
♦ ♦ ♦

Pattern Generation Revisited ∗

David Antoš, Petr Sojka

Faculty of Informatics, Masaryk University Brno

Email: {xantos|sojka}@informatics.muni.cz

abstract.

The program PatGen, being nearly twenty years old, doesn’t suit today’s needs:

� it is nearly impossible to make changes, as the program is highly optimised (like
TEX),

� it is limited to eight-bit encodings,
� it uses static data structures,
� reuse of the pattern technique and packed trie data structure for problems other

than hyphenation (context dependent ligature handling, spell checking, Thai syl-
labification, etc) is cumbersome.

Those and other reasons explained further in the paper led us to the decision to re-
implement PatGen from scratch in an object-oriented manner (like NTS–New Type-
setting System reimplementation of TEX) and to create the PATtern LIBrary PatLib
and the (hyphenation) pattern generator based on it.

We argue that this general approach allows the code to be used in many applications in
computer typesetting area, in addition to those of pattern recognition, which include
various natural language processing, optical character recognition, and others.

keywords: patterns, Unicode, hyphenation, tagging, transformation, Omega, PatGen,
PatLib, reimplementation, templates, C++

Introduction

The ultimate goal of mathematics is to eliminate all need for intelligent thought.
— Graham, Knuth, Patashnik [2, page 56]

The ultimate goal of a typesetting engine is to automate as much as possible of
what is needed for a given design, allowing the author to concentrate on the
content of the text. The author maps her/his thoughts in linear writing, a

sequence of symbols. Symbols (characters, words or even sentences) can be combined
∗Presentation of the paper has been made possible with the support of EuroTEX bursary fund.

This research has been partially supported by the Grant CEZ:J07/98:143300003.



8 david antoš, petr sojka

into patterns (of characters, words or sentences). Patterns describe “higher rules” and
dependencies between symbols, depending on context.
The technique of covering and inhibiting patterns used in the program PatGen [11]

is highly effective and powerful. The pattern technique is an effective way to extract
information out of large data files and to recognise the structures again. It is used
in TEX as an elegant and language-independent solution for high-quality word hy-
phenation. This effective approach found its place in many other typesetting systems
including the commercial ones. We think this method should be studied well, as many
other applications are possible, in addition to those in the field of typesetting and
natural language processing.
The generation of hyphenation patterns using the PatGen program does not sat-

isfy today’s needs. Many generalisations are needed for wider use. The Omega

system [6, 12] was introduced. One of it’s goals is to make direct typesetting of texts
in Unicode possible, hence enabling the hyphenation of languages with more than 256
characters. An example of such a language is Greek, where 345 different combinations
of Greek letters with accents, breathings, syllable lengths and the subscript iota are
needed [5]. Therefore,Omega needs a generator capable of handling general/universal
hyphenation patterns. Those new possibilities and needs in computer typesetting, to-
gether with the detailed analysis described below, led us to revise the usage of pattern
recognition and to design new software to meet these goals.
The organisation of the paper is as follows. The next section (page 8) defines the

patterns, using a standard example of hyphenation. Then an overview is given (page 9)
of the process of pattern generation. The following section (page 10) describes one
possible use for patterns and is followed by a section (page 11), in which the limitations
for exploiting the current version of PatGen are argued.
The second part of this paper starts with a section (page 12) which describes the

design of the new software library for pattern handling. Then packed digital trees,
the basic data structure used in PatLib, are presented (page 12). Some thoughts
about implementing the translation/tagging process using pattern based techniques
are summarised in the section on page 15. The final section (page 16) contains a
summary and suggestions for future work.

Patterns

Middle English patron ‘something serving as a model’, from Old French.
The change in sense is from the idea of a patron giving an example to be copied.
Metathesis in the second syllable occured in the 16th century. By 1700 patron
ceased to be used on things, and the two forms became differentiated in sense.

— Origin of word pattern: [3]

Patterns are used to recognise “points of interest” in data. A point of interest
may be the inter-character position where hyphenation is allowed, or the border
between water and forest on a landscape photograph, or something similar. The



pattern generation revisited 9

pattern is a sub-word of a given word set and the information of the points of interest
is written between its symbols.
There are two possible values for this information. One value indicates the point of

interest is here, the other indicates the point of interest is not here. Natural numbers
are the typical representation of that knowledge; odd for yes, even for no. So we have
covering and inhibiting patterns. Special symbols are often used, for example a dot
for the word boundary.
Below we show a couple of hyphenation patterns, chosen out of the English hyphen-

ating pattern file. For the purpose of the following example, we deal with a small
subset of the real set of patterns. Note that the dot represents a word boundary.
.li4g .lig5a 3ture 1ga 2gam

Using the patterns goes as follows. All patterns matching any sub-word of the word
to be hyphenated are selected. Using the above subset of patterns with the word
“ligature” we get:
. l i g a t u r e .
. l i4g
. l i g5a

3t u r e
1g a

The pattern 2gam matches no sub-word of “ligature”. The patterns compete and
the endresult is the maximum for inter-character positions of all matching patterns,
in our example we get:
. l0i4g5a3t0u0r0e .

According to the above we may hyphenate lig-a-ture.
To sum up: with a “clever” set of patterns, we are able to store a mapping from

sequences of tokens (words) to an output domain—sequence of boolean values— , in
our case positions of hyphenation points. To put it in another way: tokens (characters)
emit output, depending on the context.
For a detailed introduction to TEX’s hyphenation algorithms see [8, Appendix H].

We now need to know how patterns are generated to understand why things are done
this way.

Pattern Generation

An important feature of a learning machine is that
its teacher will often be very largely ignorant of quite what is going on inside,
although he may still be able to some extent to predict his pupil’s behaviour.

— Alan Turing, [16]

Generating a minimal set of competing patterns completely covering a given
phenomenon is known to be NP-complete. Giving up the minimality require-
ment, we may get surprisingly good results compressing the input data in-

formation into a pattern set iteratively. Let us now describe the generating process.



10 david antoš, petr sojka

We need a large input data file with marked points of interest. Hyphenating words,
we use a large dictionary with allowed hyphenation points. Now we repeat going
through the data file in several levels. We generate covering patterns in odd levels and
inhibiting ones in even levels.
We have a rule how to choose pattern candidates at each level. In our case it may

be “an at most k characters long substring of the word containing the hyphenation
point”. We choose pattern candidates and store them into a suitable data structure.
Not all candidates are good patterns, so we need a pattern choosing rule. Usually we
remember the number of times when the candidate helps and spoils finding a correct
hyphenation point. We always test new candidates according to all patterns selected
so-far. We are interested in the functionality of the whole set. The pattern choosing
rule may be a linear function over the number of good/bad word efficiency of the
candidate compared to a threshold. This heuristic is used in PatGen, but other
heuristics may lead to better (e.g. with respect to space) pattern sets with the same
functionality. The candidates marked as good by the previous process are included
into the set of patterns. The pattern set still makes mistakes. We continue generating
another level, an even level this time, when we create inhibiting patterns. The next
level will be covering and so on. A candidate at a certain level is good if it repairs
errors made by previous levels.
This is also the way how PatGen works. A PatGen user has no chance to change

the candidate and/or pattern choosing rules, which are similar to the ones previously
described. Hyphenating patterns for TEX have been created for several dozens of
languages [15], usually created from a list with already hyphenated words. There are
languages where the patterns were created by hand, either entirely, or in part.
How successful is this technique? The natural language dictionary has several mega-

bytes of data. Out of such a dictionary patterns of tens of kilobytes may be prepared,
covering more than 98 % of the hyphenation points with an error rate of less than
0.1 %. Experiments show that four or five levels are enough to reach those parameters.
Using various strategies of setting linear threshold parameters we may optimise the
patterns to size, covering ratio and/or errors [13]. As not many lists with hyphenated
words are publicly available for serious research on pattern generation heuristics, we
think that most available patterns are suboptimal. For more information on pattern
generation using PatGen have a look at tutorial [4].

Tagging with Patterns

The solution of the hyphenation problem and the techniques involved have been
studied extensively [15] and together with long-lasting usage in TEX and other
typesetting systems, their advantages have been verified. The application of

the techniques of bootstrapping and stratification [13, 14] made them even more at-
tractive. However, to the best of our knowledge, sofar nobody has suggested and used
a context dependent task for the resolution of other ambiguities.



pattern generation revisited 11

We may look at the hyphenation problem as a problem of tagging the possible
hyphenation positions in finite sequences of characters called words. On a different
level of abstraction, the recognition of sentence borders is nothing more than“tagging”
the begins and ends of sentences in sequences of words.
Yet another example: in quality typography, it is often necessary to decide, whether

a given sequence of characters is to be typeset as a ligature (such as ij, fi, fl) and not
as separate characters (ij, fi, fl). This ambiguity has to be resolved by the tagging
of appropriate occurences, depending on the context: ligatures are e.g. forbidden on
compound word boundaries.
All these tasks (and many others, see page 15) are “isomorphic”— the same tech-

niques developed and used for hyphenation may be used here as well. The key issue
in applicability of the techniques for the variety of context-dependent tagging tasks
is the understanding and effective implementation of the pattern generation process.
The current implementation of PatGen is not up to these possible new uses.

PatGen Limitations

What man wants is simply independent choice,
whatever that independence may cost

and wherever it may lead.
— Fedor Dostoevsky, Notes from Underground (1864)

The program PatGen has several serious restrictions. It is a monolithic struc-
tured code, which, although very well documented (documented Pascal,
WEB), is very difficult to change. PatGen is also “too optimised”, neces-

sary to make it possible to run in the core of the PDP-10, so understanding the code
is not easy. In this sense PatGen is very similar to TEX itself. The data structures
are tightly bound to the stored information: high-level operations are performed on
the data structures directly without any levels of abstraction.
The data structures of PatGen are hardwired for eight-bit characters. Modifica-

tion to handle more characters— full Unicode— is not straightforward. The maximum
number of PatGen levels is nine. When generating patterns, you can collect candid-
ates of the same length at the same time only. The data structures are static, running
out of memory requires the user to change constants in the source code and recompile
the program.
Of course PatGen may be used to generate patterns on other phenomenons besides

word hyphenation, but only if you transform the problem into hyphenation. This might
be non-trivial and moreover, it’s feasible only for problems with small alphabets, less
than approximately 240 symbols (PatGen uses some ascii characters for special and
output purposes).



12 david antoš, petr sojka

PatLib

My library was dukedom large enough.
— Shakespeare, The Tempest (1611), act 1, sc. 2 l. 109

We decided to generalise PatGen and to implement the PATtern LIBrary
PatLib for general pattern manipulation. We hope that this will make the
techniques easily accessible. A Unicode word hyphenation pattern gener-

ator is the testbed application.
For portability and efficiency reasons we chose C++ as the implementation language.

The C++ code is embedded in CWEB to keep the code documented as much as
possible. Moreover the code “patterns” called templates in C++ let us postpone the
precise type specification to higher levels of development which turned out to be a big
advantage during the step-wise analysis. We do hope that templates increase flexibility
of the library.
The PatLib library consists of two levels, the finite language store (which is a finite

automaton with output restricted to finite languages, implemented using packed trie)
and the pattern manipulator. The language store handles only basic operations over
words, such as inserting, deleting, getting iteratively the whole stored language and
similar low-level operations. The output of a word is an object in general, so is the
input alphabet.
The pattern manipulator handles patterns, it means words with multiple positioned

outputs. We also prepared a mechanism to handle numbers of good and bad counts
for pattern candidates.
The manipulator and the language store work with objects in general, nevertheless

to keep efficiency reasonable we suggest to use numbers as internal representation
for the external alphabet. Even if the external alphabet is Unicode, not all Unicode
characters are really used in one input data file. So we can collect the set of all used
characters and build a bijection between the alphabet and the internal representation
by numbers {1, . . . , n}, where all the numbers are really used.
We separated the semantics from the representation. We don’t have to care what

the application symbols are. An application using this library may implement any
strategy for the generation of patterns.
Of course we have to pay for more generality and flexibility with performance loss.

As an example, the output of a pattern in PatGen is a pointer to a hash table contain-
ing pairs 〈level number, position〉, we must have an object with a copy constructor. At
the time of writing of this article we are unable to give an indication of the performance
ratio.

Packed digital tree (trie)

Gentle reader, if you are not interested in programming or data structures,
feel free to skip this section. It will do no harm for understanding the rest of
the article. The trie data structure we use to store patterns is quite known.



pattern generation revisited 13

Its practically usable variant—being described only seldom in programming books—
is much less known.
A trie is usually presented and described as in [9]: it is an m-ary tree, its nodes are

m-ary vectors indexed by a sorted finite alphabet. A node in depth l from the root
corresponds to the prefix of length l. Finding a word in a trie starts at the root node.
We take the next symbol of the word, let it be k. Then the kth member of the node
points to the lower level node, which corresponds to the unread rest of the word. If
the word is not in the trie, we get the longest prefix.

a b c d

a b c d

a b c d

a b c d

❄

❄

❅
❅

❅
❅❘

figure 1: Trie—an example

Figure 1 shows a trie containing the words ba, bb, bbb, and da over the alphabet
{a, b, c, d}. Underlining indicates the end of a word.
It is not difficult to implement this data structure. Nodes may be put into a linear

array one by one, pointers going to the start of the next nodes. But this approach
wastes memory, especially if the words are long and the nodes sparse. Using dynamic
memory does not change this property.
The advantage of a trie is that the time needed for the look-up and inserting of a

word is linear to the length of the word, this means the time needed does not depend
on the amount of words stored.
The need for memory may be reduced (paying with a small amount of time), as

shown by Liang in [10]. In practical applications the nodes are sparse, hence we want
to store them mixed into one another into a linear array. One node uses the fields
which are left empty by another node.
When working with this structure, we must have a way to decide which field be-

longs to a certain node. This may be done with a little trick. To each field we add
information about which alphabet symbol is related to the array position. Moreover
two nodes must never start at the same position of the array. We must add one bit of
information if the position is a base position and when inserting, we never pack two
nodes at the same base position.



14 david antoš, petr sojka

Index 1 2 3 4 5 6 7 8 9
Character a b c d a b b a
Pointer 5 8 6
Base position? Y Y Y Y
End of word? Y Y Y Y

figure 2: Packed trie

In Figure 2 the same language as used previously is stored. The trie starts on posi-
tion 1, this is the base position. The trie root is treated specially for implementation
reasons, it is always stored fully in the array, even if there are no words starting with
the appropriate character. Only the pointer is null in that case.
We assert numerical values to the alphabet symbols: a = 1, b = 2, c = 3, d = 4.

How do we distinguish the fields belonging to a node? Let the node start at base
position z. We go through positions z + a, . . . , z + d and check where the condition
“the character on position z+i is i”holds. For the root this is always true. In the root,
there is a pointer under character b (on position 3). It points to the base position 5.
Moreover the root says we have a word starting with d. Let us go through the positions
belonging to base position 5, this means related to the prefix b. They are:
� position 6, this should be related to a, this holds, the pointer is null, the end-of-

word flag is true, hence ba belongs to the language and any other word starting
with ba does not.

� position 7, which is related to b, so the position belongs to the node, the position
is end-of-word, therefore bb belongs to the language and there are words starting
with bb continuing as said by the node on base position 6.

� positions 8 and 9 should belong to the characters c and d, this is not the case,
these positions do not belong to the current node.
The reader may easily check that the table contains the same language as shown in

Figure 1. Sixteen fields are needed to store the language näıvely, we need nine when
packing. The ratio is not representative, it depends on language stored.
The trie nodes may be packed using the first-fit algorithm. This means when packing

a node, we find the first position where it can be done, where we do not interfere with
existing nodes and we do not use the same base position. We can speed up the
process using the following heuristics. If the node we want to store is filled less than
a threshold, we don’t loose time finding an appropriate position but store it at the
end of the array. Otherwise we use the first-fit method as described. Our experience
shows that array usage much better than 95 % may be obtained without significant
loss of speed.



pattern generation revisited 15

Pattern Translation Processes

If all you have is a hammer, everything looks like a nail.
— popular aphorism

Let us review several tasks related to computer typesetting, in order to see
whether they could be implemented as a Pattern Translation Processes (ptp),
implemented using PatLib. Most of them are currently being tackled via ex-

ternal ΩTPs in Omega [7].
Hyphenation of compound words The plausibility of the approach has been shown

for German in [13].
Context-dependent ligatures In addition to the already mentioned ligatures at the

compound word boundaries, another example exists:
Fraktur long s versus short s In the Gothic letter-type there are two types of s-es, a

long one and the normal one. The actual usage depends on the word morphology.
Another typical context-dependent auto-tagging procedure implementable by ptp.

End of sentence recognition To typeset a different width space at the end of a sen-
tence automatically, one has to filter out abbreviations that do not normally appear
at the end of a sentence. A hard, but doable task for ptp.

Spell checking Storing a big word-list in a packed digital tree is feasible and gives res-
ults comparable to spelling checkers like ispell. For languages with inflection, how-
ever, several hierarchical ptp’s are needed for better performance. We are afraid
that ptp’s cannot beat specialised fine-tuned morphological analysers, though.

Thai segmentation There is no explicit word/sentence boundary, punctuation and
inflexion in Thai text. This information, implicitly tagged by spaces and punctu-
ation marks in most languages, is missing in standard Thai text transliteration. It
is, however, needed, during typesetting for line-breaking. It has yet to be shown
that pattern-based technology is at least comparable to the currently used prob-
abilistic trigram model [1].

Arabic letter hamza Typesetting systems for Arabic scripts need to have built-in
logic for choosing one of five possible appearances of the letter hamza, depending
on context. This process can easily be formulated as a ptp.

Greek accents In [7, page 153] there is an algorithm—full of exceptions and context
dependent actions— for the process of adding proper accents in Greek texts. Most
parts of it can easily be described as a sequence of pattern-triggered actions and
thus be implemented as a ptp.
Similarly, there are many Czech texts written without diacritics from the times
when email mailers only supported seven-bit ascii , which wait to be converted
into proper form. Even for this task ptp’s could be trained.
We believe that ptp implementation based on PatLib could become common

ground for most, if not all, ΩTP’s. Hooking and piping various ptp’s in Omega

may lead to uniform, highly effective (all those mapping are linear with respect to the
length of the text) document processing. Compared to external ΩTP’s, ptp imple-



16 david antoš, petr sojka

mentation would win in speed. To some extent, we think that a new version ofPatGen
based on PatLib will not only be independent of language (for hyphenation), but of
application, too.

Summary and Future Work

Write once, use everywhere.
— paraphrase of a well known slogan

We have discussed the motivation for developing a new library for the hand-
ling and generation of patterns, and we presented its design and first ver-
sion. We argue that the pattern-based techniques have a rich future in

many application areas and hope for PatLib to be playing a rôle there.
Readers are invited to download the latest version of PatLib and the PatGen

reimplementation at http://www.fi.muni.cz/~xantos/patlib/.

Acknowledgement
The authors thank a reviewer for detailed language revision.

references

[1] Orchid corpus. Technical Report TR-NECTEC-1997-001, Thai National Elec-
tronics and Computer Technology Center, 1999. http://www.links.nectec.
or.th/.

[2] Ronald L. Graham, Donald E. Knuth, and Oren Patashnik. Concrete Math-
ematics. Addison-Wesley, Reading, MA, USA, 1989.

[3] Patrick Hanks, editor. The New Oxford Dictionary of English. Oxford Univer-
sity Press, Oxford, 1998.

[4] Yannis Haralambous. A Small Tutorial on the Multilingual Features of PAT-
GEN2. in electronic form, available from CTAN as info/patgen2.tutorial,
January 1994.

[5] Yannis Haralambous and John Plaice. First applications of Ω: Adobe Poetica,
Arabic, Greek, Khmer. TUGboat, 15(3):344–352, September 1994.

[6] Yannis Haralambous and John Plaice. Methods for Processing Languages with
Omega. In Proceedings of the Second International Symposium on Multilingual
Information Processing, Tsukuba, Japan, 1997. available as http://genepi.
louis-jean.com/omega/tsukuba-methods97.pdf.

[7] Yannis Haralambous and John Plaice. Traitement automatique des langues et
composition sous Omega. Cahiers Gutenberg, (39–40):139–166, May 2001.

[8] Donald E. Knuth. The TEXbook, volume A of Computers and Typesetting.
Addison-Wesley, Reading, MA, USA, 1986.



pattern generation revisited 17

[9] Donald E. Knuth. Sorting and Searching, volume 3 of The Art of Computer
Programming. Addison-Wesley, 1998.

[10] Franklin M. Liang. Word Hy-phen-a-tion by Com-put-er. Ph.D. Thesis, De-
partment of Computer Science, Stanford University, August 1983.

[11] Franklin M. Liang and Peter Breitenlohner. PATtern GENeration program for the
TEX82 hyphenator. Electronic documentation of PatGen program version 2.3
from web2c distribution on CTAN, 1999.

[12] John Plaice and Yannis Haralambous. The latest developments in Omega.
TUGboat, 17(2):181–183, June 1996.

[13] Petr Sojka. Notes on Compound Word Hyphenation in TEX. TUGboat,
16(3):290–297, 1995.

[14] Petr Sojka. Hyphenation on Demand. TUGboat, 20(3):241–247, 1999.
[15] Petr Sojka and Pavel Ševeček. Hyphenation in TEX—Quo Vadis? TUGboat,

16(3):280–289, 1995.
[16] Alan Turing. Computing machinery and intelligence. Mind, (59):433–460, 1950.


