
Bijlage S Babel, a multilingual style-option system 75

BIJLAGE S

Babel, a multilingual style-option system for use with LATEX’s
standard document styles 1 2

Johannes Braams
PTT Research Neher Laboratories

P.O. Box 421
2260 AK Leidschendam
jl braams@pttrnl.nl

March, 1991

Abstract

The standard distributionof LATEX contains a number of document styles that are meant to be used, but
also serve as examples for other users to create their own document styles. These styles have become
very popular among LATEX users. But it should be kept in mind that they were designed for American
tastes and contain a number of hard-wired texts. This article describes a set of document-style options
that can be used in combination with the standard styles, which makes the latter adaptable to other
languages.

1 Introduction
Although Leslie Lamport has stated [5] that one should
not try and write one document-style option to be used
with all the standard document styles of LATEX, that is
exactly what I have done with this system of style opti-
ons. The reasons for this approach will be explained in
section 2.

A lot of the ideas incorporated in this set of files come
from the work of Hubert Partl [4], german.tex. Some
parts in the implementation are different, others are the
same. It will be shown that german.tex can be mo-
dified to fit into this scheme of style options.

2 Why Babel?
When I first started using LATEX I was very happy with
just the style files that are distributed with the standard
distributions of TEX and LATEX. That means, as long as
I made texts in English I was happy. Then as other
users found out about LATEX and its advantages, they
started using it for texts in other languages than Eng-
lish. As I was the most experienced LATEX user at the
time, they came to me and asked me ‘When I’m writing
a report in Dutch I don’t want chapters to be named
“Chapter”, I want them to be named “Hoofdstuk”, how
do you change that?’. At that time I didn’t know, but

I soon found out. The first thing I found was that Les-
lie Lamport states in [2, pages 85–86] that you have to
redefine the command \@chapapp to get the desired
result. This looked rather promising to me, so I had a
look at the style files to find out how other such strings
as “Figure” might be redefined. It was then that I found
out that \@chapapp is the only string defined this way,
whereas all others are hard-wired into the style.

My first solution to this problem was to create a new
document style file called artikel.sty as a “Dutch”
counterpart to article.sty. The same was done for
report.sty. This is exactly what Leslie Lamport
suggests in [5]. This approach has one major drawback
however: you get two copies of basically the same file
to maintain. This was discovered when newer releases
of the styles reached our site. The standard styles had
to be replaced and edited all over again to get the “Dut-
ch” versions back. About the same time, in early 1988,
a discussion on this subject appeared in TEXhax. One
of the persons commenting was Hubert Partl. The me-
thod he suggested was to modify the standard document
styles by replacing the hard-wired texts by macros such
as \@chapapp. This led me to my second attempt
at a solution. I modified the standard styles (all four
of them) as suggested, but while doing that added an
option, implemented like the option draft, by defi-
ning a command \ds@dutch. This command would

1During the development ideas from Nico Poppelier and Piet van Oostrum have been used.
2To be submitted to TUGboat; c
 1991, TEX Users Group.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



76 Babel, a multilingual style-option system Bijlage S

set a variable to indicate which language was reque-
sted. This variable I used later on in a \case state-
ment. In this \case statement a choice is made bet-
ween English, Dutch and possibly other languages for
texts such as “Figure” and “Contents”. Unfortunately,
some of this implied changing the secondary style fi-
les xxx10.sty, xxx11.sty and xxx12.sty. This
was unfortunate because one of the research groups in
our laboratories complained their document style didn’t
work properly. It turned out that their style was a mo-
dified article.sty that had been given a different
name, but it still loaded art10.sty etc. I found a
temporary solution, but I still wasn’t exactly happy with
the situation. Besides this, the drawback of replacing
the document styles with newer versions still existed.

When after a while a new version of the LATEX distribu-
tion arrived at our site, I began to think about a different
way to solve the problem. In the meantime Hubert Partl
had his german.sty published in TUGboat [4]. His
article pointed the way to a different solution. Trig-
gered by the discussion in TEXhax in early 1989 about
how to detect which is the main (primary) style when
processing a document, I started work on what is now
available as dutch.sty version 1.0, dated may 19893.
While working on this style option I discovered that some
parts could be borrowed fromgerman.sty. This ‘dis-
covery’ and some discussions I had with others at Eu-
roTEX89, the fourth European TEX Conference, held in
september 1989 in Karlsruhe, led me towards a more
universal approach. The basic idea behind it was, st-
arting from the algorithm to detect the main style, to
design an approach with one common file that contai-
ned macro definitions needed by a number of language-
specific style options. Users specify the name of any
of these language-specific options as an option to the
\documentstyle command, and internally the com-
mon file is read.

3 LATEX and document-style files
Before I discuss some of the code in the babel system
I would like to discuss the document-style mechanism
used by LATEX. Every LATEX document should start with
a line like:

\documentstyle[opt1,opt2,...]{docstyle}

This line of code instructs LATEX to first load the file
docstyle.sty. When that is done the ‘options’ are
processed in the order specified, by reading the files
opt1.sty, opt2.sty, etc. This implies that defini-
tions, made in the file docstyle.sty can be over-
ridden in one of the option files. It is even possible to
redefine code from the very kernel of LATEX, but you
have to know what you are doing.

Some care has to be taken in writing document-style op-
tions, because a number of problems can occur. First of
all, if a document-style option should be modest in size,

if it tries to redefine most of the code indocstyle.sty
I think you should write (and maintain) your own, com-
plete, document style. Next, as it was possible to over-
ride definitions from the main file in an option file, it is
of course also possible to override definitions made in
another option file. When this happens, your document
might depend on the order in which you have specified
your document-style options.

This mechanism of overriding definitions from the main
document style is exploited in the babel system. The
macros that contain the hard-wired texts are redefined in
the common part of babel, replacing each of these texts
with a unique macro. These macros have to be defined
in the language-specific files.

4 LATEX and multilingual docu-
ments

In a european environment it sometimes happens that one
wants to write a document that contains more than one
language. I have an example of a document, published
by the EEC, that contains 9 (nine) different languages.
Also in linguistics one can find documents written in
more than one language, i.e. to compare two languages.

If you have to write such a multilingual document you
should try to conform to the typographical conventions
in use for each language. A well known example is the
type of quotation marks used. TEX supplies the user
with “quoted text”, but a Dutch user might want to have

”
quoted text”, whereas a German text should contain

”
quoted text“ and a frenchman would perhaps like to see

something like �quoted text�. These language specific
conventions should be implemented in a document-style
option file for each language. These files should then be
useable with all document styles.

In such a multilingualdocument a user wouldspecify the
languages used as options to the \documentstyle
command. He would also want a mechanism to be able to
switch between these languages in a simple way. When
he would use TEX version 3.0 for the processing of his
document, he would also want the hyphenation to come
out right for the different languages.

5 Overview of the babel solution
5.1 The core of the system
The problems described in sections 3 and 4 can be solved
using the babel system of document-style options.

The core of this system currently performs three func-
tions.
1. It defines a user interface for switching between lan-

guages;
3This file is available from listserv@hearn as file dutch.old.

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage S Babel, a multilingual style-option system 77

2. It contains code to dynamically load several sets of
hyphenation patterns;

3. It ‘repairs’ the document styles provided in the
standard distribution of LATEX.

Obviously part 2 can only be used while running iniTEX
to create a new format, whereas part 3 should not be read
by iniTEX. Part 3 should even disappear when LATEX ver-
sion 3.0 arrives, as the style files supplied with the new
LATEX will no longer be language specific. Part 1 can
either be loaded into the format with multiple hyphe-
nation patterns, or it can be read while processing a
document.

For this reason the core of the babel system is
stored in two seperate files, babel.switch, contai-
ning parts 1 and 2, and babel.sty which con-
tains part 3. The file babel.sty will instruct
LATEX to load babel.switch if necessary, the file
babel.switch checks the format to see if hyphena-
tion patterns can be loaded.

5.2 Language specifics
The language switching mechanism contains a couple of
hooks for the developers of language-specific document-
style options.

First of all the macro \originalTeX should be de-
finied. Its function is to disable special definitions
made for a language to bring TEX into a ‘defined’ state.
A language-specific document-style option might, for
example, introduce an extra active character. It would
then also modify the definitions of \dospecials and
\@sanitize. Such an option would then define a ma-
cro to restore the original definitions of these macros and
restore the extra active character to its normal category
code. It would then \let \originalTeX to this
‘restoration’ macro.

To enable the language-specific definitions three
macros are provided in the switching mecha-
nism, \captionshlanguagei, \datehlanguagei and
\extrashlanguagei.

The macro \captionshlanguagei should provide de-
finitions for the macros that replaced the hard-wired texts
in the document style and the macro \datehlanguagei
should provide a definition for \today. The real fun
starts with the macro \extrashlanguagei. This macro
should activate all definitions needed for hlanguagei.

6 The user interface
The user interface to the babel system is quite simple.
He should specify the languages he wants to use in his
document in the list of document-style options. For in-
stance, for a document in which both the English and the
Dutch language are used, the first line could read:

\documentstyle[a4,dutch,english]{artikel1}

Please note that in this case the Dutch-specific defini-
tions are inactive when LATEX has finished processing
document-style option files.

If the user then wants to switch from English to Dutch
he would include the command

\selectlanguage{dutch}

before starting to write Dutch.

If a user wants to write a document-style option
of his own he might like to define a macro that
checks which language is in use at the time the
macro is executed. For this purpose the macro
\iflanguagehlanguageihthen-clauseihelse-clausei
is available.

7 Implementation of the core of the
system

In this section I would like to discuss some parts of
the implementation of the babel system. Not all code
will be shown, because some parts of it are just series
of slightly modified code from the standard document
styles. The files are fully documented and interested
readers can print them if they have access to the doc
option, described by Frank Mittelbach.

The description of the macros that follows is based on
an environment using TEX 3.x, together with a version
of lplain.tex based on plain.tex version 3.x.
The actual implementation allows for other situations as
well, i.e a version of babel.sty for TEX 2.x will be
available.

7.1 Switching languages
For each language to be used in a document a control
sequence of the form \l@hlanguagei has to be defined.
This will either be done while loading hyphenation pat-
terns or while loading the language-specific file. The
implementation of \selectlanguage{hlanguagei}
and \iflanguage{hlanguagei}{}{} is based on the
existence of \l@hlanguagei

To switch from one language to another the macro
\selectlanguage is available. Its definition can
be seen in figure 1. The first action it takes is to check
whether the hlanguagei is known, if it is not an error is
signalled. If the language is known \originalTeX is
called upon to reset any previously set language-specific
definitions. Next the register \language is updated
and the three macros that should activate all language-
specific definitions are executed. Finally the macro
\originalTeX receives a new replacement text in
order to be able to deactivate the definitions just acti-
vated.

The macro \iflanguage (see figure 2) will issue a
warning when its argument is an ‘unkown’ language. It

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



78 Babel, a multilingual style-option system Bijlage S

\def\selectlanguage#1{%
\@ifundefined{l@#1}

{\@nolanerr{#1}}
{\originalTeX
\language=\expandafter\csname l@#1\endcsname\relax
\expandafter\csname captions#1\endcsname
\expandafter\csname date#1\endcsname
\expandafter\csname extras#1\endcsname
\gdef\originalTeX{\expandafter\csname noextras#1\endcsname}
}

}

Figure 1: The definition of \selectlanguage.

\def\iflanguage#1#2#3{%
\@ifundefined{l@#1}

{\@nolanerr{#1}}
{\ifnum\language=\expandafter\csname l@#1\endcsname\relax

#2 \else #3
\fi}

}

Figure 2: The definition of \iflanguage

then goes on to compare the value of \language and
\l@hlanguagei.

7.2 Dynamically loading patterns
With the advent of TEX 3.0 it has become possible to
build a format with more than one hyphenation pattern
preloaded. The core of the babel system provides code,
to be executed by iniTEX only, to dynamically load hyp-
henation patterns. The only restriction is that the imple-
mentation of TEX that you use has to have rather high
settings oftrie size and trie op size to actually
load several hyphenation patterns.

For the purpose of dynamically loading hyphenationpat-
terns a ‘configuration file’ has to be introduced. This file
will be read by iniTEX. Each line should contain either
a comment, nothing or the name of a language and the
name of the file that contains the hyphenation patterns
for that language. In figure 3 an example of such a file,
instructign iniTEX to load patterns for three languages,
English, Dutch and German.

The configurationfile will be read line by line using TEX’s
\read primitive. Because the name of a file might
be followed by a space-token and comment (as in the
example) a macro to process each line is needed. The
definition of this macro, \process@language, can
be found in figure 4.

The macro should strip all spaces following its ar-
guments. It’s first argument is used to define
\l@hlanguagei. The macro \addlanguage is ba-
sically a non-outer version of the plain TEX ma-
cro \newlanguage. The second argument of

\process@language is the name of the file con-
taining the hyphenation patterns. Before the file can be
read, the register \language has to updated.

The configuration file is read in a \loop (see figure 5).
When a record is read from the input file a check is done
whether the record was empty. If it was not, a space to-
ken is added to the end of the string of tokens read. The
reason for this is that we have to be sure there always is at
least one space token present. (A space token is stored in
\toks0.) When that has been taken care of the data just
read can be processed. The last thing to do is to check
the status of the input file, in order to decide whether
TEX has to continue processing the \loop. When all
patterns have been processed the value of \language
is restored.

7.3 ‘Repairing’ LATEX’s standard docu-
ment styles

A large part of the core of the babel system is dedicated
to ‘repair’ the standard document styles. This means
redefining the macros in table 1.
As an example of the way the macros have to be redefi-
ned, the redefinition of\tableofcontents is shown
in figure 6.

The standard styles can be distinguishedby checking the
existence of the macros \chapter (not in article
and letter) and \opening (only in letter).
The result of these checks is stored in the macro
\doc@style. When \doc@style already exists
(which is the case when for instance artikel1.sty
is used [7]) it is not superseded (see figure 7).

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage S Babel, a multilingual style-option system 79

% File : language.dat
% Purpose : tell iniTeX what files with patterns to load.
english english.hyphenations

dutch hyphen.dutch % Nederlands
german hyphen.ger

Figure 3: An example configuration file

\def\process@language#1 #2 {%
\expandafter\addlanguage\csname l@#1\endcsname
\expandafter\language\csname l@#1\endcsname
\input #2}

Figure 4: The definition of \process@language.

8 Implementing a language specific
document-style option file

To illustrate the way a language specific file can be im-
plemented the file dutch.sty is discussed here. Note
that not all of the code containde in the file dutch.sty
is shown here, only those parts that are of interest for the
scope of this article are included. If the reader would
like to see the complete code, he can print all files in
the babel system, using the file doc.sty, described
by Frank Mittelbach in [6].

8.1 Compatibilty with plain TEX
The file german.tex [4] was written in such a way
that it can be used by both plain TEX users and LATEX
users. This seemed a good idea, so all files in the babel
system can be processed by both plain TEX and LATEX.
But some of the “useful hacks” from LATEX are used, so
for a plain TEX user they have to be defined. For this
purpose the format is checked at the start of a language
specific file. If the format is plain an extra file, called
latexhax.tex is read.

This file should be read only once, so another check is
done on the existence of one of the commands defined
there.

A new group is started to keep the definition of the macro
\format, which is used in the following if statement,
local. When the current format turns out to be plain TEX

the file latexhax.sty has to be read. But the defi-
nitions in that file should remain valid after the group
is closed. This could be accomplished by making all
definitions global, but another solution is to tell TEX
to process the file latexhax.sty after the current
group has been closed. The command \aftergroup
puts the next token on a list to be processed after the
group.

8.2 Switching to the Dutch language
In section 7.1 the names of macros needed to switch to a
language have been described. In figure 9 these macros
and their definition are shown for the Dutch language.

The definitions of \captionsdutch and
\datedutch are pretty straightforward and need not
be discussed. The macro \extrasdutch will be
discussed in some more detail.

First, because for Dutch (as well as for German)
the " character is made active, the LATEX macros
\dospecials and \@sanitize have to be redefi-
ned to include this character as well. The new definitions
are implemented as two special commands, so we glo-
bally \let the originals to their new versions. Then
the " character is made active and is defined. Then, to
prevent an error when \" appears in a moving argument,
the macro \" is redefined and made robust. All this is
done inside a group to keep the category code change
for the " character local.

\loop
\read1 to \@config@line
\ifx\@config@line\empty
\else

\edef\@config@line{\@config@line\the\toks0}
\expandafter\process@language\@config@line

\fi
\ifeof1 \@morefalse \fi
\if@more\repeat

\language=0

Figure 5: Reading the configuration file line by line

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



80 Babel, a multilingual style-option system Bijlage S

macro article report book letter
\fnum@figure � � � �
\fnum@table � � � �
\tableofcontents � � �
\listoffigures � � �
\listoftables � � �
\thebibliography � � �
\theindex � � �
\abstract � � �
\part � � �
\chapter � �
\appendix � �
\cc �
\encl �
\ps@headings �

Table 1: macros that need to be redefined for the four standard document styles.

\@ifundefined{contentsname}
{\def\tableofcontents

{\section*{\contentsname
\@mkboth{\uppercase\expandafter{\contentsname}}

{\uppercase\expandafter{\contentsname}}
}

\@starttoc{toc}
}

}
{}

Figure 6: An example of redefining a command

The macro \extrasdutch has a counterpart,
\noextrasdutch, that cancels the extra definitions
made by \extrasdutch. It changes the \catcode
of the " character back to ‘other’ and globally \lets
the macros \dospecials and \@sanitize to their
original definitions. The original definition of \" is
restored as well.

In figure 10 the code needed to redefine \dospecials
and \@makeother is shown.

8.3 An extra active character
All the code disccussed sofar is necessary because we
need an extra active character. This character is then
used as indicated in table 2. One of the reasons for this

is that in the Dutch language a word with an umlaut can
be hyphenated just before the letter with the umlaut, but
the umlaut has to disappear if the word is broken between
the previous letter and the accented letter.

In [3] the quotingconventions for the Dutch language are
discussed. The preferred convention is the single-quote
Anglo-American convention, i.e. ‘This is a quote’. An
alternative is the slightly old-fashioned Dutch method
with initial double quotes lowered to the baseline, ”This
is a quote”, which should be typed as "‘This is a
quote"’.

\@ifundefined{doc@style}
{\def\doc@style{0}

\@ifundefined{opening}
{\@ifundefined{chapter}

{\def\doc@style{1}}
{\def\doc@style{2}}

}{\def\doc@style{3}}
}{\relax}

Figure 7: Determining the main document style

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage S Babel, a multilingual style-option system 81

{\def\format{plain}
\ifx\fmtname\format

\expandafter\ifx\csname @ifundefined\endcsname\relax
\gdef\next{latexhax.sty}
\aftergroup\input\aftergroup\next

\fi
\fi}

Figure 8: Conditonal loading of latexhax.sty

\def\captionsdutch{\gdef\refname{Referenties}%
\gdef\abstractname{Samenvatting}%
\gdef\bibname{Bibliografie}%
...
\gdef\pagename{Pagina}}

\def\datedutch{%
\gdef\today{\number\day˜\ifcase\month\or

januari\or februari\or maart\or april\or
mei\or juni\or juli\or augustus\or
september\or oktober\or november\or december\fi
\space \number\year}}

\begingroup \catcode‘\"\active

\gdef\extrasdutch{%
\global\let\dospecials\dutch@dospecials
\global\let\@sanitize\dutch@sanitize
\catcode‘\"\active
\gdef"{\protect\dutch@active@dq}
\gdef\"{\protect\@umlaut}

}\endgroup

\def\noextrasdutch{%
\catcode‘\"12
\global\let\dospecials\original@dospecials
\global\let\@sanitize\original@sanitize
\global\let\"\dieresis

}

Figure 9: The macros needed to switch to the Dutch language

8.3.1 Supporting macro definitions
The definition of the active " character needs
a couple of support macros. The macro
\allowhyphens is used make hyphenation of word
possible where it otherwise would be inhibited by
TEX. Basically its definition is nothing more than
\nobreak \hskip 0pt plus 0pt.

\gdef\allowhyphens{\penalty\@M
\hskip\z@skip}

Then a macro is defined to lower the Dutch left double
quote to the same level as the comma. It prepares a low
double opening quote in box register 0. This macro was
copied form german.tex.

\gdef\set@low@box#1{%
\setbox\tw@\hbox{,}

\setbox\z@\hbox{#1}
\dimen\z@\ht\z@

\advance\dimen\z@ -\ht\tw@
\setbox\z@\hbox{\lower\dimen\z@

\box\z@}
\ht\z@\ht\tw@ \dp\z@\dp\tw@}

The macro \set@low@box is used to define low ope-
ning quotes. Since it may be used in arguments to other
macros it needs to be protected.

\gdef\dlqq{\protect\@dlqq}
\gdef\@dlqq{{%
\ifhmode
\edef\@SF{\spacefactor%

\the\spacefactor}
\else
\let\@SF\empty

\fi
\leavevmode\set@low@box{’’}
\box\z@\kern-.04em\allowhyphens\@SF\relax}}

For reasons of symmetry we also define "’. This com-
mand is defined similar to\dlqq, except that the quotes
aren’t lowered to the baseline.

\gdef\@drqq{{%
\ifhmode
\edef\@SF{\spacefactor\the\spacefactor}

\else
\let\@SF\empty

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



82 Babel, a multilingual style-option system Bijlage S

\begingroup
\def\do{\noexpand\do\noexpand}%
\xdef\dutch@dospecials{\dospecials\do\"}%
\expandafter\ifx\csname @sanitize\endcsname\relax

% do nothing if \@sanitize is undefined...
\else

\def\@makeother{\noexpand\@makeother\noexpand}%
\xdef\dutch@sanitize{\@sanitize\@makeother\"}%

\fi
\endgroup

\global\let\original@dospecials\dospecials
\global\let\original@sanitize\@sanitize

Figure 10: Code needed for the redefinition of \dospecials and \@makeother.

"a \"a which hyphenates as -a; also implemented for the
other letters.

"| disable ligature at this position.
"- an explicit hyphen sign, allowing hyphenation in the rest

of the word.
"‘ lowered double left quotes (see example below).
"’ normal double right quotes.
\- like the old \-, but allowing hyphenation in the rest of

the word.

Table 2: The extra definitions made by dutch.sty

\fi
’’\@SF\relax}}

The original double quote character is saved in the macro
\dq to keep it available.
\begingroup \catcode‘\"12
\gdef\dq{"}

\endgroup

The original definition of \" is stored as \dieresis.
The resason for this is that if a font with a different en-
coding scheme is used the definition of \" might not be
the plain TEX one.
\global\let\dieresis\"

In the Dutch language vowels with a dieresis or umlaut
accent are treated specially. If a hyphenation occurs be-
fore a vowel-plus-umlaut, the umlaut should disappear.
To be able to do this, the hyphenation break behaviour
for the five vowels, both lowercase and uppercase, could
be defined first in terms of \discretionary. But
this results in a large \if-construct in the definition of
the active ".

As both Knuth and Lamport have pointed out, a user
should not use " when he really means something like
’’. For this reason no distinction is made between vo-
wels and consonants. Therefore one macro, \@umlaut,
specifies the hyphenation break behaviour for all letters.

\def\@umlaut#1{%
\allowhyphens%
\discretionary{-}{#1}{\dieresis #1}%
\allowhyphens}

The last support macro to be defined is
\dutch@active@dq.

\gdef\dutch@active@dq#1{%
\if\string#1‘\dlqq{}%

\else\if\string#1’\drqq{}%
\else\if\string#1-\allowhyphens-%

\allowhyphens%
\else\if\string#1|\discretionary{-}{}{%

\kern.03em}%
\else\if\string#1i\allowhyphens%

\discretionary{-}{i}{%
\dieresis\i}%
\allowhyphens%

\else\if\string#1j\allowhyphens%
\discretionary{-}{j}{%
\dieresis\j}%
\allowhyphens%

\else \@umlaut{#1}\fi\fi\fi\fi\fi\fi}

The macro reads the next token and performs some ap-
propriate action. If no special action is defined, it will
produce an umlaut accent on top of argument 1.

The last definition needed is a replacement for \-. The
new version of \- should indicate an extra hyphenation
position, while allowing other hyphenation positions to
be generated automatically. The standard behaviour of
TEX in this respect is very unfortunatefor languages such
as Dutch and German, where long compound words are
quite normal and all one needs is a means to indicate an
extra hyphenation position on top of the ones that TEX
can generate from the hyphenation patterns.

\def\-{\allowhyphens\discretionary{-}{}{}%
\allowhyphens}

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage S Babel, a multilingual style-option system 83

8.4 Activating the definitions
The last action that should be performed by a language
specific file, is activating it’s definitions. Before doing
that the macro \originalTeX should be definined.

\@ifundefined{originalTeX}{\let%
\originalTeX\relax}{}

Also, the macro \l@hlanguagei should be defined. If it
hasn’t already been defined, this means that no hyphe-
nation patterns were loaded for this language.

\@ifundefined{l@dutch}{%
\addlanguage{dutch}}{}

\selectlanguage{dutch}

9 Conclusion
In this article a system of document-style option files
has been presented that support the multilingual use of
LATEX. Some of the code involved has been discussed.
The actual files will me made available through the inter-
national networks. They will be stored in the fileserver
in the Netherlands (address: LISTSERV@HEARN), the
file babel readme will explain what you need to get
to be able to use the system. The system was develo-
ped using the doc option, so the files available are fully
documented.

References

[1] Donald E. Knuth, The TEXbook, Addison-Wesley,
1986.

[2] Leslie Lamport, LATEX, A document preparation Sys-
tem, Addison-Wesley, 1986.

[3] K.F. Treebus. Tekstwijzer, een gids voor het gra-
fisch verwerken van tekst. SDU Uitgeverij (’s-
Gravenhage, 1988). A Dutch book on layout design
and typography.

[4] Hubert Partl, German TEX, TUGboat 9 (1988) #1,
p. 70–72.

[5] Leslie Lamport, in: TEXhax Digest, Volume 89, #13,
17 februari 1989.

[6] Frank Mittelbach, The doc-option, TUGboat 10
(1989) #2, p. 245–273.

[7] Johannes Braams, Victor Eijkhout and Nico Poppe-
lier, The development of national LATEX styles, TUG-
boat 10 (1989) #3, p. 401–406.

[8] Joachim Schrod, International LATEX is ready to use,
TUGboat 11 (1990) #1, p. 87–90.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991


