
metapost Santiago Muelas
Departamento de
Mecanica
E.T.S. de Ingenieros de
Caminos C. y P. (U.P.M.)
Ciudad Universitaria.
Madrid 28040
smuelas@mecanica.upm.es
http://w3.mecanica.
upm.es/~smuelas

A macro routine for writing text
along a path in MetaPost

abstract
In this article we show a general macro written in pure metapost for putting any text using any
font over any path. The routine will be explained in detail and some graphics will be included
for clarifying purposes. Very special thanks are due to Maarten Gelderman who has made the
final translation with the biggest care and interest.

keywords
TXP, MetaPost, LATEX, METAGRAF, awk, TEX

Introduction

In one of the steps of the construction of the program METAGRAF, we feel ourselves
obliged to find a method for writing curved text. – Our goal with METAGRAF is to
give TEX/LATEX users a simple and strong tool for graphics inclusion in text pages. – We
knew the very simple way to achieve this using PsTricks, and at a certain moment we had
the temptation to change to this language. Thanks to the very valuable advice of some
important names of the Meta World, we decided to do it the hard way and we stopped
the development of our program to concentrate on writing a routine general enough to be
included as a general macro in MetaPost packages.

After one month of hard work to find something that could fulfill our desiderata we
think that finally we have it. This something in the form of a quite simple metapost routine
is what will be shown and explained in this paper.

Glyph and Boxes

As our knowledge of Metapost is limited – and we think it is so for the majority of its
users – our first aim was to find a way to measure characters or, more precisely, glyphs
and their corresponding boxes. As Metapost is a sibling of Metafont and knowing the
very systematic way used by D. Knuth in his studies and great creations, we were sure that
some way could be found because, in fact, Metapost uses TEX for translating math text.

We looked for a hint to our problem in Hobby’s User Manual, but although a last page
in it shows a way to recover separate parts of a picture, this was not a big help for our prob-
lem, and the treatment of text in this Manual is extremely sober. Nevertheless, two well
known capabilities of Metapost were going to form the foundation for the construction of
our routine:

The capability of finding the size of the bounding box of a picture.

The capability of obtaining a substring from a string.

After spending a few days spend looking for some miraculous way of achieving our goal,
it was clear that the good way was already found. The only real need was to assure that
the bounding boxes had no margins – truecorners:=1 was o.k. – and that it was possible

Special thanks are due to Juan J.Arribas, Hans Hagen and Boguslaw Jackowsky

Najaar 2000 103

metapost Santiago Muelas

to obtain the length of a string – in number of characters – as in the Manual this point is
unclear. After looking at a few routines in the distribution and having found a couple in
which this length is obtained, things became more and more clear.

The big strength of MetaPost

So, the first part of our job was almost finished. We only needed to write and test it.
This first part was to find the glyphs and the size of their corresponding boxes one by one.
Once this is done, we will know how to rewrite the string with the glyph in the exact place,
regarding their separation – positioning them in due vertical point was the third and last
part. We will speak about the second part in a few lines.

Now, lets write the few lines needed to accomplish our first part. The steps will
be:

1. Convert the string to a picture and read the total length.

2. Change the string to another without the last character.

3. Repeat the first step. The difference between both lengths will be the width of this
last character.

4. Consider that the original string is the second obtained and repeat all the steps. We
will obtain the width of the last glyph before the end.

We see that this is very simple to program as it is a loop. The lines of code will be:

% input s & pi
truecorners:=1; string s,ps; path pi; picture pic, pt;
for i = length s step -1 until 1:
ps:=substring(0,i) of s;
pic:=thelabel(ps, (0,0));
long[i] = 2*(xpart urcorner pic);

endfor;

After this few lines, the distances from the origin of all our glyphs are stored in the array
long[]. It is necessary to use a second loop to put every single glyph in its correct place
on the path1:

for i = 0 upto (length s) -1:
sp:= substring(i,i+1) of s;
if sp < ‘‘ ’’:
x:= (long[i] + long[i+1])/2;
pt:= thelabel(sp, (0,0)) shifted x;

% Here the instruction to draw the glyph <---------
fi;

endfor;

Now, we need to solve the second part of our problem. The width of our glyphs and the
distances between them are known. We could put them in any place, but if we want to
put them in a certain line – the path – we need to know how to want to put them on an
arbitrary line – the path – we need to know how to do that. We need to know the length
along the curve to be used and the angle that the curve forms with the coordinate axis in
the different points of placement. This task looks quite hard, but we must not forget that
now we are dealing with one of the strongest points of Metapost and all that is needed and

1. We will elaborate on this second loop later.

104 MAPS

The macro routine TXP metapost

already mentioned can be written in just one line of code2. – Metapost’s math capabilities
can be quite impresives. – This line is the second loop we mentioned earlier and must be
included there. Here is the line:

draw pt shifted (-xpart pt, h) rotated angle direction arctime x
of pi of pi shifted point arctime xpart pt of pi of pi;

It must be said now that the variable h that appears in this code, has not yet been obtained.
This variable will correspond to the third part of our search and represents the height at
which the glyph is to be placed.

Working with fonts

The moment has arrived in which we have to enter the third part of our business. Here we
need to obtain detailed knowledge of every glyph. And for this part we must say that there
is little to be done with Metapost, being the discussion centered in a matter more generic
than what we have already seen3.

Our goal in this part is to obtain the exact size each of the glyphs in the string that will
be put along the curve. Not only the sizes of the boxes but also the position of the baseline
in these boxes needs to be determined. After a couple of days looking for a way to find
this data without the need of knowing the specific font used, we realized that this is not
possible, so we have gone directly to the sources, that is: the study of fonts. As it does not
seem to be a matter closely related to Metapost, we will not explain in detail the steps we
carried, but we will go directly to the results obtained and the way the final data are used
by TXP. There are some points that need be mentioned.

Two types of files related to fonts exist and usually they can be found in any
LATEXdistribution. Those are the files related with the geometry of the boxes and
the position of the baseline in them and the files where the shapes of the glyphs are
stored. We are concerned with the first ones.

The files where all the description needed usually resides are the ones with the
extension *.afm. Unfortunately, these files are not updated and do not correspond
with the precision needed to the real fonts used. The results obtained were just not
perfect.

Another group of files that can be used are those with extension *.pl. They contain
a lot of information not needed but they have an enormous advantage over the
metrics – or *.afm – ones. This advantage will be come more clear after the next
group of files has been discussed.

The files needed by the computer to be able to use a font, are those with the
extension *.tfm4. Those files are not readable. Nevertheless, usually there is
an application found on every distribution of LATEXcalled tftopl that converts a
tfm-file to a pl-file.

Now we can understand the advantage mentioned. Once the tfm-files have been
located, we can create the corresponding *.pl files. These files are both readable
and detailed. Everything needed by our macro regarding fonts is included in the
*.pl files. And we can obtain these files from the same tfm-files that are used for
actually writing the glyphs. That means that we can obtain an absolute precision
with this system. So, this is the system adopted by TXP.

2. This line of code has been written by Juan J. Arribas
3. For this part of our work we have found an enormous help in the book “TEXUNBOUND” from Alan
Hoenig.
4. There are also the files that contain the shapes of glyphs, but they are of little interest for us at this
moment.

Najaar 2000 105

metapost Santiago Muelas

The pl-files need to be created once for every font. When they exist, we don’t need to
recreate anymore, unless the original fonts change. In the pl-files TXP will find an array
that relates the number of the ASCII character with the height to place the center of the
box of the glyph over the baseline. Something like: hig[65]:=3.2576, for the letter A. We
will explain later on how to create those files. For the shake of understandability, let’s
suppose that we have already obtained the arrays.

Putting everything in Place

We can come back to our routine to arrange all our knowledge and write it in its totality
– for the moment. In the second loop, the one that will put the glyph in the correct place,
we leave a gap and write in it:Here the instructions to draw the glyph.

The method used by TXP is to obtain the ASCII number corresponding to the character
that must be placed. Then, go to the array of data and look at the value corresponding to
this character: the value of the variable h. Once obtained, the next lines of this loop can
be accomplish with no problem. The corrected version of the second loop will be:

for i = 0 upto (length s) -1:
sp:= substring(i,i+1) of s;
if sp < ‘‘ ’’:
x:= (long[i] + long[i+1])/2;
pt:= thelabel(sp, (0,0)) shifted (x,0);
for j = 16 upto 244:

if sp = char(j):
k:= j;

fi;
endfor;
h:=hig[k];
draw pt shifted (-xpart pt, h) rotated angle direction

arctime x of pi of pi shifted point arctime xpart pt
of pi of pi;

fi;
endfor;

In the final macro the first loop will be placed in front of the beginning of this second one.
Additionally, some inclusions of a general kind will be made.

Compacting it a little bit and writing the complete routine, we have:

1 def txp(expr s, pat, hig) =
2 picture pt, pic; string sp, ps; path pi; truecorners:= 1;
3 pi:= pat shifted(-xpart center pat, -ypart center pat);
4 for i = length s step -1 until 0:
5 ps:= substring(0,i) of s;
6 pic:= thelabel(ps, (0,0));
7 long[i] = 2*(xpart urcorner pic);
8 endfor;
9 for i=0 upto (length s) - 1:
10 sp:= substring(i,i+1) of s; if sp < " ":
11 x:= (long[i]+long[i+1])/2;
12 pt:= thelabel(sp, (0,0)) shifted (x,0);
13 for j = 16 upto 244:
14 if sp = char(j): k:=j; fi; endfor;
15 draw pt shifted (-xpart pt, alt[k]) rotated angle

direction arctime x of pi of pi shifted point arctime

106 MAPS

The macro routine TXP metapost

xpart pt of pi of pi;
16 fi; endfor;
17 enddef;

The program – ej.mp – that will call this macro can be, for example:

1 beginfig(10); u=0.25mm; string s; path pat;
2 input fptmbi8r; defaultfont:="ptmbi8r";
3 s="This is a first try with the first & simplest form of Txp";
4 pat:= fullcircle scaled 140 shifted(300u,500u) rotated 180;
5 txp(s,pat,alt); endfig; end

A few things must be said to fully understand the listing:

The file fptmbi8r is the one we have created that contains the font data needed.
More about that, later on.

This file is an array from value 16 to 244, to establish the necessary coincidence of
ASCII codes.

The elements in the array are called alt[] and not hig.

The negative sign that precedes – sometimes – the value xpart is a consequence of
the fact that we are working – sometimes – with the center of the bounding box and
we look for the left corner.

So with the sole exception of not knowing exactly what is the file fptmbi8r – that is totally
independent from the metapost code – we have obtained a first macro to write text along
a curve. In this case, a circle. Let’s look the result of our small program, using the font
Times Italic:

T
his

is
a

first try with the first & sim
ples

t f
or

m
of

T
xp

Figure 1. The first figure created with TXP

The Joy of TxP: Parameters

Although this first version of TXP works correctly it is clearly limited in its capabilities.
We would like to have additional functionality like scaling the glyph or the path, being
able to begin at any point in the path, placing the glyph over or under the baseline or in the
middle, modifying the separation between the characters and so on.

We will show the small modifications needed to obtain these capabilities and their
effect in the final image.

Firstly we will introduce the capability of scaling the glyph. This is the same as scaling
the string written. This is just a matter of simply sending the scale wanted from the pro-
gram to the macro as a new parameter. Once received this value becomes a new constant
that can be called, for example es. Only some slight modifications to TXP are necessary
to incorporate this new capability:

Line 1 must take account of the new parameter.

Najaar 2000 107

metapost Santiago Muelas

Line 6 of the macro must be changed from:

6_old pic:= thelabel(ps, (0,0)); to:
6_new pic:= thelabel(ps,(0,0)) scaled es;

The same with line 12:

12_old pt:= thelabel(sp, (0,0)) shifted (x,0);
12_new pt:= thelabel(sp ,(0,0)) scaled es shifted (x,0);

And finally the same with line 15:

15_old draw pt shifted (-xpart pt, alt[k]) rotated angle
direction arctime x of pi of pi shifted point arctime
xpart pt of pi of pi;

15_new draw pt shifted (-xpart pt,es}* alt[k])
rotated angle direction arctime x of pi of pi shifted point
arctime xpart pt of pi of pi;

And, also in the program, the call to the macro must include this new parameter. If we
make this changes and repeat the same figure as above but increasing the scale to a value
close to 2, we will obtain:

T
his isn’t a first try

with
th

e
fi

rs
t&

sim
plestform

ofTxp.

Figure 2. Scaling the glyph to the double

For scaling the path, only one active line of the macro must be modified, and this is line
3. It the modified version it includes the effect of this scaling, and if the factor to scale is
called ef, this line must be written as follows:

3_new pi := pat scaled ef shifted(-xpart center pat*(ef-1),
-ypart center pat*(ef-1));

If this line is changed and the corresponding parameters included, maintaining the values
given for the last figure, and giving a value to the scale of the path equal to 2, we obtain
the figure:

The changes done are clearly visible and the result obtained the conform to our expect-
ations.

In this same way and philosophy it is possible to add many new features to the macro,
but to keep the size of this paper reasonable we will not continue in this step by step way
of increasing the capabilities. At the end we will write a quite complete version of TXP

108 MAPS

The macro routine TXP metapost

T
his

isn’t a
first try with the first & sim

ples

t f
or

m
of

T
X

P
.

Figure 3. Scaling the path to the double

and an example that will show the many capabilities are implemented5

Finishing the fonts discussion

At this stage of this paper, only one point has remained in what could be called the mys-
terious depth. We are referring to the font data files. A big part of the mystery has already
been explained and we have left for the last part the total knowledge because as we said
before, this really is not a metapost affair.

What TXP needs is the possibility to access certain data related with the font geometry.
More specifically, the size of the bounding box of every glyph and its position in relation
with the baseline. All those data are included in binary form in the files *.tfm as we have
said. When we transform these files to the format *.pl, we make readable the content of
the .tfm file. So, the file .pl contains all that is needed by TXP. The only thing that remains
for giving the data to TXP is just to organize and arrange them. But Metapost is not an
ideal language for doing that and a small helping programming language, like AWK is the
perfect one. So, we have written a few lines in awk that we wish to show now. We also
will explain the way to use this very short routine.

The routine gentyp.akw that we are going to describe does a simple but fundamental
job. GENTYP looks at all the lines of the .pl file, reads some values from the lines that
begin with the words: CHARACTER, CHARHT and/or CHARDP, makes a simple calcu-
lation and writes the result to an auxiliary file called fontdat. If we have taken as our .pl
file the one corresponding to the font “palatino bold roman” , its name would be pplb8r.
Once we have obtained the file fontdat we only need to change this name to fpplb8r, and
this is the file to that will be used by TXP. For any other font, the way of proceeding would
be exactly the same IF the font is of the type “8” , so up to 255 possible glyph.

Let’s write the listing of this help routine. Here is gentyp.awk:

BEGIN {i=0}
$1 == "(CHARACTER" { letter[i]=$3; i++}
$1 == "(CHARHT" { high[i-1]=10*$3;}
$1 == "(CHARDP" { deph[i-1] = 10*$3 ;}

END{for(j=0;j<229;j++) print "alt["j+15"]:= \

5. We made the conscious decision to limit the capabilities to a reasonable amount of parameters, but they
can be increased with no problem. For example, to add the possibility of scaling the text with a different
horizontal and vertical scale is trivial, and the same is true for the shearing of the bounding boxes that
can furnish an interesting tool for special cases in which it is desired to do something fantaisiste as, for
example, transforming an italic font in a vertical one or the contrary.

Najaar 2000 109

metapost Santiago Muelas

"(high[j]+deph[j])/2-deph[j] "fontdat";}

Summarizing, what is needed to create the font data file is just to write:

awk − f gentyp.awk pplb8r.pl and then:
mv fontdat fpplb8r

And that’s all. Once this preparatory work is done for all the fonts usually employed,
there is no need to care anymore.6

The best at the end

In what follows we will show the final aspect of the txp.mp macro and an example of
an application with different fonts, scales and colors. We will finish by giving a few
recommendations of a more practical nature.

Final Listing Of Macro txp.mp.-

def txp(expr s, pat, es, ef, hi, tr, se, lc, th, hig) =
picture pt ,pic; string sp, ps; color loc; path pi;
truecorners:=1;
pi := pat scaled ef shifted(-xpart center pat*(ef-1), \
-ypart center pat*(ef-1));
long[0]:=tr;
for i = length s step -1 until 1:
ps:=substring(0,i) of s;
pic:=thelabel(ps,(0,0)) scaled es;
long[i]:=((2+se)*(xpart urcorner pic) + tr);

endfor;
for i=0 upto (length s) - 1:
sp:= substring(i,i+1) of s;
if sp < " ":
x:= (long[i]+long[i+1])/2;
pt:= thelabel(sp ,(0,0)) scaled es shifted (x,0);
for j = 16 upto 244:

if sp = char(j): k:=j; fi; endfor;
h:=es*(alt[k] + hi);

draw pt shifted (-xpart pt,h) rotated angle direction \
arctime x of pi of pi shifted point arctime xpart pt of pi \
of pi withcolor lc;
fi; endfor;

if th < 0:
pickup pencircle scaled th;
draw pi withcolor red;

fi;
enddef;

With this macro, there are practically no limitations to the capability of writing text strings
of any length – although they may not be longer than a single paragraph – using the
type and size of fonts and the shape of the path desired. It is possible to mix all those
components in a single program as will be shown in the example that follows.

6. Included with this paper will be the fondat files of three very important families of fonts: Times, Palatino
and Helvetica. We also will include the file corresponding to ZapfChancery.

110 MAPS

The macro routine TXP metapost

An application to finish with

The program that will be shown immediately gives a quite interesting idea of the possibil-
ities of TXP. Here is the listing:

beginfig(1);
input txp; u=0.25mm; color loc; string s; path a;
es:=1; ef:=1; hy:=0; tt:=0; sep:=0; loc:=black; lin=0;

input fptmbi8r;
defaultfont:="ptmbi8r";
s:="WRITING ON THE PATH IS AMUSING AND EASY...WRITING ON THE PATH \
IS AMUSING AND EASY...WRITING ON THE PATH IS AMUSING AND EASY... \
WRITING ON THE PATH IS AMUSING AND EASY...WRITING ON THE \
PATH IS AMUSING AND EASY...";
a:=(192u,768.0u).. controls (124u,824.0u) and (128u,904.0u).. \
(166u,934.0u).. controls (204u,964.0u) and (268u,944.0u).. \
(320u,886.0u).. controls (372u,828.0u) and (380u,768.0u).. \
(438u,742.0u).. controls (496u,716.0u) and (584u,752.0u).. \
(590u,832.0u).. controls (596u,912.0u) and (548u,952.0u).. \
(504u,974.0u).. controls (460u,996.0u) and (348u,1004.0u).. \
(294u,938.0u).. controls (240u,872.0u) and (260u,776.0u).. \
(330u,732.0u).. controls (400u,688.0u) and (660u,676.0u).. \
(688u,860.0u);
hy:=-3;sep:=0.2;loc:=blue;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fpzcmi8r;
defaultfont:="pzcmi8r";
s:="YES !!";
a:=(400u,850u)--(500u,850u);
es:=4;hy:=0.;sep:=0.;loc:=red;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fphvb8r;
defaultfont:="phvb8r";
s:="Although sometimes, it can be cumbersome.";
a:=(600u,1000u)..(425u,1100u)..(250u,1000u);
es:=1.3; sep:=.0; loc:=black;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fpplbo8r;
defaultfont:="pplbo8r";
s:="But, anyway, I like it !! ...";
a:=(250u,600u)--(600u,600u);
es:=1.8; sep:=0.3;loc:=green;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

input fphvb8r;
defaultfont:="phvb8r";
s:=":-)";
a:=(400u,500u)--(400u,400u);
es:=4;hy:=0.;sep:=0.;loc:=red;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);

Najaar 2000 111

metapost Santiago Muelas

input fphvr8r;
defaultfont:="phvr8r";
s:="O";
a:=(355u,500u)--(390u,500u);
es:=11;hy:=-5.4;sep:=0.;loc:=blue;
txp(s,a,es,ef,hy,tt,sep,loc,lin,alt);
endfig; end

And here – in the next page – is the result of running it.

We will finish with a remark on the meaning of the parameters used in the general macro,
although, as we have already said, this is just a limited version.

Parameter and meaning.-

s ---> String to write;
a ---> Path to write to;
es ---> Scale used for the fonts. (Default: 1; No scaled)
ef ---> Scale used for the path. (Default: 1; No scaled)
hy ---> Vertical placement over the path.

(Default: 0; The path is the baseline)
tt ---> Distance between the beginning of the written

string and the beginning of the path. (Default: 0)
sep---> Extra separation between the glyph. (Default: 0)
loc---> Color to use for each string. (Default: black)
lin---> Thickness used to draw the path. (Default: 0: No draw)

Note. For using Computer Modern fonts of type “7” , some small arrangements must be
made. Once understood this paper, it is a very simple matter. If in doubt, visit the Web
Page at http://w3.mecanica.upm.es/metapostor contact me directly by email; see the
start of the article.

112 MAPS

The macro routine TXP metapost

W

RIT
IN

G
O

N
T

H
E

P
A

T
H

IS
AMUSING AND EASY...W

RITIN
G

O
N

T
H

E
PATH

IS AMUSING AND
EASY...

W
R

IT
IN

G
O

N
T

H
E

PA
TH

IS
AMUSINGANDEASY...WRITING

O
N

T
H

E
P

A
T

H
IS

A
M

U
SIN

G

AND EASY...WRITING ON THE PATH IS AMUSIN
G

AN
D

E
A

S
Y

...

YES !!

A
lth

ou
ghsometimes,itcanbecumbersom

e.
But, anyway, I like it !! ...

:-)O
Figure 4. The last figure of this paper

Najaar 2000 113

