also some newmtx files and the usuallog
file that you can delete.) It is necessary to run allvpl
files throughvptovf and allpl files throughpltotf
to generate the binary metric files that TEX needs. A map
file, such aspsfonts.map for dvips, must be updated;
see chapter 6.

All tfm files belong with your othertfm files. Thevf
files belong in a special place as well, wheredvipsexpects
to find virtual files. Thefd files belong in a TEX inputs
directory.

6.1 Installing fontinst
The fontinst package consists of a the core file
fontinst.sty together with some documentation,
some samples and many examples. You may well re-
ceive the package as a zipped collection of files already
organized in its own directory structure. I found it con-
venient to create a.../fontinst directory in which I
unpackedfontinst. One or two levels down is a new di-
rectory calledinputs . In addition tofontinst.sty
itself, there are a collection of files with extensionsmtx
andetx . Move these files to one of your TEX input direc-
tories to complete the installation.

Goals

Thefontinstpackage provides a new language for the cre-
ation of virtual fonts of all types. Our goal in this and sub-
sequent chapters shall be to develop familiarity with these
procedures so we can install any font with (relatively) little
work.

Althoughfontinstworksmuchslower thanafm2tfm , it is
much faster than creatingvpl files by hand.

7 Simple font installation with fontinst
7.1 New commands
Figure 2 displays one way to usefontinst to install the
Times Roman fonts that are resident in every PostScript
printer. Mostfontinst installation files resemble this dis-
play.

Much of this file is standard boilerplate. The first line

\input fontinst.sty

makesfontinstknown to TEX.

The pair of commands \installfonts and
\endinstallfonts (with no arguments) surrounds
the sequence of commands that do the bulk of the work.
One or more\installfamily commands now fol-
low. The first argument specifies the encoding, the second
the family designation, and the third a set of commands
that will be executed each time the family is loaded. See
the fontinstdocumentation for further details on this third
argument; it will be empty in nearly all our work.

\installfamily{encoding}{family}
{fd-commands}

The workhorse command in any installation file is the
\installfont command, which takes eight parame-
ters. The last parameter allows us to specify size infor-
mation for the font. For scalable fonts, it is nearly al-
ways empty because scalable fonts are, well, scalable to
any size. (Bitmap fonts, created specifically for different
sizes, require non-empty entries.) Parameters 4 through 7
provide space for the encoding, family, series, and shape
values thatfontinstuses to create the NFSSfd file. Con-
sult the previous chapter and examples in this and subse-
quent chapters to see how these parameters fill out. The
very first parameter stores the file name of the virtual font
you want to create.

That leaves the second and third parameters. In order to
understand their significance, we need a small digression
to consider the process of font creation.

7.2 Creating fonts
There are two aspects to font creation:
1. Metric: We need procedures for constructing each

glyph or character in the virtual font.
2. Encoding: We need to decide on the order of the

glyphs in the font, and specify any additional rules that
the characters need to live by. For example, rules might
concern ligatures (any time an i follows a single f, re-
place it by fi; any time anA appears at the beginning
of a word, replace it by a swash variant), or math sym-
bols (any time interior material gets too tall, replace a
delimiter by the next larger size).

For fontinst, these instructions should be inmetric files,
with anmtx extension, andencoding files, with extension
etx . In the second position of the\installfont com-
mand, we place a list of metric files to be inserted.fontinst
reads them to find out how to construct the characters. The
third position records the name of an encoding file, which
fontinstreads to learn which characters to include, how to
order them, and what ligature and other special rules to
follow.

Schematically, a\installfont instruction looks like
this.

\installfont{font-name}{metric-files}
{encoding-file}{encoding}
{family-name}{series}{shape}{size}

7.3 Metric files
The task of preparing metric files is lightened because
fontinstreads three types of metric files:
1. mtx files, using a format specific tofontinst;
2. afm files, the ASCII metric files that come with each

scalable outline font; and
3. pl files, the ASCII equivalents to a TEX tfm file.

fontinstreads the first two types automatically, but you will
need to use the programtftopl (which should accom-
pany your version of TEX) to create this file. For example,
type

Bijlage K Virtual Fonts, Virtuous Fonts 39

\input fontinst.sty

\installfonts
\installfamily{OT1}{ptm}{}
\installfont{ptmr7t}{ptmr8a,latin}{OT1}{OT1}{ptm}{m}{n}{}
\installfont{ptmrc7t}{ptmr8a,latin}{OT1c}{OT1}{ptm}{m}{sc}{}
\installfont{ptmri7t}{ptmri8a,latin}{OT1}{OT1}{ptm}{m}{it}{}
\installfont{ptmb7t}{ptmb8a,latin}{OT1}{OT1}{ptm}{bx}{n}{}
\installfont{ptmbc7t}{ptmb8a,latin}{OT1c}{OT1}{ptm}{bx}{sc}{}
\installfont{ptmbi7t}{ptmbi8a,latin}{OT1}{OT1}{ptm}{bx}{it}{}

\endinstallfonts
\bye

Figure 2: One way to install Times Roman. This examples uses the original TEX encoding but does not include
any expert fonts. Two series are installed—regular and bold. Within each series, three shapes are installed—
upright, small caps (which use encoding fileOT1c.etx), and italic.

tftopl cmr10.tfm cmr10.pl

to do the obvious thing.

In fontinst prior definitions take precedence over sub-
sequent definitions. That is, if any construct appears
more than once in a series of files thatfontinstreads, only
the first one counts; later definitions are silently ignored.
Therefore,the order in which fontinst reads files is criti-
cal! This philosophy is central to the wayfontinstworks,
as we’ll see.

The file latin.mtx is the “metric file of last resort.”
It provides instructions for creating 401 glyphs found in
Latin alphabets. Of those 401, some are unfakable—
there’s no way to print characters like ‘A’ unless the A is
in the font, but many other glyphs can be faked. Accented
letters can be built from letters and accents, and small caps
can be taken from an uppercase font set at 80% of the cur-
rent design size. Of course, there isn’t room for all 401
of these characters in a single font anyway. (The limit is
256.) But because many of these characters have been pre-
viously defined in metric files,fontinstwill ignore many
of the definitions inlatin.mtx —remember, glyph con-
structs have no effect if defined previously. But if you have
neglected to define a glyph that you later call for, the defi-
nitions inlatin.mtx serve as safety net. That is why all
the \installfont commands in figure 2 and in virtu-
ally everyfontinstexample contain lists of metric files that
terminate with a call tolatin.mtx .

7.4 Encoding files
Once the metric files have done their job (of constructing
the glyphs), a single encoding file chooses the group of
characters that belong in the font and the proper order (en-
coding). This file also specifies certain ligature and other
rules for the font to abide by.

Encoding files tend have names to reflect their encoding.
Thus, the encoding file for the OT1 encoding is simply
OT1.etx . Similar files, OT1c.etx and OT19.etx ,
would set up a small caps and an old-style figures font us-
ing OT1 encoding. There are several more variants in the
fontinstdistribution.

8 Progressive examples
It’s time to consider examples usingfontinstto create vir-
tual fonts.

8.1 Simple font installation
The simplest way to usefontinst is to run TEX on the file
fontinst.sty and to then type

\latinfamily{ptm}{}
\bye

in response to TEX’s star prompt* . This works presuming
that all the fonts in theptm family (Times Roman) have
been named in accordance with Karl Berry’s font naming
scheme and that all font metric files are in places that TEX
can read from.

This method is best for authors who plan never to need any
more exotic fonts than these. Subsequent examples are de-
signed to show of the power offontinst and to teach its
intricacies in a tutorial manner.

8.2 Easy DC fonts
The Cork encoding, denoted by T1, refers to the standard
agreed upon at a TEX meeting held in Cork, Ireland in
September 1990. At that time, agreement was reached for
sets of 256-character fonts for use by TEX. (The TEX stan-
dard had at that time only been extended to 256 charac-
ter fonts for a short time.) Thedcr fonts look like the
usual computer Modern fonts, but these fonts have been
extended according to the Cork standard. Virtual fonts
provide an easy way to generatedcr fonts from raw, Com-
puter Modern fonts.

For each virtualdcr font, a correspondingcmr font acts
as the single raw font. We will need the property listpl
file as well.

Here are the steps to create a virtualdcr10 from a raw
cmr10 font. The installation filemakedcr.tex should
resemble

% This is makedcr.tex, for use with fontinst.
\input fontinst.sty

\installfonts
\installfamily{T1}{dcr}{}
\installfont{dcr10}{cmr10,latin}{T1}{T1}%

{dcr}{m}{n}{}

40 Virtual Fonts, Virtuous Fonts Bijlage K

\endinstallfonts
\bye

although you’ll need additional\installfont state-
ments for members of this family which are italic, bold-
face, and so on.

Following the successful execution of thefontinstrun, en-
ter these statements at the prompt:
tftopl cmr10.tfm cmr10.pl
tex makedcr
vptovf dcr10.vpl dcr10.vf dcr10.tfm
rm *.log *.pl *.vpl *.mtx

after which you’ll need to move thetfm andvf files to
their proper places. In words, we need first the ASCII prop-
erty list file, after which we can invoke TEX and fontinst.
Thereafter, we create binary font files using the virtual
propertyvpl produced byfontinst. Finally, we clean up.
(Unix syntax is shown.) This example does not require an
addendum topsfonts.map unless you are using scal-
able versions of the Computer Modern fonts.

Drawbacks of easy dcr10

During the creation ofdcr10.vpl , fontinstreports that
34 glyphs are missing—that is, of the full complement of
characters that do belong in a T1-encoded font,fontinst
complained 34 times that it couldn’t make the glyph. All
of these are various diacritics (ring, ASCII tilde, and so on)
and accented letters that use these missing diacritics, but a
few are more problematic, including the sterling symbol
and French quotations. If you access these characters, the
mockdcr10 font will not be suitable.

Moreover, there is no premium on disc space from using
these fonts. Thevf andtfm files require roughly 4k and
5.7k apiece, comparable with an actualpk file at a laser
printer resolution.

8.3 Installing outline fonts
Thevfinstutility takes care of scalable font installation, but
we are now in a position to understand a simple installa-
tion ourselves. We may begin by renaming the font files to
conform to a TEX font naming standard. Suppose we have
Adobe Garamond Roman fonts to install. We rename the
regular font files topadr8a.pfb andpadr8a.afm , for
example.

As an example, we can create the OT1-encoded font
padr7t from these. This new font will belong to font
family pad and have NFSS designations ofm and n

(medium series, normal shape). With this information, we
prepare an installation file that looks like

% This is file makepad.tex
\input fontinst.sty

\installfonts
\installfamily{OT1}{pad}{}
\installfont{padr7t}{padr8a,latin}{OT1}%
{OT1}{pad}{m}{n}{}

\endinstallfonts

although a real installation will likely contain several
\installfont commands. The\installfont
command is quite straightforward. It:
• constructs a font for familypad ;
• uses glyph information frompadr8a.afm , and

supplements it (if necessary) with instructions from
latin.mtx ;

• applies the OT1 encoding to it; and
• uses the four parametersOT1, pad , m, andn for the

NFSSfd file.

Incorporating expert fonts

For the vast majority of outline fonts, the only way to get
the ff, ffi, and ffl ligatures is from an expert font, because
these characters are rarely present in a base font. How-
ever,latin.mtx does create mock characters with these
names because slots are provided for these ligatures in the
font by the encoding files. Therefore, the way to get the
honest double-f ligatures is simply to include the expert
font name in the list of metric files in an\installfont
command. That is, the skeletal installation file listed above
would look something like

% This is file makepad.tex
\input fontinst.sty

\installfonts
\installfamily{OT1}{pad}{}
\installfont{padr7t}{padr8a,padr8x,latin}{OT1}%

{OT1}{pad}{m}{n}{}
\endinstallfonts

Note the presence ofpadr8x , the expert font for Gara-
mond regular.

The box (not included here; apologies) summarizes the
bookkeeping involved in completing the installation. this
discussion is presented for pedagogical completeness only,
for in this case it’s better to use\latinfamily (see
above, section 8.1) or PSNFSS orvfinst(refer to chapter 6).

