
44 WG 10: SGML-TEX relatie Bijlage O

BIJLAGE O

WG10: Imposing structure upon TEX
—SGML flavored—

Kees van der Laan

March 1991

Introduction
After my SGML-TEX presentation at the fall 90 NTG
meeting some e-mail discussion arose.
Ton’s reaction to Sake’s afterthoughts contains a.o. the
statement

‘ : : : LATEX (and TEX) lack the seman-
tic properties to enforce compliance to a
structure : : : ’

Well, that is not true. Simple counterexamples are:
LATEX’s title environment, which is rather restricted and
another is the shielding of TEX commands from LATEX,
but those are elementary redeclarations.

A conclusion of my work was that this area needs more
development/research, especially how to add to a for-
mat/style in a simple and robust way, compliance en-
forcing code. From the discussion I understand that that
point has been missed completely. I don’t know yet whe-
ther TEX is capable of providing full generality, whatever
that may be.

Imposing structure
In order to make it more clear let us concentrate on some
simple examples. Suppose a DTD consists of
� an element, S(equence),

which consists of two elements which have to be used
in the given sequence order
<!ELEMENT S - - (a, b)>

� an element, O(r),
containing a and b, which can be used in any order
<!ELEMENT O - - (aj b)>

Furthermore, a and b may contain character data
<!ELEMENT (a, b) - - CDATA>.
The above means that correctly marked up copy comp-
lies with.

SGML marked up TeX marked up
<S><a>a text \bS\ba a text\ea

b text \bb b text\eb
</S> \eS
and
<O><a>a text \bO\ba a text\ea

</O> \eO
as well
<O>b text \bO\bb b text\eb
</O> \eO

Below the Sequence and Or structures are separately
elaborated.

Sequence
The idea is to have counters and whenever a or b are
entered to increment the ca, respectively cb counter.
Furthermore when b is entered aprecb := (ca=1). At
the end of S ca = 1^ cb = 1^ aprecb is checked. It is
not elegant to have b spoiled with code in order to verify
whether a preceded, especially when b is to be used in
other structures as well.1 .
The sequence structure can be imposed as shown by the
following TEXing.
%<!ELEMENT S -- (a,b)>
%<!ELEMENT (a|b) -- CDATA>
%implemented in TeX via
\newif\ifSenv \Senvfalse %S environment
\newif\ifaprecb\aprecbfalse%a precedes b?
\newcount\ca
\newcount\cb
\def\bS{\bgroup\ca0\cb0

\Senvtrue}%end bS
\def\eS{%Check
%ca=1 and cb =1 and \aprecbtrue,
\ifnum\ca=1

\ifnum\cb=1
\ifaprecb %Ok
\else\errmessage{At end
Seq, a did not precede b}

\fi
\else\errmessage{At end Seq,

ca=1 and cb<>1}
\fi

\else
\errmessage{At end Seq ca<>1}

\fi\egroup}%end eS
\def\ba{\advance\ca1}
\def\ea{}
\def\bb{\ifnum\ca=1 \aprecbtrue\fi

\advance\cb1}
\def\eb{}

1Andrew suggested either to use the \let mechanism, or even better to take advantage of TEX’s stacking. See the appendix.

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

Bijlage O WG 10: SGML-TEX relatie 45

Or
Again counters are used. At the end of Or (ca = 1^cb =

0) _ (ca = 0 ^ cb = 1) is checked. The TEXing reads.
%<!ELEMENT O -- (a|b)>
%<!ELEMENT (a|b) -- CDATA>
%implemented in TeX via
\newcount\ca
\newcount\cb
\def\bO{\bgroup\ca0\cb0}%local cond
\def\eO{%check:
%(ca=1 and cb=0) xor (ca=0 and cb=1)
\ifnum\ca=1

\ifnum\cb=0 %Ok
\else\errmessage{Or element

ended with ca=1 and cb<>0}
\fi

\else
\ifnum\ca=0

\ifnum\cb=1 %Ok
\else\errmessage{Or element

ended with ca=0 and cb<>1}
\fi

\else\errmessage{Or element
ended with ca<>0, 1 }

\fi
\fi
\egroup}%end eO
%
\def\ba{\advance\ca1}
\def\ea{}
\def\bb{\advance\cb1}
\def\eb{}

Combinations
Generalization and combination of the above could yield
a document structure which might have repeated Or-
paths or Sequence-paths: for example Or-Or-Seq-Or-
: : : .
Three possibities (aj bj c) can be composed from ((aj b)j
c) and similarly three in a row (a, b, c) from ((a, b), c),
both are repetitions. The optional occurrence of an ele-
ment, say d, is just an Or of d with empty, (j d). Check
for repetitions ask for appropriate counter checking.

I believe that a format can be build from these elements
conforming to an SGML DTD, because a DTD prescri-
bes essentially a tree, with repetitions. Insertions and
the like are not considered for the moment.

I don’t consider this difficult to elaborate in principle,
but I can imagine of already available tools supporting
the coding. Furthermore what to do when the copy does
not adhere to the syntax is left open. I welcome any
suggestions: does regular grammars come in? Is YACC
handy?

But, would I really like it? Honestly speaking, NO! Not
at all. I just love so much the freedom TEX provides. So
why should I continue working in a direction that inhi-
bits that? By the above I can protect myself, if needed,

against my own weaknesses. And that is that. However,
the idea circulated around and out of the blue Andrew
Dobrowolski from ArborTEXt commented the approach
as practical unattainable. His idea for using TEX’s stack
mechanism looks promising. As an appendix I’m happy
to add his opinions2 with respect to the discussion.

Appendix
(Andrew’s comments)
From: arbortext!aed@sharkey.cc.umich.edu (Andrew
Dobrowolski)
Answered 03/11 17:33 by JPC @ADMIN (see #10)

When discussions of using TEX to enforce SGML like
content models arise I think it is best to make the follo-
wing clear right from the beginning:

Full SGML context checking by TEX is a
practical impossibility because TEX lacks
the necessary data structures to keep track
of arbitrarily complex contexts.

This is not to say that some ingenious TEXperts can-
not emulate these structures using macros, but that the
resulting code would run slower than my grandmother.

To begin with, we must admit the concession that TEX
is not going to read the SGML dtd, that is the SGML
declarations which define the allowable document struc-
tures and their content models. Any change to the dtd
would mean custom work by the TEX programmer.

For a practical solution we will need to restrict the allo-
wable content models that we are trying to enforce. At
bare minimum we would have to allow the following:
� Comma groups of unrestricted length. That is a con-

tent model of the form (a, b, c, : : :), meaning that
this element must contain the element a, followed by
the element b, and so on.

� Or groups of unrestricted length. That is a content
model of the form (aj bj cj : : :), meaning that this
element must contain one and only one of the ele-
ments a or b or c or : : : .

� The optional modifier "?", meaning that the pre-
ceeding element need not appear. A paper may have
an optional sub-title for example.

� The zero or more modifier "*" meaning that the pre-
ceeding element may appear zero or more times. An
example would be the paragraphs following a chapter
title and preceeding the first section.

To begin with we can exclude the less frequently used
"&" groups, the one or more modifier "+" and the eso-
teric inclusions and exclusions. We can even restrict
ourselves from mixing comma and or groups within one
element’s content model.

With these restrictions it would not be so difficult to get
some limited context checking to work, assuming good

2LATEX edited, adapted to two column format and some use of quoting for emphasizing important ideas.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991

46 WG 10: SGML-TEX relatie Bijlage O

faith on the part of the user. But I think there is more
work to it than first meets the eye. To begin with, if
we build context checking into the elements themselves,
then we run into the problem that an element may ap-
pear in any number of structures (such as a title that may
appear in the structures chapter, section, figure, table,
extract, etc.) Context checking code for each of these
situations would be different, and so the definitions of
the most commonly used elements would be the most
complex. This is a definite burden on performance. To
avoid the burden the TEX programmer could redefine
the title (using \let) for every context in which it is
allowed.

But this is not yet enough to solve the content checking
problem. An element may appear two or more times
within the same model. For example in following
model for the content of the element A, B appears
twice: <!ELEMENT A - - (B, C, B, D)>. It
needs to check that it is followed by a C in the first
instance and by a D in the second. Once again,
either B gets more complicated or C redefines B
using \let. This gets very tricky if C is optional:
<!ELEMENT A - - (B, C?, B, D)>. Which ele-
ment redefines B if C is missing? If the first B then what
if it is also optional?
Further complications appear when an element is al-
lowed to contain itself such as when an emphasis tag is
allowed to contain another emphasis tag. In the model
<!ELEMENT B - - (A | B)> the end of the B ele-
ment must perform different functions depending on
whether it is the inner B or the outer B element. So even

assuming simplified unmodifiable sgml content models,
I do not think that having context built in to the elements
themselves is a viable approach.

I would propose a different attack, one which takes ad-
vantage of TEX’s stacking. I apologize if this gets too
technical.

Define a macro data structure called a model. A model
begins with a group type character (one of "," or "j" or "?"
or "*") followed by one or more brace delimited groups.
Each of these groups contains either a string representing
an element name or another model. The topmost model
ends with a period. The model would allow for comma
groups, ‘or’ groups, the optional modifiers "?" and the
zero or more modifiers "*". For example the model for
"A" above may be defined:
\def\modelA{,{B}{?{C}}{B}{D}.}

where the definition begins with a (possibly active)
character giving the group type (a comma group here)
followed by the members of that group. The two group
types are "," and "j". While the modifiers are "?" and
"*". The final period is used to indicate the end of the
model.

The current model is maintained in a local macro called
\cmodel. As we work through the structures contai-
ned in A, the current model is modified to reflect what
is still to be expected. \cmodel will take on values
equivalent to the following definitions:

\def\cmodel{,{B}{?{C}}{B}{D}.}
\def\cmodel{,{?{C}}{B}{D}.}
\def\cmodel{,{B}{D}.}
\def\cmodel{,{D}.}
\def\cmodel{,.}

Each of the structures within the "A" structure would
first check themselves for context and report any con-
text error as required. They would do this by calling a
macro \ccheck that takes one argument, the name of
the calling structure. So "B" would call \ccheck{B},
which in turn would examine \cmodel. It is possible
that \cmodel will be modified by this call:
Body (replacement text) \cmodel

BEFORE \ccheck{B} AFTER \ccheck{B}
,{B}{?{C}}{B}{D}. ,{?{C}}{B}{D}.
,{?{C}}{B}{D}. ,{D}.
,{B}{D}. ,{D}.
,{D}. ,{D}.
,. ,.

The last two calls would also cause error messages along
the lines:
Element B is out of context here, expecting D. I will treat
the B as an inclusion.

After B’s context check operation is over, it starts a new
TEX group and redefines \cmodel to be \modelB.
The old \cmodel is still on TEX’s save stack and will
pop back when element B is finished.

It is easy to see how this can be extended to allow for
more complex models, including the nesting of comma
and or groups and the addition of and groups.

The beauty of the idea is that the SGML dtd
no longer becomes part of the definitons of
the macros that make up the document.

Its effect is only seen in the beginning of the macro file
in the definitions of \modelA, \modelB, etc. I will
not go into any more details here, since other projects are
pressing for my attention, except to say that although I
have not implemented such macros, they should not take
more than a few hard days of work. If someone attempts
to do this, I would not mind hearing about it at TUG (or
sooner).

Andrew Dobrowolski
ArborTeXt
aed@arbortext.com

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands

