
TEX: Rejoining the mainstream

Jonathan Fine

EuroTeX 2009

The Hague, Netherlands

1 September 2009

Slides at mathtran docs on SVN on Sourceforge



Jon Udell’s insight on TEX, LATEX and the web
In 2000 Jon Udell, in a report on Internet Groupware for Scientific
Collaboration wrote:

TEX and LATEX define scientific publishing for a
generation of scientists. But these formats don’t
integrate directly into the shared spaces of the Web.

In July 2009, after encountering the Polymath project, he wrote:

Why didn’t I see, then, that the crux of the issue wasn’t
XML and MathML and SVG, but rather the ability to
“integrate directly into the shared spaces of the
Web”? And that what ought to be integrated directly
was the typesetting language already familiar to
mathematicians, namely LATEX?

http://blog.jonudell.net/2009/07/31/polymath-equals-user-
innovatio/



Knuth’s vision

[T]he TEX research project . . . was driven by two major
goals . . . quality . . . the best . . . archival . . . 100 years

I’m not going to design a programming language; I want
to have just a typesetting language.

In some sense I put in many of TEX’s programming
features only after kicking and screaming [from users].

Now, if there were a universal simple interpretive
language that was common to other systems, naturally I
would have latched onto that right away.

Let us regard these systems [TEX and Metafont] as fixed
points, which should give the same results 100 years from
now that they produce today.

Quotes from Digital Typography, pages 559, 648, 648, 649, 571.



Knuth’s request: use another name

When he announced, in 1990, that his work on developing TEX,
Metafont and Computer Modern had come to an end, (except for
extremely serious bugfixes), Don Knuth wrote (DT, p571):

I welcome continued research that will lead to
alternative systems that can typeset documents better
than TEX is able to do. But the authors of such systems
must think of another name.

That is all I ask, after devoting a substantial portion
of my life to the creation of these systems. I sincerely
hope that the members of TUG will help me to enforce
these wishes, by putting severe pressure on any person or
group who produces an incompatible system and calls it
TEX or METAFONT or Computer Modern — no matter
how slight the incompatibility might seem.



Introduction and overview

This talk is a simplified history of TEX: past, present and future.
Mainstream was print, now includes Web. The basic ideas are:

I TEX was mainstream end-user software.
I TEX is no longer in mainstream of open source.
I TEX can rejoin the mainstream.
I Helping TEX rejoin the mainstream.

By the word ‘TEX’ we mean one of:
I The program tex written by Don Knuth.
I A backslash and braces markup language.
I Software and other resources associated with TEX.
I A community of users and developers.

But not (as requested by DEK) some other typesetting program.



Achievements of LATEX (the first fifteen years)

I Provides styles (aka classes) for standard documents
I Open: Allows programmers to add their own style files
I Provides reasonably uniform document syntax
I Lamport’s LATEX book provides gentle introduction
I Attracted energies of many talented developers
I Used and respected by many academics
I Adopted as submission format by many publishers
I LATEX2e an important clean-up and revision of LATEX209



LATEX and Python documentation compared
Please visit http://www.latex-project.org/guides/

I First link on page is to books (mostly by team members).
I Second link is to 33 page PDF [2001, stale addresses].
I Most of the other links are to 3rd party PDF files.
I HTML links to wikibooks and Andy Roberts sites.
I Doesn’t link to Indian TUG Tutorial, Nicola Talbot, . . .

Please visit http://docs.python.org/
I Docs available in HTML and PDF
I Search page for docs
I Online Global Module Index and General Index
I Permalinks to page fragments
I Syntax highlighted code
I Copyright, the Python Software Foundation



http://www.latex-project.org/guides/



http://docs.python.org/



LATEX3 project — digging deeper

I Started in 1993 or so (predates XML, Google, . . . )
I No-one is using LATEX3 for typesetting
I In 2005, LATEX3 source placed on SVN server, but . . .
I They say it’s explicitly forbidden to publish LATEX3 code
I Uses unusual license (Debian accepted, not OSI-approved)
I Current activity focused new macro programming interface

Here’s an example of the old and new interface:

\def\mymacro #1{\setbox #1\hbox\bgroup} % Old
\cs_new_nopar:Npn \hbox_set_inline_begin:N #1 { % New

\tex_setbox:D #1 \tex_hbox:D \c_group_begin_token }

It doesn’t even get named parameters (instead of #1).



Rebuttal from Will Robertson (LATEX3 team member)
[The new syntax] isn’t just about renaming TeX primitives for the
sake of it:

I toolbox of often-used and otherwise useful functions with
consistent (and readable!) names

I abstract many expansion control problems with better
datatypes

[Here’s an example]: (from LaTeX2e kernel)

\global\expandafter\let %% Old
\csname\cf@encoding \string#1%

\expandafter\endcsname
\csname ?\string#1\endcsname

\cs_gset_eq:cc %% New
{ \cf@encoding \token_to_str:N #1 }
{ ? \token_to_str:N #1 }



Google trends for MathML

http://www.google.com/trends?q=MathML,+lmgtfy

MathML in blue (from 2005), lmgtfy in red (from 2009).



Terry Tao’s blog and the Polymath project
Terry Tao is a young and extremely eminent mathematician. He’s
an early adopter. His blog http://terrytao.wordpress.com is
published in book form. Typeset in LATEX, of course.
Along with Tim Gowers, Gil Kalai and Michael Nielsen, he’s set up
http://polymathprojects.org. (And see also http://www.tricki.org)

Polymath is all interested people across the world working together
on a problem of common interest. It’s using a WordPress blog
(with LATEX support).

Computer industry commentator Jon Udell wrote of Polymath:

Why didn’t I see, then [2000], that the crux of the issue
wasn’t XML and MathML and SVG, but rather the
ability to “integrate directly into the shared spaces of the
Web”? And that what ought to be integrated directly
was the typesetting language already familiar to
mathematicians, namely LATEX?



http://polymathprojects.org/2009/08/09/ ...



http://polymathprojects.org/2009/08/09/ ...



XeTeX — scripts.sil.org/XeTeX

Used in production by the SIL linguistics institute.

An open source typesetting program based on a merger of Donald
Knuth’s TEX system with Unicode and modern (OpenType and
AAT) font technologies.
The XeTeX typesetting system is cross-platform. It provides the
same Unicode and OpenType font support on GNU/Linux, Mac
OS X and Windows (but no AAT font support outside Mac OS X).

Developer Jonathan Kew now works for Mozilla, on
internationalisation.



LuaTEX: www.luatex.org

Recall Don Knuth’s goal was to create just a typesetting language.
LuaTEX is going in the opposite direction.

I It embeds Lua into an extension of TEX.
I Describes itself as a ‘variant of TEX’ (loud tutting).
I For many (most) users, not better than XeTeX.
I Embed rather than extend is a big mistake.
I Gives Lua access to typesetting internals.
I Big performance and memory hit.
I Requires extensive rewrite of Don Knuth’s code for TEX.

In my view, XeTeX provides now all the benefits LuaTEX will
provide, except: Lua is better than the TEX macro language.
However, there are other ways to obtain this benefit.



Embed and extend compared: client and server

We extend a client to connect to a server. For example, in Python
to connect to an SQL database we import an extension module.

We can also embed Python in an SQL database server. This allows
SQL queries to use Python, for example to filter a result set.

With databases, almost always we extend (with an extension
module). It’s rare to use Python embedded in a database server.
Apache is the only common use I know of Python embedded (via
mod_python).

It’s common to import into Python many extension modules. But
there’s no easy way to combine two embeddings.

LuaTEX chooses embed because TEX has an embedded macro
language (which was probably right then). The key thing now is to
provide a service, not a better embedded language.



Transform, typeset, make-up
In TEX, three distinct processes are combined.

I Transform input document into horizontal list
I Breaking the paragraph into lines
I Combining the paragraphs into pages

The same goes for LATEX, ConTEXt and LuaTEX.

Transform is all about fonts, sizes, colours and generated text
(such as cross-references).
Breaking is a key component of any typesetting system.
Combining is deciding what should go on what should go on each
page (lines, figures, floats) and putting them together nicely).

Transform and combining can be done by an external program
that does not know about typesetting.
Breaking can be done by an extension of TEX that outputs a
stream of boxes (rather than a file of dvi).



MathTran: Flickr for formulas
Wikipedia uses LATEX for complex math formulas, and provides a
nice page of input/output examples. But we can do better . . .

http://en.wikipedia.org/wiki/Help:Displaying_a_formula
Service is good. MathTran provides TEX typesetting (and
production of images) as a public web service.

http://www.mathtran.org/

I Funded by JISC and the Open University.
I Developed mostly by speaker.
I Provide instant preview editor for formulas.
I Runs TEX as a daemon.
I Create images that are too cheap to cache.
I Now uses Pinax/Django to provide social website.
I Requires interactive online documentation.
I Hope soon to allow authoring of such documentation.



http://en.wikipedia.org/wiki/Help:Displaying_a_formula



http://www.mathtran.org



Python documents: latex2html and Sphinx

Python documentation was produced using customized latex2html
(a Perl script). Provides both HTML and PDF output. LATEX
source documents.
Since Python 2.6, documentation authored in Restructured Text
and translated by Sphinx into HTML, Windows HTML Help, and
LATEX for PDF. See http://sphinx.pocoo.org/
Sphinx says many of its strengths come from the power and
straightforwardness of reStructuredText and its parsing and
translating suite, the Docutils.

Python did not adopt plasTEX, a successor to latex2html which
implements TEX’s markup language, in Python.
Sphinx and plasTEX are pointers to LATEX succession.



Conclusions
The underlying theme is to more easily integrate directly into the
shared spaces of the Web (Jon Udell, 2009).

I Interactive online LATEX documentation.
I Tools for authoring and displaying mathematics on the web.
I Copy-and-paste (standards for TEX-encoded math).
I Evolve LATEX into standard wiki-like markup language.
I Provide web services.
I Print backend for web pages (a big win).

A big problem in achieving this is legacy: documents, macros and
ways of working. So we’ll also need

I Regression tests for documents.
I Enthusiastic and committed developers.
I Engagement with young people.



What next: Online LATEX documentation

A Google search for latex+quote produces Sheldon Green’s
hypertext help from 1995 as top result.
ConTEXt has http://wiki.contextgarden.net/ — much better than
the LATEX offering. It also allow try out ConTEXt without installing
it. This is a step in the right direction.
We need interactive and social help for TEX and LATEX.



What next: Firefox Mathematics plugin

The idea here is to provide a toolbar button, or some other
interface, that allows you to add, view and edit mathematics on a
web page.

Mozilla’s Ubiquity is designed to make it easy to do such things.
http://labs.mozilla.com/projects/ubiquity/

Key developer for Ubiquity is Aza Raskin, head of user experience
at Mozilla Labs.
Aza Raskin was previously with Humanized, who created a
Windows ‘desktop assistant’ Enso (similar, for the aged, to Borland
Sidekick).

Enso provided a TEX anywhere component that uses MathTran’s
web service for typesetting (and has a neat unrender function).



What next: Google Summer of Code

Google pays about 1,000 students to write open source software
during the summer.

2008 Accepted for first time as mentoring organisation. Three
projects (one mentored by myself).
None produced code that is in use.

2009 Not accepted as mentoring organisation.
However, AbiWord, Django, Drupal, Inkscape, MoinMoin Wiki,
Moodle, Mozilla Project, Pigdin, Scribus, Sakai, Wikimedia and
WordPress were accepted.

2010 Suggest that we work with appropriate successful 2009
GSOC mentoring organisations on project proposals. Encourage
them to mentor TEX-related projects.



What next: new skills

To rejoin the mainstream, we may need to learn some new skills
and languages.

I AJAX
I JavaScript
I JSON and JSONP
I Social websites
I Unicode
I Web frameworks (such as Django)
I XML

We may also need to communicate better: are you interested in a
monthly electronic newsletter on technical aspects of mathematical
content?



UK Math Content Workshop - Wed 9th Sept 2009

One-day workshop on technical issues related to mathematical
content in electronic media. Three main themes

1. Content related technical problems in supporting eLearning in
mathematics

2. Standards related to digitisation of mathematics research
literature

3. Formulas and equations in otherwise non-mathematical
content

The aims of the workshop are improved practice, more
collaboration and reuse of software, and a published roadmap to
inform and guide future work in this area.
To take place at The Open University, Milton Keynes, UK. Possible
due to funding from JISC and the OU. Organised by Jonathan Fine
(OU), David McKain (Edinburgh) and Petr Sojka (Masayrk).


	Introduction
	Conclusions

