
Bijlage X The structure of the TEX processor 109

BIJLAGE X

The structure of the TEX processor 1 2

Victor Eijkhout
Center for Supercomputing Research and Development

University of Illinois
305 Talbot Laboratory

104 South Wright Street
Urbana, Illinois 61801-2932, USA

eijkhout@csrd.uiuc.edu

Februari, 1991

The inner workingsof TEX are explained by its author [1]
in terms of an analogy with the digestive tract. Apart
from the fact that this gives rise to a whole genre of
jokes3, the analogy becomes definitely strained when
regurgitation takes place in the mouth, or when the eyes
take part in the process.

In this article I will describe the TEX processor as a multi-
layered engine that successively transforms characters
into tokens, tokens into lists, and from these lists builds
a typeset page.

1 Four TEX processors
The way TEX processes its input can be viewed as hap-
pening on four levels. One might say that the TEX pro-
cessor is split into four separate units, each accepting the
output of the previous stage, and delivering the input for
the next stage. The input of the first stage is then the
tex input file; the output of the last stage is a dvi file.

For many purposes it is most convenient and insightful
to consider these four levels of processing as happening
after one another, each one accepting the completed out-
put of the previous level. In reality this is not true: TEX
is not something like a four-pass compiler. All levels are
simultaneously active, and there is interaction between
them.

The four levels are
1. The input processor. This is the piece of TEX that

accepts input lines from the file system of whatever
computer TEX runs on, and turns them into tokens.
These are mostly character tokens that comprise the
typeset text, and control sequence tokens that are
commands to be processed by the next two levels.

2. The expansion processor. A number of tokens gene-

rated in the first level – macros, conditionals, and a
number of primitive TEX commands – is subject to
expansion. Expansion is the process that replaces
some (sequences of) tokens by another (possibly
empty) sequence.

3. The execution processor. Control sequences that are
not expandable are executable, and this execution
takes place on the third level of the TEX processor.
One part of the activity here concerns changes to
TEX’s internal state: assignments and macro defini-
tions are typical activities in this category. The other
thing going on on this level is the construction of
horizontal, vertical, and mathematical lists.

4. The visual processor. In the final level of processing
the visual part of TEX processing is performed. Here
horizontal lists are broken into paragraphs, vertical
lists are broken into pages, and formulas are built out
of math lists. Also the output to the dvi file takes
place on this level. The algorithms working here are
not accessible to the user, but they can be influenced
by a number of parameters.

2 The input processor

The input processor is that part of TEX that translates
whatever characters it gets from the input file into to-
kens. The output of this processor is a stream of tokens:
a token list. Most tokens fall into two categories: charac-
ter tokens and control sequence tokens. The remaining
category is that of the parameter tokens; these will not
be treated here.

1To be published in TUGboat, c
 1991, TEX Users Group.
2This is a chapter from my book ‘TEX by Topic’, to be published by Addison-Wesley.
3Tokens being ‘sicked up again’ [2], output being ‘TEXcrement’ [3], or the particularly deplorable title of [4] : : :

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



110 The structure of the TEX processor Bijlage X

2.1 Character input
For simple input text, characters are made into character
tokens. However, TEX can ignore input characters: a
row of spaces in the input is usually equivalent to just
one space. Also, TEX itself can insert tokens that do
not correspond to any character in the input, for instance
the space token at the end of an input line, or the \par
token after an empty line.

Not all character tokens represent characters that are to
be typeset. Characters fall into sixteen categories – each
one specifying a certain function that a character can
have – of which only two contain the characters that will
be typeset. The other categories contain such characters
as f, g, &, and #. A character token can be considered
as a pair of numbers: the character code – usually the
ASCII code – and the category code.

When the escape character \ appears in the input, TEX’s
behaviour in forming tokens is more complicated. Basi-
cally, TEX builds a control sequence by taking a number
of characters from the input and lumping them together
into a single token.

The behaviour with which TEX’s input processor reacts
to category codes can be described as finite-state automa-
ton with three internal states: N , new line, M , middle
of line, and S, skipping spaces. These states and the
transitions between them are treated in chapter 8 of The
TEXbook.

2.2 Two-level input processing
TEX’s input processor is in fact even a two-level proces-
sor. Due to limitations of the terminal, the editor, or the
operating system, the user may not be able to input any
desired character. Therefore, TEX provides a mechanism
to access with two superscript characters all of the avai-
lable character positions. This may be considered to be
a separate stage of TEX processing, taking place prior to
the three-state finite automaton mentioned above.

For instance, the sequence ˆˆ+ is replaced by k be-
cause the ASCII codes of k and + differ by 64. Since
this replacement takes place before tokens are formed,
one may write \vsˆˆ+ip 5cm to get the effect of
\vskip 5cm. More useful examples than this exist.

Note that this first stage is a transformation from charac-
ters to characters, without considering category codes.
These come into play only in the second phase of input
processing, where characters are converted to character
tokens by coupling the category code to the character
code.

3 The expansion processor
TEX’s expansion processor accepts a stream of tokens
and, if possible, expands the tokens in this stream one
by one until only unexpandable tokens remain. Macro

expansion is the clearest example of this: if a control
sequence is a macro name, it is replaced (together pos-
sibly with parameter tokens) by the definition text of the
macro.

Input for the expansion processor is provided mainly by
the input processor. The stream of tokens coming from
the first stage of TEX processing is subject to the expan-
sion process, and the result is a stream of unexpandable
tokens which is fed to the execution processor.

However, the expansion processor comes into play also
when an \edef or \write is processed. The para-
meter token list of these commands is expanded as if
the lists would have been on top level, instead of the
argument to a command.

There is a special fascination to macros that work com-
pletely by the expansion processor. See the recent arti-
cles [4], [5], and [6] for some good examples.

3.1 The process of expansion
Expanding a token comprises the following steps:
� See if the token is expandable.
� If the token is unexpandable, pass it to the token list

currently being built, and take on the next token.
� If the token is expandable, replace it by its expansion.

For macros without parameters, and a few primitive
commands such as \jobname, this is indeed a sim-
ple replacement. Usually, however, TEX needs to
absorb some argument tokens from the stream in or-
der to be able to form the replacement of the current
token. For instance, if the token was a macro with
parameters, sufficiently many tokens need to be ab-
sorbed to form the arguments corresponding to these
parameters.

� Go on expanding, starting with the first token of the
expansion.

Deciding whether a token is expandable is usually a sim-
ple decision. Macros and active characters, conditionals,
and a number of primitive TEX commands (see the list
on page 215 of The TEXbook) are expandable, other
tokens are not. Thus the expansion processor replaces
macros by their expansion, it evaluates conditionals and
eliminates any irrelevant parts of these, but tokens such
as \vskip and character tokens, including characters
such as dollars and braces, are passed untouched.

3.2 Special cases: \expandafter,
\noexpand, and \the

As stated above, after a token has been expanded TEX
will start expanding the resulting tokens. At first sight
the \expandafter command would seem to be an
exception to this rule, because it expands only one step.
What actually happens is that the sequence

\expandafter<token1><token2>

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands



Bijlage X The structure of the TEX processor 111

is replaced by

<token1><expansion of token2>

and this replacement is in fact reexamined by the expan-
sion processor.

Real exceptions do exist, however. If the current token
is the \noexpand command, the next token is consi-
dered for the moment to be unexpandable: it is handled
as if it were \relax (more about this control sequence
follows below), and it is passed to the token list being
built.

Example: in the macro definition

\edef\a{\noexpand\b}

the replacement text \noexpand\b is expanded at de-
finition time. The expansion of \noexpand is the next
token, with a temporary meaning of \relax. Thus,
when the expansion processor tackles the next token,
the \b, it will consider that to be unexpandable, and
just pass it to the token list being built, which is the
replacement text of the macro.

Another exception is that the tokens resulting from
\the<token variable> are not expanded further if this
statement occurs inside an \edef macro definition.

3.3 Braces in the expansion processor
Above, it was said that braces are passed as unexpan-
dable character tokens. In general this is true. For
instance, the \romannumeral command is handled
by the expansion processor; when confronted with

\romannumeral1\number\count2 3{4

TEX will expand until the brace is encountered: if
\count2 has the value of zero, the result will be the
roman numeral representation of 103.

As another example,
\iftrue {\else }\fi

is handled by the expansion processor as if it were
\iftrue a\else b\fi

The result is a character token, be this a brace or a letter.

However, in the context of macro expansion the expan-
sion processor will recognize braces. First of all, a
balanced pair of braces marks off a group of tokens to
be passed as one argument. If a macro has an argument
\def\macro#1{ ... }

one can call it with a single token
\macro 1 \macro \$

or with a group
\macro {abc} \macro {d{ef}g}

Secondly, when the arguments for a macro with parame-
ters are read, no expressions with unbalanced braces are
accepted. In

\def\a#1\stop{ ... }
\a bc{d\stop}e\stop

the argument is bc{d\stop}e. Only balanced expres-
sions are accepted here.

4 The execution processor
The execution processor builds lists: horizontal, ver-
tical, and math lists. Corresponding to these lists, it
works in horizontal, vertical, or math mode. Of these
three modes ‘internal’ and ‘external’ variants exist. In
addition to building lists, this part of the TEX proces-
sor also performs mode-independent processing, such
as assignments.

Coming out of the expansion processor is a stream of
unexpandable tokens to be processed by the execution
processor. From the point of view of the execution pro-
cessor, this stream contains two types of tokens:
� Tokens that signal an assignment (this includes macro

definitions), and other tokens that are independent of
the mode, such as \show and \aftergroup.

� Tokens that build lists: characters, boxes, and glue.

Some objects can be used in any mode, for instance
boxes can appear in horizontal, vertical, and math lists.
The effect of such an object will of course still depend
on the mode. Other objects are specific for one mode.
For instance, characters (to be more precise: character
tokens of categories 11 and 12) are intimately connected
to horizontal mode: if the execution processor is in ver-
tical mode when it encounters a character, it will switch
to horizontal mode.

For the expansion processor a character token is just an
unexpandable object. On this level, however, something
is actually done with it. Some characters are typeset, but
the execution processor can also encounter, for instance,
math shift characters (usually $), or braces. When a
math shift character is found in the stream of tokens,
math mode is entered (or exited if the current mode was
math mode); when a left brace is found, a new level of
grouping is entered.

One control sequence handled by the execution proces-
sor deserves special mention: \relax. This control
sequence is not expandable, but the execution is ‘emp-
ty’. Compare the effect of \relax in

\count0=1\relax 2

with that of \null defined by

\def\null{}

in

\count0=1\null 2

In the first case the expansion process that is forming
the number stops at \relax because it is unexpan-
dable, and the number 1 is assigned. In the second case
\null expands to nothing, so 12 is assigned.

Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands Reprint MAPS#6 (91.1); May 1991



112 The structure of the TEX processor Bijlage X

5 The visual processor
TEX’s visual processor encompasses those algorithms
that are outside direct user control: paragraph breaking,
alignment, page breaking, math typesetting, anddvi file
generation. Various parameters control the operation of
these parts of TEX.

Some of these algorithms return their results in a form
that can be handled by the execution processor. For in-
stance, a paragraph that has been broken into lines is
added to the main vertical list as a sequence of horizon-
tal boxes with intermediate glue and penalties. Also, the
page breaking algorithm stores its result in\box255, so
output routines can disect it. On the other hand, a math
formula can not be broken into pieces, and, of course,
shipping a box to the dvi file is irreversible.

6 Further examples
6.1 Skipped spaces
Skipped spaces provide an illustration of the view that
TEX’s levels of processing accept the completed input of
the previous level. Consider the commands
\def\a{\penalty200}
\a 0

Faulty reasoning

“The \a is encountered, expanded, the space then deli-
mits the number”

would lead to the conclusion that this is equivalent to
\penalty200 0. It is not. Instead, what results is
\penalty2000

because the space after \a is skipped in the input pro-
cessor.

6.2 Internal quantities and their represen-
tations

TEX uses various sorts of internal quantities, such as in-
tegers and dimensions. These internal quantities have an
external representation, which is a string of characters,
such as 4711 or 91.44cm.

Conversions between the internal value and the external
represenation take place on two different levels, depen-
ding on the direction the conversion goes. A string of
characters is converted to an internal value in assign-
ments such as
\pageno=12 \baselineskip=13pt

or statements like

\vskip 5.71pt

and all of these statements are handled by the execution
processor.

On the other hand, the conversion of the internal values
into a representation as a string of characters is handled
by the expansion processor. For instance,

\number\pageno \romannumeral\year
\the\baselineskip

are all processed by expansion.

Note that in the \baselineskip example above the
conversion from string of characters to internal value
was ‘automatic’. The conversion the other way has to
be forced by a command such as \number. Thus there
is no danger that the sequence

\pageno=3 \count\MyCount=\pageno 5

will result in assigning either 15 or 35 to \MyCount.

As a final example, suppose \count2=45, and consi-
der the statement

\count0=1\number\count2 3

The expansion processor tackles
\number\count2 to give the characters 45, and the
space after the 2 is absorbed because it only serves as a
delimiter of the number of the \count register. In the
next stage of processing, the execution processor will
then see the statement

\count0=1453

and execute this.

References

[1] Donald Knuth, The TEXbook,. Addison–Wesley
Publishing Company, 1984.

[2] Angela Barden, Some TEX manuals, TUGboat
12(1991), no. 1.

[3] Ron Whitney, private communication.

[4] Victor Eijkhout, Oral TEX, TUGboat 12(1991),
no. 2.

[5] Alan Jeffrey, Lists in TEX’s mouth, TUGboat 11,
no. 2, 237–245.

[6] Sonja Maus, Looking ahead for a hboxi, TUG-
boat 11, no. 4, 613–614.

Reprint MAPS#6 (91.1); May 1991 Dutch TEX Users Group (NTG), P.O. Box 394, 1740 AJ Schagen, The Netherlands


