
Proceedings of the

Ninth European
TEX Conference

September 4{8, 1995
Arnhem, The Netherlands

Sponsored by

Elsevier Science

Proceedings of the

Ninth European
TEX Conference

September 4{8, 1995
Arnhem, The Netherlands

Edited by

Wietse Dol

Organised by

NT G, Dutch language oriented TEX users group

P.O. Box 394

1740 AJ Schagen

The Netherlands

email: ntg@nic.surfnet.nl

Organizing committee

Erik Frambach

Theo Jurriens

Ruud Koning

Kees van der Laan

Piet van Oostrum

Simon Pepping

Piet Tutelaers

Program committee

Rosemary Baily

Johannes Braams

Michel Goossens

Chris Rowley

Colophon

These proceedings were typeset using 4TEX running

LATEX2" and emTEX's huge TEX compiler. The fonts

used are the CMBRIGHT family designed by Walther

Schmidt. The document was printed on a Xerox

Docutech 135 600 dpi PostScript printer.

Contents

Graphics for TEX: a new implementation 1

Andrey V. Astrelin

TEX Plotter { a program for creating 2D and 3D pictures 5

A.S. Berdnikov and S.B. Turtia

VFComb { a program for design of virtual fonts 11

A.S. Berdnikov and S.B. Turtia

The status of Babel 17

Johannes L. Braams

Upages { plain TEX for professionals 27

Stanislav Brabec

A practical introduction to SGML 35

Michel Goossens and Janne Saarela

From LATEX to HTML and back 105

Michel Goossens and Janne Saarela

pa
sc

al
: formatting Pascal using TEX 169

Pedro Palao Gostanza and Manuel N�u~nez Garc��a

Beyond the bounds of paper and within the bounds of screens; the perfect

match of TEX and Acrobat 181

J. Hagen

PPCHTEX: typesetting chemical formulas in TEX 197

J. Hagen and A.F. Otten

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 223

Yannis Haralambous and Sebastian Rahtz

The release 1.2 of the Cork encoded DC fonts and the text companion

symbol fonts 239

J�org Knappen

A METAFONT{EPS interface 257

Bogus law Jackowski

Use of TEX as database with AnyTEX 273

Kees van der Laan

Indexing in TEX with AnyTEX 279

Kees van der Laan

A Russian style for Babel: problems and solutions 289

Olga Lapko and Irina Makhovaya

Data with ��TEX 295

Andries Lenstra, Steven Kli�en and Ruud Koning

Modifying LATEX 309

LATEX3 Project Team

The proposed TEX Directory Structure 315

Joachim Schrod

Occam's Razor and macro management 317

Laurent Siebenmann

A package for Church-Slavonic typesetting 331

Andrey Slepuhin

The W95 environment 339

Anton��n Strejc

MusiXTEX, even more beautiful than MusicTEXfor music typesetting 351

Daniel Taupin

"-TEX: a 100%-compatible successor to TEX

Following humbly in the foosteps of the Grand Wizard 359

Philip Taylor

Adobe
TM

Acrobat 2.0
TM

Beyond the bounds of paper 371

Wiegert Tierie

Typesetting commutative diagrams 391

Gabriel Valiente Feruglio

Conversion of the Euler Metafonts into the PostScript Type1 font

language 425

Erik-Jan Vens

When METAFONT does it alone 431

Ji�r�� Zlatu�ska

Graphics for TEX: a new implementation

Andrey V. Astrelin

Moscow

Russia

astr@lcm.math.msu.su

Graphic capacity is the branch unsu�ciently developed in the basic TEX version. That

leads to the large amount of the graphic packages for TEX. Some of them became

standard (such as LATEX PICTURE package), but they are the most weak of all. The

developed packages di�er in the level of graphic information representation in the .dvi

�le. There are 3 levels:

1. The graphic information is represented via characters from some special fonts (like

line10 and circle10 from LATEX). It may be done in two ways:

i. �xed fonts are created once and for all;

ii. each picture requires creating new fonts.

2. The graphic information is represented via rule commands (black rectangles).

Example of this approach is the tables drawing (which is a form of graphics).

3. The graphic information is presented by the \special commands and processed by

particular driver. Examples are pcl commands in PCTeX, line drawing and graphic

�les output in EmTeX and PostScript commands for the drivers generating Post-

Script output.

Selecting ways (1i) and (2), we have restricted opportunities for the picture creation,

(the small set of the primitives requires a great number of them for the picture creation,

that may result in TEX and printer memory over
ow), and in (1ii) and (3) we have the

compatibility problems.

For our implementation we chose the (3) level (\special commands usage) with

the postprocessing of .dvi �le.

In the low level of implementation the graphic command are represented in the form

\special{GR:commands}, where commands are one or more command of the special

language. Every command is represented by a character with some number arguments

following it. During interpretation there are the following work variables:

1

2 A.V. Astrelin

\Points": one may keep up to 215 � 1 points inside a page and use them for the

spline drawing;

\Drawings": there are registers numbered from �215 to 215 � 1, containing draw-

ings. Register 0 contains the current drawing and is an implicit argument in the most

commands.

There are two types of drawings: paths and areas. Initially every drawing is con-

structed as a path, i.e. set of splines. One may add a spline to the current path, transform

a path to an area by the draw command, that is to draw a path with the pen N, or im-

plicitly convert a set of closed paths to an area (like the METAFONT command fill

do).

The drawings in the registers with positive indices are �xed in the page: when we use

them as arguments of the command load or area commands (see below), they remain in

the same place of the page where they were drawn, and the registers with the negative

indices contain the replaceable drawings: the reference point where the save command

was executed is the base point of drawing, and if we restore it at a di�erent point, it

moves to a corresponding vector.

Below in the list of graphic commands:

e erase drawing 0;

g go to the reference point and use it as the start base point of the next spline;

c use the reference point as the control point of the current spline;

b use the reference point as the end base point of the current spline and as the start

base point of the next one;

tN assign the reference point coordinates to the point register N;

@N execute the following commands using the point N as reference point;

sN save the current drawing in the register N;

lN load the current drawing from the register N;

fN,a,b,c,d transform drawing with the matrix ((a/N b/N) (c/N d/N));

Path commands:

dN draw the current path with the pen from register N (N should be negative);

hN,N1,N2,... replace a path with a hatch; N1/N,N2/N,... are the parts of path length,

that are included/not included in the hatch;

HN1,N2,... replace a path with a hatch; N1,N2,... are the lengths (in sp) of path

segments that are included/not included in the hatch;

Area commands:

+N create an union of the current drawing and the drawing contained in the register N;

Graphics for TEX: a new implementation 3

*N create an intersection of the current drawing and the drawing contained in the reg-

ister N;

-N subtract the drawing contained in the register N from the current drawing;

output the drawing 0 to .dvi �le.

The .dvi �le with the commands mentioned above is processed by the special program

and post processor. As a result we get new .dvi �le in which all the graphic \special's

are removed and some commands \special{em:graph $$NNNN.pcx} are inserted. Also

some graphic �les are created.

The second level of the product is a set of TEX macros that may be used to place

the graphic \special's to the proper places of the page. They are written in the way

to reduce the .dvi �le (and TEX memory) size. There are also some macros for placing

TEX boxes into the drawings.

The third level is the library of graphic macros for users. Now it is not fully developed

and we shall not describe it.

In future we plan to use some alternative forms of the graphic output. Among them

are automatic generation of .pk fonts; and generation of PostScript output. Also there

are some ideas of replacing the \special's form of graphic information by the direct

output to the text �le for postprocessing, but in that way we shall lose the possibility of

usage of TEX-dependent points as spline base or control points, and there will be some

problems with graphic representation: if we include the graphic �le at some point, we

may lose top and left sides of picture and if we use characters of a font to be created,

we need multiple passes of composing.

TEX Plotter { a program for creating 2D and 3D pictures

A.S. Berdnikov and S.B. Turtia

Institute for Analytical Instrumentation

Rizskii pr. 26

198103 St.Petersburg

Russia

berd@ianin.spb.su, turtia@ianin.spb.su

Abstract

The MS DOS program which creates 2D and 3D TEX pictures for the plots of functions of

two variables f (x; y) is described. In comparison with GNUPLOT this program enables to plot

the equilines (2D view) and the surface (3D view) pictures correctly and without memory

over
ow even for complex cases. The input is the ASCII �le which contains the data points

(Xi j ; Yi j ; Zi j) of the function z = f (x; y) calculated over non-regular quadrangular mesh.

The output is the ASCII �le which contains the required picture in TEX format. The program

has a
exible menu driven user interface and enables to create and to preview the output

pictures with a variety of styles. At the time being the program supports LATEX commands,

EPIC/EEPIC macros and emTEX specials. In future the program should support TEX graphical

tools like MFPiC, PiCTEX and EPS-�les.

1 Introduction

The development of this program was induced by the fact that the well known program

GNUPLOT cannot draw properly the equilines for functions of two variables. For example,

Figure 1 demonstrates equilines of function

f (x; y) = x
2 + y

2 � cos(18x)� cos(18y)

created by GNUPLOT 3.5 for the region x 2 [�1;+1], y 2 [�1;+1]. As it can be seen

this picture is wrong: it does not re
ect the symmetry x ! y of the function. Figure 2

shows the plot of the function f (t) = t
2� cos(18t), and the correct plot of equilines is

shown on Figure 3.

There are also other drawbacks during the processing of 2D function with the help

of GNUPLOT: \out of memory" messages, no possibility to draw something over the plot

5

6 A.S. Berdnikov and S.B. Turtia

of equilines, no possibility to mark the points over the plot and to supply it with some

text, restricted set of line styles as compared with TEX/LATEX possibilities, etc. Since

our work is mostly related with calculation of electrostatic and magnetostatic �elds, the

equiline plots are the pictures which are indispensable. For this reason we decided to

develop our own program which creates the output 2D and 3D plots compatible with

TEX in the way we like (and without such errors as shown on Figure 1). The result is

the program TEX Plotter, the preliminary version of which is described here.

2 Principal algorithms

It seems that the decision done by the designers of GNUPLOT to calculate and to store

the whole equiline in advance results to most problems with 2D and 3D plots created by

this program. This approach enables to smooth and to process the whole equiline before

plotting, but simultaneously it results to memory problems and the errors like shown on

Figure 1.

We selected the di�erent approach which does not enable good smoothing of indi-

vidual equilines as well as correct plotting with dotted and dashed equilines, but which

causes no memory problems and conserves the symmetry of input data. Using this algo-

rithm the function values are calculated at the nodes of non-regular quadrangular mesh,

and the equilines inside each quadrangle are processed separately. Although the equi-

lines inside di�erent quadrangles are calculated independently, the pieces of equilines for

neighbouring quadrangles are connected smoothly if the approximation of the function

is smooth in the whole region.

Let us consider the quadrangular mesh which is characterized by the node co-

ordinates (xi j ; yi j), i = 1 : : : Nx , j = 1 : : : Ny . The neighbouring nodes (xi j ; yi j),

(xi+1;j ; yi+1;j), (xi ; j+1; yi ; j+1), (xi+1; j+1; yi+1; j+1) forms the quadrangular mesh cell, and

the value of the function z = f (x; y) at the node point (xi j ; yi j) is equal to zi j .

The coordinates (x; y) can be considered as the pair of parametric functions X(p; q),

Y (p; q), which transforms the rectangular region (p; q) into curvilinear region (X; Y) so

that the nodes (pi ; qj) of the rectangular mesh are transformed into the points (xi j ; yi j)

of the quadrangular mesh. Analogously the function z = f (x; y) is considered as the

parametric function z = Z(p; q) which has the value zi j for the point (pi ; qj).

The equilines are calculated separately inside each rectangular cell pi � p � pi+1,

qj � q � qj+1 which results to piecewise presentation of the equilines where the di�erent

pieces are not necessarily joined together. As it was already mentioned these pieces

are joined together after drawing, and the connection of equilines is continuous for

continuous functions X(p; q), Y (p; q) and Z(p; q), and is smooth for smooth functions

X(p; q), Y (p; q) and Z(p; q).

The continuous approximation can be constructed as the piecewise bilinear function,

and the smooth approximation can be constructed as the piecewise bicubic function

using well known numerical algorithms. It is essential that the approximation is local,

TEX Plotter { a program for creating 2D and 3D pictures 7

i.e., depends only on the function values at the mesh nodes next to the considered mesh

cell.

The input data for TEX PLOTTER is the ASCII data �le where each line contains

the values Xi j , Yi j and Zi j corresponding to quadrangular mesh used for plotting. In

most cases this quadrangular mesh is actually the rectangular one so that Xi j � Xi and

Yi j � Yj . The �rst lines of the input �le contain the information about the size of the

mesh Nx � Ny , and, may be, the parametrization (pi ; qj) which can be selected as the

uniform by default. The symbolic expressions for plotted functions are not supported: it is

assumed that the User can create small program using his favourite computer language

which produces the ASCII �le with the function data. Instead of it in future versions of

TEX PLOTTER more attention will be paid to �ltering, smoothing and �tting procedures.

3 Style options

The menu driven user interface enables to specify the input data �le as well as all the

parameters which de�ne the style of the output plot. It is possible to vary the position

and the size of the plot, the title and text captions and their position, font style and

size, numbering and drawing of the axis, etc. The preview menu item enables to see the

whole plot or its fragment using suitable magni�cation.

The output of TEX PLOTTER is the ASCII �le which describes the 2D or 3D plot

using TEX commands: LATEX \rule commands, or EPIC/EEPIC \drawline macros, or

emTEX specials \special{em:moveto} and \special{em:lineto}. It is expected that

in future the program will support the output which is compatible with such graphical

facilities as MFPiC, PiCTEX and Encapsulated PostScript �les.

The smoothness of the plot is de�ned by the bilinear or bicubic approximation of the

parametric functions X(p; q), Y (p; q) and Z(p; q) and by the number of subdivisions

used to calculate equilines. The plot range and the equiline levels can be selected auto-

matically by the program or can be de�ned by the User. The equilines corresponding to

di�erent levels can be drawn using various line thickness. Dotted and dashed lines are

not supported. Although it is possible to organize plotting so that the pieces of dashed

and dotted equilines are connected correctly, the present version of TEX PLOTTER does

not realize it.

The preview function draws the text strings with the characters scaled approximately

like the TEX text at the output plot. The preview function does not support math mode,

the character metric information and ligature/kerning data of the TEX fonts. In spite

of it the results are close to the real output especially as compared with the GNUPLOT

previewing.

It is possible to draw over the equiline plot the arbitrary geometrical objects, including

straight lines, circles and arcs, point markers and text strings. All such geometrical

objects are listed in a separate ASCII �le. The essential feature is that all these objects

use just the same coordinate system as the input data, and it is very easy to overlap the

8 A.S. Berdnikov and S.B. Turtia

-1

-0.5

0

0.5

1

-1 -0.5 0 0.5 1

Figure 1: Equilines for the function f (x; y) = x
2 + y

2� cos(18x)� cos(18y) in a region

x 2 [�1;+1], y 2 [�1;+1] as calculated by GNUPLOT 3.5.

equiline plot with external markers and drawings. The output TEX-�le contains comments

emphasizing the logical pieces of the plot so that the manual corrections of the picture

can be introduced if necessary.

4 Conclusion

The program TEX PLOTTER is written in Borland Pascal using the User's Window Tools

interface library. It works under MS DOS 3.3 and higher, does not require extended

memory and can be used even on 286 computers although 386/486/586 are preferable.

The program is distributed \as it is" in executable form without source code to eliminate

the problems with intermediate versions and mutant source codes. It is planned to

distribute the �nal version of the program with the source code, but the present version

is far from it. The suggestions, corrections and noticed errors are welcomed.

5 Acknowledgements

This research was partially supported by a grant from the Dutch Organization for

Scienti�c Research (NWO grant No 07-30-007).

TEX Plotter { a program for creating 2D and 3D pictures 9

-1

-0.5

0

0.5

1

1.5

2

-1 -0.5 0 0.5 1

t
2 � cos(18t)

Figure 2: Function f (t) = t
2 � cos(18t) in a region [�1;+1] (calculated by GNUPLOT

3.5).

�1:0 0:0 +1:0

�0:5 +0:5

�0:5

+0:5

�1:0

0:0

+1:0

Figure 3: Equilines for the function f (x; y) = x
2 + y

2� cos(18x)� cos(18y) in a region

x 2 [�1;+1], y 2 [�1;+1] (calculated by TEX PLOTTER.)

VFComb { a program for design of virtual fonts

A.S. Berdnikov and S.B. Turtia

Institute for Analytical Instrumentation

Rizskii pr. 26, 198103 St.Petersburg, Russia

berd@ianin.spb.su, turtia@ianin.spb.su

Abstract

The MS DOS program which enables to simplify the design of the virtual fonts is described.

Its main purpose was to facilitate the integration of CM-fonts with cyrillic LL-fonts created by

O. Lapko and S. Strelkov but it can be used for various applications. It uses the information

from TFM-�les (converted to ASCII form by TFtoPL) and the ASCII data �les created by the

User on its input, and produces the VPL-�le on its output which can be converted to the

virtual font using VPtoVF. The characteristic feature of the program is that it can assemble

the font ligature tables and user de�ned ligature tables for the characters extracted from

various fonts and combine the metric information from various TFM-�les. VFComb supports

the full syntaxis of PL-�les and VPL-�les as it was de�ned by D.E. Knuth and adds new

commands like symbolic variables or conditional operators, which simpli�es the creation and

the debugging of the virtual fonts.

1 Introduction

This work has been inspired by the CyrTUG project to create the new cyrillic version of

TEX format �les with the cyrillic fonts which are more close to the standards used in FSU

than that created at Washington University (WN-family of cyrillic fonts). According to

recommendations by D.E. Knuth [1] and following the experience of the other national

TUGs the mechanism of the virtual fonts1 has been selected as the base tool to add

new (cyrillic) characters to already existing CM-fonts.

Unfortunately the software which was at CyrTUG's disposal at this moment was not

well suited for this purpose. For the �rst version of new fonts the VF-�les have been

produced by the utility TFMerge 2.4 (IHEP TEXware, Protvino) with subsequent manual

corrections, and the TFM-�les have been produced by the separate METAFONT session

1. It is assumed below that you are familiar with the mechanism of the virtual fonts and with the paper [1].

If it is not so, it is highly recommended to read it before you proceed further.

11

12 A.S. Berdnikov and S.B. Turtia

which actually creates the real font containing both CM and LL characters [2]. The full

process was time consuming and not e�ective.

The program VFComb described here has been designed to facilitate the process of

combining real fonts into the virtual font and to make the iterations on creation and

debugging of the �nal font more simple and less time consuming. The main points are:

� to get the metric information and the original ligature tables from the text VPL-�les

converted from the binary TFM-�les by TFtoPL utility;

� to add the user de�ned information which describes the relation between the char-

acters from the �rtual font and the characters from the real fonts;

� to add the user de�ned ligature tables which describe the ligature and kerning data

for the pairs of characters corresponding to di�erent real fonts;

� to create the VPL-�le which combines all these data;

� to convert the ASCII VPL-�le to the binary TFM-�le and VF-�le which forms the

virtual font data.

The most of steps are performed automatically, and data �les prepared by the User have

exible syntaxis so that just the same input �les can be used to create full generic family

of fonts rather than one single font.

2 Input and output data

The following input data must be supplied:

� the name of the virtual font (actually the name of the output VPL-�le);

� the header data which is speci�ed at the beginning of the virtual font;

� the assignment (if necessary) the numerical values to symbolic variables used in

speci�cation of other user de�ned data;

� the table(s) for mapping the characters of the real fonts into the characters of the

virtual font;

� the additional ligature table(s) (if present) which contain the ligature and kerning

information for the pairs of characters corresponding to di�erent real fonts;

� the metric information, ligature and kerning tables, etc., for the characters of the

real fonts;

� the options which control the process of creation of the virtual font.

The output of the program is the VPL-�le which contains all information necessary to

create the virtual font using the utility VPtoVF and the LOG-�le which summarizes all

printed messages and all operations performed by VFComb.

The output result depends on the mode of operation of the program. The mode is

de�ned by the special OPTION data speci�ed in input �les. The most important options

are connected with the algorithms of processing of ligature and kerning tables. the

following options are available:

� to discard the ligature tables of the real fonts;

� to include in the virtual font the ligature tables of the real fonts;

VFComb { a program for design of virtual fonts 13

� to include in the virtual font only those characters which are declared explicitly in

user de�ned data, and discard the elements of the ligature tables which correspond

to non-included characters of the real font;

� to add to the virtual fonts new characters not described in user de�ned data if

these characters are described in ligature tables for already included characters, or

they are connected in one chain with already included characters using speci�cations

NEXTLARGER and VARCHAR.

These modes can be declared both as the global modes and as the modes for the

particular real font.

All the �les are the ordinary ASCII �les which enables to control and to correct the

operations performed by VFComb manually. To get the text �les which describes the

real fonts it is necessary to convert the corresponding binary TFM-�les to ASCII form

using the utility TFtoPL. The other way is to prepare these text �les by hand following

[1]. In this case it is possible that actually there is no real font corresponding to that

used in virtual font. Although this situation looks strange, it enables to use the recursive

tricks described in [1] where one virtual character refers to another virtual character of

the same virtual font or of the other virtual font.

3 Mapping table and other user de�ned data

The �les which contain the user de�ned data are speci�ed in the command line using the

parameter /t:�lename when VFComb starts. It is possible to specify several data �les

using several parameters /t { in this case the data �les are read one after another. It is

also possible that the data �le contains the explicit command to read another data �le

(like \input in TEX or METAFONT. The data �les can be placed in the current directory,

or can be speci�ed using the full path name, or can be searched implicitly in one of the

directories speci�ed for VFComb as the source for missing data.

The user de�ned �les can contain the following information:

� (COMMENT ...) { comment part which is skipped.

� (VARIABLE ...) { de�nes the symbolic names with some numerical values which

are used later in user data speci�cations.

� (OPTION ...) { speci�es various modes of combining real fonts into the virtual

font.

� (CHARACTER ...) { the description of the virtual font characters. These tables

can refer on the character from some real font or describe the sequence of DVI-

commands corresponding to virtual font character.

� (LIGTABLE ...) { de�nes the additional ligature and kerning data which is included

into virtual font. These tables are prepared following the syntaxis of PL and VPL-�les

described in [1].

� (DISCARD ...) { describes the characters from the real fonts which are not included

in the virtual font at any case.

14 A.S. Berdnikov and S.B. Turtia

� (MAPFONT ...) { de�nes the mode of operation with particular real font.

The following examples give the illustration of some possibilities:

� CHARACTER H 0F (SELECTFONT D 0)(SETCHAR O 37)) { the character hex(0F)

of the virtual font is mapped to the character oct(037) of the real font with index 0

(the relation between the names and the indices of the real fonts is described later).

� CHARACTER O 40 (SELECTFONT D 3)(SETCHAR C w)(DVI ...)) { the character

oct(040) of the virtual font is mapped to the sequence of DVI-commands, but its

size parameters are equivalent to that of the character \w" of the real font with the

index 3.

� (CHARACTER D 128 (DISCARD)) { the character 128 in the virtual font is not used

and moreover, VFComb cannot use this character code when it adds to the virtual

font new characters not described explicitly in user de�ned data.

� (OPTION (INCLUDELIG)){ include in the virtual font the characters of the real fonts

if these characters are encountered in the ligature table for some already included

character or if they are connected in one chain with already included characters using

speci�cations NEXTLARGER and VARCHAR.

� (DISCARD (SELECTFONT D 0)(SETCHAR D 7)) { do not include in the virtual font

the character 7 from the real font 0 even when it is encountered in the ligature table

of some already included character.

� (MAPFONT D 2 (NOINCLUDE)) { do not include in the virtual font the characters of

the real font 2 if these characters are not described explicitly in user de�ned data.

� (MAPFONT D 1 (7BIT)) { include in the virtual font all the characters 0{127 of the

real font with index 1 assigning them just the same codes in the virtual font if the

di�erent mapping is not described explicitly in user de�ned data.

Formally there is no distinction between the �le with the mapping table and the �le with

the ligature and kerning data, and all data can be speci�ed as one continuous stream.

It is better to keep di�erent data blocks in di�erent �les so that the same �le can be

used to create various virtual fonts like it is done with METAFONT source �les.

4 Speci�cation of the real fonts

The real fonts which are used to create the virtual font are speci�ed in the mapping table

and user de�ned ligature tables using symbolic numbers. The relation of the symbolic

number and the real font name is performed in the command line when VFComb starts.

Each font is speci�ed using the separate parameter /f:�lename The �rst parameter

/f corresponds to zero real font, the second parameter /f corresponds to the �rst real

font, etc. The number of real fonts speci�ed in the command line is to be not less than

the number of font indices used in the mapping table.

Each speci�cation of the font name /f causes the program to search for the corre-

sponding PL-�le (the ASCII �le converted from TFM-�le using the utility TFtoPL) and

to load the font metric and ligature information containing in it. The font name inserted

VFComb { a program for design of virtual fonts 15

in virtual font speci�cation is the name of the �le minus the extension and the path

information.

It is a rare chance that it is necessary to modify the original font information { in most

cases it is used \as it is". Nevertheless to get full compatibility with the syntaxis of VPL-

�les [1] the font can be followed by the parameter /a which speci�es its magni�cation

(it corresponds to the parameter FONTAT in VPL-�le) and by the parameter /d which

speci�es the explicit search directory (it corresponds to the parameter FONTAREA in

VPL-�le). The details can be found in VFComb manual and in [1].

5 The header of the virtual font

The header of each TEX font (i.e., the header of corresponding TFM-�le) contains the

following parameters [1]:

HEADER, CHECKSUM, SEVENBITSAFEFLAG, DESIGNSIZE,

DESIGNUNITS, CODINGSCHEME, FAMILY, FACE,

FONTDIMEN and its sub-parameters (SLANT, SPACE, QUAD, etc.).

By default all header parameters of the virtual font except the parameters CHECKSUM,

SEVENBITSAFEFLAG, HEADER and FONTDIMEN/PARAMETER are copied from the header

of the �rst real font. The User can change the index of the real font used for this

purpose and/or specify new header parameters which are read from the external �le

using standard syntaxis of PL-�les. The parameters SEVENBITSAFEFLAG, HEADER and

FONTDIMEN/PARAMETER are always ignored with corresponding warning messages. The

interpretation of the parameters DESIGNSIZE and DESIGNUNITS is more complex and is

described in VFComb manual (fortunately in most cases these header parameters are

not modi�ed). All the other header parameters except CHECKSUM are copied directly to

the header of the virtual font.

The parameter CHECKSUM is treated separately: it is ignored when read from the

header of the real font, and it is inserted in the header of the output VPL-�le when read

from additional header �le. Generally there is no reason to specify the value CHECKSUM

explicitly because by default it is calculated automatically when converting VPL-�le to

VF-�le and TFM-�le. In most cases the CHECKSUM value speci�ed by the User is wrong

which causes the warning messages of DVI-drivers when the virtual font is used. The

exception is the explicit speci�cation of zero value by (CHECKSUM D 0) which switches

o� the check of the control sum value at all (the latter operation is potentially dangerous

because the incorrect or damaged TFM-�le of the virtual font cannot be eliminated).

6 Additional features

Some extensions of the syntaxis of PL and VPL-�les are introduced to make the process

of preparing the user de�ned data more simple, namely:

16 A.S. Berdnikov and S.B. Turtia

� symbolic names for numerical constants (operator VARIABLE);

� dynamic loading of new data �les (operator LOAD);

� binary data \B binconst" and symbolic values \V varname" which substitute nu-

merical constants like \D dec-value", \H hex-value, \O oct-value", etc., in PL-�les

and VPL-�les and user de�ned data;

� pseudo-arithmetic expressions which substitute numerical constants in PL-�les and

VPL-�les and user de�ned data;

� conditional operators IF-THEN-ELSE which enable to include or to skip some portion

of the data stream depending on some conditions;

� operator (END) which stops the processing of the current data stream before end-

of-�le is encountered.

The following example shows how the value of the variable CODE de�nes which value is

assigned to the variable DIMCH and what external data �le is loaded:

(IF-EQ V CODE D 0)

\qquad (VARIABLE (REAL DIMCH R 0.31415))

\qquad (LOAD NEWTABLE.TBF)

(ELSE)

\qquad (VARIABLE (REAL DIMCH R 2.7182))

\qquad (LOAD OLDTABLE.TBF)

(ENDIF)

The �rst operator (IF-EQ V CODE D 0) performs the comparison of two numerical

values: \V CODE" and \D 0". The �rst value is the value of the symbolic variable CODE,

and the second value is the decimal integer 0. Depending on the result of comparison

the real value 0.31415 or 2.7182 is assigned to the real variable DIMCH, and one of two

�les newtable.tbf or oldtable.tbf is loaded like their contents is typed at this place.

7 Conclusion

The program VFComb is written in Borland Pascal and is distributed \as it is" together

with the source code and LATEX manual. The program as well as the manual is far from

perfect state, and all suggestions about corrections and noticed errors are welcomed.

8 Acknowledgements

This research was partially supported by a grant from the Dutch Organization for

Scienti�c Research (NWO grant No 07-30-007).

References

[1] D. Knuth. Virtual fonts: More fun for grand wizards. TUGBoat, 11.1:13{23, 1993.

[2] O. Lapko and S. Strelkov. MAKEFONT as a part of CyrTUG-emTEX package.

The status of Babel

Johannes L. Braams

j.l.braams@research.ptt.nl

1 Introduction

In this article I will give an overview of what has happened to babel lately. First I will

brie
y describe the history of babel; then I will introduce the concept of `shorthands'.

New ways of changing the `language' have been introduced and babel can now easily be

adapted for local needs. Finally I will discuss some compatibility issues.

The status of babel Overview

1. Introduction

2. Shorthands

3. Switching the language

4. Adapting babel for local usage

5. Loading hyphenation patterns

6. Compatibility

September 1995 JLB 2

2 A brief history of Babel

The �rst ideas of developing a set of macros to support typesetting documents with TEX

in languages other than English developed around the time of the EuroTEX conference in

Karlsruhe (1989). Back then I had created support for typesetting in Dutch by stealing

german.tex (by Hubert Partl c.s.) and modifying it for Dutch conventions. This worked,

but I was not completely satis�ed as I hate the duplication of code. Soon after that I

found that more `copies' of german.tex existed to support other languages. This led

17

18 Johannes L. Braams

me to the idea of creating a package that combined these kind of language support

packages. It would have to consist of at least two `layers': all the code the various copies

of german.tex had in common in one place, loaded only once by TEX, and a set of

�les with the code needed to support language speci�c needs. During the Karlsruhe

conference the name `babel' came up in discussions I had. It seemed an appropriate

name and I sticked to it.

The status of babel A brief history of babel

� First ideas at EuroTEX'89 Karlsruhe

� First published in TUGboat 12{2

� Update article in TUGboat 14{1

� Presentation of new release at EuroTEX'95

September 1995 JLB 3

After the conference I started to work on \babel, a multilingual style-option system

for use with LATEX' standard document styles". The �rst release with support for about

half a dozen languages appeared in the �rst half of 1990. In TUGboat volume 12 num-

ber 2 an article appeared describing babel. Soon thereafter people started contributing

translations for the `standard terms' for languages not yet present in babel. The next

big update appeared in 1992, accompanied by an article in TUGboat volume 14 number

1. The main new features were that an interface was added to `push' and `pop' macro

de�nitions and values of registers. Also some code was moved from language �les to the

core of babel. In 1994 some changes were needed to get babel to work with LATEX2".

As it turned out a lot of problems were still unsolved, amongst which the incompatibility

between babel and the use of T1 encoded fonts was most important.

Therefore babel version 3.5 has appeared. It's mean features are:

The status of babel New features of babel 3.5

� complete rewrite of the way active characters are dealt with;

� new ways to switch the language;

� A language switch is also written to the .aux �le;

� possibility to `con�gure' the language speci�c �les;

September 1995 JLB 3

These changes are described in the remainder of this article.

The status of Babel 19

The status of babel New features of babel 3.5

� extended syntax of language.dat;

� compatibility with both the inputenc and fontenc packages;

� new languages (breton, estonian, irish, scottish, lower and upper sorbian).

September 1995 JLB 5

3 Shorthands and active characters

During babel's lifetime the number of languages for which one or more characters were

made active has grown. Until babel release 3.4 this needed a lot of duplication of code

for each extra active character. A situation with which I obviously was not very happy

as I hate the duplication of code. Another problematic aspect of the way babel dealt

with active characters was the way babel made it possible to still use them in the

arguments of cross referencing commands. Babel did this with a trick that involves the

use of \meaning. This resulted in the fact that the argument of \label was no longer

expanded by TEX.

The status of babel Problems with active Characters

� duplication of code

� arguments of cross referencing macros were no longer expanded

September 1995 JLB 6

Because of these problems I set out to �nd a di�erent implementation of active

characters. A starting point was that a character that is made active should remain active

for the rest of the document; only it's de�nition should change. During the development

of this new implementation it was suggested in discussions I had within the LATEX3 team

to devise a way to have `di�erent kinds' of active characters. Out of this discussion came

the current `shorthands'.

The status of babel Shorthands

Shorthands

A shorthand is a sequence of one or two characters that expands to arbitrary TEX

code.

September 1995 JLB 7

20 Johannes L. Braams

These shorthands are implemented in such a way that there are three levels of

shorthands:

The status of babel Level of Shorthands

� user level

� language level

� system level

September 1995 JLB 8

Shorthands can be used for di�erent kinds of things as can be seen from the following

list:

The status of babel Examples of Shorthands

� the character ~ is rede�ned by babel as a one character, system level shorthand;

� In some languages shorthands such as "a are de�ned to be able to hyphenate the

word;

� In some languages shorthands such as ! are used to insert the right amount of white

space.

September 1995 JLB 9

When you want to use or de�ne shorthands you should keep the following in mind:

The status of babel Dealing with shorthands

� User level takes precedence over language level;

� Language level takes precedence over system level;

� One character shorthands take precedence over two character shorthands;

� Shorthands are written unexpanded to .aux �les.

September 1995 JLB 10

In the following table an overview is given of the various shorthand characters that

are used for di�erent languages.

The status of Babel 21

The status of babel Overview of shorthands

~ system, catalan, estonian, galician, spanish

: breton, francais, turkish

; breton, francais

! breton, francais, turkish

? breton, francais

" catalan, danish, dutch, estonian, �nnish, galician

german, polish, portuguese, slovene, spanish

upper sorbian

` catalan (optional)

' catalan, galician, spanish (optional)

^ esperanto

= turkish

September 1995 JLB 11

Note that the acute and grave characters are only used as shorthand characters

when the options activeacute and activegrave are used.

The status of babel User level interface

� nuseshorthands

� ndefineshorthand

� nlanguageshorthands

September 1995 JLB 12

On the user level three additional commands are available to deal with shorthands,

they are listed in slide 12. The command \useshorthands takes one argument, the char-

acter that should become a shorthand character. The command \defineshorthands

takes two arguments, the �rst argument being the shorthand character sequence, the

second argument being the code the shorthand should expand to.

Finally, the command \languageshorthands (which takes one argument, the name

of a language) can be used to switch to the shorthands of another language, not switch-

ing other language facilities. Of course this only works if both languages were speci�ed

as an option when loading the package babel.

22 Johannes L. Braams

The status of babel low level interface

� ninitiate@active@char

� nbbl@activate

� nbbl@deactivate

� ndeclare@shorthand

September 1995 JLB 13

In slide 13 the low level commands to deal with shorthands are shown. The com-

mand \initiate@active@char is used to tell LATEX that the character in its argument

is going to be used as a shorthand character. It makes the character active, but lets

it expand to its non-active self. This is changed by \bbl@activate and reset by

\bbl@deactivate. The command \declare@shorthand is the internal command for

(and also used by) \defineshorthand; it has three arguments: the �rst argument is

the name of the language for which to de�ne the shorthands, the other two are the

same as for \defineshorthand.

One of the goals of the introduction of shorthands was to reduce the amount of

code needed in the language de�nition �les to support active characters. This goal has

been reached; when a language needs the double quote character (") to be active all one

has to put into the language de�nition �le are code fragments such as in the following

slide:

The status of babel De�ning a language shorthand

\initiate@active@char{"}

\addto\extrasdutch{%

\languageshorthands{dutch}%

\bbl@activate{"}}

...

\declare@shorthand{dutch}{"`}{%

\textormath{\quotedblbase{}}%

{\mbox{\quotedblbase}}}

...

September 1995 JLB 14

Apart from removing a lot of code from language de�nition �les by introducing

shorthands, some other code has been moved to babel.def as well. In some language

The status of Babel 23

de�nition �les it was necessary to provide access to glyphs that are not normally easily

available (such as the \quotedblbase in the example in slide 14). Some of these glyphs

have to be `constructed' for OT1 encoding while they are present in T1 encoded fonts.

Having all such (encoding dependent) code together in one place has the advantage

these glyphs are the same for all the language de�nition �les of babel; also maintenance

is easier this way.

4 Switching the language

Until release 3.5 babel only had one command to switch from one language to another:

\selectlanguage. It takes the name of the language to switch to as an argument; the

command is used as a declaration and always switches everything.1 Two new ways to

switch to another language have now been introduced.

The status of babel Switching the language

� nselectlanguage

� nforeignlanguage

� environment `otherlanguage'

September 1995 JLB 15

The command \foreignlanguage is meant to be used when a short piece of text

(such as a quote) comes from another language. This text should not be longer than

one paragraph. For the text the hyphenation patterns and the specials are switched.

The command has two arguments: the name of the language and the text from that

language.

The environment otherlanguage switches the same aspects as \selectlanguage

does. The di�erence is that the switches are local to the environment whereas one

either has to use \selectlanguage in a group to get the same e�ect or one has to

issue multiple \selectlanguage commands. Also the environment is one of the things

needed to enable the development of language de�nition �les that support right-to-left

typesetting.

An aspect of some multilingual documents might be that they have section titles or

�gure captions in di�erent languages. For this to work properly babel now writes some

information on the .aux �le when a language switch from either \selectlanguage or

the otherlanguage environment occurs. Babel knows about the .toc, .lof and .lot

�les; if you have added an extra table of contents you should be aware of this.

1. that means the hyphenation pattern, the nlefthyphenmin and nrighthyphenmin parameters, the

translations of the words, the date and the specials

24 Johannes L. Braams

The status of babel .aux �le handling

Babel writes a language switch command to the .aux �le and the standard table of

contents/tables/�gures �les

September 1995 JLB 14

5 Adapting Babel for local usage

In the past people have had to �nd ways to adapt babel to document classes that have

been developed locally (implementing house style for instance). Some have found ways

to that without changing any of the babel �les, others have modi�ed language de�nition

�les and have found themselves having to make these changes each time a new release

of babel is made available.2 It has been suggested to provide an easier way of doing this.

Therefore I have copied the concept of con�guration �les from LATEX2" and introduced

language con�guration �les. For each language de�nition �le that is loaded LATEX will

try to �nd a con�guration �le. Such �les have the same name as the language de�nition

�le; except for their extension which has to be .cfg.

The status of babel Con�guring babel

� LATEX looks for a .cfg �le for each language de�nition �le loaded;

� the .cfg �le is loaded at the end of the language de�nition �le.

September 1995 JLB 17

6 Loading hyphenation patterns

An important change to the core of babel is that the syntax of language.dat has been

extended. This was suggested by Bernard Gaulle, author of the package french. His

package supports an enhanced language.dat in which one can optionally indicate that

a �le with a list of hyphenation exceptions has to be loaded. It is also possible to have

more than one name for the same hyphenation pattern register.

2. which doesn't happen too often ;-).

The status of Babel 25

The status of babel Enhanced language.dat syntax

% File : language.dat

% Purpose : specify which hyphenation patterns

% to load while running iniTeX

=american

english hyphen.english exceptions.english

=USenglish

french fr8hyph.tex

english ukhyphen.tex

=UKenglish

=british

dutch hyphen.dutch

german hyphen.german

September 1995 JLB 15

As you can see in slide 15, which presents an example of a language.dat, an equals

sign (=) on the beginning of a line now has a signi�cant meaning. It tells LATEX that

the name which follows the equals sign is to be an alternate name for the hyphenation

patterns that were loaded last. As you probably expect, there is one exception to this

rule: when the �rst (non-comment) line starts with an equals sign it will be an alternate

name for the next hyphenation patterns that will be loaded. Hence, in the example

the hyphenation patterns stored in the �le hyphen.english will be known to TEX as:

`american', `english' and `USenglish'. You can also see in slide 15 that for `english' an

extra �le is speci�ed. It will be loaded after hyphen.english and should contain some

hyphenation exceptions.

7 Compatibility with other formats

This new release of babel has been tested with LATEX2"; with and without either of the

packages inputenc or fontenc. There should no longer be any problems using one (or

both) of these packages together with babel.

This release has also been tested with PLAIN TEX, it should not provide any problems

when used with that format. Therefore babel version 3.5 should not pose any problems

when used with any format which is based on PLAIN TEX; this has not been tested by

me though. Some provisions are made to make babel 3.5 work with LATEX 2.09; but not

all features may work as expected as I haven't tested this fully.

26 Johannes L. Braams

The status of babel Compatibility

� tested with LATEX2" and inputenc/fontenc

� tested with Plain TEX

� not tested with LATEX 2.09

September 1995 JLB 16

Please note that although it was necessary to copy parts of inputenc and fontenc

this does not mean that you get T1 support in PLAIN TEX, simply by adding babel. To

achieve that much more work is needed.

Upages { plain TEX for professionals

Stanislav Brabec

Vy�sehradsk�a 27

Praha 2 { Nov�e M�esto (Prague)
�Cesk�a republika

utx@k332.feld.cvut.cz

Abstract

When I have started my professional typography works in plain TEX, I found many things,

which are done in each document. Some of them are language speci�c or trivial, but there

exists many topics, which are strongly untrivial, and often required. TEX has many limitation,

but there is (in recent time) nothing better in whole the world. Thus, we have powerful

macro language but we haven't easy way to do many things: references, contents, page

o�setting, interpretation of text token by token, cooperation with PostScript devices, device

independent color and line drawing capabilities, easy box rotation and landscaping, making

sheets and booklets, making other margins than 1 in, creating cropmarks, color signatures,

color separations etc.

Certainly, there is many powerful macro systems, but they are very big, often slow, and cancels

many capabilities of plain TEX. I has been particularly inspired by them, and particularly by

some macros for plain TEX. But many of these macros are incompatible, if you want to use

two of them, because one overwrites settings of the second.

This all is good reason to write powerful macros these things instead of creating trivial macros

twice a month. Then you needn't spend much time to correct bugs caused by these trivial

macros. That's why I have written my upages.tex macros. This chapter doesn't want to

be a manual to these macros, but only an introduction with examples.

upages.tex macros consists on more parts. In this text I will describe the most powerful

and interesting parts of them. I hope that my macros will greet many plain TEXists. They

makes easy to prepare documents and to make hooks and patches.

1 Programmer structures

As I noted above, many macros are incompatible. The reason is simple: two macros

rede�ning the same macro or variable often causes malfunctions. Programmer structures

27

28 Stanislav Brabec

gives you very neat and safe way to write such macros. For example, if you want to

change your output routine to make at time landscape and mirror, it can be done easy

by macro \redef. These structures helps to you in creating safe macros.

TEX is a macro language. To simplify many macros, it is often useful to have some

programmer structures: stack, safe way to rede�ne some macros, tokens etc. upages

brings you many macros for those rules. Some of them allow you to rede�ne \par,

other to add and remove some tokens in \everypar, other push something to stack

and return it back etc.

Another topic are macros called only in a special cases. upages brings new way to

include these macros (mechanism is particularly similar to Pascal's forward) when they

are required. It can save much memory.

These macros are simple for use, as shows following examples.

% Example of upages macro for internal definition with `@'.

% Internal definitions ends by \pull.

\def\internals{\pushedthe\catcode`\@=\letter}

% Save current font, then select other and return preceding.

\pushthefont \it text \pull

% Save current color, then type in red, then restore it.

\puththecolor \Red text \pull

% Add something to macro, then remove it (nesting required).

\redef\par\oldpar{(Here ends paragraph.)\oldpar}

...\par \restoredef\par\oldpar

% Add something to \everypar, then remove it (nesting not required).

\addtoks\everypar\oldeverypar{(Here starts paragraph.)\oldeverypar}

...\par \restoretoks\everypar\oldeverypar

% Permanently add contents of \toks0 to everyjob.

\etotokse\everyjob{\the\toks0}

% Number pushing. This is only naughty example of these macros.

Next page is \#\pushthe\pageno\incr\pageno\number\pageno\pull.

% Preliminary definition of macro \hebtext#1 in file hebrew

\friend\hebtext#1{}{hebrew}

These macros have many variations for di�erent objects and types of requirements.

No example above is using grouping. But end of group properly returns original meanings

and cancels new stack items.

2 New output routines and device dependent setup

Classic \plainoutput performs easy output of single pages with margins 1 in. Man

wants to typeset more general documents with di�erent paper sizes and margins. Also

output devices are not absolutely the same and often prints with di�erent o�sets, and

Upages { plain tex for professionals 29

paper which we are using often has other dimensions than �nal book size. And, �nally

we are preparing documents with previewer, then we prints it on our printers, and �nal

result is printed as mirror output on transparent materials or �lms. All these devices have

di�erent reference point, device size etc. Certainly, in most cases you can change o�sets

in command line, but this requires to know values for each document. If you want to

create a booklet with new size, you must take a calculator and make some preprints, until

you have correct position. But this all can do TEX. You indeed looses device independence

of dvi �le, but it isn't interesting to you when printing the document on your (oneness)

printer is required. You can be happy, when you will send your �le to the printer, and the

document is exactly positioned without any proofs.

These macros gives you such possibilities. You only need one test to set reference

point once forever for each output device or driver. You will do simple test, then set

device preferences, and after setup you are ready.

Other part of these macros works with paper formats. Now you needn't any calcu-

lator to compute correct margins. You can easy set them! You needn't to remember

paper formats { TEX does it for you.

Following example shows you the mechanism of usage of these drivers.

Example of setup �les:

% Offset driver example.

\def\@myhpljv{%

\comment={Driver prints A4 with certain HP LJ5.}%

\devheight=297mm

\devwidth=210mm

\devhoffset=24,2mm

\devvoffset=26,0mm}

% Special driver example. (particular)

\def\@dvips{%

\def\beg@rotate#1{\rotstart{#1 rotate}}%

\def\beg@trnleft{\rotstart{270 rotate}}%

\let\end@rotate\rotfinish%

\let\end@flip\rotfinish%

\def\beg@flip{\rotstart{-1 1 scale}}%

etc...

% Example of mode definitions.

% \newmode{special driver}{offset driver}{preferences}

\newmode\preview{PasTeX}{}{}

\newmode\preprint{dvips}{myhpljv}{\pageinfo\turnmarks}

\newmode\film{dvips}{Linotype}{\mirroroutput\cropmarks\cutmarks

\pageinfo\colorsamples\CMYKseparation}

30 Stanislav Brabec

% Example of paper size driver.

\def\USLetter{%

\totalwidth=8.5in

\totalheight=11in

\usedriver{USLetter}}

Following example shows, how easy is document setup:

\mode\preview % or \mode\preprint \mode\film etc.

\inmargin=14mm

\outmargin=17mm

\topmargin=15mm

\botmargin=21mm \withoutfootline

\doubleside

\booklet

\DIN A6

. . . and you will be sure to obtain what you want on all devices. No calculations, no

proof prints. Described commands also rounds number of pages to be dividable by four

to allow create a booklet. For such things you have there powerful mechanism of vacate

pages generating.

3 Referencing system

References are common problem of TEX. Expansion method causes a lot of troubles

with making them. Typical problem is references to pictures with picture number in

\inserts. All simple methods can fail. You will need immediately expand number of

picture, \~" mustn't be expanded at all, and, �nally \folio needs to be expanded in

time of \shipout. Thus I have suggested macros expanding tokens just in described

order. These reference macros are based on powerful \interpretation" macros described

below. These macros gives you chance to make easy references. Also \back references"

are supported.

Example of reference macros:

\def\chapter#1{\incr\chapno\centerline{\bf#1}%

\totoc{\number\chapno: #1 .. \folio\par}}

This macro can be used simply as showed:

\chapter{Contents}

\inserttoc % inserts table of contents

\begintoc % starts writing of contents

\chapter{Introduction}

Upages { plain tex for professionals 31

If you don't want to have chapter \0: Contents" in contents, you can simply use

macros \suspendtoc and \restoretoc.

But this is not the only you can do: Command \newref generates reference macros

for any �le you want. It can be a list of images, index, cross references etc.

4 Interpretation macros

These macros are most powerful, di�cult, mysterious and dirty2 macros. They are true

combination of most dirty tricks in the TEXbook! They takes token by token and oper-

ates with them. In these macros you are de�ning \processor", \eaters", \rollers" and

\terminal". This macros allow you to write simply such macros as spaced text, making

small letters to small caps, special expansions (see references), superprotection macros,

macros for reverse order typesetting or anything other what you want. Such typesetting is

many times slower than regular TEX typesetting, but makes possible many things. There

are many types of macros: \everytoken, \everyetoken, \everyatom, \everygeatom

etc. Di�erences between them are in interpretation of begin and end group characters

and way to get tokens and expand them. Although these macros are versatile, it is not

simple to write such interpreters: You must know way of \if conditions expansion, group

counting etc. But it is a chance for you.

If you sometimes wanted to type something in hebrew, you certainly found, how dif-

�cult it is without xet. In following example you can see, how easy it is with interpreters.

Macro for such things is trivial! Watch the following:

\newtoks\revtoks

\def\revorder{\revtoks={}%

\everyxeatom{\totoksb\revtoks{##1}}{\the\revtoks}}

{This is in normal order \revorder and this is in reverse order.}

That's all folks!

5 Footnotes

As noted above, upages has quite new output module. In this case it is easy to improve

footnote style to make easy to change it (in plain TEX it is a rule for wizards). You are

only changing \footchar, \footdenotator, \footnotestyle, \endfootnotestyle,

\footstrutbox, and fonts (\footnotefont, \footidentfont and \footdenotfont).

Following example shows, how to de�ne footnotes:

\font\footnotefont=helv at 8pt

\footidentfont=helv at 7pt \let\footdenotfont=\footidentfont

\note{This is numbered note.}

32 Stanislav Brabec

In complex you can change footnote baselines, styles, denotation and identi�er

positioning.

6 Miscellaneous

This part will show you other macros from upages. upages contains many macros for

easy work:

� \reparfill improves \parfillskip to prevent last line in paragraph from un-

wanted design.

� \raggedleft, \raggedright, \raggedcenter, \raggedrldiag etc. for di�erent

paragraph shapes.

� \farnoindent system for cases as \farnoindent\medskip, which allows

\removelastskip.

� \,, \>, \;, \! makes to be de�ned outside math.

� \inxy and \inyx etc. to de�ne transponable macros with \xbox and \ybox.

� \framebox, \rectangle etc. for drawing boxes.

� \spaced etc. for typing spaced text (using interpreters).

� \hatebreak and other penalization.

� \setfont for rarely used fonts.

� \gridoriented and whole mechanism to make grid oriented typesetting and round-

ing easier.

7 Device dependent functions and PostScript

To prevent changes in documents, this system suggest a set of independent macros to

work with graphics, images, color etc. There is many programs, many device dependent

\special commands. Good interface will prevent troubles and makes TEX source code

as portable as possible. I'm not only, who suggests such interface. New LATEX3 will have

such interface, macro package PSTricks has it's own. I hope that in nearest time will be

ready single versatile special driver for all those systems, including all required functions

(or warning messages). This part of upages is in my recent development. Following

examples will work (I hope) with upages v 2:

\linestyle{1pt}{\Black\fullline}

\fillstyle{\Red}

\ellipse{1cm}{3cm}{40}

\bitmappicture{mypic}

\rotated{30}\flipped\bgcolor\hbox{\Blue{Hallo}}

\setglobal{\mirror}

Upages { plain tex for professionals 33

8 Future

Professional can want output with sheets containing 2, 4 or 8 pages, �lm saving

mode canceling exposition of empty pages etc. Certainly, special commands for pro-

fessional work with color would be welcome. (How perfect would be commands such as:

\screenangles, \CMYKseparation, \undercolorremoval etc.!) But this is in recent

time future. The whole purpose of this work is to get power to create books with color

pictures in TEX.

My �nal destination is:

Typographer! TEX ! dvips ! exposition unit

Is there any reason to use suspicious programs, when we have TEX?

A practical introduction to SGML

Michel Goossens and Janne Saarela

CERN, CN Division

CH-1211 Geneva 23

Switzerland

goossens@cern.ch, saarela@cern.ch

Abstract

SGML, the Standard Generalized Markup Language, deals with the structural markup of elec-

tronic documents. It was made an international standard by ISO in October 1986. SGML

soon became very popular thanks in particular to its enthusiastic acceptance in the editing

world, by large multi-national companies, governmental organizations, and, more recently, by

the ubiquity of HTML, HyperText Markup Language, the source language of structured docu-

ments on WWW. This article discusses the basic ideas of SGML and looks at a few interesting

tools. It should provide the reader with a better understanding of the latest developments in

the �eld of electronic documents in general, and of SGML/HTML in particular.

1 Why SGML?

Since the late eighties we have witnessed an ever quickening transition from book pub-

lishing exclusively on paper to various forms of electronic media. This evolution is merely

a re
ection of the fact that the computer and electronics have made inroads into almost

every facet of human activity. In a world in which one has to deal with an ever-increasing

amount of data is support of the computer is a particularly welcome alternative, for the

preparation of telephone directories, dictionaries, or law texts { to mention just a few

examples. In such cases it is not only the volume of the data that is important, but also

the need for it to be kept constantly up-to-date.

Once data have been stored in electronic form one can derive multiple products from

a single source document. For instance, an address list can be turned into a directory

on paper, but it can also be put on cdrom, as a data-base allowing interactive or e-mail

access on the Internet or to print a series of labels. Using a set of law texts or a series

of articles on history marked up in SGML, one can �rst publish a textbook containing

complete law texts, or a historic encyclopedia, and then provide regular updates or

35

36 Michel Goossens and Janne Saarela

extract a series of articles on a given subject; one can also o�er a consultation service

on Internet, via gopher, www or develop a hypertext system on cdrom.

All these applications suppose that the information is not saved in a format that

is only suited for printing (for example, WYSIWYG), but that its logical structure be

clearly marked.

To recapitulate, the strong points of a generic markup (in SGML) are the following:

� the quality of the source document is improved;

� the document can be used more rationally, resulting in an improved life-cycle;

� the publishing costs are reduced;

� the information can be easily reused, yielding an added value to the document

(printed, hypertext, data base).

1.1 The origins of SGML

In order to treat documents electronically it is essential that their logical structure be

clearly marked. On top of that, to ensure that documents are really interchangeable,

one had to develop a common language to implement this type of representation.

A big step forward was the publication by ISO (the International Standards Organiza-

tion, with headquarters in Geneva, Switzerland) in October 1986 of SGML as Standard

ISO8879 [15]. Because SGML had been o�cially endorsed by ISO, the Standard was

quickly adopted by various national or international organizations and by the large soft-

ware developers. One can thus be fairly con�dent that SGML is here to stay and that its

role in electronic publishing will continue to grow.

1.2 Who uses SGML?

With the appearance of new techniques and needs linked to the constantly increasing

importance of electronic data processing, the traditional way of exchanging documents

has been drastically changed. Today, SGML has become an ubiquitous tool for document

handling and text processing.

First among the application areas we will consider in which SGML is at present

actively used is the work of the American Association of Publishers (AAP). The AAP

(see [2] to [4]) selected three types of documents in the �eld of publishing: a book, a

series publication, and an article. For each of these a document type de�nition (DTD,

see below, especially Section 4) has been developed. Together, the AAP and the EPS

(European Physical Society) have proposed a standard method for marking up scienti�c

documents (especially tables and mathematical documents). This work forms the basis

of ISO 12083.

Another application actively developed during the last few years is the CALS

(Computer-aided Acquisition and Logistic Support) initiative of the American Depart-

ment of Defense (DoD). This initiative aims at the replacement of paper documents by

electronic media for the documentation of all arms systems. The DoD decided that all

A practical introduction to SGML 37

documentation must be marked up in SGML, thus also making (the frequent) revisions

a lot easier.

A few other examples of the use of SGML are:1

� the Publications O�ce of the European Communities (FORMEX);

� the Association of German editors (B�orsenverein des Deutschen Buchhandels);

� the British Library with \SGML: Guidelines for editors and publishers" and \SGML:

Guidelines for authors";

� in France, the Syndicat national de l'�edition and the Cercle de la librairie, two as-

sociations of French publishers, have de�ned an application for the French editing

world [20];

� the ISO Publishing Department and the British Patents O�ce (HMSO);

� Oxford University Press and Virginia Polytechnic (PhD, USA);

� the Text Encoding Initiative (classic texts and comments);

� the technical documentation of many major computer manufacturers or scienti�c

publishers, for instance the DocBook or other dedicated DTDs used by IBM, HP,

OSF, O'Reilly, etc.

� many text processing and data base applications have SGML input/output modules

(�lters), for example, Frame, Interleaf, Microsoft, Oracle, Wordperfect;

� McGraw-Hill (Encyclopedia of Science and Technology);

� the electronics industry (Pinacle), the aerospace industry and the airlines (Boeing,

Airbus, Rolls Royce, Lufthansa, etc.), the pharmaceutical industry;

� press agencies;

� text editors and tools with direct SGML interfaces, such as Arbortext, EBT, Exo-

terica, Grif, Softquad;

� and, of course, HTML and www!

2 SGML basic principles

SGML is a standard method of representing the information contained in a document

independently of the system used for input, formatting, or output.

SGML uses the principle of logical document markup, and applies this principle in

the form of the de�nition of a generalized markup language. SGML in itself does not

de�ne per se a markup language, put provides a framework to construct various kinds

of markup languages, in other words SGML is a meta-language.

2.1 Di�erent types of markup

The \text-processing" systems that have found their way into almost every PC or work-

station nowadays are mostly of the WYSIWYG type, i.e., one speci�cally chooses the

\presentation" or \formatting" characteristics of the various textual elements. They

1. See also the \SGML Web Page" at the URL http://www.sil.org/sgml/sgml.html for more infor-

mation on who uses SGML and why.

38 Michel Goossens and Janne Saarela

can be compared to older formatting languages, where speci�c codes were mixed with

the (printable) text of the document to control the typesetting on the micro level. For

example, line and page breaks, explicit horizontal or vertical alignments or skips were

frequently used to compose the various pages. Generally, these control characters were

extremely application-speci�c, and it was di�cult to treat sources marked up in one of

these systems with one of the others. On the other hand, this type of markup does a

very good job of de�ning the speci�c physical representation of a document, and for

certain kinds of documents it might be more convenient for obtaining a given layout,

in allowing a precise control of line and page breaks. This approach makes viewing and

printing documents particularly easy, but re-using the source for other purposes can be

di�cult, even impossible.

To successfully prepare a document for use in multiple ways it is mandatory to clearly

describe its logical structure by eliminating every reference to a physical representation.

This is what is understood under the term logical or generic markup. The logical function

of all elements of a document { title, sections, paragraphs, tables, possibly bibliographic

references, or mathematical equations { as well as the structural relations between these

elements, should be clearly de�ned.

Figure 1 shows a few examples of marking up the same text. One clearly sees the

di�erence between speci�c markup, where precise instructions are given to the text

formatter for controlling the layout (for example, the commands \vskip or .sp), and

generic markup, where only the logical function (chapter or beginning of paragraph) is

speci�ed.

2.2 Generalized logical markup

The principle of logical markup consists in marking the structure of a document, and its

de�nition has two di�erent phases:

1. the de�nition of a set of \tags" identifying all elements of a document, and of formal

\rules" expressing the relations between the elements and its structure (this is the

role of the DTD);

2. entering the markup into the source of the document according to the rules laid out

in the DTD.

Several document instances can belong to the same document \class", i.e., they are

described by the same DTD { in other words they have the same logical structure.

As an example let us consider two source texts of an article (see Figure 2), where the

speci�c structures look di�erent, but the logical structure is built according to the same

pattern: a title, followed by one or more sections, each one subdivided into zero or more

subsections, and a bibliography at the end. We can say that the document instances

belong to the document class \article".

To describe the formal structure of all documents of type \article" one has to

construct the Document Type De�nition (or DTD). of the document class \article".

A DTD is expressed in a language de�ned by the SGML Standard and identi�es all

A practical introduction to SGML 39

Speci�c markup

TEX

\vfil\eject

\par\noindent

{\bf Chapter 2: Title of Chapter}

\par\vskip\baselineskip

Script

.pa

.bd Chapter 2: Title of Chapter

.sp

Generic or logical markup

LATEX

\chapter{Title of Chapter}

\par

HTML (SGML)

<H1>Title of Chapter</H1>

<P>

Figure 1: Di�erent kinds of markup

the elements that are allowed in a document belonging to the document class being

de�ned (sections, subsections, etc). The DTD assigns a name to each such structural

element, often an abbreviation conveying the function of the element in question (for

example, \sec" for a section). If needed, the DTD also associates one or more descriptive

attributes to each element, and describes the relations between elements (for example,

the bibliography always comes at end of the document, while sections can, but need not

contain subsections). Note that the relations between elements do not always have to

be hierarchical, for instance the relation between a section title and a cross-reference to

that title three sections further down is not a hierarchical type of relation. In general,

DTDs use element attributes to express these kinds of cross-link.

Having de�ned the DTD one can then start marking up the document source itself

(article A or article B), using the \short" names de�ned for each document element.

For instance, with \sec" on form the tag <sec> for marking the start of a section and

</sec> to mark its end, and similarly one has <ssec> and </ssec> for subsection, and

so on.

40 Michel Goossens and Janne Saarela

Article A Article B

========= =========

Title Title

Section 1 Section 1

Subsection 1.1 Subsection 1.1

Subsection 1.2 Subsection 1.2

Section 2 Subsection 1.3

Section 3 Section 2

Subsection 3.1 Subsection 2.1

Subsection 3.2 Subsection 2.2

Subsection 3.3

Subsection 3.4

Bibliography Bibliography

Figure 2: Two instances of the same document class \article"

<article>

<tit>An introduction to SGML</tit>

<sec>SGML: the basic principles</sec>

<P> ...

<ssec>Generalized logical markup</ssec>

<P> ...

2.3 A few words about the DTD

If one wants to apply the latest powerful data processing techniques to electronic docu-

ments, using the information about their structure, one must have ways to ensure that

they are marked up without mistakes. One must also ensure that the structure of a

document instance is coherent: a document must obey the rules laid out for documents

of the given document class, according to the DTD for that class.

To ful�l all these aims a DTD de�nes:

� the name of the elements that can be used;

� the contents of each element (Section 4.2);

� how often and in what order each element can occur (Section 4.2);

� if the begin or end tag can be omitted (Section 4.2);

� possible attributes and their default values (Section 4.3);

� the name of the entities that can be used (Section 4.4).

A practical introduction to SGML 41

3 Transmitting the information relative to a document

The aim of SGML is to represent the information contained in a document. Already in

Section 2.2 we have explained that SGML operates in two stages to de�ne the structure

of a document:

� a declaration phase;

� a utilization phase, where the document source is marked up using declared elements,

attributes and entities.

This basic principle is used for the transmission of all the information related to the

document to be exchanged.

The basic character set is ASCII, as de�ned by international Standard ISO/IEC 646.

One can change the character set by changing this declaration at the beginning of the

parsing of the document, when the SGML declaration associated to the DTD is read in

(see Appendix B.)

A document can contain symbols or characters that cannot be entered directly

on the keyboard, such as Greek letters or mathematical symbols, or even illustrations,

photos, or parts of another document. This functionality is implemented through the

use of entity references (see Section 4.4).

The markup system is based on a set of delimiters, special symbols, and keywords

with special meaning.2 For instance when \sec" identi�es the element \Section", then

in the document source <sec> is the tag marking the beginning of a Section, with the

delimiters \<" and \>" indicating, respectively, the tag start and end. Similarly, the

formal structure of the document (described by the DTD) has its own language de�ned

by the SGML Standard.

More generally, the SGML Standard does not de�ne once and for all the structure

of a document and all elements that it can contain, i.e., the delimiters and special

symbols, but merely speci�es the construction rules they have to follow. Also, SGML does

not �x the markup language, but o�ers an abstract syntax, allowing one to construct

particular syntax instances as needed. The Standard proposes an example syntax, called

the reference concrete syntax, used throughout this article. We can thus safely state

that SGML is a meta-language.

4 The structure of a DTD

To better understand how SGML works we propose to examine a real example of a

modern SGML application, namely HTML level 2, which corresponds to the functionality

o�ered by popular HTML viewing programs, such as Mosaic, Netscape or Lynx. The

complete DTD of HTML2 is shown in Appendix A starting on page 76. To make it

easier to identify the various parts of the DTD the lines have been numbered.

2. These symbols can also be rede�ned at the beginning of the document

42 Michel Goossens and Janne Saarela

Before starting to parse a DTD the SGML declaration is read in by the parser. For

HTML this declaration is shown in Appendix B on page 86. It de�nes the character set,

special characters and option settings used in the DTD and allowed in the document

instance. For instance, in the area of markup minimization, the parameter OMITTAG (Line

66) has the value YES, which allows tag minimization, i.e., under certain circumstances

(speci�ed in the DTD) tags can be omitted, as explained in Section 4.2. If, on the other

hand, the value is speci�ed as NO then tag minimization is disallowed altogether.

The DTD de�nes all elements, their possible attributes and the entities associated

with a given document class (HTML2 in our example).

Inside a DTD the start of a declaration is noted by the sequence \<!" and its

termination by `>". Certain sections of a DTD are identi�ed (marked) by a keyword

to ensure they are handled correctly, or to (de)activate their contents according to the

value of the keyword (IGNORE or INCLUDE). The notation for the beginning, respectively

the end of such a marked section is \<![keyword [" and \]]>" (see Lines 37{39,

and 303{305).

4.1 Comments

It is always a good idea to include comment lines inside document sources or DTDs,

whose presence will make them more readable and help in their future maintenance.

An SGML comment has the form:

<!-- text of the comment -->

The comment is limited by the double hyphen signs, --, and can span several lines, as

seen, for instance in Lines 1{11 and 28{35.

4.2 The elements

An element declaration

Each element belonging to the logical structure of a document must be declared. This

declaration speci�es the name of the element, as well as, between parentheses, its

content model, i.e., which elements can or must be part of the element in question.

<!ELEMENT name n m (content model)>

For instance Lines 614 and 616 are equivalent to the declaration:3

<!ELEMENT HTML O O (HEAD, BODY)>

The part between the element name \HTML" and the content model \(HEAD, BODY)"

describes the minimization possibilities for the <HTML> tag (see \Omitting tags" below).

The present declaration speci�es that an HTML document contains a \HEAD" followed

by a \BODY". Line 533 and the de�nition of the parameter entity on Lines 548{551

specify further that the document head must contain a \TITLE" and can contain a few

more elements (ISINDEX, BASE, META, etc).

3. The form used in the DTD at line 616 uses a parameter entity, see Section 4.4.

A practical introduction to SGML 43

symbol description

, all must appear and in the order indicated (ordered \and")

& all must appear but any order is allowed (unordered \and")

| one and only one can appear (exclusive \or")

+ element must appear once or more

? optional element (0 or one)

* element can appear once or more

Table 1: Order and choice operators

Omitting tags

It is possible that under certain circumstances one can infer automatically from the

context that an omitted tag is present. This possibility must be declared for each element

between the element's name and its content model in the form of two blank separated

characters, corresponding, respectively, to the omittag characteristics of the start and

end tag. There are only two possible values, namely a hyphen \-" indicating that the

tag must be present (cannot be omitted), and an uppercase letter O \O" signifying that

it may be omitted. For example, for numbered (OL) and unnumbered (UL) lists and their

elements (LI) one has (from Lines 379 and 411, resp.):4

<!ELEMENT (OL|UL) - - (LI)+>

<!ELEMENT LI - O %flow>

The two blank-separated hyphens, \- -", on the �rst line specify that one must always

use the begin and end tags for the list declarations (. . . and . . .)

while the \- O" on the second line indicate that the end tag for the members of a list

(. . .) may be omitted.

The contents model

As already mentioned, the content model uses order and choice operators (see Table 1

for a list).

We already encountered the operator of choice (|), which speci�es that one of

the elements can be present (but not more than one at a time). Let us now turn our

attention to another example with a description list (<DL>) as declared on Line 357 as:

<!ELEMENT DL - - (DT*, DD?)+>

This indicates that for a description list the start tag <DL> and end tag </DL> must

always be present, and that the list can contain one or more occurrences ((...)+) of

zero or more <DT> tags (DT*) that can be followed (,) by at most one <DD> tag (DD?).

An element with multiple members that can appear in any order is de�ned on Lines

548{553. These lines essentially stipulate that an HTML head can contain, in any order,

4. The meaning of the symbols | and + is explained in Section 4.2, see especially Table 1; the de�nition of

the parameter entity %flow can be found on Line 313, see also Section 4.2.

44 Michel Goossens and Janne Saarela

a title (TITLE), zero or one <ISINDEX>, <BASE>, and <NEXTID> tags, and zero or more

<META> and <LINK>:

<!ELEMENT HEAD O O (%head.content)>

<!ENTITY % head.content

"TITLE & ISINDEX? & BASE? &

(%head.extra)">

<!ENTITY % head.extra

"NEXTID? & META* & LINK*">

An element can contain other elements, characters, or both (in the latter case one

speaks of a mixed content).

One can specify to the SGML parser the type of characters that can be used. The

following reserved names are de�ned for that purpose:

PCDATA parsed character data.

The characters are supposed to have been treated by the parser and can thus

no longer contain entity references or tags. For instance, on Line 557 an HTML

title is de�ned as:

<!ELEMENT TITLE - - (#PCDATA)>

RCDATA replaceable character data.

The parser can expect to �nd only characters or entity references, i.e., (begin

and end) tags are forbidden.

CDATA character data.

No further processing is needed by the SGML parser (nevertheless, the data

might be processed by another program, for instance PostScript). A telephone

number in a letterhead could be declared thus:

<!ELEMENT TEL CDATA>

ANY The element can contain data of type PCDATA or any other element de�ned

in the DTD.

EMPTY The element has an empty content. It can, however, be quali�ed by possible

attributes (see Section 4.3). An example of this is the tag and its

attributes as de�ned on Lines 233{240.

Certain elements can be used anywhere in the document source. In this case it is

convenient to declare them as included in the element document. More generally, an

element can be contained in the content model of another element and can be part

of any of the element's constituents. In this case the syntax +(...) is used. Similarly,

one can exclude certain elements from the element being de�ned by using the syntax

-(...). For instance, the electronic HTML form is de�ned on Line 457 as follows:

<!ELEMENT FORM - - %body.content

-(FORM) +(INPUT|SELECT|TEXTAREA)>

This states that the <FORM> element can contain everything speci�ed by the parameter

entity %body.content (Lines 430, 267, 146, and 309{311). Moreover, all these elements

A practical introduction to SGML 45

keyword value of attribute

CDATA textual data (any characters)

ENTITY(IES) general entity name(s)

ID an SGML element identi�er

IDREF(S) value(s) of element identi�er reference(s)

NAME(S) SGML name(s)

NMTOKEN(S) nominal lexical token(s)

NOTATION notation name

NUMBER(S) number(s)

NUTOKEN(S) numeric lexical token(s)

Table 2: Keywords for attribute types

can contain, at any level the tags <INPUT>, <SELECT>, or <TEXTAREA>. On the other

hand, forms are not recursive, since the <FORM> tag cannot contain itself (-(FORM)).

4.3 Attributes

All possible attributes of all elements in a DTD must be explicitly declared in the same

DTD. For reasons of clarity and convenience, attribute declarations normally immediately

follow the declaration of the element they refer to.

An attribute declaration consists of:

� the name of the element(s) that it refers to;

� the name of the attribute;

� either the attribute type, speci�ed as one of the keywords shown in Table 2, or,

between parentheses, the list of values the attribute can take;

� a default value (one of the possible values speci�ed between quotes, or one of the

keywords shown in Table 3).

An attribute declaration thus takes the following form:

<!ATTLIST element_name

attribute_1 (values) "default"

attribute_2 (values) "default"

... >

For instance, the list declaration (<DL>) (Lines 357{362) de�nes an attribute \com-

pact" to indicate that the members of a list should be typeset more densely.

<!ATTLIST DL COMPACT (COMPACT) #IMPLIED

This declaration speci�es that the only possible value is COMPACT and that the system

(the parser) will provide a default value (#IMPLIED, see Table 3).

One might also wish to specify numeric information, for instance, the <PRE> tag

(Lines 317{320) has an attribute to specify the width of the line:

<!ATTLIST PRE WIDTH NUMBER #implied

46 Michel Goossens and Janne Saarela

keyword description

#FIXED The attribute has a �xed value and can take only that value.

#REQUIRED The value is mandatory and must be speci�ed by the use.

#CURRENT If no value is speci�ed, then the default value will be the the last

speci�ed value.

#CONREF The value will be used for cross-references.

#IMPLIED If no value is speci�ed, the parser will assign a value.

Table 3: Keywords for attribute default values

The attribute type is an \(integer) number" (keyword: NUMBER) and if no value is

speci�ed then the parser will supply a default (#implied).

As a last example let us once more look at the element (image) and its

attributes (Lines 234{240), whose de�nitions correspond essentially to the following

declaration:

<!ATTLIST IMG

SRC %URI; #REQUIRED

ALT CDATA #IMPLIED

ALIGN (top|middle|bottom) #IMPLIED

ISMAP (ISMAP) #IMPLIED

....

The �rst line references the parameter entity %URI (see Lines 73{84) that de�nes a

Uniform Resource Identi�er. This attribute is mandatory (#REQUIRED). The other at-

tributes are optional and have a system-de�ned default value (#IMPLIED). In the case

of the alignment attribute (ALIGN) a choice of any of three values if possible.

4.4 Entities

Entities can be used for the following purposes:

� The de�nitions of abbreviated notations to ease repetitive text strings (general

entities); for example,

<!ENTITY TUG "\TeX{} Users Group">

� The de�nition of notations to input special characters, accents or symbols (general

character entities). An example of character entities can be found on Lines 102{105;

<!ENTITY amp CDATA "&"

-- "&" (ampersand) -->

ISO has de�ned several standard character entity sets, for instance, for national

characters (see Appendix D), graphical symbols, mathematics, etc.

� The inclusion of external �les (external entities).

� The de�nition of variables in a DTD (parameter entities).

A practical introduction to SGML 47

It is important to note that, contrary to element and attribute names, which are

case insensitive and can be speci�ed in upper, lower, or mixed case, entity names are

case-sensitive, and one must take care to specify them precisely as they are de�ned.

General entities are declared in the DTD. An entity declaration �rst speci�es a

symbolic name for the entity, followed by its contents. The latter can contain tags,

entity references, etc., that will be interpreted when the entity is expanded.

To refer to an entity one makes use of an entity reference, which takes the form:

&entity_name;

For example, if one wants to use the entity \TUG" de�ned above, one should type

in the document source the string of characters &TUG; and the parser replaces this by

the string \TEX Users Group".

The data associated with an entity can be in another (external) �le (external entity).

This kind of entity can be used to include in the source document being parsed a table

or �gure (or any kind of data) that was prepared with another application. Instead of

including the complete contents of the �le in the declaration, one merely speci�es the

name of the �le where the data is stored. The �lename must be preceded by the keyword

"SYSTEM", for example, for the unix operating system one might have a declaration of

the form:

<!ENTITY article SYSTEM

"/usr/goossens/tug/sgmlart.sgml">

Inside a DTD one frequently uses parameter entities that allow one to considerably

increase the modularity of the de�nition of the various elements de�ned in the DTD.

Simple examples are (Lines 89, 91, 175);

<!ENTITY % heading "H1|H2|H3|H4|H5|H6">

<!ENTITY % list " UL | OL | DIR | MENU " >

<!ENTITY % text "#PCDATA | A | IMG | BR">

These entities are used, for instance, on Lines 212, 267, 430.

<!ELEMENT (%heading) - - (%text;)+>

4.5 Other DTDs

In order to get a better idea of what DTDs for more complex documents look like, we

shall brie
y discuss the HTML3, DocBook and ISO12083.

HTML3

As it name indicates, HTML3 is a successor to the present HTML Standard (also know

as HTML2, and discussed in detail in the previous sections). HTML35 builds upon HTML2

and provides full backwards compatibility. Tables have been one of the most requested

features; HTML3 proposes a rather simple table model that is suitable for rendering on

a very wide range of output devices, including braille and speech synthesizers.

5. See URL http://www.hpl.hp.co.uk/people/dsr/html/CoverPage.html.

48 Michel Goossens and Janne Saarela

Inline �gures are available and provide for client-side handling of hot zones whilst

cleanly catering for non-graphical browsers. Text can
ow around �gures and full
ow

control for starting new elements is possible.

Mathematics support for equations and formulae in HTML3 mainly uses TEX's box

paradigm. The implementation uses a simple markup scheme, that is still powerful

enough to cope with over 90% of the most common cases. Filters from TEX and other

word processing systems will allow one to easily convert existing sources into HTML3.

As HTML is most often used to present information on-screen, it is important to allow

some positioning control for the various elements in a document. Therefore, HTML3 in-

cludes support for customized lists; �ne positioning control with entities like &emspace;,

horizontal tabs, and alignment of headers and paragraph text.

As well as this, many other often-requested features have been included, most no-

tably a style-sheet mechanism, which counters the temptation to continually add more

presentation features by giving the user almost full control over document rendering,

and taking into account the user's preferences (window size, resource limitations such

as availability of fonts)

The HTML3.0 Internet draft speci�cation is being developed by the IETF (Internet

Engineering Task Force) taking into account the following guidelines:

� interoperability and openness;

� simplicity and scalability;

� platform independence;

� content, not presentation markup;

� support for cascaded style sheets, non-visual media, and di�erent ways of creating

HTML.

To illustrate the use of this DTD one can look at the table and mathematics parts of the

HTML3 DTD (see Appendix E) and at the markup examples and the generated output

(Figures 4 and 6).

DocBook

The DocBook DTD6 de�nes structural SGML markup for computer documentation and

technical books. It is supported by the Davenport Group, an association of software doc-

umentation producers established to promote the interchange and delivery of computer

documentation using SGML and other relevant standards.

The primary goal in developing the DTD was to �lter existing software documen-

tation into SGML. It describes the structures the collaborators of the Davenport group

and other producers and consumers of software documentation have encountered in pro-

cessing large bodies of documentation. The DocBook DTD uses a book model for the

documents. A book is composed of book elements such as Prefaces, Chapters, Appen-

dices, and Glossaries. Five section levels are available and these may contain paragraphs,

lists, index entries, cross references and links.

6. See URL ftp://ftp.ora.com/pub/davenport/docbook/fullguide.sgm.

A practical introduction to SGML 49

<TABLE BORDER>

<TR> <TD>R1 C1</TD><TD>R1 C2</TD><TD>R1 C3</TD>

</TR>

<TR> <TD>R2 C1</TD><TD>R2 C2</TD><TD>R2 C3</TD>

</TR>

</TABLE>

<TABLE BORDER>

<TR> <TD ROWSPAN=2>R12 C1</TD>

<TD>R1 C2</TD><TD>R1 C3</TD>

</TR>

<TR> <TD>R2 C2</TD><TD>R2 C3</TD>

</TR>

<TR> <TD>R3 C1</TD><TD COLSPAN=2>R3 C23</TD>

</TR>

</TABLE>

<TABLE BORDER>

<TR> <TH COLSPAN=2>Head 1-2</TH>

<TH COLSPAN=2>Head 3-4</TH>

</TR>

<TR> <TH>Head 1</TH><TH>Head 2</TH>

<TH>Head 3</TH><TH>Head 4</TH>

</TR>

<TR> <TD>R3 C1</TD><TD>R3 C2</TD>

<TD>R3 C3</TD><TD>R3 C4</TD>

</TR>

<TR> <TD>R4 C1</TD><TD>R4 C2</TD>

<TD>R4 C3</TD><TD>R4 C4</TD>

</TR>

</TABLE>

<P>

<TABLE BORDER>

<TR> <TH COLSPAN=2 ROWSPAN=2></TH>

<TH COLSPAN=2>Background</TH>

</TR>

<TR> <TH>Blue</TH><TH>Yellow</TH>

</TR>

<TR> <TH ROWSPAN=2>Text</TH>

<TH>Red</TH><TD>fair</TD><TD>good</TD>

</TR>

<TR> <TH>Green</TH><TD>bad</TD><TD>good</TD>

</TR>

</TABLE>

Figure 3: HTML3 example of tables (source)

50 Michel Goossens and Janne Saarela

Figure 4: HTML3 example of tables (result with the Mosaic browser)

The DTD also leaves room for localizations. The user of the DTD is free to give

own content models for appendixes, chapters, equations, indexes, etc.

The AAP e�ort and ISO 12083

The American Association of Publishers (AAP) has been working since the publication of

the SGML Standard in 1985 on promoting SGML as an electronic standard for manuscript

preparation. This document, developed over several years as the \AAP Standard," was

later promoted to by the Electronic Publishing Special Interest Group (EPSIG) and the

AAP as \the Electronic Manuscript Standard," and is now a NISO (National Information

Standards Organization) publication. The AAP/EPSIG application is SGML-conforming,

and provides a suggested tag set for authors and publishers. It de�nes the format syntax

A practical introduction to SGML 51

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 3.0//EN//">

<HTML>

<TITLE>A Math Sampler</TITLE>

<BODY>

<H1>Formulae by examples</H1>

<MATH>x^Iy^J

z^K 

<BOX>(<LEFT>1 + u<OVER>v<RIGHT>)</BOX>

</MATH>

<P><MATH><BOX>[<LEFT>x + y<RIGHT>]</BOX> 

<BOX>(<LEFT>a<RIGHT>]</BOX> 

<BOX>||<LEFT>b<RIGHT>||</BOX></MATH>

<P><MATH>int_a^b

<BOX>f(x)<over>1+x</BOX> 

sin ( x²+1) dt</MATH>

<P><MATH>

<box>dσ<over>dε</box>

=<box>2πZr₀²m

<over>β²(E-m)</box>

[<box>(γ-1)²

<over>γ²</box>

+<box>1<over>ε</box>]

</MATH>

</BODY>

</HTML>

Figure 5: HTML3 example of simple mathematics (source)

of the application of SGML publication of books and journals. The Standard achieves

two goals. First, it establishes an agreed way to identify and tag parts of an electronic

manuscript so that computers can distinguish between these parts. Second, it provides

a logical way to represent special characters, symbols, and tabular material, using only

the ASCII character set found on a standard keyboard.

For several years the AAP and the EPS (European Physical Society) have been

working on a standard method for marking up scienti�c documents. There work has

been the basis for International Standard ISO 12083, the successor to the AAP/EPSIG

Standard, and four DTDs have been distributed by EPSIG as the \ISO" DTDs.7

7. They can be found at the URL http://www.sil.org/sgml/gen-apps.html\#iso12083DTDs.

52 Michel Goossens and Janne Saarela

Figure 6: HTML3 example of simple mathematics (result with the arena browser)

This DTD has a basic book structure consisting of chapters, sections and subsections

down to six levels. The mathematics part is, however, of some interest since it can be

compared to HTML3.

The ISO 12083 table model

The ISO 12083 table model consists of the following elements (see Figure 7 for the

relevant part of the DTD):

<table> the table element;

<np> number;

<title> title;

<tbody> table body;

A practical introduction to SGML 53

<!-- +++ -->

<!-- Tables -->

<!-- +++ -->

<!ELEMENT table - - (no?, title?, tbody) -(%i.float;) >

<!ELEMENT tbody - O (head*, tsubhead*, row*) >

<!ELEMENT row - O (tstub?, cell*) >

<!ELEMENT tsubhead - O %m.ph; >

<!ELEMENT (tstub|cell) - O %m.pseq; >

Figure 7: Part of the ISO 12083 DTD relating to simple tables

.

<head> head;

<tsubhead> table subhead;

<row> row;

<tstub> table stub;

<cell> cell.

This table model does not support spanning rows or columns. It does, however, sup-

port subhead elements that can be used to give more granularity to the table contents.

An example of a marked-up table is shown below.

<table>

<no>1<title>Capitals in Europe

<tbody>

<row><cell>Helsinki<cell>Finland

<row><cell>Rome<cell>Italy

<row><cell>Bern<cell>Switzerland

</table>

Only the simple table model discussed above is part of the basic ISO 12083 DTD as

distributed. There also exists a complex table model [3] that allows the user to treat

more complex tabular material.

The ISO 12083 mathematics model

The mathematics model in ISO 12083 consists of the following element categories:

character transformations

<bold>, <italic>, <sansser>, <typewrit>, <smallcap>, <roman>;

fractions

<fraction>, <num>, <den>;

superiors, inferiors

<sup>, <inf>;

54 Michel Goossens and Janne Saarela

embellishments

<top>, <middle>, <bottom>;

fences, boxes, overlines and underlines

<mark>, <fence>, <post>, <box>,

<overline>, <undrline>;

roots

<radical>, <radix>, <radicand>;

arrays

<array>, <arrayrow>, <arraycol>,

<arraycel>;

spacing

<hspace>, <vspace>, <break>, <markref>;

formulas

<formula>, <dformula>, <dformgrp>.

The model has basically the same elements as the HTML3 model, but is more visual.

Emphasis is on creating fences at the right places inside a formula, whereas the HTML3

model uses <left> and <right> elements. A simple example is:

<formula>

S = ∑<inf>n=1</inf>¹⁰

<fraction>

<num>1</num>

<den>

<radical>3<radix>n</radical>

</den>

</fraction>

</formula>

The complete DTD is shown in Appendix F, which shows the �le math.dtd that is

part of the ISO 12083 DTD set.

5 SGML editors

Several solutions exist to enter SGML or HTML markup into a document, but an editor

that is SGML-aware is probably the best solution. Several (mostly commercial) products

exist (see [16], [17], and [18]), but in the remaining part of this section we shall have a

look at a public domain solution based on the Emacs editor with the psgml application

and on the Grif-based Symposia editor.

A practical introduction to SGML 55

Figure 8: Emacs in psgml mode

5.1 Emacs and PSGML

A major mode for editing SGML documents, psgml8, works with the latest versions of gnu

Emacs. It includes a simple SGML parser and accepts any DTD. It o�ers several menus

and commands for inserting tags with only the contextually valid tags, identi�cation of

structural errors, editing of attribute values in a separate window with information about

types and defaults, and structure-based editing.

Figure 8 shows the �rst HTML test example, to be discussed later (see example

test1.html in Section 6.2). Both the psgml mode and the nsgmls program, discussed

below, use a catalog �le whose structure is de�ned by the SGML Open consortium to

8. The psgml home page is at the URL http://www.lysator.liu.se/projects/about_psgml.html.

56 Michel Goossens and Janne Saarela

ESC C-SPC sgml-mark-element

ESC TAB sgml-complete

ESC C-t sgml-transpose-element

ESC C-h sgml-mark-current-element

ESC C-@ sgml-mark-element

ESC C-k sgml-kill-element

ESC C-u sgml-backward-up-element

ESC C-d sgml-down-element

ESC C-b sgml-backward-element

ESC C-f sgml-forward-element

ESC C-e sgml-end-of-element

ESC C-a sgml-beginning-of-element

C-c C-u Prefix Command

C-c RET sgml-split-element

C-c C-f Prefix Command

C-c C-w sgml-what-element

C-c C-v sgml-validate

C-c C-t sgml-list-valid-tags

C-c C-s sgml-unfold-line

C-c C-r sgml-tag-region

C-c C-q sgml-fill-element

C-c C-p sgml-parse-prolog

C-c C-o sgml-next-trouble-spot

C-c C-n sgml-up-element

C-c C-l sgml-show-or-clear-log

C-c C-k sgml-kill-markup

C-c C-e sgml-insert-element

C-c C-d sgml-next-data-field

C-c C-c sgml-show-context

C-c C-a sgml-edit-attributes

C-c = sgml-change-element-name

C-c < sgml-insert-tag

C-c / sgml-insert-end-tag

C-c - sgml-untag-element

C-c # sgml-make-character-reference

Figure 9: Emacs key-bindings with psgml

A practical introduction to SGML 57

locate the SGML declarations and DTDs (see Appendix C). Thanks to the name of the

DTD declared on the <!DOCTYPE> declaration and that catalog �le, psgml loads the

HTML2 DTD into memory and can then handle the HTML source �le. In the Figure,

all the elements that can occur at the position of the pointer are shown. Figures 9

shows the more important key combinations for quickly calling some functions. For in-

stance, the sequence C-c C-t (sgml-list-valid-tags) was used to obtain the list in

the lower part of Figure 8. As a last technical (but important) detail, in order to func-

tion properly, two variables should be de�ned in the psgml initialization �le psgml.el,

namely sgml-system-path, a list of directories used to look for system identi�ers, and

sgml-public-map, a mapping from public identi�ers to �le names.9

5.2 Symposia

At the Third International World Wide Web Conference \Technology, Tools and Appli-

cations"10, which took place in Darmstadt, Germany, from 10 - 13 April 1995, Vincent

Quint and collaborators discussed their authoring environment for SGML texts in general,

and HTML on WWW in particular.11 Their approach is based on the Grif editor, which

can work with any DTD. They announced that a version with the HTML3 DTD will be

made available freely under the name of Symposia. Grif (and Symposia) allow the user

to enter text in a wysywig way, but entered elements are validated against the DTD. An

example is given in Figure 10, which shows us to be in insert mode in the �rst column

on the �rst row of the table, where we input the word \text", whilst Figure 11 shows

the generated SGML(HTML) source, hidden from the user, but available for any kind of

treatment that one would like to do on the document.

6 SGML utilities

As SGML is now actively used in many applications in the �eld of document production

(see Section 1.2 and [17]) several commercial and publicly available solutions are now

available to increase the productivity, user-friendliness, and ease of using SGML systems.

This section reviews a few of the more interesting publicly available tools.

6.1 Validating an SGML document with NSGMLS

It is often important and useful to be able to validate an SGML (and hence HTML)

document. This can, for instance, be achieved with the publicly available SGML parser

9. See the documentation coming with psgml for more details.

10. An overview of the papers is at the URL http://www.igd.fhg.de/www/www95/papers/.

11. Their paper is available at the URL http://www.igd.fhg.de/www/www95/papers/84/EditHTML.html.

58 Michel Goossens and Janne Saarela

Figure 10: Inserting text in an SGML document with Symposia

Figure 11: SGML source of the document shown in Figure 10

A practical introduction to SGML 59

nsgmls, which is part of sp12, a system developed by James Clark (jjc@jclark.com),

and a successor to his older sgmls13 and arcsgml, written by Charles Goldfarb, who is

considered by many as the father of SGML, and who is also the author of \The SGML

Handbook" [5] describing the SGML Standard in great detail, a reference work that every

serious SGML user should possess.

The nsgmls parser can be called with the syntax:

nsgmls [-deglprsuvx] [-alinktype]

[-ffile] [-iname] [-mfile]

[-tfile] [-wwarning_type]

[filename...]

nsgmls needs at least four �les to run:

� the catalog �le, which describes how the SGML �le's <!DOCTYPE> declaration is

mapped to a �lename (see below);

� the SGML declaration, de�ning the character set used by subsequent �les, and the

sizes of various internal limits, such as the permitted length of identi�ers, as well

as what features of SGML are used, such as tag minimization (see the start of

Section 4 on page 41 and Appendix B);

� the DTD for the document type;

� an SGML or HTML document instance.

6.2 The <!DOCTYPE> declaration

The <!DOCTYPE> declaration has three parameters, as shown in the following example.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

The �rst parameter speci�es the name of the document class according to which the

document instance (the user's source �le) is marked up. The second parameter is either

SYSTEM or PUBLIC. With the SYSTEM keyword the next parameter contains the �lename

of the DTD, but since actual �lenames are system-dependent, this syntax should be

discouraged in favour of the PUBLIC keyword. In this case, the whereabouts of the DTD

are de�ned via an external entity reference. The SGML Standard does not itself de�ne

how the mapping between this entity reference and an external �le is de�ned, but SGML

12. sp is available at the URL http://www.jclark.com/sp.html. For more information about other publicly

available SGML software, have a look at the the public SGML software list at the URL http://www.

sil.org/sgml/publicSW.html. More generally, on the SGML Web Page at http://www.sil.org/sgml/

sgml.html one �nds entry points to all the above, plus many examples of DTDs, more information about

SGML, Hytime, DSSSL, etc.

13. smgls is written in highly portable C code, whilst nsgmls is C++ with extensive template use, which

limits the portability and makes the installation of the latter somewhat more complicated. Also the executable

module of sgmls is about half the size of the one of nsgmls. See the comments of Nelson Beebe at the URL

http://www.math.utah.edu/~beebe/sp-notes.html for the current situation with implementing nsgmls

on several architectures.

60 Michel Goossens and Janne Saarela

Open has proposed the format of a catalog �le in which those mappings are speci�ed.

A few examples are shown below.

PUBLIC "-//IETF//DTD HTML//EN"

/usr/goossens/sgml/dtds/html.dtd

PUBLIC "ISO 12083:1994//DTD Math//EN"

/usr/joe/dtds/math.dtd

PUBLIC "-//IETF//ENTITIES Latin 1//EN"

/use/joe/sgml/dtds/iso-lat1.sgm

The �rst string following the keyword PUBLIC is called a \public identi�er", a name which

is intended to be meaningful across systems and di�erent user environments. Formally a

public identi�er is composed of several �elds, separated by a double solidus, \//". The

�rst part is an \owner identi�er" (the �rst and third entries have a hyphen, -, meaning

that these identi�ers were not formally registered, and the organization who created

the �le was the IETF (the Internet Engineering Task Force); the second entry carries

an ISO owner identi�er. The second part of the public identi�er (following the double

solidus), is called the \text identi�er". The �rst word indicates the \public text class"

(for example, DTD and ENTITIES), and is followed by the \public text description" (HTML,

Latin 1, etc.), then, optionally, after another double solidus one �nds the \public text

language", a code from ISO Standard 639 ([9] { EN, for English in our case), and this

can be followed by a \display version", if needed.

The �nal element is the �lename associated with the public identi�er speci�ed in

the second �eld.

HTML examples

It is not our intention to describe the various options of this program in detail, but

we shall limit ourselves to showing, with the help of a few simple examples, how this

interesting tool can be used.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML 2.0//EN">

<HTML>

<!-- This is document test1.html -->

<HEAD>

<TITLE>Document test1.html</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>term 1<DD>data 1

<DT>term 2<DD>data 2

<DT>term 3

<DT>term 4<DD>data 4<DD>data 4 bis

A practical introduction to SGML 61

</DL>

á

</BODY>

</HTML>

Presenting this document to nsgmls one obtains the following output in the \Element

Structure Information Set" (ESIS) format.

> nsgmls -m catalog sgml.decl test1.html

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(HEAD

ASDAFORM CDATA Ti

(TITLE

-Document test1.html

)TITLE

)HEAD

(BODY

ACOMPACT IMPLIED

ASDAFORM CDATA List

ASDAPREF CDATA Definition List:

(DL

ASDAFORM CDATA Term

(DT

-term 1

)DT

ASDAFORM CDATA LItem

(DD

-data 1\n

)DD

ASDAFORM CDATA Term

(DT

-term 2

)DT

ASDAFORM CDATA LItem

(DD

-data 2\n

)DD

ASDAFORM CDATA Term

(DT

62 Michel Goossens and Janne Saarela

-term 3\n

)DT

ASDAFORM CDATA Term

(DT

-term 4

)DT

ASDAFORM CDATA LItem

(DD

-data 4

)DD

ASDAFORM CDATA LItem

(DD

-data 4 bis

)DD

)DL

-\n\|[aacute]\|

)BODY

)HTML

C

As it should, nsgmls parses this program without problems, and shows the di�erent

elements it encounters in ESIS format. The meaning of the most common output

commands generated by nsgmls is as follows.

\\ a \;

\n a record end ;

\| brackets internal SDATA entities;

\nnn character whose octal code is nnn;

(gi start of element whose generic identi�er is gi, attributes for this element are

speci�ed with A commands;

)gi end of element whose generic identi�er is gi;

-data data;

&name reference to external data entity name;

Aname val next element has an attribute name with speci�er and value val (see Tables

2 and 3)

#text application information (can only occur once);

C signals that the document was a conforming document. It will always be the

last command output.

For incorrect documents nsgmls shows an error:

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

A practical introduction to SGML 63

<HTML>

<BODY>

<P>text inside a paragraph

</BODY>

</HTML>

If we present this document to nsgmls (placing the HTML DTD shown in the appendix

at the beginning of the �le) one obtains:

> nsgmls -m catalog sgml.decl test2.html

test2.html:4:6:E: \

element `BODY' not allowed here

test2.html:7:7:E: \

end tag for `HTML' which is not finished

#SDA

AVERSION CDATA -//IETF//DTD HTML 2.0//EN

ASDAFORM CDATA Book

(HTML

(BODY

-

ASDAFORM CDATA Para

(P

-text inside a paragraph

)P

)BODY

)HTML

Note that nsgmls indicates at the fourth line that a <BODY> tag cannot be used at that

particular point (since no mandatory <HEAD> element { Line 614 of DTD { was spec-

i�ed). Then, after reading the last (seventh) line containing the </HTML> tag, nsgmls

complains that the HTML document (enclosed inside <HTML> tags) is not yet �nished.

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<HEAD>

<TITLE>title</TITLE>

</HEAD>

<BODY>

</BODY>

</HTML>

64 Michel Goossens and Janne Saarela

Those only interested in checking the syntax of a document can run nsgmls with the

-s option, so that it will only print the error messages, as with the incorrect HTML �le

above.

> nsgmls -s -m catalog sgml.decl test3.html

test3.html:8:4:E: \

element `LI' not allowed here

nsgmls does not complain until Line 8, where an isolated list member is found.

As this is not correct according to the DTD, nsgmls signals its disagreement by stating

that the tag is not allowed at that point (Lines 379 and 394 of the DTD state

that list member elements of type can only be used in lists of type , ,

<MENU>, and <DIR>).

6.3 Prettyprinting

Nelson Beebe (beebe@math.utah.edu) has developed a program htmlpty14, written in

the lex and C languages, to prettyprint HTML �les. Its calling sequence is:

htmlpty [-options] [file(s)]

where the more interesting options are:

-f filename name output �le in comment banner;

-h display usage summary;

-i nnn set indentation to nnn spaces per level;

-n no comment banner;

-w nnn set output line width to nnn.

The program was run on �le test1.html with the result shown below.

> html-pretty -i2 -n test1.html

<!DOCTYPE html PUBLIC

"-//IETF//DTD HTML//EN">

<HTML>

<!-- This is document doc1.sgm -->

<HEAD>

<TITLE>

Document test HTML

</TITLE>

</HEAD>

<!-- Beginning of body of document -->

<BODY>

<DL>

<DT>

14. It is at URL ftp://ftp.math.utah.edu/pub/misc/htmlpty-x.yy.trz (choose the latest version x.yz

o�ered).

A practical introduction to SGML 65

term 1

</DT>

<DD>

data 1

</DD>

<DT>

term 2

</DT>

<DD>

data 2

</DD>

<DT>

term 3

</DT>

<DT>

term 4

</DT>

<DD>

data 4

</DD>

<DD>

data 4 bis

</DD>

</DL>

á

</BODY>

</HTML>

The program html-pretty applies heuristics to detect, and often correct, common

HTML errors. It can turn a pure ASCII �le into a syntactically-valid HTML �le that may

then only require a small amount of additional markup to indicate required line breaks.

6.4 SGML document analysis tools

Earl Hook (ehood@convex.com) has developed a set of tools perlSGML15, based on the

perl language. They permit the analysis of SGML documents or DTDs.

dtd2html produces an HTML document starting from an SGML DTD that permits

an easy hypertext navigation through the given DTD;

dtddiff compares two DTDs and shows possible di�erences;

dtdtree shows visually the hierarchical tree structure characterizing the relations

between the various elements of a DTD;

15. This system can be found at the url ftp://ftp.uci.edu/pub/dtd2html.

66 Michel Goossens and Janne Saarela

stripsgml strips a text from its SGML markup, and attempts to translate entity

references by standard ASCII characters.

Let us �rst look at the dtdtree utility. When treating the HTML2 DTD, one obtains

a visual representation that is very useful for understanding the relations that exist

between the various HTML elements. For each element one explicitly sees the elements

it can contain. Three points \..." indicate that the contents of the element has been

shown previously. Lines containing entries between brackets signal a list of elements

that can be included in { (I) and (Ia) { or are excluded from { (X) and (Xa) { the

content model of the element. Figure 12 shows in four columns the (condensed) output

generated by the dtdtree program when treating the HTML2 DTD. For more clarity

most of the repeated blocks have been eliminated and replaced by the string *|**|**|

at the beginning of a line and a few lines have been cut to make them �t (marked with

*** at the end of the line).

Documenting a DTD

To document a DTD (and hence a particular SGML language instance) one can use

the dtd2html utility, which generates, starting from the DTD in question and a �le

describing all document elements, a hypertext representation (in HTML) of all SGML

language elements present in the DTD. This representation makes it easier for users of

an SGML-based documentation system to obtain the information relating to an element

they need for marking up their document. For example, in the case of HTML2, Figure 13

shows the representation as viewed by the HTML browser mosaic.

6.5 Searching and index entries

A search engine for regular expressions for use with the HTML2 DTD is available16

(Figure 14), as well as an index with more than 1100 entries and phrases17 (Figure 15).

Checking an HTML document

For those who do not have sgmls or nsgmls installed there exists a set of programs

htmlchek18, including heuristic checkers for common style and grammar violations. The

programs are available in both perl and awk versions and syntactically check HTML2 and

HTML3 �les for a number of possible errors; they can perform local link cross-reference

veri�cation, and generate a rudimentary reference-dependency map.

htmlchek checks an HTML �le for errors, and giving warnings about possible prob-

lems;

16. http://hopf.math.nwu.edu/html2.0/dosearch.html.

17. http://hopf.math.nwu.edu/html2.0/docindex.html.

18. The documentation is at the URL http://uts.cc.utexas.edu/~churchh/htmlchek.html and the tar

�le at ftp://ftp.cs.buffalo.edu/pub/htmlchek/.

A practical introduction to SGML 67

HTML
|
|_body

| |
| |_#PCDATA
| |_a
| | | (X): a
| | |
| | |_#PCDATA
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_address
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_p ...

| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_b
| | |

*|**|**| Like address
| |
| |_blockquote

| | |
| | |_#PCDATA
| | |_a ...
| | |_address ...
| | |_b ...
| | |_blockquote ...

| | |_br ...
| | |_cite ...
| | |_code ...
| | |_dir ...
| | |_dl ...
| | |_em ...
| | |_form ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_hr ...
| | |_i ...
| | |_img ...

| | |_isindex ...
| | |_kbd ...
| | |_listing ...

| | |_menu ...
| | |_ol ...
| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_ul ...
| | |_var ...
| | |_xmp ...

| |
| |_br
| | |
| | |_EMPTY
| |
| |_cite
| | |

*|**|**| Like address
| |
| |_code
| | |
*|**|**| Like address
| |
| |_dir
| | | (X): ***
| | |
| | |_li
| | | (Xa): ***
| | |
*|**|*****| Like dd
| |
| |_dl
| | |
| | |_dd
| | | |
| | | |_#PCDATA
| | | |_a ...
| | | |_b ...
| | | |_blockquote ...

| | | |_br ...
| | | |_cite ...
| | | |_code ...
| | | |_dir ...
| | | |_dl ...
| | | |_em ...
| | | |_form ...
| | | |_i ...
| | | |_img ...

| | | |_isindex ...
| | | |_kbd ...
| | | |_listing ...

| | | |_menu ...
| | | |_ol ...
| | | |_p ...

| | | |_pre ...

| | | |_samp ...

| | | |_strong ...

| | | |_tt ...
| | | |_ul ...
| | | |_var ...
| | | |_xmp ...

| | |
| | |_dt
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_em
| | |
*|**|**| Like h1
| |
| |_form
| | | (I): ***
| | | (X): form
| | |
| | |_#PCDATA
| | |_a ...
| | |_address ...
| | |_b ...
| | |_blockquote ...

| | |_br ...
| | |_cite ...
| | |_code ...
| | |_dir ...
| | |_dl ...

| | |_em ...
| | |_h1 ...
| | |_h2 ...
| | |_h3 ...
| | |_h4 ...
| | |_h5 ...
| | |_h6 ...
| | |_hr ...
| | |_i ...
| | |_img ...

| | |_input

| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_EMPTY
| | |
| | |_isindex ...
| | |_kbd ...
| | |_listing ...

| | |_menu ...
| | |_ol ...
| | |_p ...

| | |_pre ...

| | |_samp ...

| | |_select
| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_option

| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_#PCDATA
| | |
| | |_strong ...

| | |_textarea
| | | | (Ia): ***
| | | | (Xa): form
| | | |
| | | |_#PCDATA
| | |
| | |_tt ...
| | |_ul ...
| | |_var ...
| | |_xmp ...

| |
| |_h1
| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_i ...
| | |_img ...

| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_h2 to h6
| |
| | |
*|**|**| Like h1
| |
| |_hr
| | |
| | |_EMPTY
| |
| |_i
| | |
*|**|**| Like h1
| |
| |_img

| | |
| | |_EMPTY
| |
| |_isindex
| | |
| | |_EMPTY
| |
| |_kbd
| | |

*|**|**| Like h1
| |
| |_listing

| | |
| | |_CDATA
| |
| |_menu
| | | (X): ***
| | |
| | |_li ...
| |
| |_ol
| | |
| | |_li ...
| |
| |_p

| | |
*|**|**| Like h1
| |
| |_pre

| | |
| | |_#PCDATA
| | |_a ...
| | |_b ...
| | |_br ...
| | |_cite ...
| | |_code ...
| | |_em ...
| | |_hr ...
| | |_i ...
| | |_kbd ...
| | |_samp ...

| | |_strong ...

| | |_tt ...
| | |_var ...
| |
| |_samp

| | |
*|**|**| Like h1
| |
| |_strong

| | |
*|**|**| Like h1
| |
| |_tt
| | |
*|**|**| Like h1
| |
| |_ul
| | |
| | |_li ...
| |
| |_var
| | |
*|**|**| Like h1
| |
| |_xmp

| |
| |_CDATA
|
|_head
| |
| |_base
| | |
| | |_EMPTY
| |
| |_isindex ...
| |_link
| | |
| | |_EMPTY
| |
| |_meta
| | |
| | |_EMPTY
| |
| |_nextid
| | |
| | |_EMPTY
| |
| |_title
| |
| |_#PCDATA
|
|_plaintext

|
|_CDATA

Figure 12: Output of the dtdtree program for the HTML2 DTD

68 Michel Goossens and Janne Saarela

Figure 13: Hypertext description of the elements of a DTD (HTML2) as presented by

the HTML browser mosaic

A practical introduction to SGML 69

Figure 14: Searching the HTML2 DTD

70 Michel Goossens and Janne Saarela

Figure 15: Index entries for the HTML2 DTD

A practical introduction to SGML 71

makemenu makes a simple menu for HTML �les, based on each �le's <TITLE> tag;

it can also make a simple table of contents based on the <H1>{<H6>

heading tags;

xtraclnk.pl perl procedure to extract links and anchors from HTML �les and to

isolate text contained inside the <A> and <TITLE> elements;

dehtml removes all HTML markup from a document; is useful for spell checking;

entify replaces 8-bit Latin-1 input by the corresponding 7-bit-safe entity refer-

ences;

The syntax to use these programs is typically:

awk -f htmlchek.awk [opts] infile > outfile

perl htmlchek.pl [opts] infile > outfile

As an example we ran these scripts on the test �les of section 6.2 with the results shown

below, which are consistent with those obtained previously.

> perl dehtml.pl test1.html

Document test HTML

term 1data 1

term 2data 2

term 3

term 4data 4data 4 bis

> awk -f htmlchek.awk test2.html

Diagnostics for file "test2.html":

<body> without preceding <head>...</head>

Warning! at line 4 of file "test2.html"

No <H1> in <body>...</body>

Warning! at line 6 of file "test2.html"

<HEAD> not used in document

Warning! at END of file "test2.html"

<TITLE> not used in document

ERROR! at END of file "test2.html"

Tag P occurred

Tag HTML occurred

Tag BODY occurred

Tag !DOCTYPE occurred

> perl htmlchek.pl test3.html

Diagnostics for file "test3.html":

 outside of list

72 Michel Goossens and Janne Saarela

ERROR! at line 8 of file "test3.html"

No <H1> in <body>...</body>

Warning! at line 9 of file "test3.html"

Tag !DOCTYPE occurred

Tag BODY occurred

Tag HEAD occurred

Tag HTML occurred

Tag LI occurred

Tag TITLE occurred

7 DTD transformations

The logical markup of SGML documents makes it possible to transform the markup

associated to a DTD into that of another. When translating the markup one has to

take into consideration the fact that between some elements a one-to-one mapping

may not exist, but that a many-to-one, and one-to-many correspondence has to be

considered. It should also be noted that the tools used for this purpose need to be

sophisticated, since a normal grammar tool, such as yacc, is not suitable for parsing

SGML documents.

7.1 SGMLS.PL

A translator skeleton, sgmls.pl, is included with the nsgmls distribution. This perl

script reads the ESIS output of nsgmls and provides a set of routines that can be used

for calling user-speci�ed translation routines of each element.

7.2 SGMLS.PM and SGMLSPL

David Megginson (University of Ottawa, Canada, dmeggins@aix1.uottawa.ca) has

developed a more object-oriented approach for the translations, also based on the ESIS

output of nsgmls and calling event-routines for each element found in the input stream.

This package includes a default con�guration for translating documents marked up

according to the DocBook DTD into HTML or LATEX markup.

The sp parser provides an application level interface to SGML document handling.

The core of sp uses C++ and provides a solid class library for parsing SGML documents.

The parsing of an SGML document causes events and the user can write handlers to

translate them in the appropriate way.

7.3 Conversion from DocBook to HTML3

The translation program generates events for each primitive in the source document

and these events are handled by calling a corresponding routine. These routines then

produce the corresponding HTML/LATEX output. Thanks to its object-oriented
avour

A practical introduction to SGML 73

DocBook DTD sgmls
ESIS

representation
Translator

Configuration file

HTML3 DTD

Figure 16: Schematic overview of the DocBook to HTML conversion process

the overall architecture provides solid ground for DTD translations . The following listing

gives an idea of how the conversion is implemented. In the example below two elements

are translated into LATEX. When a tag is found that can be translated, the corresponding

string is produced.

Program listings appear in verbatim

sgml('<PROGRAMLISTING>',

"\n\\begin{verbatim}\n");

sgml('</PROGRAMLISTING>',

"\n\\end{verbatim}}\n");

Class names appear in typewriter.

sgml('<CLASSNAME>', "{\\ttfamily ");

sgml('</CLASSNAME>', "}");

This example is extremely simple since the mappings are basically one-to-one. In

the more general case, when a document element can be used inside di�erent elements,

the substitution is not just a string, but a procedure call, which allows, for instance,

backtracking to cope with context-dependent conversion rules that take into account the

current context. For instance, the code below shows how, when reaching the <TITLE>

end tag, the title information is handled di�erently, according to whether it occurred

inside an article header, section or table element.

sgml('<TITLE>',

sub { push_output 'string'; });

sgml('</TITLE>', sub {

my $element = shift;

my $data = pop_output;

if ($element->in(ARTHEADER)) {

$title = $data;

} elsif ($element->in(SECT1) ||

74 Michel Goossens and Janne Saarela

$element->in(IMPORTANT)) {

output "\n\n\\section{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} elsif ($element->in(TABLE)) {

output "\\caption{$data}\n";

output "\\label{$id}\n" if $id;

output "\n";

} else {

die "No TITLE allowed in "

. $element->parent->name . "\n";

}

});

A conversion example of an extract from the DocBook DTD manual is given in

Appendix G. It shows part of the original DocBook document markup, how it is presented

in the ESIS format, �nally its translation in HTML3. Figure 16 shows the principle of the

translation process.

7.4 Commercial solutions

Several companies provide commercial solutions for doing do the translations: Exoterica,

AIS, EBT (Electronic Book Technologies) and Avalanche to mention few.

8 Other standards in the area of electronic documents

SGML is part of a vast project conceived by the International Standards Organization

(ISO) to develop a model to describe the complete process of creating, exchanging,

editing and viewing or printing of electronic documents. This model consists of several

standards, some already adopted, others still under discussion (see [7] and [8]).

SGML (Standard Generalized Markup Language)

ISO 8879, the Standard described in this article is concerned with the creation and editing

of documents. A complementary standard is ISO 9069 [10], SDIF, for \SGML Document

Interchange Format". ISO/IEC 10744, the Hytime Standard, presents a formalism for

the representation of hypermedia documents. The Hytime language ([6], [13]) allows

the descriptions of situations that are time dependent (for example CD-I).

DSSSL (Document Style Semantics and Speci�cation Language)

International Standard ISO 10179 [14], was adopted at the beginning of 1995. It presents

a framework to express the concepts and actions necessary for transforming a structurally

marked up document into its �nal physical form. Although this Standard is primarily

A practical introduction to SGML 75

targeted at document handling, it can also de�ne other layouts, such as those needed

for use with databases.19

SPDL (Standard Page Description Language)

Draft International Standard ISO DIS 10180 [11] de�nes a formalism for the description

of documents in their �nal, completely typeset, unrevisable form.20 The structure of

the language and its syntax strongly resemble the PostScript language, which is not

surprising since PostScript has become the de facto standard page description language.

Fonts

To exchange documents one must also de�ne a font standard. ISO 9541 [12] describes a

method for naming and grouping glyphs or glyph collections independently of a particular

font language (such as PostScript or Truetype).

Acknowledgments

We sincerely thank Nelson Beebe (Utah University, beebe@math.utah.edu) for several

interesting e-mail discussions and for his detailed reading of the compuscript. His sug-

gestions and hints have without doubt substantially improved the quality of the text.

We also want to acknowledge the help of Steven Kennedy (CERN) who proofread the

article.

References

[1] Association of American Publishers, Electronic Manuscript Series. Author's Guide

to Electronic Manuscript Preparation and Markup (Version 2). Association of

American Publishers, EPSIG, Dublin, OH, USA, 1989.

[2] Association of American Publishers, Electronic Manuscript Series. Markup of math-

ematical formulas (Version 2). Association of American Publishers, EPSIG, Dublin,

OH, USA, 1989.

[3] Association of American Publishers, Electronic Manuscript Series. Markup of tab-

ular material (Version 2). Association of American Publishers, EPSIG, Dublin, OH,

USA, 1989.

[4] Association of American Publishers, Electronic Manuscript Series. Reference Man-

ual on Electronic Manuscript Preparation and Markup (Version 2). Association of

American Publishers, EPSIG, Dublin, OH, USA, 1989.

[5] C.F. Goldfarb. The SGML Handbook. Oxford University Press, 1990.

19. More on DSSSL by James Clark is available at the URL http://www.jclark.com/dsssl/.

20. More on SPDL can be found at the URL http://www.st.rim.or.jp/~uda/spdl/spdl.html.

76 Michel Goossens and Janne Saarela

[6] C.F. Goldfarb. Hytime: A standard for structured hypermedia interchange. IEEE

Computer, pages 81{84, August 1991.

[7] M. Goossens and E. van Herwijnen. Introduction sgml, dsssl et spdl. Cahiers

GUTenberg, 12:37{56, December 1991.

[8] M. Goossens and E. van Herwijnen. Scienti�c text processing. Journal of Modern

Physics C, 3(3):479{546, June 1992.

[9] International Organization for Standardization. Code for the presentation of names

of languages. ISO 639:1988 (E/F), ISO Geneva, 1988.

[10] International Organization for Standardization. Information processing { SGML

support facilities { SGML Document Interchange Format (SDIF). ISO 9069:1988,

ISO Geneva, 1988.

[11] International Organization for Standardization. Information Technology { Text

Communication { Standard Page Description Language (SPDL). ISO/IEC DIS

10180, ISO Geneva, 1991.

[12] International Organization for Standardization. Information Technology { Font

information interchange (three parts). ISO/IEC 9541-1,2,3, ISO Geneva, 1991

and 1993.

[13] International Organization for Standardization. Information Technology {

Hypermedia/Time-based Structuring Language (Hytime). ISO/IEC 10744:1992,

ISO Geneva, 1992.

[14] International Organization for Standardization. Information processing { Text and

o�ce systems { Document Style Semantics and Speci�cation Language (DSSSL).

ISO/IEC DIS 10179.2, ISO Geneva, 1994.

[15] International Organization or Standardization. Information processing { Text

and o�ce systems { Standard Generalized Markup Language (SGML). ISO

8879:1986(E), ISO Geneva, 1986.

[16] J. Karney. SGML and tag masters. PC Magazine, 14(3):144{162, 1995.

[17] J. Karney. SGML: It's still �a la carte. PC Magazine, 14(3):168{171, 1995.

[18] P. Ores. Hypertext publishing { edit trial. PC Magazine, 14(3):132{143, 1995.

[19] Eric van Herwijnen. Practical SGML (Second Edition). Wolters-Kluwer Academic

Publishers, Boston, 1994.

[20] Dominique Vignaud. �Editions du Cercle de la Librairie, Paris, 1990.

Appendix A: The DTD of the HTML2 language

1 <!-- html.dtd

2
3 Document Type Definition for the HyperText Markup Language

4 (HTML DTD)

5
6 $Id: html.dtd,v 1.25 1995/03/29 18:53:13 connolly Exp $

7
8 Author: Daniel W. Connolly <connolly@w3.org>

9 See Also: html.decl, html-0.dtd, html-1.dtd

A practical introduction to SGML 77

10 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html

11 -->

12
13 <!ENTITY % HTML.Version

14 "-//IETF//DTD HTML 2.0//EN"

15
16 -- Typical usage:

17
18 <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

19 <html>

20 ...

21 </html>

22 --

23 >

24
25
26 <!--============ Feature Test Entities ========================-->

27
28 <!ENTITY % HTML.Recommended "IGNORE"

29 -- Certain features of the language are necessary for

30 compatibility with widespread usage, but they may

31 compromise the structural integrity of a document.

32 This feature test entity enables a more prescriptive

33 document type definition that eliminates

34 those features.

35 -->

36
37 <![%HTML.Recommended [

38 <!ENTITY % HTML.Deprecated "IGNORE">

39]]>

40
41 <!ENTITY % HTML.Deprecated "INCLUDE"

42 -- Certain features of the language are necessary for

43 compatibility with earlier versions of the specification,

44 but they tend to be used an implemented inconsistently,

45 and their use is deprecated. This feature test entity

46 enables a document type definition that eliminates

47 these features.

48 -->

49
50 <!ENTITY % HTML.Highlighting "INCLUDE"

51 -- Use this feature test entity to validate that a

52 document uses no highlighting tags, which may be

53 ignored on minimal implementations.

54 -->

55
56 <!ENTITY % HTML.Forms "INCLUDE"

57 -- Use this feature test entity to validate that a document

58 contains no forms, which may not be supported in minimal

59 implementations

60 -->

61
62 <!--============== Imported Names ==============================-->

63
64 <!ENTITY % Content-Type "CDATA"

65 -- meaning an internet media type

66 (aka MIME content type, as per RFC1521)

67 -->

68
69 <!ENTITY % HTTP-Method "GET | POST"

70 -- as per HTTP specification, in progress

71 -->

72
73 <!ENTITY % URI "CDATA"

78 Michel Goossens and Janne Saarela

74 -- The term URI means a CDATA attribute

75 whose value is a Uniform Resource Identifier,

76 as defined by

77 "Universal Resource Identifiers" by Tim Berners-Lee

78 aka RFC 1630

79
80 Note that CDATA attributes are limited by the LITLEN

81 capacity (1024 in the current version of html.decl),

82 so that URIs in HTML have a bounded length.

83
84 -->

85
86
87 <!--========= DTD "Macros" =====================-->

88
89 <!ENTITY % heading "H1|H2|H3|H4|H5|H6">

90
91 <!ENTITY % list " UL | OL | DIR | MENU " >

92
93
94 <!--======= Character mnemonic entities =================-->

95
96
97 <!ENTITY % ISOlat1 PUBLIC

98 "-//IETF//ENTITIES Added Latin 1 for HTML//EN" "iso-lat1.gml">

99
100 %ISOlat1;

101
102 <!ENTITY amp CDATA "&" -- ampersand -->

103 <!ENTITY gt CDATA ">" -- greater than -->

104 <!ENTITY lt CDATA "<" -- less than -->

105 <!ENTITY quot CDATA """ -- double quote -->

106
107
108 <!--========= SGML Document Access (SDA) Parameter Entities =====-->

109
110 <!-- HTML 2.0 contains SGML Document Access (SDA) fixed attributes

111 in support of easy transformation to the International Committee

112 for Accessible Document Design (ICADD) DTD

113 "-//EC-USA-CDA/ICADD//DTD ICADD22//EN".

114 ICADD applications are designed to support usable access to

115 structured information by print-impaired individuals through

116 Braille, large print and voice synthesis. For more information on

117 SDA & ICADD:

118 - ISO 12083:1993, Annex A.8, Facilities for Braille,

119 large print and computer voice

120 - ICADD ListServ

121 <ICADD%ASUACAD.BITNET@ARIZVM1.ccit.arizona.edu>

122 - Usenet news group bit.listserv.easi

123 - Recording for the Blind, +1 800 221 4792

124 -->

125
126 <!ENTITY % SDAFORM "SDAFORM CDATA #FIXED"

127 -- one to one mapping -->

128 <!ENTITY % SDARULE "SDARULE CDATA #FIXED"

129 -- context-sensitive mapping -->

130 <!ENTITY % SDAPREF "SDAPREF CDATA #FIXED"

131 -- generated text prefix -->

132 <!ENTITY % SDASUFF "SDASUFF CDATA #FIXED"

133 -- generated text suffix -->

134 <!ENTITY % SDASUSP "SDASUSP NAME #FIXED"

135 -- suspend transform process -->

136
137

A practical introduction to SGML 79

138 <!--========== Text Markup =====================-->

139
140 <![%HTML.Highlighting [

141
142 <!ENTITY % font " TT | B | I ">

143
144 <!ENTITY % phrase "EM | STRONG | CODE | SAMP | KBD | VAR | CITE ">

145
146 <!ENTITY % text "#PCDATA | A | IMG | BR | %phrase | %font">

147
148 <!ELEMENT (%font;|%phrase) - - (%text)*>

149 <!ATTLIST (TT | CODE | SAMP | KBD | VAR)

150 %SDAFORM; "Lit"

151 >

152 <!ATTLIST (B | STRONG)

153 %SDAFORM; "B"

154 >

155 <!ATTLIST (I | EM | CITE)

156 %SDAFORM; "It"

157 >

158
159 <!-- <TT> Typewriter text -->

160 <!-- Bold text -->

161 <!-- <I> Italic text -->

162
163 <!-- Emphasized phrase -->

164 <!-- Strong emphais -->

165 <!-- <CODE> Source code phrase -->

166 <!-- <SAMP> Sample text or characters -->

167 <!-- <KBD> Keyboard phrase, e.g. user input -->

168 <!-- <VAR> Variable phrase or substituable -->

169 <!-- <CITE> Name or title of cited work -->

170
171 <!ENTITY % pre.content "#PCDATA | A | HR | BR | %font | %phrase">

172
173]]>

174
175 <!ENTITY % text "#PCDATA | A | IMG | BR">

176
177 <!ELEMENT BR - O EMPTY>

178 <!ATTLIST BR

179 %SDAPREF; "&#RE;"

180 >

181
182 <!--
 Line break -->

183
184
185 <!--========= Link Markup ======================-->

186
187 <![%HTML.Recommended [

188 <!ENTITY % linkName "ID">

189]]>

190
191 <!ENTITY % linkName "CDATA">

192
193 <!ENTITY % linkType "NAME"

194 -- a list of these will be specified at a later date -->

195
196 <!ENTITY % linkExtraAttributes

197 "REL %linkType #IMPLIED

198 REV %linkType #IMPLIED

199 URN CDATA #IMPLIED

200 TITLE CDATA #IMPLIED

201 METHODS NAMES #IMPLIED

80 Michel Goossens and Janne Saarela

202 ">

203
204 <![%HTML.Recommended [

205 <!ENTITY % A.content "(%text)*"

206 -- <H1>Heading</H1>

207 is preferred to

208 <H1>Heading</H1>

209 -->

210]]>

211
212 <!ENTITY % A.content "(%heading|%text)*">

213
214 <!ELEMENT A - - %A.content -(A)>

215 <!ATTLIST A

216 HREF %URI #IMPLIED

217 NAME %linkName #IMPLIED

218 %linkExtraAttributes;

219 %SDAPREF; "<Anchor: #AttList>"

220 >

221 <!-- <A> Anchor; source/destination of link -->

222 <!-- Name of this anchor -->

223 <!-- Address of link destination -->

224 <!-- Permanent address of destination -->

225 <!-- Relationship to destination -->

226 <!-- Relationship of destination to this -->

227 <!-- Title of destination (advisory) -->

228 <!-- Operations on destination (advisory) -->

229
230
231 <!--========== Images ==========================-->

232
233 <!ELEMENT IMG - O EMPTY>

234 <!ATTLIST IMG

235 SRC %URI; #REQUIRED

236 ALT CDATA #IMPLIED

237 ALIGN (top|middle|bottom) #IMPLIED

238 ISMAP (ISMAP) #IMPLIED

239 %SDAPREF; "<Fig><?SDATrans Img: #AttList>#AttVal(Alt)</Fig>"

240 >

241
242 <!-- Image; icon, glyph or illustration -->

243 <!-- Address of image object -->

244 <!-- Textual alternative -->

245 <!-- Position relative to text -->

246 <!-- Each pixel can be a link -->

247
248 <!--========== Paragraphs=======================-->

249
250 <!ELEMENT P - O (%text)*>

251 <!ATTLIST P

252 %SDAFORM; "Para"

253 >

254
255 <!-- <P> Paragraph -->

256
257
258 <!--========== Headings, Titles, Sections ===============-->

259
260 <!ELEMENT HR - O EMPTY>

261 <!ATTLIST HR

262 %SDAPREF; "&#RE;&#RE;"

263 >

264
265 <!-- <HR> Horizontal rule -->

A practical introduction to SGML 81

266
267 <!ELEMENT (%heading) - - (%text;)*>

268 <!ATTLIST H1

269 %SDAFORM; "H1"

270 >

271 <!ATTLIST H2

272 %SDAFORM; "H2"

273 >

274 <!ATTLIST H3

275 %SDAFORM; "H3"

276 >

277 <!ATTLIST H4

278 %SDAFORM; "H4"

279 >

280 <!ATTLIST H5

281 %SDAFORM; "H5"

282 >

283 <!ATTLIST H6

284 %SDAFORM; "H6"

285 >

286
287 <!-- <H1> Heading, level 1 -->

288 <!-- <H2> Heading, level 2 -->

289 <!-- <H3> Heading, level 3 -->

290 <!-- <H4> Heading, level 4 -->

291 <!-- <H5> Heading, level 5 -->

292 <!-- <H6> Heading, level 6 -->

293
294
295 <!--========== Text Flows ======================-->

296
297 <![%HTML.Forms [

298 <!ENTITY % block.forms "BLOCKQUOTE | FORM | ISINDEX">

299]]>

300
301 <!ENTITY % block.forms "BLOCKQUOTE">

302
303 <![%HTML.Deprecated [

304 <!ENTITY % preformatted "PRE | XMP | LISTING">

305]]>

306
307 <!ENTITY % preformatted "PRE">

308
309 <!ENTITY % block "P | %list | DL

310 | %preformatted

311 | %block.forms">

312
313 <!ENTITY % flow "(%text|%block)*">

314
315 <!ENTITY % pre.content "#PCDATA | A | HR | BR">

316 <!ELEMENT PRE - - (%pre.content)*>

317 <!ATTLIST PRE

318 WIDTH NUMBER #implied

319 %SDAFORM; "Lit"

320 >

321
322 <!-- <PRE> Preformatted text -->

323 <!-- <PRE WIDTH=...> Maximum characters per line -->

324
325 <![%HTML.Deprecated [

326
327 <!ENTITY % literal "CDATA"

328 -- historical, non-conforming parsing mode where

329 the only markup signal is the end tag

82 Michel Goossens and Janne Saarela

330 in full

331 -->

332
333 <!ELEMENT (XMP|LISTING) - - %literal>

334 <!ATTLIST XMP

335 %SDAFORM; "Lit"

336 %SDAPREF; "Example:&#RE;"

337 >

338 <!ATTLIST LISTING

339 %SDAFORM; "Lit"

340 %SDAPREF; "Listing:&#RE;"

341 >

342
343 <!-- <XMP> Example section -->

344 <!-- <LISTING> Computer listing -->

345
346 <!ELEMENT PLAINTEXT - O %literal>

347 <!-- <PLAINTEXT> Plain text passage -->

348
349 <!ATTLIST PLAINTEXT

350 %SDAFORM; "Lit"

351 >

352]]>

353
354
355 <!--========== Lists ==================-->

356
357 <!ELEMENT DL - - (DT | DD)+>

358 <!ATTLIST DL

359 COMPACT (COMPACT) #IMPLIED

360 %SDAFORM; "List"

361 %SDAPREF; "Definition List:"

362 >

363
364 <!ELEMENT DT - O (%text)*>

365 <!ATTLIST DT

366 %SDAFORM; "Term"

367 >

368
369 <!ELEMENT DD - O %flow>

370 <!ATTLIST DD

371 %SDAFORM; "LItem"

372 >

373
374 <!-- <DL> Definition list, or glossary -->

375 <!-- <DL COMPACT> Compact style list -->

376 <!-- <DT> Term in definition list -->

377 <!-- <DD> Definition of term -->

378
379 <!ELEMENT (OL|UL) - - (LI)+>

380 <!ATTLIST OL

381 COMPACT (COMPACT) #IMPLIED

382 %SDAFORM; "List"

383 >

384 <!ATTLIST UL

385 COMPACT (COMPACT) #IMPLIED

386 %SDAFORM; "List"

387 >

388 <!-- Unordered list -->

389 <!-- <UL COMPACT> Compact list style -->

390 <!-- Ordered, or numbered list -->

391 <!-- <OL COMPACT> Compact list style -->

392
393

A practical introduction to SGML 83

394 <!ELEMENT (DIR|MENU) - - (LI)+ -(%block)>

395 <!ATTLIST DIR

396 COMPACT (COMPACT) #IMPLIED

397 %SDAFORM; "List"

398 %SDAPREF; "<LHead>Directory</LHead>"

399 >

400 <!ATTLIST MENU

401 COMPACT (COMPACT) #IMPLIED

402 %SDAFORM; "List"

403 %SDAPREF; "<LHead>Menu</LHead>"

404 >

405
406 <!-- <DIR> Directory list -->

407 <!-- <DIR COMPACT> Compact list style -->

408 <!-- <MENU> Menu list -->

409 <!-- <MENU COMPACT> Compact list style -->

410
411 <!ELEMENT LI - O %flow>

412 <!ATTLIST LI

413 %SDAFORM; "LItem"

414 >

415
416 <!-- List item -->

417
418 <!--========== Document Body ===================-->

419
420 <![%HTML.Recommended [

421 <!ENTITY % body.content "(%heading|%block|HR|ADDRESS|IMG)*"

422 -- <h1>Heading</h1>

423 <p>Text ...

424 is preferred to

425 <h1>Heading</h1>

426 Text ...

427 -->

428]]>

429
430 <!ENTITY % body.content "(%heading | %text | %block |

431 HR | ADDRESS)*">

432
433 <!ELEMENT BODY O O %body.content>

434
435 <!-- <BODY> Document body -->

436
437 <!ELEMENT BLOCKQUOTE - - %body.content>

438 <!ATTLIST BLOCKQUOTE

439 %SDAFORM; "BQ"

440 >

441
442 <!-- <BLOCKQUOTE> Quoted passage -->

443
444 <!ELEMENT ADDRESS - - (%text|P)*>

445 <!ATTLIST ADDRESS

446 %SDAFORM; "Lit"

447 %SDAPREF; "Address:&#RE;"

448 >

449
450 <!-- <ADDRESS> Address, signature, or byline -->

451
452
453 <!--======= Forms ====================-->

454
455 <![%HTML.Forms [

456
457 <!ELEMENT FORM - - %body.content -(FORM) +(INPUT|SELECT|TEXTAREA)>

84 Michel Goossens and Janne Saarela

458 <!ATTLIST FORM

459 ACTION %URI #IMPLIED

460 METHOD (%HTTP-Method) GET

461 ENCTYPE %Content-Type; "application/x-www-form-urlencoded"

462 %SDAPREF; "<Para>Form:</Para>"

463 %SDASUFF; "<Para>Form End.</Para>"

464 >

465
466 <!-- <FORM> Fill-out or data-entry form -->

467 <!-- <FORM ACTION="..."> Address for completed form -->

468 <!-- <FORM METHOD=...> Method of submitting form -->

469 <!-- <FORM ENCTYPE="..."> Representation of form data -->

470
471 <!ENTITY % InputType "(TEXT | PASSWORD | CHECKBOX |

472 RADIO | SUBMIT | RESET |

473 IMAGE | HIDDEN)">

474 <!ELEMENT INPUT - O EMPTY>

475 <!ATTLIST INPUT

476 TYPE %InputType TEXT

477 NAME CDATA #IMPLIED

478 VALUE CDATA #IMPLIED

479 SRC %URI #IMPLIED

480 CHECKED (CHECKED) #IMPLIED

481 SIZE CDATA #IMPLIED

482 MAXLENGTH NUMBER #IMPLIED

483 ALIGN (top|middle|bottom) #IMPLIED

484 %SDAPREF; "Input: "

485 >

486
487 <!-- <INPUT> Form input datum -->

488 <!-- <INPUT TYPE=...> Type of input interaction -->

489 <!-- <INPUT NAME=...> Name of form datum -->

490 <!-- <INPUT VALUE="..."> Default/initial/selected value -->

491 <!-- <INPUT SRC="..."> Address of image -->

492 <!-- <INPUT CHECKED> Initial state is "on" -->

493 <!-- <INPUT SIZE=...> Field size hint -->

494 <!-- <INPUT MAXLENGTH=...> Data length maximum -->

495 <!-- <INPUT ALIGN=...> Image alignment -->

496
497 <!ELEMENT SELECT - - (OPTION+) -(INPUT|SELECT|TEXTAREA)>

498 <!ATTLIST SELECT

499 NAME CDATA #REQUIRED

500 SIZE NUMBER #IMPLIED

501 MULTIPLE (MULTIPLE) #IMPLIED

502 %SDAFORM; "List"

503 %SDAPREF;

504 "<LHead>Select #AttVal(Multiple)</LHead>"

505 >

506
507 <!-- <SELECT> Selection of option(s) -->

508 <!-- <SELECT NAME=...> Name of form datum -->

509 <!-- <SELECT SIZE=...> Options displayed at a time -->

510 <!-- <SELECT MULTIPLE> Multiple selections allowed -->

511
512 <!ELEMENT OPTION - O (#PCDATA)*>

513 <!ATTLIST OPTION

514 SELECTED (SELECTED) #IMPLIED

515 VALUE CDATA #IMPLIED

516 %SDAFORM; "LItem"

517 %SDAPREF;

518 "Option: #AttVal(Value) #AttVal(Selected)"

519 >

520
521 <!-- <OPTION> A selection option -->

A practical introduction to SGML 85

522 <!-- <OPTION SELECTED> Initial state -->

523 <!-- <OPTION VALUE="..."> Form datum value for this option-->

524
525 <!ELEMENT TEXTAREA - - (#PCDATA)* -(INPUT|SELECT|TEXTAREA)>

526 <!ATTLIST TEXTAREA

527 NAME CDATA #REQUIRED

528 ROWS NUMBER #REQUIRED

529 COLS NUMBER #REQUIRED

530 %SDAFORM; "Para"

531 %SDAPREF; "Input Text -- #AttVal(Name): "

532 >

533
534 <!-- <TEXTAREA> An area for text input -->

535 <!-- <TEXTAREA NAME=...> Name of form datum -->

536 <!-- <TEXTAREA ROWS=...> Height of area -->

537 <!-- <TEXTAREA COLS=...> Width of area -->

538
539]]>

540
541
542 <!--======= Document Head ======================-->

543
544 <![%HTML.Recommended [

545 <!ENTITY % head.extra "META* & LINK*">

546]]>

547
548 <!ENTITY % head.extra "NEXTID? & META* & LINK*">

549
550 <!ENTITY % head.content "TITLE & ISINDEX? & BASE? &

551 (%head.extra)">

552
553 <!ELEMENT HEAD O O (%head.content)>

554
555 <!-- <HEAD> Document head -->

556
557 <!ELEMENT TITLE - - (#PCDATA)*>

558 <!ATTLIST TITLE

559 %SDAFORM; "Ti" >

560
561 <!-- <TITLE> Title of document -->

562
563 <!ELEMENT LINK - O EMPTY>

564 <!ATTLIST LINK

565 HREF %URI #REQUIRED

566 %linkExtraAttributes;

567 %SDAPREF; "Linked to : #AttVal (TITLE) (URN) (HREF)>" >

568
569 <!-- <LINK> Link from this document -->

570 <!-- <LINK HREF="..."> Address of link destination -->

571 <!-- <LINK URN="..."> Lasting name of destination -->

572 <!-- <LINK REL=...> Relationship to destination -->

573 <!-- <LINK REV=...> Relationship of destination to this -->

574 <!-- <LINK TITLE="..."> Title of destination (advisory) -->

575 <!-- <LINK METHODS="..."> Operations allowed (advisory) -->

576
577 <!ELEMENT ISINDEX - O EMPTY>

578 <!ATTLIST ISINDEX

579 %SDAPREF;

580 "<Para>[Document is indexed/searchable.]</Para>">

581
582 <!-- <ISINDEX> Document is a searchable index -->

583
584 <!ELEMENT BASE - O EMPTY>

585 <!ATTLIST BASE

86 Michel Goossens and Janne Saarela

586 HREF %URI; #REQUIRED >

587
588 <!-- <BASE> Base context document -->

589 <!-- <BASE HREF="..."> Address for this document -->

590
591 <!ELEMENT NEXTID - O EMPTY>

592 <!ATTLIST NEXTID

593 N %linkName #REQUIRED >

594
595 <!-- <NEXTID> Next ID to use for link name -->

596 <!-- <NEXTID N=...> Next ID to use for link name -->

597
598 <!ELEMENT META - O EMPTY>

599 <!ATTLIST META

600 HTTP-EQUIV NAME #IMPLIED

601 NAME NAME #IMPLIED

602 CONTENT CDATA #REQUIRED >

603
604 <!-- <META> Generic Metainformation -->

605 <!-- <META HTTP-EQUIV=...> HTTP response header name -->

606 <!-- <META NAME=...> Metainformation name -->

607 <!-- <META CONTENT="..."> Associated information -->

608
609 <!--======= Document Structure =================-->

610
611 <![%HTML.Deprecated [

612 <!ENTITY % html.content "HEAD, BODY, PLAINTEXT?">

613]]>

614 <!ENTITY % html.content "HEAD, BODY">

615
616 <!ELEMENT HTML O O (%html.content)>

617 <!ENTITY % version.attr "VERSION CDATA #FIXED '%HTML.Version;'">

618
619 <!ATTLIST HTML

620 %version.attr;

621 %SDAFORM; "Book"

622 >

623
624 <!-- <HTML> HTML Document -->

Appendix B: The HTML2 SGML declaration

1 <!SGML "ISO 8879:1986"

2 --

3 SGML Declaration for HyperText Markup Language (HTML).

4
5 --

6
7 CHARSET

8 BASESET "ISO 646:1983//CHARSET

9 International Reference Version

10 (IRV)//ESC 2/5 4/0"

11 DESCSET 0 9 UNUSED

12 9 2 9

13 11 2 UNUSED

14 13 1 13

15 14 18 UNUSED

16 32 95 32

17 127 1 UNUSED

18 BASESET "ISO Registration Number 100//CHARSET

19 ECMA-94 Right Part of

20 Latin Alphabet Nr. 1//ESC 2/13 4/1"

A practical introduction to SGML 87

21
22 DESCSET 128 32 UNUSED

23 160 96 32

24
25 CAPACITY SGMLREF

26 TOTALCAP 150000

27 GRPCAP 150000

28
29 SCOPE DOCUMENT

30 SYNTAX

31 SHUNCHAR CONTROLS 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

32 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 127

33 BASESET "ISO 646:1983//CHARSET

34 International Reference Version

35 (IRV)//ESC 2/5 4/0"

36 DESCSET 0 128 0

37 FUNCTION

38 RE 13

39 RS 10

40 SPACE 32

41 TAB SEPCHAR 9

42
43
44 NAMING LCNMSTRT ""

45 UCNMSTRT ""

46 LCNMCHAR ".-"

47 UCNMCHAR ".-"

48 NAMECASE GENERAL YES

49 ENTITY NO

50 DELIM GENERAL SGMLREF

51 SHORTREF SGMLREF

52 NAMES SGMLREF

53 QUANTITY SGMLREF

54 ATTSPLEN 2100

55 LITLEN 1024

56 NAMELEN 72 -- somewhat arbitrary; taken from

57 internet line length conventions --

58 PILEN 1024

59 TAGLEN 2100

60 GRPGTCNT 150

61 GRPCNT 64

62
63 FEATURES

64 MINIMIZE

65 DATATAG NO

66 OMITTAG YES

67 RANK NO

68 SHORTTAG YES

69 LINK

70 SIMPLE NO

71 IMPLICIT NO

72 EXPLICIT NO

73 OTHER

74 CONCUR NO

75 SUBDOC NO

76 FORMAL YES

77 APPINFO "SDA" -- conforming SGML Document Access application

78 --

79 >

80 <!--

81 $Id: html.decl,v 1.14 1995/02/10 22:20:05 connolly Exp $

82
83 Author: Daniel W. Connolly <connolly@hal.com>

84

88 Michel Goossens and Janne Saarela

85 See also: http://www.hal.com/%7Econnolly/html-spec

86 http://info.cern.ch/hypertext/WWW/MarkUp/MarkUp.html

87 -->

Appendix C: The SGML open HTML catalog �le

SGML Open is an industry consortium dedicated to encouraging the adoption of SGML

as a standard for document and data interchange. It proposes a standard way for mapping

entity and other external references in a DTD to �le names via a \catalog" �le. Below

is an example of such a catalog �le for HTML.

Appendix D: The ISO-Latin1 entity set

To have an idea of how character entity sets are de�ned in practice, below is shown the

�le corresponding to Latin1 (standard ISO/IEC 8859-1), available as SGML public entity

set ISOlat1 with ISO 8879.

1 <!-- (C) International Organization for Standardization 1986

2 Permission to copy in any form is granted for use with

3 conforming SGML systems and applications as defined in

4 ISO 8879, provided this notice is included in all copies.

5 -->

6 <!-- Character entity set. Typical invocation:

7 <!ENTITY % ISOlat1 PUBLIC

8 "ISO 8879-1986//ENTITIES Added Latin 1//EN">

9 %ISOlat1;

10 -->

11 <!ENTITY aacute SDATA "[aacute]"--=small a, acute accent-->

12 <!ENTITY Aacute SDATA "[Aacute]"--=capital A, acute accent-->

13 <!ENTITY acirc SDATA "[acirc]"--=small a, circumflex accent-->

14 <!ENTITY Acirc SDATA "[Acirc]"--=capital A, circumflex accent-->

15 <!ENTITY agrave SDATA "[agrave]"--=small a, grave accent-->

16 <!ENTITY Agrave SDATA "[Agrave]"--=capital A, grave accent-->

17 <!ENTITY aring SDATA "[aring]"--=small a, ring-->

18 <!ENTITY Aring SDATA "[Aring]"--=capital A, ring-->

19 <!ENTITY atilde SDATA "[atilde]"--=small a, tilde-->

20 <!ENTITY Atilde SDATA "[Atilde]"--=capital A, tilde-->

21 <!ENTITY auml SDATA "[auml]"--=small a, dieresis or umlaut mark-->

22 <!ENTITY Auml SDATA "[Auml]"--=capital A, dieresis or umlaut mark-->

23 <!ENTITY aelig SDATA "[aelig]"--=small ae diphthong (ligature)-->

24 <!ENTITY AElig SDATA "[AElig]"--=capital AE diphthong (ligature)-->

25 <!ENTITY ccedil SDATA "[ccedil]"--=small c, cedilla-->

26 <!ENTITY Ccedil SDATA "[Ccedil]"--=capital C, cedilla-->

27 <!ENTITY eth SDATA "[eth]"--=small eth, Icelandic-->

28 <!ENTITY ETH SDATA "[ETH]"--=capital Eth, Icelandic-->

29 <!ENTITY eacute SDATA "[eacute]"--=small e, acute accent-->

30 <!ENTITY Eacute SDATA "[Eacute]"--=capital E, acute accent-->

31 <!ENTITY ecirc SDATA "[ecirc]"--=small e, circumflex accent-->

32 <!ENTITY Ecirc SDATA "[Ecirc]"--=capital E, circumflex accent-->

33 <!ENTITY egrave SDATA "[egrave]"--=small e, grave accent-->

34 <!ENTITY Egrave SDATA "[Egrave]"--=capital E, grave accent-->

35 <!ENTITY euml SDATA "[euml]"--=small e, dieresis or umlaut mark-->

36 <!ENTITY Euml SDATA "[Euml]"--=capital E, dieresis or umlaut mark-->

37 <!ENTITY iacute SDATA "[iacute]"--=small i, acute accent-->

A practical introduction to SGML 89

38 <!ENTITY Iacute SDATA "[Iacute]"--=capital I, acute accent-->

39 <!ENTITY icirc SDATA "[icirc]"--=small i, circumflex accent-->

40 <!ENTITY Icirc SDATA "[Icirc]"--=capital I, circumflex accent-->

41 <!ENTITY igrave SDATA "[igrave]"--=small i, grave accent-->

42 <!ENTITY Igrave SDATA "[Igrave]"--=capital I, grave accent-->

43 <!ENTITY iuml SDATA "[iuml]"--=small i, dieresis or umlaut mark-->

44 <!ENTITY Iuml SDATA "[Iuml]"--=capital I, dieresis or umlaut mark-->

45 <!ENTITY ntilde SDATA "[ntilde]"--=small n, tilde-->

46 <!ENTITY Ntilde SDATA "[Ntilde]"--=capital N, tilde-->

47 <!ENTITY oacute SDATA "[oacute]"--=small o, acute accent-->

48 <!ENTITY Oacute SDATA "[Oacute]"--=capital O, acute accent-->

49 <!ENTITY ocirc SDATA "[ocirc]"--=small o, circumflex accent-->

50 <!ENTITY Ocirc SDATA "[Ocirc]"--=capital O, circumflex accent-->

51 <!ENTITY ograve SDATA "[ograve]"--=small o, grave accent-->

52 <!ENTITY Ograve SDATA "[Ograve]"--=capital O, grave accent-->

53 <!ENTITY oslash SDATA "[oslash]"--=small o, slash-->

54 <!ENTITY Oslash SDATA "[Oslash]"--=capital O, slash-->

55 <!ENTITY otilde SDATA "[otilde]"--=small o, tilde-->

56 <!ENTITY Otilde SDATA "[Otilde]"--=capital O, tilde-->

57 <!ENTITY ouml SDATA "[ouml]"--=small o, dieresis or umlaut mark-->

58 <!ENTITY Ouml SDATA "[Ouml]"--=capital O, dieresis or umlaut mark-->

59 <!ENTITY szlig SDATA "[szlig]"--=small sharp s, German (sz ligature)-->

60 <!ENTITY thorn SDATA "[thorn]"--=small thorn, Icelandic-->

61 <!ENTITY THORN SDATA "[THORN]"--=capital THORN, Icelandic-->

62 <!ENTITY uacute SDATA "[uacute]"--=small u, acute accent-->

63 <!ENTITY Uacute SDATA "[Uacute]"--=capital U, acute accent-->

64 <!ENTITY ucirc SDATA "[ucirc]"--=small u, circumflex accent-->

65 <!ENTITY Ucirc SDATA "[Ucirc]"--=capital U, circumflex accent-->

66 <!ENTITY ugrave SDATA "[ugrave]"--=small u, grave accent-->

67 <!ENTITY Ugrave SDATA "[Ugrave]"--=capital U, grave accent-->

68 <!ENTITY uuml SDATA "[uuml]"--=small u, dieresis or umlaut mark-->

69 <!ENTITY Uuml SDATA "[Uuml]"--=capital U, dieresis or umlaut mark-->

70 <!ENTITY yacute SDATA "[yacute]"--=small y, acute accent-->

71 <!ENTITY Yacute SDATA "[Yacute]"--=capital Y, acute accent-->

72 <!ENTITY yuml SDATA "[yuml]"--=small y, dieresis or umlaut mark-->

73

Appendix E: The HTML3 DTD { Tables and mathematics parts

This appendix shows those parts of the HTML3 DTD that relate to tables and mathe-

matics.

1 <!--======================= Captions ======================================-->

2
3 <!ELEMENT CAPTION - - (%text;)+ -- table or figure caption -->

4 <!ATTLIST CAPTION

5 %attrs;

6 align (top|bottom|left|right) #IMPLIED

7 >

8 <!--======================= Tables ==-->

9
10 <!--

11 Tables and figures can be aligned in several ways:

12
13 bleedleft flush left with the left (window) border

14 left flush left with the left text margin

15 center centered (text flow is disabled for this mode)

16 right flush right with the right text margin

17 bleedright flush right with the right (window) border

18 justify when applicable the table/figure should stretch

19 to fill space between the text margins

90 Michel Goossens and Janne Saarela

20
21 Note: text will flow around the table or figure if the browser

22 judges there is enough room and the alignment is not centered

23 or justified. The table or figure may itself be part of the

24 text flow around some earlier figure. You can in this case use

25 the clear or needs attributes to move the new table or figure

26 down the page beyond the obstructing earlier figure. Similarly,

27 you can use the clear or needs attributes with other elements

28 such as headers and lists to move them further down the page.

29 -->

30
31 <!ENTITY % block.align

32 "align (bleedleft|left|center|right|bleedright|justify) center">

33
34 <!--

35 The HTML 3.0 table model has been chosen for its simplicity

36 and the ease in writing filters from common DTP packages.

37
38 By default the table is automatically sized according to the

39 cell contents and the current window size. Specifying the columns

40 widths using the colspec attribute allows browsers to start

41 displaying the table without having to wait for last row.

42
43 The colspec attribute is a list of column widths and alignment

44 specifications. The columns are listed from left to right with

45 a capital letter followed by a number, e.g. COLSPEC="L20 C8 L40".

46 The letter is L for left, C for center, R for right alignment of

47 cell contents. J is for justification, when feasible, otherwise

48 this is treated in the same way as L for left alignment.

49 Column entries are delimited by one or more space characters.

50
51 The number specifies the width in em's, pixels or as a

52 fractional value of the table width, as according to the

53 associated units attribute. This approach is more compact

54 than used with most SGML table models and chosen to simplify

55 hand entry. The width attribute allows you to specify the

56 width of the table in pixels, em units or as a percentage

57 of the space between the current left and right margins.

58
59 To assist with rendering to speech, row and column headers

60 can be given short names using the AXIS attribute. The AXES

61 attribute is used to explicitly specify the row and column

62 names for use with each cell. Otherwise browsers can follow

63 up columns and left along rows (right for some languages)

64 to find the corresponding header cells.

65
66 Table content model: Braille limits the width of tables,

67 placing severe limits on column widths. User agents need

68 to render big cells by moving the content to a note placed

69 before the table. The cell is then rendered as a link to

70 the corresponding note.

71
72 To assist with formatting tables to paged media, authors

73 can differentiate leading and trailing rows that are to

74 be duplicated when splitting tables across page boundaries.

75 The recommended way is to subclass rows with the CLASS attribute

76 For example: <TR CLASS=Header>, <TR CLASS=Footer> are used for

77 header and footer rows. Paged browsers insert footer rows at

78 the bottom of the current page and header rows at the top of

79 the new page, followed by the remaining body rows.

80 -->

81
82 <!ELEMENT TABLE - - (CAPTION?, TR*) -- mixed headers and data -->

83 <!ATTLIST TABLE

A practical introduction to SGML 91

84 %attrs;

85 %needs; -- for control of text flow --

86 border (border) #IMPLIED -- draw borders --

87 colspec CDATA #IMPLIED -- column widths and alignment --

88 units (em|pixels|relative) em -- units for column widths --

89 width NUMBER #IMPLIED -- absolute or percentage width --

90 %block.align; -- horizontal alignment --

91 nowrap (nowrap) #IMPLIED -- don't wrap words --

92 >

93
94 <!ENTITY % cell "TH | TD">

95 <!ENTITY % vertical.align "top|middle|bottom|baseline">

96
97 <!--

98 Browsers should tolerate an omission of the first <TR>

99 tag as it is implied by the context. Missing trailing

100 <TR>s implied by rowspans should be ignored.

101
102 The alignment attributes act as defaults for rows

103 overriding the colspec attribute and being in turn

104 overridden by alignment attributes on cell elements.

105 Use valign=baseline when you want to ensure that text

106 in different cells on the same row is aligned on the

107 same baseline regardless of fonts. It only applies

108 when the cells contain a single line of text.

109 -->

110
111 <!ELEMENT TR - O (%cell)* -- row container -->

112 <!ATTLIST TR

113 %attrs;

114 align (left|center|right|justify) #IMPLIED

115 valign (%vertical.align) top -- vertical alignment --

116 nowrap (nowrap) #IMPLIED -- don't wrap words --

117 >

118
119 <!--

120 Note that table cells can include nested tables.

121 Missing cells are considered to be empty, while

122 missing rows should be ignored, i.e. if a cell

123 spans a row and there are no further TR elements

124 then the implied row should be ignored.

125 -->

126
127 <!ELEMENT (%cell) - O %body.content>

128 <!ATTLIST (%cell)

129 %attrs;

130 colspan NUMBER 1 -- columns spanned --

131 rowspan NUMBER 1 -- rows spanned --

132 align (left|center|right|justify) #IMPLIED

133 valign (%vertical.align) top -- vertical alignment --

134 nowrap (nowrap) #IMPLIED -- don't wrap words --

135 axis CDATA #IMPLIED -- axis name, defaults to element content --

136 axes CDATA #IMPLIED -- comma separated list of axis names --

137 >

138
139 <!--================ Entities for math symbols ============================-->

140
141 <!-- ISO subset chosen for use with the widely available Adobe math font -->

142
143 <!ENTITY % HTMLmath PUBLIC

144 "-//IETF//ENTITIES Math and Greek for HTML//EN">

145 %HTMLmath;

146
147 <!--======================== Math ==-->

92 Michel Goossens and Janne Saarela

148
149 <!-- Use     etc for greater control of spacing. -->

150
151 <!-- Subscripts and Superscripts

152
153 <SUB> and <SUP> are used for subscripts and superscripts.

154
155 i j

156 X ⁱY^j is X Y

157
158 i.e. the space following the X disambiguates the binding.

159 The align attribute can be used for horizontal alignment,

160 e.g. to explicitly place an index above an element:

161 i

162 Xⁱ produces X

163
164 Short references are defined for superscripts, subscripts and boxes

165 to save typing when manually editing HTML math, e.g.

166
167 x^2^ is mapped to x²

168 y_z_ is mapped to y_z

169 {a+b} is mapped to <box>a + b</box>

170
171 Note that these only apply within the MATH element and can't be

172 used in normal text!

173 -->

174 <!ENTITY REF1 STARTTAG "SUP">

175 <!ENTITY REF2 ENDTAG "SUP">

176 <!ENTITY REF3 STARTTAG "SUB">

177 <!ENTITY REF4 ENDTAG "SUB">

178 <!ENTITY REF5 STARTTAG "BOX">

179 <!ENTITY REF6 ENDTAG "BOX">

180
181 <!USEMAP MAP1 MATH>

182 <!USEMAP MAP2 SUP>

183 <!USEMAP MAP3 SUB>

184 <!USEMAP MAP4 BOX>

185
186 <!SHORTREF MAP1 "^" REF1

187 "_" REF3

188 "{" REF5 >

189
190 <!SHORTREF MAP2 "^" REF2

191 "_" REF3

192 "{" REF5 >

193
194 <!SHORTREF MAP3 "_" REF4

195 "^" REF1

196 "{" REF5 >

197
198 <!SHORTREF MAP4 "}" REF6

199 "^" REF1

200 "_" REF3

201 "{" REF5 >

202
203 <!--

204 The inclusion of %math and exclusion of %notmath is used here

205 to alter the content model for the B, SUB and SUP elements,

206 to limit them to formulae rather than general text elements.

207 -->

208
209 <!ENTITY % mathvec "VEC|BAR|DOT|DDOT|HAT|TILDE" -- common accents -->

210 <!ENTITY % mathface "B|T|BT" -- control of font face -->

211 <!ENTITY % math "BOX|ABOVE|BELOW|%mathvec|ROOT|SQRT|ARRAY|SUB|SUP|%mathface">

A practical introduction to SGML 93

212 <!ENTITY % formula "#PCDATA|%math">

213
214 <!ELEMENT MATH - - (#PCDATA)* -(%notmath) +(%math)>

215 <!ATTLIST MATH

216 id ID #IMPLIED

217 model CDATA #IMPLIED>

218
219 <!-- The BOX element acts as brackets. Delimiters are optional and

220 stretch to match the height of the box. The OVER element is used

221 when you want a line between numerator and denominator. This line

222 is suppressed with the alternative ATOP element. CHOOSE acts like

223 ATOP but adds enclosing round brackets as a convenience for binomial

224 coefficients. Note the use of { and } as shorthand for <BOX> and

225 </BOX> respectively:

226
227 1 + X

228 {1 + X<OVER>Y} is _______

229 Y

230
231 a + b

232 {a + b<ATOP>c - d} is

233 c - d

234
235 The delimiters are represented using the LEFT and RIGHT

236 elements as in:

237
238 {[<LEFT>x + y<RIGHT>]} is [x + y]

239 {(<LEFT>a<RIGHT>]} is (a]

240 {||<LEFT>a<RIGHT>||} is || a ||

241
242 Use { and } for "{" and "}" respectively as

243 these symbols are used as shorthand for BOX, e.g.

244
245 {{<LEFT>a+b<RIGHT>}} is {a+b}

246
247 You can stretch definite integrals to match the integrand, e.g.

248
249 {∫_a^b<LEFT>{f(x)<over>1+x} dx}

250
251 b

252 / f(x)

253 | ----- dx

254 / 1 + x

255 a

256
257 Note the complex content model for BOX is a work around

258 for the absence of support for infix operators in SGML.

259
260 You can get oversize delimiters with the SIZE attribute,

261 for example <BOX SIZE=large>(<LEFT>...<RIGHT>)</BOX>

262
263 Note that the names of common functions are recognized

264 by the parser without the need to use "&" and ";" around

265 them, e.g. int, sum, sin, cos, tan, ...

266 -->

267
268 <!ELEMENT BOX - - ((%formula)*, (LEFT, (%formula)*)?,

269 ((OVER|ATOP|CHOOSE), (%formula)*)?,

270 (RIGHT, (%formula)*)?)>

271 <!ATTLIST BOX

272 size (normal|medium|large|huge) normal -- oversize delims -->

273
274 <!ELEMENT (OVER|ATOP|CHOOSE|LEFT|RIGHT) - O EMPTY>

275

94 Michel Goossens and Janne Saarela

276 <!-- Horizontal line drawn ABOVE contents

277 The symbol attribute allows authors to supply

278 an entity name for an accent, arrow symbol etc.

279 Generalisation of LaTeX's overline command.

280 -->

281
282 <!ELEMENT ABOVE - - (%formula)+>

283 <!ATTLIST ABOVE symbol ENTITY #IMPLIED>

284
285 <!-- Horizontal line drawn BELOW contents

286 The symbol attribute allows authors to

287 supply an entity name for an arrow symbol etc.

288 Generalisation of LaTeX's underline command.

289 -->

290
291 <!ELEMENT BELOW - - (%formula)+>

292 <!ATTLIST BELOW symbol ENTITY #IMPLIED>

293
294 <!-- Convenience tags for common accents:

295 vec, bar, dot, ddot, hat and tilde

296 -->

297
298 <!ELEMENT (%mathvec) - - (%formula)+>

299
300 <!--

301 T and BT are used to designate terms which should

302 be rendered in an upright font (& bold face for BT)

303 -->

304
305 <!ELEMENT (T|BT) - - (%formula)+>

306 <!ATTLIST (T|BT) class NAMES #IMPLIED>

307
308 <!-- Roots e.g. <ROOT>3<OF>1+x</ROOT> -->

309
310 <!ELEMENT ROOT - - ((%formula)+, OF, (%formula)+)>

311 <!ELEMENT OF - O (%formula)* -- what the root applies to -->

312
313 <!ELEMENT SQRT - - (%formula)* -- square root convenience tag -->

314
315 <!-- LaTeX like arrays. The COLDEF attribute specifies

316 a single capital letter for each column determining

317 how the column should be aligned, e.g. coldef="CCC"

318
319 "L" left

320 "C" center

321 "R" right

322
323 An optional separator letter can occur between columns

324 and should be one of + - or =, e.g. "C+C+C+C=C".

325 Whitespace within coldef is ignored. By default, the

326 columns are all centered.

327
328 The ALIGN attribute alters the vertical position of the

329 array as compared with preceding and following expressions.

330
331 Use LDELIM and RDELIM attributes for delimiter entities.

332 When the LABELS attribute is present, the array is

333 displayed with the first row and the first column as

334 labels displaced from the other elements. In this case,

335 the first element of the first row should normally be

336 left blank.

337
338 Use &vdots; &cdots; and &ddots; for vertical, horizontal

339 and diagonal ellipsis dots. Use &dotfill; to fill an array

A practical introduction to SGML 95

340 cell with horizontal dots (e.g. for a full row).

341 Note &ldots; places the dots on the baseline, while &cdots;

342 places them higher up.

343 -->

344
345 <!ELEMENT ARRAY - - (ROW)+>

346 <!ATTLIST ARRAY

347 align (top|middle|bottom) middle -- vertical alignment --

348 coldef CDATA #IMPLIED -- column alignment and separator --

349 ldelim NAMES #IMPLIED -- stretchy left delimiter --

350 rdelim NAMES #IMPLIED -- stretchy right delimiter --

351 labels (labels) #IMPLIED -- TeX's \bordermatrix style -->

352
353 <!ELEMENT ROW - O (ITEM)*>

354 <!ELEMENT ITEM - O (%formula)*>

355 <!ATTLIST ITEM

356 align CDATA #IMPLIED -- override coldef alignment --

357 colspan NUMBER 1 -- merge columns as per TABLE --

358 rowspan NUMBER 1 -- merge rows as per TABLE -->

Appendix F: The ISO-12083 mathematics DTD

This appendix shows the mathematics DTD math.dtd of the ISO 12083 DTD.

1 <!-- This is the ISO12083:1994 document type definition for Mathematics -->

2
3 <!-- Copyright: (C) International Organization for Standardization 1994.

4 Permission to copy in any form is granted for use with conforming SGML

5 systems and applications as defined in ISO 8879:1986, provided this notice

6 is included in all copies. -->

7
8 <!-- === -->

9 <!-- PUBLIC DOCUMENT TYPE DEFINITION SUBSET -->

10 <!-- === -->

11
12 <!--

13 This DTD is included by the Book and Article DTDs of ISO12083:1994.

14 As it is a separate entity it may also be included by other DTDs.

15
16 Since there is no consensus on how to describe the semantics of formulas,

17 it only describes their presentational or visual structure. Since, however,

18 there is a strong need for such description (especially within the

19 print-disabled community), it is recommended that the following

20 declaration be added where there is a requirement for a consistent,

21 standardized mechanism to carry semantic meanings for the SGML

22 elements declared throughout this part of this International Standard:

23
24 <!ENTITY % SDAMAP "SDAMAP NAME #IMPLIED" >

25
26 and that the attribute represented by %SDAMAP; be made available for

27 all elements which may require a semantic association, or, in the simpler

28 case, be added to all elements in this DTD. -->

29
30
31
32 <!-- === -->

33 <!-- Parameter entities describing the possible contents of formulas. -->

34 <!-- === -->

35
36 <!ENTITY % p.trans "bold|italic|sansser|typewrit|smallcap|roman"

37 -- character transformations -->

38 <!ENTITY % m.math "fraction|subform|sup|inf|top|bottom|middle|fence|mark|

96 Michel Goossens and Janne Saarela

39 post|box|overline|undrline|radical|array|hspace|vspace|break|markref|

40 #PCDATA" -- mathematical formula elements -->

41
42
43
44 <!-- === -->

45 <!-- Accessible Document and other Parameter Entities

46 If this DTD is not imbedded by a ISO12083:1994 Book or Article,

47 the comment delimiters should be removed. -->

48 <!-- === -->

49
50 <!--ENTITY % SDAFORM "SDAFORM CDATA #FIXED" -->

51 <!--ENTITY % SDARULE "SDARULE CDATA #FIXED" -->

52 <!--ENTITY % SDAPREF "SDAPREF CDATA #FIXED" -->

53 <!--ENTITY % SDASUFF "SDASUFF CDATA #FIXED" -->

54 <!--ENTITY % SDASUSP "SDASUSP NAME #FIXED" -->

55
56
57
58 <!-- === -->

59 <!-- This entity is for an attribute to indicate which alphabet is

60 used in the element (formula, dformula). You may change this to

61 a notation attribute, where the notation could describe a

62 keyboard mapping. Please modify the set as necessary.

63 If this DTD is not imbedded by a ISO12083:1994 Book or Article,

64 the comment delimiters should be removed. -->

65 <!-- === -->

66
67 <!-- ENTITY % a.types "(latin|greek|cyrillic|hebrew|kanji) latin" -->

68
69
70 <!-- === -->

71 <!-- character transformations -->

72 <!-- === -->

73
74 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

75 <!ELEMENT bold - - (%p.trans;|#PCDATA)* -- bold -->

76 <!ELEMENT italic - - (%p.trans;|#PCDATA)* -- italic -->

77 <!ELEMENT sansser - - (%p.trans;|#PCDATA)* -- sans serif -->

78 <!ELEMENT typewrit - - (%p.trans;|#PCDATA)* -- typewriter -->

79 <!ELEMENT smallcap - - (%p.trans;|#PCDATA)* -- small caps -->

80 <!ELEMENT roman - - (%p.trans;|#PCDATA)* -- roman -->

81
82
83 <!-- === -->

84 <!-- Fractions -->

85 <!-- === -->

86
87 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

88 <!ELEMENT fraction - - (num, den) -- fraction -->

89 <!ELEMENT num - - (%p.trans;|%m.math;)* -- numerator -->

90 <!ELEMENT den - - (%p.trans;|%m.math;)* -- denominator -->

91 <!-- ELEMENT NAME VALUE DEFAULT -->

92 <!ATTLIST fraction shape (built|case) #IMPLIED

93 align (left|center|right)

94 center

95 style (single|double|triple|dash|dot|bold|blank|none)

96 single >

97
98
99
100 <!-- === -->

101 <!-- Superiors, inferiors, accents, over and under -->

102 <!-- === -->

A practical introduction to SGML 97

103
104 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

105 <!ELEMENT sup - - (%p.trans;|%m.math;)* -- superior -->

106 <!ELEMENT inf - - (%p.trans;|%m.math;)* -- inferior -->

107 <!-- ELEMENT NAME VALUE DEFAULT -->

108 <!ATTLIST sup location (pre|post) post

109 arrange (compact|stagger)

110 compact >

111 <!ATTLIST inf location (pre|post) post

112 arrange (compact|stagger) compact >

113
114
115 <!-- === -->

116 <!-- Embellishments -->

117 <!-- === -->

118
119 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

120 <!ELEMENT top - - (%p.trans;|%m.math;)*

121 -- top embellishment -->

122 <!ELEMENT middle - - (%p.trans;|%m.math;)*

123 -- middle, or "through" -->

124 <!ELEMENT bottom - - (%p.trans;|%m.math;)*

125 -- bottom embellishment -->

126 <!-- ELEMENT NAME VALUE DEFAULT -->

127 <!ATTLIST top align (left|center|right)

128 center

129 sizeid ID #IMPLIED

130 -- to pass on the height -->

131 <!ATTLIST middle align (left|center|right)

132 center

133 sizeid ID #IMPLIED

134 -- to pass on the height -->

135 <!ATTLIST bottom align (left|center|right)

136 center

137 sizeid ID #IMPLIED

138 -- to pass on the height -->

139
140
141 <!-- The subform element is defined later -->

142
143
144
145 <!-- === -->

146 <!-- Fences, boxes, overlines and underlines -->

147 <!-- === -->

148
149 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

150 <!ELEMENT mark - O EMPTY >

151 <!ELEMENT fence - - (%p.trans;|%m.math;)* -- fence -->

152 <!ELEMENT post - O EMPTY -- post -->

153 <!ELEMENT box - - (%p.trans;|%m.math;)* -- box -->

154 <!ELEMENT overline - - (%p.trans;|%m.math;)* -- overline -->

155 <!ELEMENT undrline - - (%p.trans;|%m.math;)* -- underline -->

156 <!-- ELEMENT NAME VALUE DEFAULT -->

157 <!ATTLIST mark id ID #REQUIRED >

158 <!ATTLIST fence lpost CDATA "|" -- left post --

159 rpost CDATA "|" -- right post --

160 style (single|double|triple|dash|dot|bold|blank|none)

161 single

162 sizeid ID #IMPLIED

163 -- to pass on the height --

164 sizeref IDREF #IMPLIED

165 -- to pick up a height -->

166 <!ATTLIST post post CDATA "|"

98 Michel Goossens and Janne Saarela

167 style (single|double|triple|dash|dot|bold|blank|none)

168 single

169 sizeid ID #IMPLIED

170 -- to pass on the height --

171 sizeref IDREF #IMPLIED

172 -- to pick up a height -->

173 <!ATTLIST box style (single|double|triple|dash|dot|bold|blank|none)

174 single >

175 <!ATTLIST overline type CDATA "-" -- embellishment type --

176 style (single|double|triple|dash|dot|bold|blank|none)

177 single

178 start IDREF #IMPLIED

179 end IDREF #IMPLIED >

180
181 <!ATTLIST undrline type CDATA "_" -- embellishment

182 type --

183 style (single|double|triple|dash|dot|bold|blank|none)

184 single

185 start IDREF #IMPLIED

186 end IDREF #IMPLIED >

187
188
189 <!-- === -->

190 <!-- Labelled arrows -->

191 <!-- === -->

192
193 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

194 <!ELEMENT subform - - (%p.trans;|%m.math;)* -- base element -->

195 <!-- ELEMENT NAME VALUE DEFAULT -->

196 <!ATTLIST subform sizeid ID #IMPLIED

197 -- to pass on a width, or

198 a height --

199 sizeref IDREF #IMPLIED

200 -- to pick up a width -->

201
202
203 <!-- === -->

204 <!-- Roots -->

205 <!-- === -->

206
207 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

208 <!ELEMENT radical - - (radix?, radicand) -- root or radical -->

209 <!ELEMENT radix - - (%p.trans;|%m.math;)* -- radix -->

210 <!ELEMENT radicand O O (%p.trans;|%m.math;)* -- radicand -->

211
212
213 <!-- === -->

214 <!-- Arrays -->

215 <!-- === -->

216
217 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

218 <!ELEMENT array - - (arrayrow+|arraycol+) -- array -->

219 <!ELEMENT arrayrow - O (arraycel+) -- array row -->

220 <!ELEMENT arraycol - O (arraycel+) -- array column -->

221 <!ELEMENT arraycel - O (%p.trans;|%m.math;)* -- array cell -->

222
223 <!-- ELEMENT NAME VALUE DEFAULT -->

224 <!ATTLIST array rowalign NMTOKENS #IMPLIED -- row alignment --

225 colalign NMTOKENS #IMPLIED -- column

226 alignment --

227 rowsep NMTOKENS #IMPLIED -- row separators --

228 colsep NMTOKENS #IMPLIED -- column

229 separators -->

230

A practical introduction to SGML 99

231
232 <!-- === -->

233 <!-- Spacing -->

234 <!-- === -->

235
236 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

237 <!ELEMENT hspace - O EMPTY -- horizontal spacing -->

238 <!ELEMENT vspace - O EMPTY -- vertical spacing -->

239 <!ELEMENT break - O EMPTY -- turn line, break -->

240 <!ELEMENT markref - O EMPTY -- hmark reference -->

241
242 <!-- ELEMENT NAME VALUE DEFAULT -->

243 <!ATTLIST hspace space CDATA "1 mm"

244 -- units as required -->

245 <!ATTLIST vspace space CDATA "1 mm"

246 -- units as required -->

247 <!ATTLIST markref refid IDREF #REQUIRED

248 direct (hor|ver) hor

249 -- horizontal or vertical -->

250
251
252 <!-- === -->

253 <!-- the formula elements -->

254 <!-- === -->

255
256 <!-- ELEMENT MIN CONTENT EXPLANATIONS -->

257 <!ELEMENT formula - - (%p.trans;|%m.math;)*

258 -- in-line formula -->

259 <!ELEMENT dformula - - (%p.trans;|%m.math;)*

260 -- display formula -->

261 <!ELEMENT dformgrp - - (formula|dformula)+

262 -- display-formula group -->

263
264 <!-- ELEMENT NAME VALUE DEFAULT -->

265 <!ATTLIST formula id ID #IMPLIED

266 alphabet %a.types;

267 -- %SDAPREF; "<?SDATRANS>Inline formula" --

268 -- %SDASUSP; "SUSPEND" --

269 >

270 <!ATTLIST dformula id ID #IMPLIED

271 num CDATA #IMPLIED

272 align (left|center|right)

273 center

274 alphabet %a.types;

275 -- %SDAPREF; "<?SDATRANS>Display formula" --

276 -- %SDASUSP; "SUSPEND" --

277 >

278 <!ATTLIST dformgrp id ID #IMPLIED

279 num CDATA #IMPLIED

280 align (left|center|right)

281 center

282 -- %SDAPREF; "<?SDATRANS>Display formula group" --

283
284 >

100 Michel Goossens and Janne Saarela

Appendix G: Example of a conversion of the DocBook DTD to

HTML3

G.1 The original document marked up in the DocBook DTD

The listing below is part of the manual describing the DocBook DTD and is tagged

according to that same DocBook DTD (V2.2.1).

<sect1><title>How to Get the DocBook DTD Online</title>

<para>

You can find the DocBook DTD and its documentation online in

the Davenport archive (<filename>/pub/davenport/docbook</filename>)

at <filename>ftp.ora.com</filename> (198.112.208.13).

</para>

<para>

This sample session shows how to retrieve the DTD and its documentation:

<screen>

<!-- could mark up the prompt in next line with computeroutput -->

<systemitem class="prompt">%</><userinput>ftp ftp.ora.com</>

<computeroutput>Connected to amber.ora.com.</>

<computeroutput>220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.</>

<computeroutput>Name (ftp.ora.com:terry): </><userinput>anonymous</>

<computeroutput>331 Guest login ok, send your complete e-mail address as password.</>

<computeroutput>Password: </><lineannotation>← type e-mail address</>

<systemitem class="prompt">ftp></><userinput>cd pub/davenport/docbook</>

</screen>

The DocBook DTD and related ASCII files are in a file named

<filename>docbook.N.shar</>, where <emphasis>N</>

is the current revision number:

<screen>

<systemitem class="prompt">ftp></><userinput>get docbook.2.2.1.shar</>

</screen>

Most of these files also exist separately and may be ftp'd individually.

</para>

<para>

The <command>get</> command will put this ASCII shar file

on your system. You must later unpack it on your system:

<screen>

<userinput>sh docbook.2.2.1.shar</>

</screen>

</para>

G.2 ESIS representation of the source document

The following is the ESIS representation of the same document produced by nsgmls.

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ALABEL IMPLIED

ARENDERAS IMPLIED

(SECT1

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

APAGENUM IMPLIED

(TITLE

-How to Get the DocBook DTD

Online

)TITLE

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-You can find the DocBook DTD

and its documentation \nonline

in the Davenport archive \n(

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

A practical introduction to SGML 101

-/pub/davenport/docbook

)FILENAME

-) at \n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-ftp.ora.com

)FILENAME

- (198.112.208.13).

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-This sample session shows how

to retrieve the DTD\nand its

documentation:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

sline ends and leading white

space must be preserved in

output

NLINESPECIFIC

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-%

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-ftp ftp.ora.com

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Connected to amber.ora.com.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-220 amber FTP server (Version

wu-2.4(1) Fri Apr 15 14:14:30

EDT 1994) ready.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Name (ftp.ora.com:terry):

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-anonymous

)USERINPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-331 Guest login ok, send your

complete e-mail address as

password.

)COMPUTEROUTPUT

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMPUTEROUTPUT

-Password:

)COMPUTEROUTPUT

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(LINEANNOTATION

-\|[larr]\| type e-mail

address

)LINEANNOTATION

-\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-cd pub/davenport/docbook

)USERINPUT

)SCREEN

-\nThe DocBook DTD and related

ASCII files are in\na file

named

102 Michel Goossens and Janne Saarela

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(FILENAME

-docbook.N.shar

)FILENAME

-, where

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(EMPHASIS

-N

)EMPHASIS

-\nis the current revision

number:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

ACLASS TOKEN PROMPT

AMOREINFO TOKEN NONE

(SYSTEMITEM

-ftp\|[gt]\|

)SYSTEMITEM

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-get docbook.2.2.1.shar

)USERINPUT

)SCREEN

-\nMost of these files\nalso

exist separately and may be

ftp'd individually.

)PARA

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

(PARA

-The

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(COMMAND

-get

)COMMAND

- command will put this ASCII

shar \nfile on your system.

You must later unpack \nit on

your system:\n

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AFORMAT NOTATION LINESPECIFIC

AWIDTH IMPLIED

(SCREEN

AID IMPLIED

ALANG IMPLIED

AREMAP IMPLIED

AROLE IMPLIED

AXREFLABEL IMPLIED

AMOREINFO TOKEN NONE

(USERINPUT

-sh docbook.2.2.1.shar

)USERINPUT

)SCREEN

)PARA

G.3 HTML3 output

The following presents the �nal HTML3 output resulting from the translation process.

<HTML>

<HEAD>

<TITLE>How to Get the DocBook DTD Online</TITLE>

</HEAD>

<BODY>

<H1>How to Get the DocBook DTD Online</H1>

You can find the DocBook DTD and its documentation online in the

Davenport archive (/pub/davenport/docbook) at ftp.ora.com

(198.112.208.13).<P>This sample session shows how to retrieve

the DTD and its documentation:

<pre>

%<i>ftp ftp.ora.com</i>

Connected to amber.ora.com.

220 amber FTP server (Version wu-2.4(1) Fri Apr 15 14:14:30 EDT 1994) ready.

Name (ftp.ora.com:terry): <i>anonymous</i>

331 Guest login ok, send your complete e-mail address as password.

Password: type e-mail address

ftp><i>cd pub/davenport/docbook</i>

</pre>

The DocBook DTD and related ASCII files are in a file named docbook.N.shar,

where N is the current revision number:

<pre>

ftp><i>get docbook.2.2.1.shar</i>

A practical introduction to SGML 103

</pre>

Most of these files also exist separately and may be ftp'd individually.

<P>

The get command will put this ASCII shar file on your system.

You must later unpack it on your system:

<pre>

<i>sh docbook.2.2.1.shar</i>

</pre>

</BODY>

</HTML>

From LATEX to HTML and back

Michel Goossens and Janne Saarela

CERN, CN Division

CH-1211 Geneva 23

Switzerland

goossens@cern.ch, saarela@cern.ch

Abstract

Both LATEX and HTML are languages that can express the structure of a document, and

similarities between these two systems are shown. A detailed study is made of the La-

TeX2HTML program, written by Nikos Drakos, that is today the most complete utility for

translating LATEX code into HTML, providing a quasi-automatic translation for most ele-

ments. A discussion of a few other tools for translating between HTML and LATEX concludes

the article.

1 Similarities between LATEX and HTML

HTML and LATEX are both generic markup systems, and a comparison between tags for

structural elements in both cases is shown in Table 1. In most cases the di�erences are

trivial, seeming to indicate that, at �rst approximation, translating between these two

systems should not prove too di�cult.

The translation programs described in this article use these similarities, but in order

to exploit the richness of the LATEX language as compared to HTML (especially HTML2,

which has no support for tables or mathematics), an ad hoc approach has to be adopted.

To handle correctly LATEX commands that have no equivalent in HTML, such elements

can either be transformed into bitmap or PostScript pictures (an approach taken by

LaTeX2HTML), or the user can specify how the given element should be handled in the

target language.

105

106 Michel Goossens and Janne Saarela

Description HTML LATEX

Sectioning commands

level 1 <H1> \chapter or \section

level 2 <H2> \section or \subsection

level 3 <H3> \subsection or \subsubsection

level 4 <H4> \subsubsection or \paragraph

level 5 <H5> \paragraph or \subparagraph

level 6 <H5> \subparagraph

new paragraph <P> \par

Lists

numbered list \begin{enumerate}

unnumbered list \begin{itemize}

list element \item

description list <DL> \begin{description}

term <DT> \item

de�nition <DD> text

Highlighting text

emphasis text \emph{text}

italic <I>text</I> \textit{text}

bold text \textbf{text}

�xed with <TT>text</TT> \texttt{text}

Table 1: Comparison of structural elements in HTML and LATEX

2 Converting LATEX into HTML

Before discussing the LaTeX2HTML program, we want to mention a few other programs.

First there is l2x1, written by Henning Schulzrinne (Berlin, Germany), which translates

LATEX into various other formats. This program is written in C and calls a Tcl function

[4] for each LATEX command.

A converter html.tcl is available for translating LATEX �les into HTML, by writing,

for instance:

l2x -p html.tcl article.tex

Presently, only a sub-set of all LATEX commands are handled (no mathematical for-

mulae, tables, verbatim texts, etc.), yet it is not too di�cult to augment the code of

the converter html.tcl by introducing new Tcl commands.

1. See the URL http://info.cern.ch/hypertext/WWW/Tools/l2x.html.

From LATEX to HTML and back 107

Schwarzkopf has developed Hyperlatex2, a package written in the GNU Emacs Lisp

language to translate documents marked up in (a subset of) LATEX into HTML.

Another interesting tool is tex2RTF3, a utility to convert from LATEX to four other

formats, including HTML. It does a relatively good job for a sub-set of LATEX commands,

but, as with the tcl approach of l2x, it cannot handle more complex structures, such

as mathematical expressions and tables.

Finally, although not directly relevant to LATEX, texihtml4 translates texinfo

sources5 into HTML.

3 The LATEX2HTML converter { Generalities

LaTeX2HTML is a program written in the perl programming language6 [7, 8, 9] by Nikos

Drakos.7 It transforms a LATEX document into a series of HTML �les linked in a way that

re
ects the structure of the original document.

3.1 What LATEX2HTML is and What it is Not

LaTeX2HTML is a conversion tool that allows documents written in LATEX to become part

of the World Wide Web. In addition, it o�ers an easy migration path towards authoring

complex hypermedia documents using familiar word-processing concepts.

LaTeX2HTML replicates the basic structure of a LATEX document as a set of inter-

connected HTML �les which can be explored using automatically generated navigation

panels. The cross-references, citations, footnotes, the table of contents and the lists of

�gures and tables are also translated into hypertext links. Formatting information which

has equivalent \tags" in HTML (lists, quotes, paragraph breaks, type styles, etc.) is also

converted appropriately. The remaining heavily formatted items such as mathematical

equations, pictures or tables are converted to images placed automatically at the correct

positions in the �nal HTML document.

LaTeX2HTML extends LATEX by supporting arbitrary hypertext links and symbolic

cross-references between evolving remote documents. It also allows the speci�cation

2. The documentation is available at the URL http://www.cs.ruu.nl/people/otfried/html/

Hyperlatex/hyperlatex.html. Otfried Schwarzkopf, who works at the University of Utrecht, can be reached

via email at otfried@cs.ruu.nl.

3. Written by Julian Smart (Edinburgh, Great Britain). For more information see the URL http://www.

aiai.ed.ac.uk/~jacs/tex2rtf.html.

4. Written in perl by Lionel Cons (CERN, Geneva). For more information see the URL http://asis01.

cern.ch/infohtml/texi2html.html.

5. texinfo is a TEX based markup language used for all gnu project related documentation.

6. More information can be found in the UF/NA perl archive at the URL http://www.cis.ufl.edu/

perl/.

7. The documentation is at the URL http://cbl.leeds.ac.uk/nikos/tex2html/doc/latex2html/

latex2html.html. One can also join the LaTeX2HTML mailing list by sending a message to

latex2html-request@mcs.anl.gov with as only contents line: subscribe.

108 Michel Goossens and Janne Saarela

of conditional text and the inclusion of raw HTML commands. These hypermedia ex-

tensions to LATEX are available as new commands and environments from within a LATEX

document.

3.2 Overview

The main characteristics of the LaTeX2HTML translator are summarized in this section.

� a document is broken into one or more components as speci�ed by the user;

� optional, customizable navigation panels can be added to each generated page to

link other parts of the document, or external documents;

� inline and displayed equations are handled as images;

� tables and �gures, and all other arbitrary environments are passed on to LATEX and

included as images; these images are included inline or made available via hypertext

links;

� �gures or tables can be arbitrarily scaled and shown either as inlined images or

\thumbnails";

� output can be generated to cope with the possibilities of various kind of browsers

(for example, line browsers);

� de�nitions of new commands, environments, and theorems are given even when they

are in external �les;

� footnotes, tables of contents, lists of �gures and tables, bibliographies, and the index

are handled correctly;

� LATEX cross-references and citations are transformed into hyperlinks, which work just

as well inside a (sub)document as between several documents (located anywhere on

the Internet);

� most LATEX accented national characters are translated into their ISO-Latin-1 equiv-

alent;

� hypertext links to arbitrary Internet services are recognized;

� programs running arbitrary scripts can be invoked (at the LATEX level);

� a conditional text mechanism allows material to be included in the HTML or printed

(dvi) versions only;

� similarly raw HTML material can be present in the LATEX document (such as for

specifying interactive forms);

� common LATEX commands (i.e., those de�ned in the LATEX Reference manual [3])

are handled gracefully;

� the user can de�ne (in perl) functions to translate (un)known LATEX commands in

a customized way.

3.3 Using LATEX2HTML

To use LaTeX2HTML, simply type

latex2html options-list file.tex

From LATEX to HTML and back 109

By default a new directory \file" will be created to contain the generated HTML �les,

some log �les and possibly some images.

The output from LaTeX2HTML can be customized using a number of command line

options, as described below.

The command line options options-list allow one to change the default behavior

of LaTeX2HTML. Alternatively, the corresponding perl variables in the initialization

�le .latex2html-init may be changed, in order to achieve the same result (see

Section 3.5).

-split num The default is 8.

Stop splitting sections into separate �les at this depth. A value of 0 will put the

document into a single HTML �le.

-link num The default is 4.

Stop revealing child nodes at each node at this depth. (A node is characterized by

the sequence part-chapter-section-subsection-. . .). A value of 0 will show no links

to child nodes, a value of 1 will show only the immediate descendents, etc. A value

at least as big as that of the -split option will produce a table of contents for the

tree structure, rooted at each given node.

-external_images

Instead of including any generated images inside the document, leave them outside

the document and provide hypertext links to them.

-ascii_mode

Use only ASCII characters and do not include any images in the �nal output. In

ASCII mode, the output of the translator can be used on character-based browsers

that do not support inlined images (the tag).

-t top-page-title

Use the string top-page-title for the title of the document.

-dir output-dir

Redirect the output to the output-dir directory.

-no_subdir

Place the generated HTML �les in the current directory. By default another �le

directory is created (or reused).

-ps_images

Use links to external PostScript pictures rather than inlined GIF (Graphics Inter-

change Format) images.

-address author-address

The address author-address will be used to sign each page.

-no_navigation

Do not put navigation links in each page.

-top_navigation

Put navigation links at the top of each page.

110 Michel Goossens and Janne Saarela

-bottom_navigation

Put navigation links at the bottom of each page as well as at the top.

-auto_navigation

Put navigation links at the top of each page. If the page has more words than

$WORDS_IN_PAGE (the default is 450) then put one at the bottom of the page also.

-index_in_navigation

When an index exists, put a link to the index page in the navigation panel.

-contents_in_navigation

When a table of contents exists, put a link to that table in the navigation panel.

-next_page_in_navigation

Put a link to the next logical page in the navigation panel.

-previous_page_in_navigation

Put a link to the previous logical page in the navigation panel.

-info string

Generate a new section About this document ... containing information about the

document being translated. The default is for generating such a section with infor-

mation on the original document, the date, the user and the translator. If string is

empty (or has the value 0), this section is not created. If string is non-empty, it

will replace the default information in the contents of the About this document ...

section.

-dont_include �le1 �le2 ...

Do not include the speci�ed �le(s) �le1 , �le2 , etc. Such �les can be package �les

that contain raw TEX commands that the translator cannot handle.

-reuse

Images generated during a previous translation process should be reused as far as

possible. This option disables the initial interactive session where the user is asked

whether to reuse the old directory, delete its contents or quit. Images which depend

on context (for example, numbered tables or equations) cannot be reused and are

always regenerated.

-no_reuse

Do not reuse images generated during a previous translation. This enables the initial

interactive session during which the user is asked whether to reuse the old directory,

delete its contents or quit.

-init_file �le

Load the perl initialization script �le. It will be loaded after the �le (if it exists)

$HOME/.latex2html-init. It can be used to change default options.

-no_images

Do not produce inlined images. If needed, the missing images can be generated

\o�-line" by restarting LaTeX2HTML with the -images_only option.

From LATEX to HTML and back 111

-images_only

Try and convert any inlined images that were left over from previous runs of La-

TeX2HTML. The advantage of using the latter two options is that the translation

can be allowed to �nish even when there are problems with image conversion. In

addition, it may be possible to �x manually any image conversion problems and then

run LaTeX2HTML again just to integrate the new images without having to translate

the rest of the text.

-show_section_numbers

Instruct LaTeX2HTML to show section numbers. By default, section numbers are not

shown, in order to allow individual sections to be used as stand-alone documents.

-h Print the list of options.

3.4 Simple use of LATEX2HTML

To show the procedure for translating a LATEX document into HTML, let us �rst look

at a simple example, namely the �le shown in Figure 1.8 After running this �le through

LATEX (twice, to resolve the cross-references) one obtains the output shown in Figure 2.

This same LATEX source document is now run through LaTeX2HTML with the com-

mand

> latex2html -init_file french.pl babel.tex

where the default options have been used apart from the fact that we want titles in

French. That is why we use the option -init_file to load the �le french.pl, which

merely contains

$TITLES_LANGUAGE = "french";

1;

as explained in Section 3.9.

The log messages generated by LaTeX2HTML are shown below.

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995)

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/g/goossens/babel.tex

Loading /usr/local/lib/latex2html/styles/makeidx.perl

....

Reading ...

Processing macros+.....

Reading babel.aux

Translating ...0/8..............1/8....2/8....3/8

....4/8.............5/8............6/8...........

8. This one-page example is chosen because it is discussed in detail in Chapter 9 of [1] and at the same

time shows how LaTeX2HTML handles non-English documents.

112 Michel Goossens and Janne Saarela

\documentclass{article}

\usepackage{makeidx}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{center}\Large

Exemple d'un article en fran\c{c}ais\\[2mm]\today

\end{center}

\tableofcontents

\listoffigures

\listoftables

\section{Une figure EPS}

\index{section}

Cette section montre comment inclure une figure

PostScript\cite{bib-PS} dans un document \LaTeX. La

figure~\ref{Fpsfig} est ins\'er\'ee dans le texte \`a

l'aide de la commande \verb!\includegraphics{colorcir.eps}!.

\index{figure}\index{PostScript}

\begin{figure}

\centering

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=3cm]{colorcir.eps} &

\includegraphics[width=3cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\section{Exemple d'un tableau}

Le tableau~\ref{tab:exa} \`a la page \pageref{tab:exa}

montre l'utilisation de l'environnement \texttt{table}.

\begin{table}

\centering

\begin{tabular}{cccccc}

\Lcs{primo} \primo &\Lcs{secundo} \secundo &\Lcs{tertio} \tertio&

\Lcs{quatro} \quatro & 2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l'option \texttt{french}

de \texttt{babel}}\label{tab:exa}\index{tableau}

\end{table}

\begin{thebibliography}{99}

\index{r\'ef\'erences}

\bibitem{bib-PS}

Adobe Inc. \emph{PostScript, manuel de r\'ef\'erence

(2i\`eme \'edition)} Inter\'Editions (France), 1992

\end{thebibliography}

\printindex

\index{index}

\end{document}

Figure 1: Example of a LATEX document

From LATEX to HTML and back 113

Exemple d’un article en français

7 décembre 1994

Table des matières

1 Une figure EPS 1

2 Exemple d’un tableau 1

Liste des figures

1 Deux images EPS : 1

Liste des tableaux

1 Quelques commandes de l’option french de babel : 1

1 Une figure EPS

Cette section montre comment inclure une figure PostScript[1] dans un document LATEX. La figure 1 est insérée dans
le texte à l’aide de la commande \includegraphics{colorcir.eps}.

4 6 8 10 12 14

6810121416
0

40

80

120

160

200

240

Figure 1: Deux images EPS

2 Exemple d’un tableau

Le tableau 1 à la page 1 montre l’utilisation de l’environnement table.

\primo 1
o \secundo 2

o \tertio 3
o \quatro 4

o 2\ieme 2e

Tableau 1: Quelques commandes de l’option french de babel

Références

[1] Adobe Inc. PostScript, manuel de référence (2ième édition) InterÉditions (France), 1992

Index

figure, 1

index, 1

PostScript, 1

références, 1

section, 1

tableau, 1

1

Figure 2: Output generated by LATEX from document shown in Figure 1

114 Michel Goossens and Janne Saarela

7/8.....8/8.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994

Radical Eye Software

' TeX output 1995.05.11:0844' -> 14024_image

(-> 14024_image001) <tex.pro><special.pro>

[1<colorcir.eps><tac2dim.eps>]

(-> 14024_image002) <tex.pro><special.pro>[2]

Writing 14024_image002.ppm

Writing img2.gif

Writing 14024_image001.ppm

Writing img1.gif

Doing section links

Doing table of contents

Doing the index

Done.

The results are shown in Figure 3. The main document is shown in the middle at

the top. Numbered arrows indicate the secondary documents that are produced and

to which point in the main document they are linked. The document also contains a

table of contents that is not shown explicitly, since its contents are almost identical to

that of the main document. Note the navigation buttons at the top of each \page".

This navigation panel corresponds to the (default) option \-top_navigation". The

navigation panel contains �ve push buttons:

Next to go to the next document,

default option -next_page_in_navigation;

Up to go up one level;

Previous to move to the previous document,

default option -previous_page_in_navigation;

Contents to jump directly to Table of Contents,

default option -contents_in_navigation;

Index to jump straight to the Index,

default option -index_in_navigation.

Each of the default values can be modi�ed by rede�ning the corresponding perl variables

in the initialization �le .latex2html.init, as described in Section 3.5.

From LATEX to HTML and back 115

A detailed explanation of the meaning of the various numbers in Figure 3 is given

below.

➊ the list of �gures, containing a hyperlink pointing to document ➌ (containing the

�gure in question);

➋ the list of tables, containing a hyperlink pointing to document ➍ (containing the

table in question);

➌ the �rst section, containing some text, a �gure, and a hyperlink ([1]) pointing to

an entry in the bibliography (document ➎);

➍ the second section, also containing some text and a table;

➎ the bibliographic references;

➏ the index, containing keywords that provide hyperlinks pointing to entry points in

the various documents;

➐ an explanatory note detailing the procedure by which the document was translated

into HTML. This text can be customized with the help of the option -desc (see

Section 3.6).

3.5 Extending and customizing the translator

As the translator only partially covers the set of LATEX commands and because new LATEX

commands can be de�ned arbitrarily using low level TEX commands, the translator should

be
exible enough to allow end users to specify how they want particular commands to

be translated.

Adding support for packages

LaTeX2HTML provides a mechanism to automatically load �les containing code to

translate speci�c packages. For instance, when in a LATEX document, the command

\includegraphics{xxxx} is found, a �le called LATEX2HTMLDIR/styles/xxxx.perl

is looked for. If such a �le exists, it will be loaded into the main script.

This mechanism helps keep the core script smaller and modular and also makes it

easier for others to contribute perl code to translate speci�c packages. The current

distribution includes the �les german.perl, french.perl, makeidx.perl, and for the

hypertext extensions html.perl. Note, however, that writing such extensions requires

an understanding of perl and of the way LaTeX2HTML is organized. Some more details

will be given in Appendix C.

Presently, the user can ask that particular commands and their arguments be ignored

or passed on to LATEX for processing (the default behavior for unrecognized commands

is for their arguments remains in the HTML text). Commands passed to LATEX are con-

verted to images that are either \inlined" in the main document or are accessible via

hypertext links. Simple extensions using the commands below may be included in the

system initialization �le LATEX2HTMLDIR/latextohtml.config, or in the customiza-

tion initialization �le .latex2html-init in the user's home directory or in the directory

where the �les to be converted reside.

1
1
6

M
ic
h
e
l
G
o
o
sse

n
s
a
n
d
J
a
n
n
e
S
a
a
re
la

➌

➍

➏

➐

➊

➋

➎

Figure 3: The HTML structure generated from the LATEX source of Figure 1 as visualized with the Mosaic browser

From LATEX to HTML and back 117

Directing the translator to ignore commands

Commands that should be ignored may be speci�ed in the .latex2html-init �le as

input to the ignore_commands subroutine. Each command which is to be ignored should

be on a separate line followed by compulsory or optional argument markers separated by

#'s, for example:9

<cmd_name>#{}# []# {}# [] ...

{}'s mark compulsory arguments and []'s optional ones.

Some commands may have arguments which should be left as text, even though

the command should be ignored (\mbox, \center, etc.). In these cases the arguments

should be left unspeci�ed.

Here is an example of how this mechanism may be used:

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

linebreak# []

pagebreak# []

center

<add your commands here>

_IGNORED_CMDS_

Asking the translator to pass commands to LATEX

Commands that should be passed on to LATEX for processing because there is no direct

translation to HTML may be speci�ed in the .latex2html-init �le as input to the

process_commands_in_tex subroutine. The format is the same as that for specifying

commands to be ignored. Here is an example:

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

fbox # {}

framebox # [] # [] # {}

<add your commands here>

_RAW_ARG_CMDS_

Customizing LATEX2HTML

Besides honoring the options speci�ed on the command line, LaTeX2HTML reads two stan-

dard �les that can be used to customize its behavior. The �rst �le, latextohtml.config,

is a system-wide �le (usually in the directory /usr/local/lib/latex2html). It con-

tains the de�nitions for a complete installation, i.e., those common for all users, and

speci�es where certain external utility programs needed by LaTeX2HTML are to be found

on the system (such as LATEX, dvips, gs, pmbplus). Moreover, in this �le important

perl variables are initialized to their default values. At the end of the �le one has the

9. It is possible to add arbitrary perl code between any of the argument markers that will be executed

when the command is processed. For this, however, a basic understanding of how the translator works and,

of course, perl is required.

118 Michel Goossens and Janne Saarela

possibility of specifying those LATEX commands or environments that should be ignored,

and those that should be passed on to LATEX to be transformed into images for inclusion

in the HTML �le.

The second �le, .latex2html-init, allows the user to customize LaTeX2HTML on

an individual level. LaTeX2HTML will normally look for this �le in the user's home di-

rectory (variable $HOME on Unix). This �le can contain the same information as the

global con�guration �le latextohtml.config and is thus the ideal place to overwrite

default values or to specify in the perl language how certain speci�c LATEX commands

should be handled. It should be noted that the LaTeX2HTML distribution LaTeX2HTML

already contains a few �les with de�nitions for translations of supplementary LATEX com-

mands introduced by certain extension packages, such as german.perl, french.perl,

html.perl and makeidx.perl. To help the user, the distribution comes with an ex-

ample �le dot.latex2html-init that can serve as a model for writing one's own

.latex2html-init.

Creating a customization �le .latex2html-init

Before discussing examples of commands that can be put in the .latex2html-init

customization �le, it should be emphasized once more that this �le, as well as all other

�les that are part of the LaTeX2HTML system, contain only perl instructions, and that

one should thus have at least a basic understanding of this language before trying to

edit any of these �les.

Figures 4 and 5 show an example initialization �le dot.latex2html-init. Its �rst

parts initialize most of the perl variables used by the LaTeX2HTML system by set-

ting them equal to their default values (as de�ned in the system-wide initialization �le

latex2html.config. Values that need not to be changed can be deleted from the �le.

When studying the various system variables, note the correspondence between the perl

variables and the options of the latex2html described in Section 3.3).

Examples

We want to leave most of the values at their defaults as shown in Figures 4 and 5.

However, we specify the format of the address �elds explicitly and make a few more

modi�cations; in particular, we do not want images to be included inside the HTML

documents. Thus we should write something like:

$ADDRESS = "<I>Michel Goossens
" .

"CN Division
" .

"Tel. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 2; # stop at subsection

$MAX_LINK_DEPTH = 1; # child nodes to sections

$EXTERNAL_IMAGES = 1; # images outside document

draw a nice rainbow-colored line (gif file)

From LATEX to HTML and back 119

#LaTeX2HTML Version 95.1 : dot.latex2html-init

#

Command Line Argument Defaults

$MAX_SPLIT_DEPTH = 8; # Stop making separate files at this depth

$MAX_LINK_DEPTH = 4; # Stop showing child nodes at this depth

$NOLATEX = 0; # 1 = do not pass unknown environments to Latex

$EXTERNAL_IMAGES = 0; # 1 = leave the images outside the document

$ASCII_MODE = 0; # 1 = do not use any icons or internal images

$PS_IMAGES = 0; # 1 = use links to external postscript

images rather than inlined GIF's.

$TITLE = $default_title; # The default is "No Title"

$DESTDIR = '.'; # Put the result in this directory

$NO_SUBDIR = 0; # 0 = create (reuse) file subdirectory

1 = put generated HTML files in current dir.

Supply your own string if you don't like the default <Name> <Date>

$ADDRESS = "<I>$address_data[0]
\n$address_data[1]</I>";

$NO_NAVIGATION = 0; # 1 = no navigation panel at top of each page

$AUTO_NAVIGATION = 1; # 1 = put navigation links at top of page

$WORDS_IN_PAGE = 300; # if nb. words on page > $WORDS_IN_PAGE put

navigation panel at bottom of page.

$INDEX_IN_NAVIGATION = 1; # put link to index page in navigation panel

$CONTENTS_IN_NAVIGATION = 1; # put link to table of contents " " "

$NEXT_PAGE_IN_NAVIGATION = 1; # put link to next logical page " " "

$PREVIOUS_PAGE_IN_NAVIGATION = 1;# put link to prev. " " " " "

$INFO = 1; # 0 = do not make "About this document..." section

$REUSE = 1; # Reuse images generated during previous runs

Do not try to translate these package files.

Complex LaTeX packages may cause the translator to hang.

If this occurs add the package's filename here.

$DONT_INCLUDE = "memo:psfig:pictex:revtex";

When this is 1, the section numbers are shown. The section numbers should

then match those that would have bee produced by LaTeX.

The correct section numbers are obtained from the $FILE.aux file generated

by LaTeX.

Hiding the section numbers encourages use of particular sections

as standalone documents. In this case the cross reference to a section

is shown using the default symbol rather than the section number.

$SHOW_SECTION_NUMBERS = 0;

Other global variables

$CHILDLINE = "
 <HR>\n";

This is the line width measured in pixels and it is used to right justify

equations and equation arrays;

$LINE_WIDTH = 500;

Affects ONLY the way accents are processed

$default_language = 'english';

This number will determine the size of the equations, special characters,

and anything which will be converted into an inlined image

except "image generating environments" such as "figure", "table"

or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$MATH_SCALE_FACTOR = 1.6;

This number will determine the size of

image generating environments such as "figure", "table" or "minipage".

Effective values are those greater than 0.

Sensible values are between 0.1 - 4.

$FIGURE_SCALE_FACTOR = 0;

Figure 4: dot.latex2html-init �le (part 1)

120 Michel Goossens and Janne Saarela

If this is set then intermediate files are left for later inspection.

This includes $$_images.tex and $$_images.log created during image

conversion.

Caution: Intermediate files can be *enormous*.

$DEBUG = 0;

The value of this variable determines how many words to use in each

title that is added to the navigation panel (see below)

#

$WORDS_IN_NAVIGATION_PANEL_TITLES = 4;

If both of the following two variables are set then the "Up" button

of the navigation panel in the first node/page of a converted document

will point to $EXTERNAL_UP_LINK. $EXTERNAL_UP_TITLE should be set

to some text which describes this external link.

$EXTERNAL_UP_LINK = "";

$EXTERNAL_UP_TITLE = "";

If this is set then the resulting HTML will look marginally better if viewed

with Netscape.

$NETSCAPE_HTML = 0;

Valid paper sizes are "letter", "legal", "a4","a3","a2" and "a0"

Paper sizes has no effect other than in the time it takes to create inlined

images and in whether large images can be created at all ie

- larger paper sizes *MAY* help with large image problems

- smaller paper sizes are quicker to handle

$PAPERSIZE = "a4";

Replace "english" with another language in order to tell LaTeX2HTML that you

want some generated section titles (eg "Table of Contents" or "References")

to appear in a different language. Currently only "english" and "french"

is supported but it is very easy to add your own. See the example in the

file "latex2html.config"

$TITLES_LANGUAGE = "english";

Navigation Panel

The navigation panel is constructed out of buttons and section titles.

These can be configured in any combination with arbitrary text and

HTML tags interspersed between them.

The buttons available are:

$PREVIOUS - points to the previous section

$UP - points up to the "parent" section

$NEXT - points to the next section

$NEXT_GROUP - points to the next "group" section

$PREVIOUS_GROUP - points to the previous "group" section

$CONTENTS - points to the contents page if there is one

$INDEX - points to the index page if there is one

#

If the corresponding section exists the button will contain an

active link to that section. If the corresponding section does

not exist the button will be inactive.

#

Also for each of the $PREVIOUS $UP $NEXT $NEXT_GROUP and $PREVIOUS_GROUP

buttons there are equivalent $PREVIOUS_TITLE, $UP_TITLE, etc variables

which contain the titles of their corresponding sections.

Each title is empty if there is no corresponding section.

#

The subroutine below constructs the navigation panel in each page.

Feel free to mix and match buttons, titles, your own text, your logos,

and arbitrary HTML (the "." is the Perl concatenation operator).

sub navigation_panel {....}

1; # This must be the last line

Figure 5: dot.latex2html-init �le (part 2). The navigation panel perl code is shown

in Figure 10.

From LATEX to HTML and back 121

instead of the default simple line (<HR>)

$CHILDLINE = "
<IMG " .

"SRC=rainbow_line.gif>
"

Normally, LaTeX2HTML will read all package and class �les and interpret all the

commands that are de�ned in those �les. This can lead to problems, so it is wise

to exclude some �les. Also, one may want to de�ne a translation into perl for the

commands in one or more �les, so they should also not be read. The list of �les to be

excluded, is speci�ed as follows:

$DONT_INCLUDE = "memo:psfig:times:revtex:" .

"aps:float:harvard:tabls";

Special symbols and inline equations are generally transformed into inlined (bitmap)

images that are placed inside the HTML text on the same line when viewing the docu-

ment with a browser. On the other hand, display environments, such as tables, �gures,

minipages, and multi-line equations are transformed into images that will also be shown

on a line by themselves after starting a new paragraph. The scale factor for the two

kinds of images (inline and displayed) can be speci�ed by the following parameters:

$MATH_SCALE_FACTOR = 1.6;# inline images

$FIGURE_SCALE_FACTOR = 0;# display images

= 0, original dimension

Finally, we specify { as described in Sections 3.5 and 3.5 { a list of commands to

be ignored and passed to LATEX.

Commands to ignore

&ignore_commands(<<_IGNORED_CMDS_);

documentclass # [] # {}

usepackage # [] # {}

mbox

makebox# [] # []

_IGNORED_CMDS_

Commands to pass on to LaTeX{}

&process_commands_in_tex (<<_RAW_ARG_CMDS_);

includegraphics # [] # [] # {}

rotatebox # {} # {}

_RAW_ARG_CMDS_

1; # This MUST be the last line

We notice that the mandatory argument of the \mbox and \makebox commands

is not speci�ed, so that it will end up in the text, while the optional arguments of the

122 Michel Goossens and Janne Saarela

\makebox command will disappear. In the case of the framed box commands \fbox and

\framebox, both mandatory and optional arguments are passed on to LATEX.

It is important to note that the last line of the �le must be the one shown in the

example above.

3.6 Hypertext extensions

These commands are de�ned in the html.sty package �le that is part of the distribution.

They are de�ned as LATEX commands that are (mostly) ignored during the LATEX run

but are activated in the HTML version. To use them the html package must be included

with a \usepackage command.

Hyperlinks in LATEX

With the \htmladdnormallink and \htmladdimg commands one can build arbitrary

hypertext references.

\htmladdnormallink{text}{hURLi}

When processed by LATEX the URL part will be ignored, but LaTeX2HTML will transform

it into an active hypertext link that can give access to sound, images, other documents,

etc., for instance,

\htmladdnormallink{The Ω Project}

{http://www.ens.fr/omega/}

\htmladdnormallinkfoot{text}{hURLi}

This command takes the same two arguments and has the same e�ect when generating

HTML as the command \htmladdnormallink, but when processed by LATEX it shows

the URL as a footnote.

\htmladdimg{hURLi}

In a similar way, the argument of the \htmladdimg command should be a URL pointing

to an image. This URL is ignored in the LATEX hard copy output.

Cross-references between living documents

In this case we want to use a mechanism for establishing cross-references between two

or more documents via symbolic labels independent of the physical realisation of these

documents. The documents involved may reside in remote locations and may be spread

across one or more HTML �les.

The mechanism is an extension of the simple \label-\ref pairs that can be used

only within a single document. A symbolic label de�ned with a \label command can

be referred to using a \ref command. When processed by LATEX, each \ref command

From LATEX to HTML and back 123

is replaced by the section number at which the corresponding \label occurred. When

processed by LaTeX2HTML each \ref is replaced by a hypertext link to the place where

the corresponding \label occurred. The new commands, detailed below, show how it

is possible to refer to symbolic labels de�ned with \label in other external documents.

Such references to external symbolic labels are then translated into hyperlinks pointing

to the external document.

Cross-references between documents are established with the commands:

\externallabels

{hURL directory external documenti}

{hexternal document labels.pl �lei}

\externalref{hlabel in remote documenti}

The �rst argument to \externallabels should be a URL to the directory con-

taining the external document. The second argument should be the full pathname to

the labels.pl �le belonging to the external document. The �le labels.pl associates

symbolic labels with physical �les and is generated automatically for each translated doc-

ument. For remote external documents it is necessary to copy the labels.pl �le locally

so that it can be read when processing a local document that uses it. The command

\externallabels should be used once for each external document in order to import

the external labels into the current document. The argument to \externalref can be

any symbolic label de�ned in any of the external documents in the same way that the

\ref command refers to labels de�ned internally.

After modi�cations in an external document, such as addition or deletion of sec-

tioning levels, or a segmentation into di�erent physical parts, a new �le, labels.pl,

will be generated. If in another document the \externallabels command contains the

correct address to the labels.pl �le, then cross-references will be realigned correctly.

A warning will be given if labels.pl cannot be found.

Example of a composite document

In this section we show how to handle a set of composite documents taking advantage

of the hypertext extensions described in Section 3.6.

We start with the LATEX source document shown in Figure 1 and divide it, for

demonstration purposes, into four sub-documents, shown in Figure 6, namely a main

�le (ex20.tex) and three secondary �les (ex21.tex, ex22.tex and ex2bib.tex). We

must �rst run all these �les through LATEX and then in the correct order through La-

TeX2HTML. Indeed, as we use cross-references to refer to document elements in external

documents (with the commands \externalref and \externallabels) we should �rst

treat the secondary �les ex21.tex, ex22.tex, and ex2bib.tex, before tackling the

master �le ex20.tex.

By default, LaTeX2HTML writes the �les that it creates into a subdirectory with the

same name as the original �le, for example, after execution of the command:

124 Michel Goossens and Janne Saarela

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\begin{document}

\begin{center}

\Large Exemple d'un document compos\'e

\end{center}

\htmladdnormallink{Les Images}%

{../ex21/ex21.html}

\externallabels{../ex21}%

{../ex21/labels.pl}

R\'ef\'erence \`a une figure

externe~\externalref{Fpsfig}.

\htmladdnormallink{Les tableaux}%

{../ex22/ex22.html}

\externallabels{../ex22}%

{../ex22/labels.pl}

R\'ef\'erence \`a un tableau

externe~\externalref{tab-exa}.

\htmladdnormallink{La bibliographie}%

{../ex2bib/ex2bib.html}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[dvips]{graphicx}

\usepackage[french]{babel}

\makeindex

\begin{document}

\section{Une figure EPS}\label{sc-figure}

Cette section montre comment inclure une

\externallabels{../ex2bib}%

{../ex2bib/labels.pl}%

figure PostScript\externalref{bibPS}

dans un document \LaTeX. La

\hyperref{figure}{figure }{}{Fpsfig}

est ins\'er\'ee dans le texte \`a l'aide

de la commande

\verb!\includegraphics{colorcir.eps}!.

\begin{figure}\centering

\htmlimage{thumbnail=0.2}

\begin{tabular}{c@{\qquad}c}

\includegraphics[width=6cm]{colorcir.eps}&

\includegraphics[width=6cm]{tac2dim.eps}

\end{tabular}

\caption{Deux images EPS}\label{Fpsfig}

\end{figure}

\end{document}

Master �le (ex2.tex) File containing images (ex21.tex)

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\newcommand{\Lcs}[1]{%

\texttt{\symbol{'134}#1}\enspace}

\begin{document}

\section{Exemple d'un tableau}

\label{sec-tableau}

Le \hyperref{tableau}{tableau }{}{tab-exa}

montre l'utilisation de l'environnement

\texttt{table}.

\begin{table}\centering

\begin{tabular}{ccccc}

\Lcs{primo} \primo &

\Lcs{secundo} \secundo &

\Lcs{tertio} \tertio &

\Lcs{quatro} \quatro &

2\Lcs{ieme}\ 2\ieme

\end{tabular}

\caption{Quelques commandes de l'option

\texttt{french} de

\texttt{babel}}\label{tab-exa}

\end{table}

\end{document}

\documentclass{article}

\usepackage{html}

\usepackage[french]{babel}

\makeindex

\begin{document}

\begin{thebibliography}{99}

\bibitem{bib-PS}\label{bibPS}

Adobe Inc. \emph{PostScript, manuel de

r\'ef\'erence (2i\`eme \'edition)}

Inter\'Editions (France), 1992

\end{thebibliography}

\end{document}

File containing the table (ex22.tex) File with the bibliography (ex2bib.tex)

Figure 6: Example of a composite document (LATEX �les)

From LATEX to HTML and back 125

> latex2html ex20.tex

one ends up with a directory ex20 containing all �les associated with the translation of

the input �le ex20.tex. Figure 7 shows the structure of the four sub-directories created.

To guide LaTeX2HTML in translating these documents we also used a customization

�le, myinit.pl, containing some rede�nitions of perl constants.

File myinit.pl

Customization of latex2html

$ADDRESS = "<I>Michel Goossens
" .

"Division CN
" .

"T�el. 3363
" .

"\n$address_data[1]</I>";

$MAX_SPLIT_DEPTH = 0; # do not split document

$MAX_LINK_DEPTH = 0; # no down links needed

$NO_NAVIGATION = 1; # no navigation panel

1; # Mandatory last line

When executing LaTeX2HTML on the �les we then issued the following command:

> latex2html -init_file myinit.pl \

> -t "Image" \

> -info "Test du 2/12/94" \

> ex21.tex

Apart from loading our customization �le moninit.pl (option -init_file), we also

specify a title for the document (option -t), and add a description about the document

(option -info). The result can be seen in the upper left corner of Figure 8.

Shown below are the informative messages generated by LaTeX2HTML when exe-

cuting the above command. At �rst the �le html.perl associated with the hypertext

extensions described in Section 3.6 is loaded (thanks to the \usepackage{html} com-

mand as seen in the source in Figure 6). The auxiliary �le ex21.aux is also read, thus

reminding us that the documents should be treated by LATEX before LaTeX2HTML is run.

After reading the complete LATEX input �le, LaTeX2HTML generates the �le image.tex

which contains the LATEX code corresponding to all environments for which no translation

rules were available. After running LATEX on images.tex the dvi �le is transformed by

the dvips program into PostScript. Then another program, ghostview, interprets this

PostScript and transforms it into the GIF format (via an intermediate stage using the

ppm format). It is these GIF images that are used by most browsers to show the images

on screen. At the end, LaTeX2HTML reads the �le(s) containing the labels of the external

documents in order to resolve possible cross-references by including the necessary <URL>

addresses.

This is LaTeX2HTML Version 0.6.4 (Tues Aug 30 1994)

126 Michel Goossens and Janne Saarela

Top directory (TeX source files)

================================

569 ex20.tex

721 ex21.tex

627 ex22.tex

322 ex2bib.tex

Subdirectories (generated HTML files)

=====================================

ex20

1187 ex20.html

109 images.pl

93 labels.pl

ex21

1755 T_18854_figure15.gif

12118 _18854_figure15.gif

122 _18854_tex2html_wrap57.gif

1345 ex21.html

539 images.pl

589 images.tex

190 labels.pl

ex22

624 _15561_table12.gif

1047 ex22.html

512 images.pl

687 images.tex

191 labels.pl

ex2bib

844 ex2bib.html

109 images.pl

141 labels.pl

Note the presence of the �les labels.pl that contain information associating the symbolic names

used on the \label commands in the original LATEX source documents with the physical docu-

ments. The other �les are one or more HTML �les that were created by the translation process.

GIF images are generated for all environments that LaTeX2HTML cannot translate gracefully into

HTML. In this case the relevant part of the LATEX code is �rst copied into a �le images.tex

that is run through LATEX, which places each such environment on a separate page, so that the

dvips program can produce a PostScript picture for each that is then (in principle) translated into

GIF by using the Ghostscript program (see Section A.1 for more information about all these

programs)

Figure 7: Subdirectory structure after translation of the four documents shown in

Figure 6

From LATEX to HTML and back 127

by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/html/ex21.tex

Loading /usr/local/lib/latex2html/styles/html.perl...

Reading ...

Reading ex21.aux

Translating ...0/2..........1/2........2/2......

Generating images using LaTeX ...

This is TeX, Version 3.1415 (C version 6.1)

(18854_images.tex

LaTeX2e <1994/06/01> patch level 3

Hyphenation patterns for english, loaded.

Generating postscript images using dvips ...

This is dvipsk 5.58c Copyright 1986, 1994

Radical Eye Software

' TeX output 1994.12.02:1830' -> 18854_image

(-> 18854_image001) <tex.pro><special.pro>[1]

(-> 18854_image002) <tex.pro>

<special.pro>[2<colorcir.eps><tac2dim.eps>]

GS>GS>Writing 18854_image001.ppm

GS>Writing _18854_tex2html_wrap57.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing _18854_figure15.gif

GS>GS>Writing 18854_image002.ppm

GS>Writing T_18854_figure15.gif

Doing section links

Done.

The result of all our e�orts is shown in Figure 8.

3.7 Including arbitrary HTML markup

Raw HTML tags and text may be included using the rawtext environment. An interest-

ing use of this feature is in the creation of interactive electronic forms. from within a

LATEX document. When producing the paper (DVI) version of a document the rawhtml

environment is ignored.

Here is an example:

1
2
8

M
ic
h
e
l
G
o
o
sse

n
s
a
n
d
J
a
n
n
e
S
a
a
re
la

➊

➋

➌

➀

➁

➂

✪

✪

As requested, there are no navigation pannels, the titles and the information part About this document ... have been customized as indicated in the �le

myinit.pl. The arrows carrying the numbers ➊, ➋, and ➌ correspond to hyperlinks pointing to an HTML document using the \htmladdnormallink

command in the LATEX source. The arrows numbered ➀ and ➁ are cross-references constructed with the commands \externalref, that make use of

symbolic names speci�ed as the argument of \label commands in the target documents. The arrow numbered ➂ corresponds to a hyperlink connecting

the thumbnail in the text with the real-size image available as a separate external gif �le. Finally, the start and end points of the bibliographic reference

link are indicated by the symbol ✪.

Figure 8: The HTML �le structure obtained from the composite document and its sub-documents (Figure 6) as viewed by

the Mosaic browser.

From LATEX to HTML and back 129

\begin{rawhtml}

<HTML>

<HEAD>

<TITLE>Example of simple form</TITLE>

</HEAD>

<BODY>

<FORM

ACTION="http://www.server.ch/form.cgi"

METHOD="POST">

Radio buttons:

 <INPUT TYPE="radio" NAME="mode"

VALUE="FM"> Frequency modulation.

 <INPUT TYPE="radio" NAME="mode"

VALUE="SW" CHECHED> Short waves.

</FORM>

</BODY>

</HTML>

\end{rawhtml}

The result of running this electronic form with Mosaic would yield Figure 9

Conditional text

Conditional text can be speci�ed using the environments latexonly and htmlonly.

These allow the writing of parts of a document intended only for electronic delivery or

only for paper-based delivery.

This would be useful in, for example, adding a long description of a multi-media

resource to the paper version of a document. Such a description would be redundant in

the electronic version, as the user can have direct access to this resource.

Using LATEX commands involving counters (for example, numbered �gures or equa-

tions) in conditional texts may cause problems with the values of the counters in the

electronic version.

Cross-references shown as \hyperized" text

In printed documents cross-references are shown by numerical or symbolic indirection,

such as \see equation 3.1a" (numeric indirection), or \see chapter \Hypertext" (sym-

bolic indirection). In a hypertext document, however, cross-references can be shown

without any indirection by using highlighting of a relevant piece of text. This can con-

tribute to making a document more readable by removing unnecessary visual information.

130 Michel Goossens and Janne Saarela

Figure 9: Including arbitrary HTML Markup

With LaTeX2HTML one can use the \hyperref command to specify how a cross-

reference should appear in the printed and hypertext versions of a document.

\hyperref{text-h}{text-d1}{text-d2}{label}

The meaning of the four arguments is as follows:

text-h text to be highlighted in the hypertext version;

text-d1 text to be shown in the printed version followed by a numeric reference;

text-d2 text following the reference text;

label the label de�ning the cross-reference.

Example of the use of hyperref, with a

\hyperref

{reference to conditional text}

{reference to conditional text

From LATEX to HTML and back 131

(see Section }

{ for more information)}

{sec:latexonly}

as an example.

Here is how it will be printed:

Example of the use of hyperref, with a reference to conditional text (see Section

3.7 for more information) as an example.

In the hypertext version what would appear is:

Example of the use of hyperref, with a reference to conditional text as an

example.

A simpler version of the above command but having the same e�ect for the HTML

version:

\htmlref{text}{label}

In the HTML version the text will be \hyperized" pointing to the label, while in the

printed version the text will be shown as it is and the label ignored.

Customizing the navigation panel

The navigation panel is the strip containing \buttons" and text that appears at the top

and possibly at the bottom of each generated page and that provides hypertext links to

other sections of a document. Some of the options and variables that control whether

and where it should appear have already been mentioned in Section 3.3.

A simple mechanism for appending customized buttons to the navigation panel is

provided by the command, \htmladdtonavigation. This takes one argument, which

LaTeX2HTML appends to the navigation panel:

\htmladdtonavigation

{\htmladdnormallink

{\htmladdimg{http://server/mybutton.gif}}

{http://server/link}}

For example, the above will add an active button mybutton.gif pointing to the

speci�ed location.

It is also possible to completely specify what is to appear in the navigation panel

and its order of appearance. As each section is processed, LaTeX2HTML assigns relevant

information to a number of global variables. These variables are used by the subroutine

navigation_panel where the navigation panel is constructed as a string consisting of

these variables and some formatting information.

This subroutine can be rede�ned in the system and/or user con�guration �les

HOME/.latex2html-init and LATEX2HTMLDIR/latex2html.config.

The list below contains the names of control panel variables that relate to navigation

icons and explains where they point to.

132 Michel Goossens and Janne Saarela

CONTENTS contents page (if it exists);

INDEX index page (if it exists).

NEXT next section;

PREVIOUS previous section;

UP \parent" section;

NEXT_GROUP next \group" section;

PREVIOUS_GROUP previous \group" section.

The list below contains the names of textual links that point to the title information

associated with the control panel variables described above.

NEXT_TITLE next section;

PREVIOUS_TITLE previous section;

UP_TITLE \parent" section;

NEXT_GROUP_TITLE next \group" section;

PREVIOUS_GROUP_TITLE previous \group" section.

If the corresponding section exists, each iconic button will contain an active link to

that section. If the corresponding section does not exist, the button will be inactive. If

the section corresponding to a textual link does not exist then the link will be empty.

The variable WORDS_IN_NAVIGATION_PANEL_TITLES controls the number of words in each

textual link. It may be changed in the con�guration �les. Figure 10 shows an example

of a navigation panel.

3.8 Image conversion

LaTeX2HTML converts equations, special accents, external PostScript �les, and LATEX

environments it cannot directly translate into inlined images. It is possible to control the

�nal appearance of such images, both for inline and display-type constructs.

The size of all \inline" images depends on a con�guration variable which speci�es

how much to enlarge or reduce them in relation to their original size in the printed

version of the document (MATH_SCALE_FACTOR), i.e., scale factors of 0.5 or 2.0 make

all images half or twice as large as the original. A value of 0.0 means that no scaling

factor has to be applied.

On the other hand, display-type images (such as those generated by the en-

vironments table, figure, equation, or minipage) are controlled by the variable

FIGURE_SCALE_FACTOR. The default value for both of these variables is 1.6.

Moreover, several parameters can a�ect the conversion of a single \�gure" with the

\htmlimage command:

From LATEX to HTML and back 133

sub navigation_panel {

Start with a horizontal rule (3-d dividing line)

"<HR> ".

Now add few buttons with a space between them

"$NEXT $UP $PREVIOUS $CONTENTS $INDEX $CUSTOM_BUTTONS" .

"
\n" . # Line break

If ``next'' section exists, add its title to the navigation panel

($NEXT_TITLE ? " Next: $NEXT_TITLE\n" : undef) .

Similarly with the ``up'' title ...

($UP_TITLE ? "Up: $UP_TITLE\n" : undef) .

... and the ``previous'' title

($PREVIOUS_TITLE ? " Previous: $PREVIOUS_TITLE\n" : undef) .

Horizontal rule (3-d dividing line) and new paragraph

"<HR> <P>\n"

}

Figure 10: Example de�nition of a navigation panel. (Note that \." is the perl string

concatenation operator and \#" signi�es a comment).

\htmlimage{options}

This command can be used inside every environment that is normally translated into

a display-type image. To be e�ective the \htmlimage command (and its options) must

be placed inside the environment on which it has to operate. The argument options

speci�es how the image in question will be handled; it contains a comma-separated list

of keyword-value pairs.

scale=scale-factor

the scale factor for the �nal image;

external

the image does not have to be included in the document, but a hyperlink whose

URL points to it has to be inserted to access it;

thumbnail=reduction-factor

a small inlined image will be generated and placed in the caption; its size depends

134 Michel Goossens and Janne Saarela

on the speci�cation reduction-factor that downsizes the image by that amount.

Note that this option implies external.

map=image-map-URL

turns the inlined image into an active image map.10

An example is the following LATEX code:

\begin{figure}

\htmlimage{thumbnail=0.25}

\includegraphics{myfig.eps}

\caption{description of my figure}

\label{fig-myfig}

\end{figure}

\htmlimage can also be used to locally cancel out the e�ect of the con�guration

variable FIGURE_SCALE_FACTOR. For instance, if one does not want to resize a given

image, then the command htmlimage{scale=0} will do the trick.

3.9 Internationalization

A special variable, TITLES_LANGUAGE, in the initialization or con�guration �les deter-

mines the language in which some section titles will appear. For example, by setting it

to

$TITLES_LANGUAGE = "french";

LaTeX2HTML will produce \Table des mati�eres" instead of \Table of Contents".

Currently, \french" and \english" are the only languages supported. It is not di�cult,

however, to add support for other languages in the �le latex2html.config. As an

example, below is shown the entry for French titles:

sub french_titles {
$toc_title = "Table des mati�eres";

$lof_title = "Liste des figures";

$lot_title = "Liste des tableaux";

$idx_title = "Index";

$bib_title = "R�ef�erences";

$info_title =

"�A propos de ce document...";

}

In order to provide full support for another language you may also want to replace

the navigation buttons which come with LaTeX2HTML (which are by default in English)

with your own. As long as the new buttons have the same �lenames as the old ones

there should not be a problem.

10. More information on active image maps is at the URL http://wintermute.ncsa.uiuc.edu:8080/

map-tutorial/image-maps.html.

From LATEX to HTML and back 135

3.10 Known problems

Users of LaTeX2HTML should take note of the following shortcomings of the translator.

� Unrecognized commands and environments.

Unrecognized commands are ignored and any arguments are left in the text. Unrec-

ognized environments are passed to LATEX and the result is included in the document

as one or more inlined images. Users can take care of this by providing information

to LaTeX2HTML on how to handle such cases, either by deciding to ignore them (see

Section 3.5 on page 117), or by de�ning a perl procedure (see Appendix C).

� Cross-references.

References in environments that are passed to LATEX for processing (such as \cite

or \ref commands), are not processed correctly. On the other hand, \label

commands are handled satisfactorily.

� Order-sensitive commands.

Commands a�ecting global parameters during the translation that are sensitive to

the order in which they are processed may cuase problems. In particular, counter

manipulation with commands such as \newcounter, \setcounter, \stepcounter

should be watched.

� Index.

LaTeX2HTML generates its own index by saving the arguments of the \index com-

mand. The contents of the \theindex environment are ignored.

� New de�nitions.

New de�nitions (with the commands: \def, \newcommand, \newenvironment,

\newtheorem) will not work as expected if they are de�ned more than once. Indeed,

only the last de�nition will be used throughout the document.

� Scope of declarations and environments.

LaTeX2HTML processes sections as independent units. Thus, when the scope of a

declaration or environment crosses section boundaries, the output may not be as

expected.

4 HTML3 extensions to LATEX2HTML

4.1 The MATH2HTML program

The simple notation for even complex mathematics and the diversity of the symbols and

characters sets available makes LATEX the typesetting system of choice in many of the

scienti�c �elds. Tens of thousands of articles, theses, and reports have been written in

LATEX and most publishing houses that deal with scienti�c papers use LATEX for handling,

storing and archiving their documents. Therefore it is to be expected that all these parties

wish to protect their investment and prefer not to have to recode their mathematics

formulae for hypertext purposes only.

The LaTeX2HTML translator solves the problem of presenting mathematics in HTML

by converting each mathematical sentence into a bitmap image. Although simple and

136 Michel Goossens and Janne Saarela

straighforward, this approach seems a little unreasonable in general, since in many cases

an article of a few pages can generate many hundreds of bitmap images, which have to be

stored with the document, kept up to date, and transmitted with the document over the

Internet, thus wasting an enormous amount of bandwidth. Therefore, a clear need for a

translator from LATEX mathematics into HTML3's primitive mathematics was considered

an important goal. Thanks to the increased displaying capabilities of HTML3 complyable

browsers, most inline mathematics and a fair proportion of display equations can be

translated into HTML3 source code and hence transmitted in textual format together

with the rest of the document, doing away with well over 90% of the images that

are created in the HTML2 case where only bitmap images are generated. In addition,

mathematics text can be searched for keywords as the rest of the document, thus

increasing the value of the HTML document.

The math2html program has been interfaced to the LaTeX2HTML program via a

new option -html3. When this option is speci�ed, LaTeX2HTML will �rst pass the LATEX

input source code through the math2html translator. In this case, native HTML3 code

will be generated for mathematics and tables when math2html can handle the input.

In case math2html cannot parse the given LATEX input, it gives an error message and

LaTeX2HTML creates an image as usual.

At CERN we have translated thousands of pages of manuals and hundreds of physics

articles. We found that math2html successfully translates on average 95% of all math-

ematics present in the input �les, thus reducing by a substantial amount the number of

generated bitmap images.

A few examples

The HTML3 extensions translate quite a large fraction of not-too-complex LATEX math

constructs (for as far as they can be handled by the HTML3 DTD, of course).

A �rst explicit example is the code representing the di�erential cross-section of �-ray

production. The original LATEX code and its result as typeset by LATEX are shown in parts

(a) and (b) of Figure 11, while the result of the translation by math2html of the LATEX

source in (a) into HTML3 is shown in (c), yielding the output with the arena browser

shown in (d). Part of the tree constructed by math2html when parsing this LATEX input

is shown in Figure 18 on page 165.

Multi-line mathematical constructs, such as arrays (array and eqnarray environ-

ments), are also handled without too many problems, and the present limits of the

translation are due more to shortcomings of the (only) HTML3 browser arena (which

is, after all, merely a beta-test version), than to intrinsic limitations in the approach.

In Figure 12 we show the LATEX source and result as seen with arena of two multi-line

environments.

From LATEX to HTML and back 137

(a) LATEX source that has to be translated:

\frac{d\sigma}{d\epsilon}=\frac{2\pi Z r_0^2m}{\beta^2(E-m)}%

\left[\frac{(\gamma-1)^2}

{\gamma^2}+\frac{1}{\epsilon}\left(\frac{1}{\epsilon}-%

\frac{2\gamma-1}{\gamma^2}\right)+\frac{1}{1-\epsilon}%

\left(\frac{1}{1-\epsilon}\frac{2\gamma-1}{\gamma^2}\right)\right]

(b) Result of the above source as typeset with LATEX:

d�

d�
=

2�Zr 2
0
m

�2(E �m)

[
(
 � 1)2

2
+

1

�

(
1

�
�

2
 � 1

2

)
+

1

1� �

(
1

1� �

2
 � 1

2

)]

(c) Result of the translation of the code in (a) into HTML3:

<math><box>dσ<over>dε</box>=<box>2πZr₀²m<over>β

²(E-m)</box>[<box>(γ-1)²<over>γ²</box>+

<box>1<over>ε</box>(<box>1<over>ε</box>-<box>2γ-1<over>γ<sup>2

</sup></box>)+<box>1<over>1-ε</box>(<box>1<over>1-ε</box>

<box>2γ-1<over>γ²</box>)]</math>

(d) Result of viewing of the HTML3 code of (c) with the arena browser:

Figure 11: Example of transforming LATEX code to HTML3 with math2html

Writing convertible LATEX

By following the rules below, one can expect the LaTeX2HTML translator enhanced with

math2html to produce good output in terms of a low number of bitmap images.

� Do not write the base of a superscript or a subscript outside the mathematics

markup, i.e., a2 is not converted correctly but creates a bitmap image. The

correct way is to write it a^2 or $\mathrm{a}^$ depending, on whether or not

one wants the letter \a" in math italic or in a roman font. When you leave the

base outside of the math markup (the $ signs) the text between the mathematics

delimiters is passed to the math2html translator and the latter does not know where

to place the mathematics start (<math>) tag.

138 Michel Goossens and Janne Saarela

\begin{eqnarray}

a & = & \sin \alpha_2 \\

b & = & \cos \omega_3 \\

\Gamma & = & \Phi + \Theta\\

\end{eqnarray}

\[

\begin{array}{cccccc}

a_{11} \\

a_{21} & a_{22} \\

a_{31} & a_{32} & a_{33} \\

a_{41} & a_{42} & a_{43} &

a_{44} \\

a_{51} & a_{52} & a_{53} &

a_{54} & a_{55} \\

a_{61} & a_{62} & a_{63} &

a_{64} & a_{65} & a_{66}\\

\end{array}

\]

Figure 12: How math2html translates LATEX multi-line mathematics into HTML3

� Do not write nested array/tabular environments. The math2html translator can-

not create an HTML3 counterpart for that markup since the HTML3 table model

does not allow nested tables. Keeping the tables simple (not nested, for example)

will improve their reusability.

4.2 Tables to HTML3 conversion

Hennecke recently developed some code for treating LATEX's tabular environment with

LaTeX2HTML by translating it into HTML3-compliant tables. His patches11 allow LaTeX2-

HTML to translate most LATEX tables reasonably well. There are a few things it cannot

do, but mainly because HTML tables are not quite as powerful as LATEX tables. Most

importantly, HTML tables are quite limited when it comes to borders, since they are not

nearly as
exible in specifying borders as LATEX tables. In his implementation, when a

LATEX table has a border anywhere, the resulting HTML table will have borders around

all cells. LATEX commands inside cells are treated as they should and declarations are

limited in scope to the cell in which they appear (just as in LATEX itself).

His additions can be placed in the LaTeX2HTML perl code itself, or in the customiza-

tion �les. In any case to leave open the possibility of generating tables with and without

11. Available from the URL ftp://ftp.crc.ricoh.com/pub/www/l2h/tables.tar.gz. The author Mar-

cus E. Hennecke can be reached by email at marcush@crc.ricoh.com.

From LATEX to HTML and back 139

this feature turned on, a new command line option -html_level can be used to specify

the level of HTML to be produced.

Examples

First, we look at a simple table with di�erent alignments:

\begin{tabular}{|l|c|r|} \hline

first column & second column & third column \\\hline

111 111 & 22 22 22 & 3 3 3 3 \\\hline

\end{tabular}

The result is seen at the top of Figure 13.

Math can also be handled (in this case it will be translated into images). With a

little bit if \hand-work" it could be translated into native HTML3:

\begin{tabular}{|ll|} \hline

$10^{10^{10}}$& a big number \\\hline

10^{-999} & a small number\\\hline

\end{tabular}

The result is seen in the second table from the top in Figure 13.

Modi�cations to text inside cells remain limited to that cell (as it should). In the

present version only one \multicolumn command is recognized (when more than one

such command is encountered inside a row, only the �rst one is taken into account):

\begin{tabular}{|ll|}

\multicolumn{2}{c}{\bf PostScript type 1 fonts} \\

\em Courier &

cour, courb, courbi, couri \\

\em Charter &

bchb, bchbi, bchr, bchri \\

\em Nimbus &

unmr, unmrs \\

\em URW Antiqua &

uaqrrc \\

\em URW Grotesk &

ugqp \\

\em Utopia &

putb, putbi, putr, putri

\end{tabular}

The result is seen in the third table from the top of Figure 13. Note that, even though

only vertical rules were speci�ed in the tabular's preamble, rules are drawn everywhere.

This is because the BORDER attribute of the <TABLE> tag in HTML3 has only one value,

i.e., borders are present or absent everywhere.

140 Michel Goossens and Janne Saarela

Figure 13: Four examples of tabular environments translated automatically to HTML3

as viewed with the arena browser

From LATEX to HTML and back 141

Our �nal example has again a few \multicolumn commands, but also shows that

non-speci�ed cells are treated gracefully (this can be compared to the example in Section

4.1, where a similar table was built as an array inside math mode):

\begin{tabular}{cccccc}

\multicolumn{6}{c}{\bf global top title}\\

a11 \\

a21 & a22 \\

a31 & a32 & a33 \\

a41 & a42 & a43 & a44 \\

a51 & a52 & a53 & a54 & a55 \\

a61 & a62 & a63 & a64 & a65 & a66 \\

\multicolumn{6}{c}%

{\em columns 1-6 bottom title}

\end{tabular}

The result is seen as the bottom table of Figure 13. As no vertical nor horizontal rules

were speci�ed in the input, the resulting table has no borders.

5 Caml based LATEX to HTML translation

Xavier Leroy (INRIA, France) developed a LATEX to HTML translator based on the Caml

language.12

What was needed was to translate a 200-page technical document (the reference

manual and user's documentation for their implementation of the Caml Light pro-

gramming language). This manual was written in LATEX and contained some rather

non-standard environments and macros written directly in TEX. Parts of the document

were automatically generated: syntactic de�nitions (typeset from BNF descriptions) and

descriptions of library functions (extracted from commented source code).

5.1 Why not just use LATEX2HTML

When LaTeX2HTML �nds a LATEX construct that it does not know how to translate into

HTML, it simply turns it into a bitmap. This approach was considered inappropriate by

Leroy et al., since

� information transformed into a bitmap is not searchable;

� bitmaps cannot easily be integrated into Macintosh or Windows online documenta-

tion systems;

� bitmaps are generally hard to read, since their resolution usually does not match

that of the HTML viewer;

� as bitmaps can be quite large, transmission times increase and network bandwidth

su�ers.

12. More information can be found at the URL http://pauillac.inria.fr/~xleroy/w4g.html.

142 Michel Goossens and Janne Saarela

In order to minimize the generation of bitmaps and to allow the production of a better

quality HTML source, the information in the LATEX source was tagged by LATEX macros to

explicitly show its semantics meaning. Special care was taken to avoid inline mathematics

constructs, since they result in bitmap images, for example, \var{x} was preferred to

its typographic equivalent x (denoting a meta-variable), and \nth{v}{n} was used to

mean the n-th component of v, rather than writing v_n. The same technique was also

used to eliminate \low-level" typesetting constructs and environments such as center

and tabular.

When typesetting the document with LATEX these new commands were simple trans-

lated into the needed typographic representation, but during the translation into HTML

they were explicitly recognized and individually translated into a form that corresponds

with the possibilities of HTML. For instance, \nth{v}{n} would become something like

<i>v(n)</i>, showing <i>v(n)</i>.

The programs that automatically generated BNF or program fraction for inclusion in

the LATEX source were adapted so that its contents could now also be included without

problems in the HTML source by \hiding" the generated material inside a rawhtml

environment.

Finally, the few places where more complex mathematical constructs were needed

were hand-translated into a form acceptable to HTML and stored inside a rawhtml envi-

ronment, leaving the original mathematics expressions inside a latexonly environment.

Thus both the LATEX and HTML views of the document were optimized. Although in

principle such an approach can lead to synchronization problems between the LATEX and

HTML parts of the information, it was found that, due to the care that was taken in

using the generic markup approach outlined above, only about 0.2% of the source had

to be manually translated.

Although Leroy and his collaborators originally planned to use LaTeX2HTML for trans-

lating their document into HTML, they found that some commands (especially those

using verbatim-like constructs, most notably the alltt environment) cannot be de-

�ned in perl in an easy way using the interface of init �les described earlier. Therefore

modi�cations have to be made inside the body of the LaTeX2HTML program itself, and

this is very complicated since the inner workings of LaTeX2HTML are undocumented and

scarcely commented, so that the perl code is not always clear to follow. Also, the mem-

ory requirements of LaTeX2HTML (especially the pre-1995 versions, when the tests were

done) can be huge, exhausting all the memory available on the machine and causing

the program to crash (this should no longer be a problem with the current version of

LaTeX2HTML if the LATEX source in divided into a set of smaller �les). They therefore

decided to write their own LATEX-to-HTML translator for the extended subset of LATEX

commands they used.

This translator works in two main stages:

� The translator �rst reads the whole LATEX document and outputs one large HTML

document. It is written in Caml Light and uses the lexical analyzer generator

From LATEX to HTML and back 143

camllex (the Caml equivalent of lex for C) heavily. Note that Caml is a mod-

ern, type-safe high-level programming language with good memory management,

so that the translator has negligible memory requirements, runs quickly, is easy to

extend, and took little time to develop.

� The output of the translator is then split into smaller parts (for instance at the

<H1> or <H2> heading levels), and these parts are linked together using \Next" and

\Previous" buttons. This linking is performed by two simple perl scripts.

In order to get a feeling of the result of the translation, one can look at a randomly

chosen page from the manual that was converted. Figure 14 shows the result of LATEX

(viewed with xdvi) and Figure 15 is the result of the HTML conversion, as shown by

Mosaic.13 Appendix E takes a closer look at how the Caml system translates LATEX

commands into HTML.

5.2 Discussion

Based on their experience with writing and using their translator Leroy and collaborators

draw the conclusions summarized in the next sections.

About the HTML language

Despite its apparent simplicity, the HTML language is almost rich enough to format

TEX-intensive technical documentation. The sole features that were badly missed were

tables, subscripts, and superscripts. This is much less true today, since HTML3 already

contains an interesting table model, and allows for super and subscripts. Moreover, the

latest versions of Mosaic and Netscape support these functions.

About HTML viewers

The quality of the typesetting performed by popular HTML viewers (such as Mosaic

and Netscape) is very often insu�cient. It seems especially di�cult to ensure font

consistency throughout a document.

The di�culty in �nding good translators and adequate viewers probably has to do

with the immaturity of the �eld. Leroy et. al. are convinced that the widespread use

of perl for programming translation tools is partly responsible for this situation. They

state that perl is inherently not suited to the parsing and transformation of structured

languages, such as LATEX and HTML, and go on to say that languages with high-level

parsing capabilities, real data structures and clean semantics are much more suited for

these tasks.

They also ask the question: what is the best markup language for preparing doc-

umentation so that it can be nicely printed but also easily transformed into HTML for

publishing on the Web? They accept that, LATEX presently being the de facto standard

markup language used in computing and other science �elds, it will be di�cult in the

13. The complete manual { HTML and dvi �les { are at the URLs http://pauillac.inria.fr/~xleroy/

man-caml/ and ftp://ftp.inria.fr/lang/caml-light/Release7beta/cl7refman.dvi.gz, respectively.

144 Michel Goossens and Janne Saarela

Figure 14: Example page of Caml manual (LATEX viewed with xdvi)

short term to propose a solution other than to invest more e�ort in developing cleverer

and more comprehensive LATEX-to-HTML translators.

6 Converting HTML to LATEX

Although utilities for obtaining PostScript representations from HTML �les are readily

available, either using HTML browsers, such as Mosaic, that o�er PostScript as one

of their output formats, or directly (for example, htps14) the visual layout of these

documents is often appalling, and the structuring of the information has been made

almost completely invisible. Often one would like to obtain a nicely typeset document

that presents the information marked up in HTML in a structured way, with all document

elements clearly identi�able. A translation into LATEX allows one to combine the power

of the TEX typesetting engine while at the same time exploiting the structural similarities

between HTML and LATEX as explained in Section 1 and Table 1.

14. More information is at the URL http://info.cern.ch/hypertext/WWW/Tools/htps.html.

From LATEX to HTML and back 145

Figure 15: Example page of Caml manual (HTML converted with Caml based translator

viewed with Mosaic)

A �rst program HTML2LaTeX translates a large fraction of the HTML commands into

LATEX, while SGML2TeX takes a more general approach and allows the transformation of

an arbitrary SGML source into LATEX.

6.1 HTML2LATEX, an HTML-to-LATEX converter

HTML2LaTeX is a C-program written by Nathan Torkington (New Zealand). Basically,

the HTML parser of the NCSA Mosaic HTML browser is used for the translation. The

calling sequence of the program is:

html2latex [options] [�lenames]

For each input �le speci�ed, HTML2LaTeX transforms the HTML markup in the source

into the equivalent LATEX markup. When no �lenames are speci�ed, HTML2LaTeX will

display a short description of how to use the program. If �lenames is equal to -, then

the input text is read on standard input stdin. For each input �le an output �le with

the same name, but with the extension .tex instead of .html is generated.

146 Michel Goossens and Janne Saarela

Options

HTML2LaTeX has a number of options that modify its way of operation. The more

important are:

-n number the sections;

-p start a new page after the titlepage (if present) or the table of contents

(if present);

-c generate a table of contents;

-s write output information on stdout;

-t Title generate a titlepage containing the title Title;

-a Author generate a titlepage containing the author(s) Author ;

-h Start-Text introduce the text Start-Text immediately following the command

\begin{document};

-h End-Text introduce the text End-Text immediately preceding the command

\end{document};

-o options specify the options options on the \documentclass command.

Examples

Let us consider the following command:

html2latex -n - < file.html | more

In this case the �le file.html is transformed into LATEX and the result is shown on the

screen. The option -n makes sure no section numbers are generated.

A more complex example is shown below:

html2latex -t 'HTML for Pedestrians' \

-a 'First Last' -p \

-c -o'[12pt,twoside]{article}'\

my-article.html

In this case �le my-article.html will be read, and the output written to the �le

my-article.tex. A titlepage (using the text \HTML for Pedestrians" as title and

\First Last" as author) will be output on a separate page (option -p). A Table of

contents (option -c) followed by a new page (option -p again) will also be generated.

Sections will be numbered (default behavior). The LATEX document will be typeset at 12

point using the document option twoside, to allow two-sided printing.

Limitations

The present version of HTML2LaTeX recognizes the following HTML tags: <TITLE>, <H1>

to <H6>, for lists ,, <DT>, <DD> and , plus the presentation tags , <I>,

<U>, , <CODE>, <SAMP>, , <KBD>, <VAR>, <DFN>, <CITE>, and

<LISTING>. Of the entities only &, < and > are handled correctly. The

content �elds of the tags <ADDRESS>, <DIR> and <MENU> are not handled correctly.

Moreover, the COMPACT attribute of the <DL> tag is not honored and the text of the

From LATEX to HTML and back 147

<TITLE> tag is ignored. Even worse, the body of the <PRE> elements are completely

ignored.

Note that the complete HTML �le is read into memory; this can lead to problems

when handling large �les on machines with limited memory capabilities.

6.2 SGML2TeX, a General-Purpose SGML to LATEX Converter

SGML2TeX15 is a program written by Peter Flynn (Cork, Ireland) that translates SGML

tags into TEX instructions. At present the system is only implemented in PCL16 running

runs under ms-dos on a PC but the author has plans to rewrite it in a more portable

programming language.

SGML2TeX does not verify the SGML source for correctness but accepts all SGML

documents marked up using the reference concrete syntax. It is up to the user to de�ne

a LATEX equivalent for each of the SGML document elements, their attributes, and the

entities used in the source. A con�guration �le that contains a set of such prede�ned

correspondences for certain elements, attributes, or entities, can be read by SGML2TeX,

thus substantially alleviating the task of the user, who will only have to provide the miss-

ing de�nitions. By default, i.e., in the absence of an explicit translation, SGML elements

are translated in a form acceptable to LATEX by adopting the following conventions:

� start tags get the pre�x \start and end tags the pre�x \finish followed by the tag-

name in upper case, followed by a pair of braces ({}). This pair of braces corresponds

to a do-nothing de�nition for each of the tags thus handled;

� SGML entities of the form &ent; are translated into \ent{} and written into the

output �le;

� attributes are handled in the same way, but their value is speci�ed between curly

braces like a LATEX argument.

Acknowledgments

We sincerely thank Nelson Beebe (Utah University, beebe@math.utah.edu) for e-mail

discussions and for his detailed comments of the compuscript. His many suggestions

improvements have without doubt substantially increased the readability and quality of

the article. We also want to acknowledge Steven Kennedy (CERN) for proofreading the

article.

References

[1] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison-

Wesley, Reading, 1994.

15. For more information see the URL http://info.cern.ch/hypertext/WWW/Tools/SGML2TeX.html.

16. PCL stands for Personal Computer Language, an interpreted language for dos on the *86 chips. It is a

very fast prototyping tool, not a production language since it cannot link executable images.

148 Michel Goossens and Janne Saarela

[2] M. Goossens and E. van Herwijnen. The elementary particle entity notation (pen)

scheme. TUGboat, 13(1):201{207, July 1992.

[3] L. Lamport. LATEX, User's Guide and Reference Manual (2nd Edition). Addison-

Wesley, Reading, 1994.

[4] J.K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, Reading, 1994.

[5] Rumbaugh et al. Object-Oriented Modeling and Design. Prentice Hall, Inc.,

Englewood Cli�s, N.J., 1991.

[6] J. Schrod. Towards interactivity for TEX. TUGboat, 15(3):309{317, September

1994.

[7] R.L. Schwartz. Learning Pearl. O'Reilly & Associates, Inc., Sebastopol, CA, USA,

1993.

[8] D. Till. Reach yourself perl in 21 days. Sams publishing, 1995.

[9] L. Wall and Schwartz R.L. Programming Pearl. O'Reilly & Associates, Inc.,

Sebastopol, CA, USA, 1991.

A complete and up-to-date list of titles of books on HTML and perl is maintained by

Nelson Beebe (Utah University, beebe@math.utah.edu) and can be found in his BibTEX

databases sgml.bib and unix.bib, respectively, in the directory with URL address

ftp://ftp.math.utah.edu/pub/tex/bib/.

Appendices

Appendices A and B present a few practical details that we found particularly relevant

when installing or troobleshooting LaTeX2HTML.17 Appendix C then provides some more

information about the internal workings of the LaTeX2HTML program and how it can be

extended by writing perl procedures. Finally, AppendixD contains technical information

about the math2html extension to LaTeX2HTML, while Appendix E takes a closer look

at Leroy's Caml-based LATEX-to-HTML translator.

Appendix A: LATEX2HTML { Installation

A.1 Requirements to run LATEX2HTML

LaTeX2HTML uses several publicly available tools that can be readily found on most

computer platforms, namely:

� LATEX (of course).

� perl (version 4 from patch level 36 onward, or, even better, version 5).

� DBM or NDBM, the Unix DataBase Management system.

� dvips (version 5.516 or later) or dvipsk.

17. These sections are adapted from the LaTeX2HTML manual that is available at the URL http://cbl.

leeds.ac.uk/nikos/tex2html/doc/latex2html/latex2html.html.

From LATEX to HTML and back 149

� gs (Ghostscript version 2.6.1 or later).

� The pbmplus or better still the netpbm libraries; some of the �lters in those libraries

are used during the postscript to GIF conversion.

� For making transparent inlined images one needs giftrans.c18 by A. Ley together

with pbmplus. Alternatively, netpbm will do the trick.

To reduce the memory requirements of the translation, LaTeX2HTML spawns o� separate

Unix processes to deal with each of the input'ed or include'd �les. As each process

terminates, all the space that it used is reclaimed. Asynchronous communication between

processes takes place using the Unix DataBase Management system (DBM or NDBM)

which should be present. To take advantage of these changes it is necessary to split the

source text into multiple �les that can be assembled using LATEX's \input or \include

commands.

When gs or the pbmplus (netpbm) library are not available, one can still generate

HTML output, but without images (using the -no_images option). Also, do not forget

to include the html package with the \usepackage command if you want to include any

of the hypertext extension commands described in Section 3.6.

A.2 Installing LATEX2HTML

Those intending to install LaTeX2HTML on their system should read the manual in detail.

Below we describe only the main steps.

� Specify where perl is on the system.

In the �les latex2html, texexpand, pstogif, and install-test modify the �rst

line saying where perl is on your system.

� Specify where the external utilities are on the system.

In the �le latex2html.config give the correct pathnames for some directories (the

latex2html directory and the pbmplus or netpbm library) and some executables

(latex, dvips, gs).

Note that LaTeX2HTML can be run even if one does not have some of these utilities.

One can also include the following supplementary customization:

� Setting up di�erent initialization �les.

One can customize on a \per user" basis the initialization �le. To this e�ect

one should copy the �le dot.latex2html-init into the home directory of any

user who wants it, modify it according to the user's preferences and rename it to

.latex2html-init.

At runtime both latex2html.config and $HOME/.latex2html-init �les will

be loaded, but the latter will take precedence. Moreover, one can also set up

a \per directory" initialization �le by copying a version of the initialization �le

.latex2html-init into each directory where it should be e�ective. In this case

18. ftp://ftp.rz.uni-karlsruhe.de/pub/net/www/tools/giftrans.c.

150 Michel Goossens and Janne Saarela

an initialization �le /X/Y/Z/.latex2html-init takes precedence over all other

initialization �les if /X/Y/Z is the \current directory" when LaTeX2HTML is invoked.

� Make local copies of the LaTeX2HTML icons.

The icons subdirectory should be copied to a place in the local WWW tree where

it can be served by the local server. Therefore, in the �le latex2html.config �le

the value of the variable $ICONSERVER should be changed accordingly.

Appendix B: LATEX2HTML { Troubleshooting

This section gives a few hints about how to solve problems with LaTeX2HTML. As a

general rule, if one gets really lost, one can obtain a lot of information from the perl

system by setting the environment variable DEBUG to 1. In particular it will point out

missing �les or utilities. Below we present some often occurring problems and propose

a way how to deal with them.

LATEX2HTML just stops without further warnings

Check the package �les that are included, since they might contain raw TEX commands,

which cannot be handled. In this case start LaTeX2HTML with the option -dont_include

followed by the name of the package �le in question. Alternatively, one can add the name

of the package �le to the variable DONT_INCLUDE in the HOME/.latex2html-init �le,

or create one in the current directory containing the following lines:

$DONT_INCLUDE = "$DONT_INCLUDE:<name-of-package-file>";

1; # This must be the last line

Similarly, when the LATEX source �le itself contains raw TEX command (\let is a common

example!) LaTeX2HTML might also stop. Such commands should therefore be introduced

inside a latexonly environment.

LATEX2HTML gives an \Out of memory" message and crashes

Divide the LATEX source �le into several �les that can be input using \include com-

mands. One can also try the -no_images option.

The \tilde" (~) does not show.

The easiest solution is to use the command \~{}. Alternatively it is possible to write

something like:

\htmladdnormallink{mylink}

\begin{rawhtml}

{http://host/~me/path/file.html}

\end{rawhtml}

From LATEX to HTML and back 151

Macro de�nitions do not work correctly

As already mentioned, plain TEX de�nitions are be converted. But there can be problems

even when using LATEX de�nitions (with the \newcommand and \newenvironment com-

mands) if such de�nitions make use of sectioning or verbatim commands, since these

are handled in a special way by LaTeX2HTML and cannot be used in macro de�nitions.

LATEX2HTML behaves di�erently when running on the same �le

When noticing strange side-e�ects due to �les remaining from previous runs of LaTeX2-

HTML one can use the option -no_reuse and choose (d) when prompted. This deletes

intermediate �les generated during previous runs. One can also delete those �les oneself

by removing the complete subdirectory created by LaTeX2HTML for storing the translated

�les. Note that in this case the image reuse mechanism is disabled.

> latex2html -no_reuse myfile.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/myfile.tex

Cannot create directory ./myfile: File exists

(r) Reuse the images in the old directory OR

(d) *** DELETE *** ./myfile AND ITS CONTENTS OR

(q) Quit ?

:d

Cannot convert PostScript images included in the LATEX �le

It is likely that the macros used for including PostScript �les (for example, \epsffile or

\includegraphics) are not understood by LaTeX2HTML. To avoid this problem enclose

them in an environment which will be passed to LATEX anyway, for instance:

\begin{figure}

\epsffile{<PostScript file name>}

\end{figure}

Another reason why this might happen is that the shell environment variable TEXINPUTS

is unde�ned. This is not always fatal but if you have problems you can use full path-

names for included postscript �les (even when the PostScript �les are in the same

directory as the LATEX source �le). Therefore it is important to check the setting of the

TEXINPUTS environment variable and make sure that it ends in a colon \:", for example,

\.:/somedir:".

Some of the inlined images are in the wrong places

This occurs when any one of the inlined images is more than a (paper) page long.

This is sometimes the case with very large tables or large PostScript images. In this

152 Michel Goossens and Janne Saarela

case, one should specify a larger paper size (such as \a3", \a2", or even \a0") in-

stead of the default (\a4") using the LaTeX2HTML variable PAPERSIZE in the �le

latex2html.config.

The labels of �gures, tables or equations are wrong

This can happen if inside �gures, tables, equations or counters are used inside conditional

text, i.e., inside a latexonly or a htmlonly environment.

With Ghostscript 3.X inline images are no longer generated for equations, etc.

One can run the installation script install-test again, or else change the way gs is

invoked in the �le pstogif, using something like:

open (GS, "|$GS -q -sDEVICE=ppmraw -sOutputFile=$base.ppm $base.ps");

Cannot get it to generate inlined images

Try a small test �le for example,

% image-test.tex

\documentclass{article}

\begin{document}

Some text followed by \fbox{some more text in a box}.

\end{document}

One should get something like the following:

> latex2html image-test.tex

This is LaTeX2HTML Version 95.1

(Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/usr/goossens/image-test.tex

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Generating postscript images using dvips ...

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

' TeX output 1995.05.08:1958' -> 6666_image

(-> 6666_image001) <tex.pro>[1]

From LATEX to HTML and back 153

Writing 6666_image001.ppm

Writing img1.gif

Doing section links

Done.

Problems encountered during the conversion from PostScript to GIF can be located

by doing the translation manually, as shown below for a generation using gs 3.33.

> latex image-test

This is TeX, Version 3.1415 (C version 6.1)

(image-test.tex

LaTeX2e <1994/12/01>

(/usr/local/lib/texmf/tex/latex/base/article.cls

Document Class: article 1994/12/09 v1.2x Standard LaTeX document class

(/usr/local/lib/texmf/tex/latex/base/size10.clo))

No file image-test.aux.

[1] (image-test.aux))

Output written on image-test.dvi (1 page, 348 bytes).

Transcript written on image-test.log.

> dvips -o image-test.ps image-test.dvi

This is dvipsk 5.58e Copyright 1986, 1994 Radical Eye Software

' TeX output 1995.05.08:2006' -> image-test.ps

<tex.pro>. [1]

cblelca% gs -dNODISPLAY pstoppm.ps

> gs -dNODISPLAY pstoppm.ps

Aladdin Ghostscript 3.33 (4/10/1995)

Copyright (C) 1995 Aladdin Enterprises, Menlo Park, CA. All rights reserved.

This software comes with NO WARRANTY: see the file PUBLIC for details.

Usage: (file) ppmNrun

converts file.ps to file.ppm (single page),

or file.1ppm, file.2ppm, ... (multi page).

N is # of bits per pixel (1, 8, or 24).

Examples: (golfer) ppm1run ..or.. (escher) ppm8run

Optional commands you can give first:

horiz_DPI vert_DPI ppmsetdensity

horiz_inches vert_inches ppmsetpagesize

(dirname/) ppmsetprefix

page_num ppmsetfirstpagenumber

GS>(image-test) ppm1run

Writing image-test.ppm

GS>quit

> pnmcrop image-test.ppm >image-test.crop.ppm

pnmcrop: cropping 74 rows off the top

pnmcrop: cropping 139 rows off the bottom

pnmcrop: cropping 149 cols off the left

pnmcrop: cropping 249 cols off the right

> ppmtogif image-test.crop.ppm >image-test.gif

ppmtogif: computing colormap...

ppmtogif: 2 colors found

Still no inlined images are obtained

When there have been no problems with the above �le image-test.tex but some

images have still not been successfully converted in some of the �les then one should

look in the directory with the generated HTML �les for the two �les images.tex and

154 Michel Goossens and Janne Saarela

images.log. In particular, one should check whether there is something unusual in these

�les. One can copy the source images.tex into the directory of the original LATEX �le,

run LATEX on images.tex and check for any errors in the log �le images.log. If errors are

found then one should �x images.tex, put it back into the subdirectory with the HTML

�les, and run LaTeX2HTML on the original document using the option -images_only.

If one gets into trouble, then one should rerun LaTeX2HTML with the options

-no_reuse and -no_images, for example,

> latex2html -no_reuse -no_images image-test.tex

This is LaTeX2HTML Version 95.1 (Fri Jan 20 1995) by Nikos Drakos,

Computer Based Learning Unit, University of Leeds.

OPENING /afs/cern.ch/user/goossens/image-test.tex

Cannot create directory ./image-test: File exists

(r) Reuse the images in the old directory OR

(d) *** DELETE *** ./image-test AND ITS CONTENTS OR

(q) Quit ?

:d

Reading ...

Processing macros ...

Translating ...0/1.....1/1.....

Writing image file ...

This is TeX, Version 3.1415 (C version 6.1)

(images.tex

LaTeX2e <1994/12/01>

Doing section links

*********** WARNINGS ***********

If you are having problems displaying the correct images with Mosaic,

try selecting "Flush Image Cache" from "Options" in the menu-bar and

then reload the HTML file.

Done.

Now one should look into the �le images.tex (as described above) and correct

possible problems. Once everything seems alright, LaTeX2HTML should be run again with

the option -images_only.

Some problems in displaying the correct inlined images may be due to the image-

caching mechanisms of the browser. With some browsers, a simple \Reload Current

Document" will be enough to refresh the images, but with others (including Mosaic)

one may need to refresh the cache explicitly. With Mosaic one should select \Flush

Image Cache" in the Options menu, then reload the HTML �le.

From LATEX to HTML and back 155

Read the whole LaTeX input into memory

verb commands with markers
Replace verbatim environments and

Split document into several parts

<<id>..<<id>> internal tagging
Replace brackets with

Are there nested environments?
Find environments

environment. Exists?
Find a predefined routine for this

commands in this environment. Exists?
Find a predefined routine for all If command has parameters, leave them.

Generate an error message

contents.
Replace verbatim markers with original

Add navigation tools and headers

do_env_NAME
call Perl subroutine

writing each input’ed document into database.

Yes

for image generation
Place the environment into images.tex

do_cmd_NAME
call Perl subroutine Yes

Yes No

No

No

Figure 16: Flow diagram of the LaTeX2HTML system

Appendix C: For PERL hackers only { Inside LATEX2HTML

The basic principle of LaTeX2HTML is that it reads a LATEX source code document,

converts the parts it recognizes into HTML and passes unknown parts to LATEX, which,

in turn, creates pictures out of them. These pictures are then placed inside the �nal

hypertext document.

As discussed in Section 3.3, the program is started by specifying the LATEX source

code document together with a set of parameters. The result is a number of HTML

documents and images as GIF or PostScript �les. An overall
ow-diagram is shown in

Figure 16

Unknown environments, tables, or pictures are also passed on to LATEX and trans-

formed into GIF or PostScript images, and kept inline or outside the hypertext docu-

ments.

C.1 The translation process

Below are shown the various phases that a document goes through when translated from

LATEX into HTML. Let us �rst consider the original LATEX source document:

\documentclass{article}

\begin{document}

156 Michel Goossens and Janne Saarela

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

\begin{verbatim}

This section includes some special characters such as $, <, >, _.

\end{verbatim}

\end{document}

This LATEX source is �rst preprocessed by removing parts which have a special mean-

ing in LATEX, such as the verbatim and \verb constructs. In this example the verbatim

part is stored in a separate �le for later reference and a marker is placed inside the

document together with a unique identi�cation number \<id>" that will later be used

to �nd the original text.

\documentclass{article}

\begin{document}

\section{test}

This is a list of two items:

\begin{itemize}

\item{First item}

\item{Second item}

\end{itemize}

<tex2html_verbatim_mark>verbatim1

\end{document}

At the end of preprocessing in the mark_string procedure, all the bracketed areas

are replaced by <<id><<id>> tags where \id" is identical at both ends of the originally

bracketed text.

\documentclass<<1>>article<<1>>

\begin<<2>>document<<2>>

\section<<3>>test<<3>>

This is a list of two items:

\begin<<4>>itemize<<4>>

From LATEX to HTML and back 157

\item<<5>>First item<<5>>

\item<<6>>Second item<<6>>

\end<<7>>itemize<<7>>

<tex2html_verbatim_mark>verbatim1

\end<<8>>document<<8>>

Next, the document is split into sections. The LATEX sectioning commands \chapter,

\section, \subsection, etc. work as search-patterns used to split the document into

items in an perl array. In our example, the conversion is con�gured to create a single

document (i.e., no splitting).

For each section, the conversion rules are applied. These rules are implemented as

procedures that have names like do_env_X or do_cmd_X, depending on whether one

is dealing with a LATEX environment or command, where X stands for either the envi-

ronment or command name. For instance, our example document includes an itemize

environment, and LaTeX2HTML will thus call the perl procedure do_env_itemize, that

will receive as its parameter the contents of the environment, and will then parse that

information.

Similarly a procedure do_cmd_chapter exists for converting a chapter command,

and so on for the other sectioning commands. The resulting document after applying

these conversion rules looks as follows.

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

<tex2html_verbatim_mark>verbatim1

After this each document is enhanced with headers and navigation tools.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<HR>

<tex2html_next_page_visible_mark>

158 Michel Goossens and Janne Saarela

<tex2html_up_visible_mark>

<tex2html_previous_page_visible_mark>

 Next: About this document

Up: No Title

 Previous:No Title

<HR>

<P>

<H1> test</H1>

This is a list of two items:

<#5#>First item<#5#>

<#6#>Second item<#6#>

<tex2html_verbatim_mark>verbatim1

<HR>

Finally, the markers are replaced with the contents to which they point. Extraneous

tags are removed and the address of the author is appended to the �le.

<!DOCTYPE HTML PUBLIC "-//W3O//DTD W3 HTML 2.0//EN">

<!Converted with LaTeX2HTML 95.1 (Fri Jan 20 1995) by Nikos

Drakos (nikos@cbl.leeds.ac.uk), CBLU, University of Leeds >

<HEAD>

<TITLE> test</TITLE>

</HEAD>

<BODY>

<meta name="description" value=" test">

<meta name="keywords" value="example">

<meta name="resource-type" value="document">

<meta name="distribution" value="global">

<P>

<HR>

<IMG ALIGN=BOTTOM ALT="next"

SRC="http://asdwww.cern.ch/icons/next_motif.gif">

<IMG ALIGN=BOTTOM ALT="up"

SRC="http://asdwww.cern.ch/icons/up_motif.gif">

<IMG ALIGN=BOTTOM ALT="previous"

SRC="http://asdwww.cern.ch/icons/previous_motif.gif">

 Next: About this document

Up: No Title

 Previous: No Title

<HR>

<P>

<H1> test</H1>

<P>

This is a list of two items:

First item

From LATEX to HTML and back 159

Second item

<P>

<PRE>This section includes some special

characters such as $, <, >, _.

</PRE>

<P>

 <HR>

C.2 Enhancing the translator

From the previous section it is evident that the way to handle user commands and

environments is to add perl code into the system or personal con�guration �les, as

also discussed in Section 3.5. One can include as well a �le with new de�nitions on the

command line using the -init_file option.

To give a taste of how commands and environments are handled by LaTeX2HTML,

we provide a few simple examples that nevertheless clearly show the powerful techniques

used to generate HTML documents that preserve the information present in the original

LATEX document.

Let us �rst consider a LATEX command (\Ucom) used to tag commands that have to

be typed by the user on the keyboard. A possible de�nition using the HTML tag <KBD>

for keyboard input is:

sub do_cmd_Ucom {

local($_) = @_;

s/$next_pair_pr_rx//o;

join('',qq+<KBD>$&</KBD>+,$_);

}

The perl variable $next_pair_pr_rx contains the substitution pattern that extracts

the string of characters surrounded by the following pair of delimiters. The string of

characters and the delimiters are eliminated and the string is then copied between the

HTML <KBD> and </KBD> appended to the output stream.

Similarly, one can translate the argument of a \URL command (containing a Universal

Resource Locator) into an HTML anchor, as shown below:

sub do_cmd_URL {

local($_) = @_;

s/$next_pair_pr_rx//o;

join('',"$&",$_);

}

This procedure creates a link to the speci�ed URL by returning an anchor with the URL

as its target and an anchor description along with the rest of the as yet unprocessed

document.

Our next example shows an enumerated list EnumZW of a special type whose \num-

bers" are icons available on a www server. The name of the icon depends on the value

160 Michel Goossens and Janne Saarela

of the perl variable count, which is incremented for each \item command used inside

the EnumZW environment. Everything takes place inside an HTML description list <DL>.

sub do_env_EnumZW {

local($_) = @_;

local($count) = 0;

s|\\item|do {++$count; qq!<DT><IMG ALIGN=TOP ALT=""

SRC="http://somewhere/icons/circled$count.xbm"><DD>!}|eog;

"<DL COMPACT>$_</DL>";

}

Two or more arguments can also be handled graciously, as shown by the following

two commands, which have two and three arguments, respectively, and are typeset by

LATEX as follows:

\Command{arg1}

\Command[arg1]{arg2}

The translation in perl is straighforward, since one must merely extract the relevant

arguments from the input stream, one after the other.

sub do_cmd_BDefCm { # \BDefCm{Command}{arg1}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join('',"\\$command\{$mandatory1\}<\/strong>", $_);

}

sub do_cmd_BDefCom { # \BDefCom{Command}{arg1}{arg2}

local($_) = @_;

s/$next_pair_pr_rx//o; $command = $&;

s/$next_pair_pr_rx//o; $optional1 = $&;

s/$next_pair_pr_rx//o; $mandatory1 = $&;

join('',"\\$command\[$optional1\]\{$mandatory1\}<\/strong>", $_);

}

Explaining all this perl code would lead us a little too far, but it should be fairly

clear by now that before trying to develop new code for LaTeX2HTML it is a good idea

to study in detail the way Nikos Drakos coded his program, not only in order to write

perl code compatible with his conventions, but also as a source of inspiration for one's

own extensions. Below we show de�nitions for frequently-occurring regular expressions

in the LaTeX2HTML perl code.

$delimiters = '\'\\s[\\]\\\\<>(=).,#;:~\/!-';

$delimiter_rx = "([$delimiters])";

$1 : br_id

$2 : <environment>

$begin_env_rx = "[\\\\]begin\\s*$O(\\d+)$C\\s*([^$delimiters]+)\\s*$O\\1$C\\s*";

$match_br_rx = "\\s*$O\\d+$C\\s*";

From LATEX to HTML and back 161

$optional_arg_rx = "^\\s*\\[([^]]+)\\]"; # Cannot handle nested []s!

Matches a pair of matching brackets

$1 : br_id

$2 : contents

$next_pair_rx = "^[\\s%]*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

$any_next_pair_rx = "$O(\\d+)$C([\\s\\S]*)$O\\1$C";

$any_next_pair_rx4 = "$O(\\d+)$C([\\s\\S]*)$O\\4$C";

$any_next_pair_rx5 = "$O(\\d+)$C([\\s\\S]*)$O\\5$C";

$1 : br_id

$begin_cmd_rx = "$O(\\d+)$C";

$1 : largest argument number

$tex_def_arg_rx = "^[#0-9]*#([0-9])$O";

$1 : declaration or command or newline (\\)

$cmd_delims = q|-#,.~/\'`^"=|; # Commands which are also delimiters!

The tex2html_dummy is an awful hack

$single_cmd_rx = "\\\\([$cmd_delims]|[^$delimiters]+|\\\\|(tex2html_dummy))";

$1 : description in a list environment

$item_description_rx =

"\\\\item\\s*[[]\\s*((($any_next_pair_rx4)|([[][^]]*[]])|[^]])*)[]]";

$fontchange_rx = 'rm|em|bf|it|sl|sf|tt';

Matches the \caption command

$1 : br_id

$2 : contents

$caption_rx = "\\\\caption\\s*([[]\\s*((($any_next_pair_rx5)|([[][^]]*[]])|[^]])*)[]])?$O(\\d+)$C([\\s\\S]*)$O\\8$C";

Matches the \htmlimage command

$1 : br_id

$2 : contents

$htmlimage_rx = "\\\\htmlimage\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches a pair of matching brackets

USING PROCESSED DELIMITERS;

(the delimiters are processed during command translation)

$1 : br_id

$2 : contents

$next_pair_pr_rx = "^[\\s%]*$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";

$any_next_pair_pr_rx = "$OP(\\d+)$CP([\\s\\S]*)$OP\\1$CP";

This will be used to recognise escaped special characters as such

and not as commands

$latex_specials_rx = '[\$]|&|%|#|{|}|_';

This is used in sub revert_to_raw_tex before handing text to be processed by latex.

$html_specials_inv_rx = join("|", keys %html_specials_inv);

This is also used in sub revert_to_raw_tex

$iso_latin1_character_rx = '(&#\d+;)';

Matches a \begin or \end {tex2html_wrap}. Also used be revert_to_raw_tex

$tex2html_wrap_rx = '[\\\\](begin|end)\s*{\s*tex2html_wrap[_a-z]*\s*}';

$meta_cmd_rx = '[\\\\](renewcommand|renewenvironment|newcommand|newenvironment|newtheorem|def)';

Matches counter commands - these are caught early and are appended to the

file that is passed to latex.

$counters_rx ="[\\\\](newcounter|addtocounter|setcounter|refstepcounter|stepcounter|".

"arabic|roman|Roman|alph|Alph|fnsymbol)$delimiter_rx";

Matches a label command and its argument

$labels_rx = "[\\\\]label\\s*$O(\\d+)$C([\\s\\S]*)$O\\1$C";

Matches environments that should not be touched during the translation

$verbatim_env_rx = "\\s*{(verbatim|rawhtml|LVerbatim)[*]?}";

Matches icon markers

162 Michel Goossens and Janne Saarela

$icon_mark_rx = "<tex2html_(" . join("|", keys %icons) . ")>";

Frequently used regular expressions with arguments

sub make_end_env_rx {

local($env) = @_;

$env = &escape_rx_chars($env);

"[\\\\]end\\s*$O(\\d+)$C\\s*$env\\s*$O\\1$C";

}

sub make_begin_end_env_rx {

local($env) = @_;

$env = &escape_rx_chars($env);

"[\\\\](begin|end)\\s*$O(\\d+)$C\\s*$env\\s*$O\\2$C(\\s*\$)?";

}

sub make_end_cmd_rx {

local($br_id) = @_;

"Obr_id$C";

}

sub make_new_cmd_rx {

"[\\\\](". join("|", keys %new_command) . ")"

if each %new_command;

}

sub make_new_env_rx {

local($where) = @_;

$where = &escape_rx_chars($where);

"[\\\\]$where\\s*$O(\\d+)$C\\s*(".

join("|", keys %new_environment) .

")\\s*$O\\1$C\\s*"

if each %new_environment;

}

sub make_sections_rx {

local($section_alts) = &get_current_sections;

$section_alts includes the *-forms of sectioning commands

$sections_no_delim_rx = "\\\\($section_alts)";

$sections_rx = "\\\\($section_alts)$delimiter_rx"

}

sub make_order_sensitive_rx {

local(@theorem_alts, $theorem_alts);

@theorem_alts = ($preamble =~ /\\newtheorem\s*{([^\s}]+)}/og);

$theorem_alts = join('|',@theorem_alts);

$order_sensitive_rx =

"(equation|eqnarray|caption|ref|counter|\\\\the|\\\\stepcounter" .

"|\\\\arabic|\\\\roman|\\\\Roman|\\\\alph|\\\\Alph|\\\\fnsymbol)";

$order_sensitive_rx =~ s/\)/|$theorem_alts|/ if $theorem_alts;

}

sub make_language_rx {

local($language_alts) = join("|", keys %language_translations);

$setlanguage_rx = "\\\\setlanguage{\\\\($language_alts)}";

$language_rx = "\\\\($language_alts)TeX";

}

sub make_raw_arg_cmd_rx {

$1 : commands to be processed in latex (with arguments untouched)

$raw_arg_cmd_rx = "\\\\(" . &get_raw_arg_cmds . ")([$delimiters]+|\\\\|#|\$)";

}

Creates an anchor for its argument and saves the information in the array %index;

In the index the word will use the beginning of the title of

the current section (instead of the usual pagenumber).

The argument to the \index command is IGNORED (as in latex)

sub make_index_entry {

local($br_id,$str) = @_;

If TITLE is not yet available (i.e the \index command is in the title of the

current section), use $ref_before.

$TITLE = $ref_before unless $TITLE;

Save the reference

$str = "$str###" . ++$global{'max_id'}; # Make unique

$index{$str} .= &make_half_href("$CURRENT_FILE#$br_id");

"$anchor_invisible_mark<\/A>";

}

From LATEX to HTML and back 163

Appendix D: Technical details of the MATH2HTML program

D.1 Di�erent approaches

Various people have approached the problem of translating LATEX into SGML or HTML

using di�erent programming paradigms. Joachim Schrod of the Technical University of

Darmstadt, Germany has written a lisp parser for TEX code which can also be used for

conversions [6].19 As already discussed in Section 5, Xavier Leroy used Caml to achieve

the same goal, while LaTeX2HTML uses perl (other approaches based on sgmls also use

that language).

Common to all approaches, whether using a procedural or a functional language, is

the basic implementation. A lexer is used to recognize tokens from the input, a parser

to create an internal representation and the conversion process produces the wanted

output.

The major di�erence between functional and procedural languages is the way a

language such as TEX can be parsed. Since the TEX language can at any point in the

input de�ne new rules for delimiters and symbols, the program parsing this input should

also be able to cope with these dynamic features. Functional programming languages

can do this by their nature, easily introducing new rules to the parser at runtime. This

is what the parser written by Joachim Schrod can do. In comparison this cannot easily

be done with a �xed grammar inside a parser.

Xavier Leroy's translator resembles a bison20 input �le. It sees groups of tokens

and reduces the stacked input by given BNF-like rules. When it reduces the tokens it

produces HTML output for LATEX counterparts.

D.2 Implementation of the Translator

The math2html program, written in C++, takes LATEX mathematics input, parses it and

converts it into HTML3 mathematics (if possible). The program consists of the following

components:

� flex, a fast lexical analyzer generator;

� bison, a parser generator;

� C++ code.

The parsing of LATEX source code is, however, non-trivial, since its grammar has been

developed step-by-step to cope with all LATEX syntactical notations. The basic mathe-

matical notation is presented here in detail.

\[...\] Display mathematics.

txt1 $...$ txt2 Inline mathematics.

{abc} Characters a, b and c are grouped into one.

19. The system is available at URL ftp://ftp.th-darmstadt.de/pub/tex/src/etls/.

20. Bison is a parser generator in the style of yacc.

164 Michel Goossens and Janne Saarela

\abc Characters a, b and c are a control sequence.

a^b Superscripts (b can be a group of characters).

a_b Subscripts (b can be a group of characters). Superscripts and

subscripts can be nested.

The lexical analyser recognizes LATEX primitives by generating tokens for the parser.

A control sequence, plain text, superscript, subscript, begingroup, endgroup, fraction,

array, column separators and end of row are examples of typical tokens. These tokens

correspond to classes. These classes are depicted in Figure 17 with the object modeling

technique (OMT) [5].

The class library presents the supported structures of LATEX mathematics as sums,

integrals, fractions, plain input, sequences and groups. These are currently the only

primitives which can be reasonably converted into HTML3 mathematics. A few examples

of basic primitives that can be treated by math2html are shown below:

Sum: \sum_{i=1}^{n}i Integral: \int_0^1f(x)dx

Fraction: \fraction{1}{n} Sequence: \infty

Group: {|x+1|}^2

Table: \begin{table}{lr} Eqntable: \begin{eqnarray}

a & b \\ c & d y&=&x^2\\z&<=& x^3

\end{table} \end{eqnarray}

The parser analyzes the tokens using an ad-hoc BNF grammar generated speci�cally

to parse LATEX code. When reducing the input according to the grammar rules, the parser

generates instances of C++ classes (see Figure 17), which correspond to these LATEX

primitives. Once the whole input has been parsed, the internal representation is linked

together so that all these instances can be reached from one top-level list.

The conversion is implemented by calling a conversion method to each instance in

the list. Each primitive knows how to convert itself and also propagates the conversion

to all its children nodes.

An instance of the runtime organization of the parsing tree corresponding to the

example of Figure 11 is shown in Figure 18 on the next page.

D.3 Mapping of control sequences

Since the wide variety of di�erent control sequences is quite impossible to hardcode

into the program, an external con�guration �le is read every time the program starts.

The mapping between control sequences and HTML3 counterparts is read into a hash

table and in this way the user can con�gure the program to cope with special control

sequences not natively supported by the converter. An example of this is the Particle

Entity Notation scheme [2], a set of standard control sequences for representing ele-

mentary particles. This naming scheme consists of about 240 control sequences and

From LATEX to HTML and back 165

Fraction

List List

Plain Sequence Plain Sequence

BeginMaths

Plain Sequence Plain

PlainPlain

Plain

List

List

List

Fraction

=

Plain

\sigma d \epsilon 2d \pi Z

0 2

m

Figure 17: OMT model of the mathematics conversion program

Fraction

List List

Plain Sequence Plain Sequence

BeginMaths

Plain Sequence Plain

PlainPlain

Plain

List

List

List

Fraction

=

Plain

\sigma d \epsilon 2d \pi Z

0 2

m

Figure 18: Example of a runtime parsing tree

166 Michel Goossens and Janne Saarela

their presentation counterparts. The con�guration �le maps each control sequence into

its HTML3 counterpart using the following format:

\Pgppm π^{±} \Pgpz π⁰

\Pgh η \Pgr ρ(770)

\Pgo ω(783) \Pghpr η'(958)

\Pfz <t>f</t>₀(975)

D.4 Program heuristics

The program uses a few heuristics in order to be able to parse LATEX code successfully.

If these coding rules are not used, parsing may fail.

Optional parameters speci�ed between square brackets ([]) after a control sequence

are not parsed with respect to the control sequence. Therefore, there should be no space

left between the control sequence and the opening bracketwhere optional parameters

are used. Space should be left if the brackets are used as delimiters. An example is the

di�erence between the following two control sequences:

\root[3]{\pi} \left [\pi+2]

It is also worth noticing that all control sequences not supported primitively in math2-

html, apart from integrals, fractions, roots, sums and a few others, are dropped out

during the conversion, for example, no text is produced in the HTML3 version. The only

way to convert them is to create speci�c code or map it in the con�guration �le.

D.5 Interfacing with other programs

This application was built to make it easy for other applications to call it. The program

can either be compiled into a single executable program with a command line interface

or into a library that can be linked with any other applications.

The modular approach has the advantage of being both simple and straightforward.

The object-oriented implementation makes the linearisation of the internal representa-

tion almost e�ortless and eases the future addition of new HTML3 primitives by the

user. The program is quite
exible and, as pointed out above, can be used in di�erent

contexts: embedded or stand-alone.

D.6 Drawbacks of the presented solution

The end-user may �nd extending the program too di�cult, especially if one has no

experience with flex, bison, or C++. The con�guration �le that comes with the

program provides an easy way to do simple mappings, but if one wants to add more

functionality, one must understand the organization of the program.

As trickier tables and equations need to be converted, the program will need ex-

tension for analyzing the internal tree structure and to add, modify or delete speci�c

nodes.

From LATEX to HTML and back 167

If the LATEX input code uses low-level TEX commands the program will not be able

to handle the input.

Appendix E: Using the CAML system for translating LATEX to

HTML

The program works by expressing the LATEX grammar in a YACC-like format and parsing

the LATEX input lines rule by rule, converting all recognized patterns into HTML. An

example of Caml Light grammar rules for LATEX to HTML conversion is given below.

(* Font changes *)

| "{\\it" | "{\\em"

{ print_string "<i>"; upto `}` main lexbuf;

print_string "</i>"; main lexbuf }

| "{\\bf" { print_string ""; upto `}` main lexbuf;

print_string ""; main lexbuf }

| "{\\tt" { print_string "<tt>"; upto `}` main lexbuf;

print_string "</tt>"; main lexbuf }

| `"` { print_string "<tt>"; indoublequote lexbuf;

print_string "</tt>"; main lexbuf }

(* Verb, verbatim *)

| "\\verb" _ { verb_delim := get_lexeme_char lexbuf 5;

print_string "<tt>"; inverb lexbuf;

print_string "</tt>"; main lexbuf }

| "\\begin{verbatim}"

{ print_string "<pre>"; inverbatim lexbuf;

print_string "</pre>"; main lexbuf }

Unlike LaTeX2HTML the program does not pass mathematics on to the TEX engine in

order to create bitmap images for unparsable input, but produces plain text only. As the

LATEX control sequences recognized by the program are read from a separate �le, the

addition of new commands and their HTML counterparts is relatively easy. An example

of such mappings is the following:

def "\\chapter" [Print "<H1>"; Print_arg; Print "</H1>\n"];

168 Michel Goossens and Janne Saarela

def "\\chapter*" [Print "<H1>"; Print_arg; Print "</H1>\n"];

def "\\begin{itemize}" [Print "<p>"];

def "\\end{itemize}" [Print ""];

def "\\begin{enumerate}" [Print "<p>"];

def "\\end{enumerate}" [Print ""];

def "\\begin{description}" [Print "<p><dl>"];

def "\\end{description}" [Print "</dl>"];

def "\\begin{center}" [Print "<blockquote>"];

def "\\end{center}" [Print "</blockquote>"];

The use of this program requires the compilation of the Caml Light distribution,

available for a variety of platforms. The language is compiled with an intermediate step

in the C language. The executable program su�ers from some overhead, mainly a�ecting

execution time.

Because the program does not deal with mathematics and tables, it can only be

used for a restricted set of documents. To be useful for the general user it will have to

be extended to convert mathematics and tables either into bitmaps or into HTML3.

pa
sc

al
: formatting Pascal using TEX

Pedro Palao Gostanza and Manuel N�u~nez Garc��a

Departamento de Inform�atica y Autom�atica

Universidad Complutense de Madrid

gostanza@eucmax.sim.ucm.es, manuelnu@eucmvx.sim.ucm.es

Abstract

This paper is based on our ideas about how a system which formats programs written in

a structured language must work. Particularly, tools which help in typesetting texts where

algorithms are described. Most of our ideas have been put in practice in the
pa
sc

al
system,

which automatize the elegant layout of Pascal programs. This system is programmed as a

TEX macro package.

1 Introduction

Almost every programming language have a structured syntax, and usually, there are

several standard ways for the layout of programs in these languages. Both facets ac-

complish the same goal: programs must be easily understood. But, while the �rst one is

used in order to facilitate the task to the compiler, the second one is used exclusively1

in order to facilitate the comprehension of programs to readers.

During the history of programming languages, two variants in the representation of

programs have been developed. First, programmers in a given language usually organize

their programs in a similar way. Then, it is easier to read programs written by other

people, and this fact gives rise to the development of particular modes for text editors

like Emacs, which partially formats programs while writing then. On the other hand, a

typesetting tradition has been developed for presenting programs in books or journals,

which usually must have a very important aesthetic component.

There have been programs which partially solve these problems. For example, most

programming languages environments have a pretty-printer program. Some systems, like

WEB, go one step beyond extending the programming language so that it is possible to

1. This is not true in some languages, like Occam or Miranda, in which written representation prevails over

syntax.

169

170 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

mix texts and codes in the same program. Then, the compiler sorts codes and texts

out, obtaining a correct program in the given language, and a �le containing the docu-

mentation ready to be processed by TEX. In this documentation, codes appears very well

formatted.

Our experience mixing TEX and programs (writing class exercises, our own papers,

or reading papers written by other people) says that, most of the times, a verbatim

mode is used. As a matter of fact, if the program is not very large, it is customary to

format it by hand using di�erent type styles. We disagree with both solutions. The main

advantage of using a verbatim mode is the simplicity and clearness of the source code,

and the similitude between the result and what it is given to the compiler. Nevertheless,

visual quality of this result is very poor. On the other side, formatting programs by hand

is very hard, error prone, and it is rather di�cult to understand the �nal code. We think

that so many programs are presented in these two forms because there do not exist

tools which format programs as they usually appear in papers or in lecture notes. These

programs have the following characteristics:

� Programs are split in several fragments, usually unordered.

� Each of these fragments is not necessarily complete.

� In these programs, notation which does not belong to the programming language

appears (either mathematical one or natural language).

� Programs are very related to the text around them, and thus, it is not so convenient

to input them, but it is preferably to paste programs in the text.

We planned to develop a tool which helps us to write Pascal programs with these

characteristics. The last item gives rise to two di�erent alternatives: a preprocessor, or

a TEX macro package. The �rst option has been widely used in the TEX world as well

as in the pretty-printers world. It is enough to write a program which leaves the text

without any change, adding the adequate TEX indications for typesetting programs. The

latter task is more di�cult than usual, because of the �rst three previous items, but it

is not substantially new.

While an adequate tool dealing with these items helps in the preparation of texts

where programs are a fundamental part, it still has the same important problem of

the usual solutions (either formatting by hand or using verbatim mode): a complete and

explicit indication of all format aspects instead of declaration. This is a similar problem to

that which appears when writing big documents using TEX without macros that organize

the �nal result from a logical point of view. For example, a change in the indentation of

a language component (e.g. the indentation of a while clause) would oblige to correct

previous programs trying to �x it. From the reader's point of view, there exist another

big problem: a well organized text can be easily understood, even if the �nal layout is

not standard, but a reader would hardly understand a program formatted slightly away

from his own style. This shows the importance of a declarative format, where �nal

presentation of programs depends on some mayor modes and on a small set of explicit

pa
sc

al
: formatting Pascal using TEX 171

\Program \Hello(\input, \output);

\Begin \WriteLn('Hello word!') \End.

program Hello (input, output);

begin

WriteLn('Hello word!')

end. fEnd of programg

Figure 1: The �rst program scheme

indications. If one wants to read a text containing programs, it is enough to choose his

favorite mode and to process it again.

In this paper we present a system which automatically formats Pascal programs,

ful�lling the previous requirements. This system is called pascal
2 and it is entirely pro-

grammed in TEX. Developing pascal , we have experimented most of our previous ideas. In

fact, we built prototypes for Pascal and for Modula-2. At last, we decide to implement a

complete version for Pascal because it always stated more di�cult problems, and there

exist several format styles for Pascal which are quite di�erent.
pascal is fully declarative. It has three explicit format hints, which change the default

option of the system. Although we only have implemented one format mayor mode, we

will show how other modes can be simulated using these explicit hints. This shows us

that these format hints are enough expressive and that more modes may be easily added

to the system, just by simulating them internally.

2 Basic usage

TEX recognizes the beginning of a piece of program by the control word \beginPascal,

while the program must be �nished with the control word \endPascal. In LATEX version,

there exist an environment called pascal. We will call the piece of program that appears

between these two control words a program scheme, because it does not need to be

neither a complete program nor an acceptable program by a Pascal compiler.

In the following, we will show program schemes together with its the �nal layout

(as they are formatted by pascal) using the following convention: program schemes in

\tt font and bellow, separated by a rule, the result of processing this program scheme

with pascal . See �gure 1 for an example. Some important characteristics of pascal appear in

the simple program of this �gure. A correct Pascal program is almost a correct program

2. The name is chosen in order to remark the formatting aspect of the system parameterized by the used

programming language.

172 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

scheme, but it is necessary to add the character \ before each symbol (reserved words or

identi�ers) converting it in a control sequence. In order to understand why this addition

is mandatory, it is enough to know how pascal internally works. There is no parser which

formats a program scheme, but each of the elements of the program performs certain

local actions, contributing to the �nal result. Reserved words usually carry out decisions,

like changing indentation or breaking a line, while identi�ers usually just write themselves

with the adequate font. For this reason they need to be control sequences, in order to

associate them a TEX macro.

Another signi�cant detail of pascal is that reserved words are capitalized. In order

to avoid possible interferences with TEX internal macros (e.g. \if or \else). This is

not a constraint because, as we show bellow, pascal has an option that chooses the �nal

result (upper case, lower case, etc). But the problem still remains for identi�ers. In the

previous program, we had a variable called output, recognized inside the program by the

control sequence \output. When pascal �nds this sequence, it is rede�ned as a macro that

expands to \output." But \output is a fundamental register in the pages generation

mechanism of TEX. If it is activated when this variable is rede�ned, a very strange error

is produced. In order to solve this problem, we allow identi�ers to have a format such

that even a user who is not a TEXnician will be sure that there are not interferences

with TEX. We decide to provide an special character to begin identi�er names. This

special character cannot appear neither in correct Pascal identi�er names nor in TEX

control words. Due to the �rst characteristic, we can detect and delete it from the �nal

result, while due to the second one we can be sure that there are no interferences with

macros. The special character is !3 and it must be used exclusively as the �rst letter

of identi�ers, because this is the only place where it is deleted. Then, in the previous

program we would write \!input and \!output instead of \input and \output. Note

that ! is not needed in \Hello, because pascal does not de�ne it as a macro. Also, it

cannot be used in \WriteLn, because this is an identi�er introduced automatically with

this capitalization by pascal .

Let us remark that while Pascal is case insensitive, TEX is case sensitive, and thus

some coherence must be kept when writing identi�ers along a program.

3 Piecemeal programs and options

Let us remember that a program scheme is a self-contained piece of a program in the

following sense: it can format itself. For example, a simple sentence

\WriteLn('End of file')

WriteLn('End of file')

3. The character @ may seem more suitable because it is used when de�ning private macros, but precisely

for this reason it is not guaranteed absence of interferences.

pa
sc

al
: formatting Pascal using TEX 173

a declarations sequence

\Var \!x: \Integer;

\Const \!c = 100;

var x: Integer;

const c = 100;

or structured sentences,

\Var \!c: \Char;

\Repeat

\WriteLn('Do you want to continue? ');

\ReadLn(\!c);

\Until (\!c = 'y') \lor (\!c = 'n');

var c: Char;

repeat

WriteLn('Do you want to continue? ');

ReadLn(c);

until (c = 'y') _ (c = 'n');

where all the identi�ers are explicitly declared. In the previous examples, we have seen

that all of the identi�ers are explicitly declared inside the program scheme. This is because
pascal encloses a program scheme in a group, so that all the declarations appearing in this

scheme remain until the end of this group.
pascal provides two methods for writing programs which depend on identi�ers that we

do not want to introduce explicitly. Both methods are part of the options mechanism.

Options, enclosed by brackets ([]), can appear pre�xing a program scheme. Particularly,

there exists a family of options to declare identi�ers which are used in the subsequent

program scheme. In the program

[\var\!power\!x\!y;]

\!power := 1;

\While \!y \not= 0 \Do

\Begin

\!power := \!power * \!x; \!y := \!y - 1

\End

power := 1;

while y 6= 0 do begin

power := power � x;

y := y� 1

end

174 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

we have declared the variables \!power, \!x and \!y. The list of identi�ers declaration

options is: \var, \type, \const, \proc, \func, \pseudoVar and \field. This options

are used as \var in the example: pre�xing some control sequences without separation

between them, �nishing with a semicolon. The �rst �ve options correspond to the usual

Pascal identi�ers. Option \pseudoVar introduces a identi�er name representing a func-

tion name, and it is necessary for representing an isolated function body. Option \field

introduces record �eld names.

These options are only useful if the di�erent pieces of code are not related among

them. But usually, the same identi�er is used in di�erent pieces, and in a grouped

form (e.g. a data structure with types and operations). pascal introduces the concept of

declarations set. A declarations set is an object that records the declarations of a program

scheme, allowing that these declarations may be used in another program scheme. For

example, let us suppose that one wants to write a function which calculates the number

of nodes of a binary tree. First, the type must be introduced

[\newDecls{treedec}\memoDecls{treedec}\type\!Element\!TreeNode;]

\Type \!Tree = ^\!TreeNode;

\!TreeNode = \Record

\!elem: \!Element;

\!left, \!right: \!Tree

\End;

type Tree = "TreeNode;

TreeNode = record

elem: Element;

left, right: Tree
end;

The �rst option, \newDecls, creates a new declarations set called treedec. The second

one indicates that we want to record in treedec all the declarations appearing from this

point until the end of the program scheme. Particularly, treedec records declarations

given by the third option which introduces types \Element" and \TreeNode" which is

used before it is declared.4 Brie
y, the second line of options indicates that reserved

words are presented with capital letters and that lines are numbered starting with 1.

Following with our example, the function \nodes" is

[\useDecls{treedec}\memoDecls{treedec}]

\Function \!nodes(\!t: \!Tree): \Integer;

function nodes(t: Tree): Integer;

4.
pa
sc

al
does not deal with recursion in pointer types, but it is not very complicated to �x it.

pa
sc

al
: formatting Pascal using TEX 175

\useDecls allows to use in this program scheme the identi�ers recorded in treedec.

The second option adds to treedec the declarations appearing in this program scheme.

Then, the function body is

[\useDecls{treedec}\var\!t;\pseudoVar\!nodes;]

\If \!t = \Nil \Then \!nodes := 0\>

\Else \!nodes := \!nodes(\!t^.\!left) + \!nodes(\!t^.\!right);

if t = Nil then nodes := 0

else nodes := nodes(t":left) + nodes(t":right);

which presents an example where the option \pseudoVar is necessary. Finally, an example

using the function \nodes" is

[\useDecls{treedec}\var\!t;

\noMarkStringSpaces]

\WriteLn('Number of nodes in tree :', \!nodes(\!t));

WriteLn('Number of nodes in tree :'; nodes(t));

As it is shown in this example, it is usual to use \newDecls or \useDecls pre-

ceding \memoDecls. The option \decls produces one of these two sequences de-

pending if the declarations set already exists. In fact, \decls{name} is equivalent to

\newDecls{name}\memoDecls{name} if name has not yet been declared, and otherwise

it is equivalent to \useDecls{name}\memoDecls{name}.

Using declarations set, it is very easy to change the capitalization of the prede�ned

identi�ers:

\beginPascal[

\decls{predefined}

\const\!nil\!true\!false;

\type\!integer\!boolean\!real\!char\!text;

\proc\!write\!writeln\!read\!readln\!new\!dispose;

\func\!succ\!pred\!sqr\!sqrt;

]\endPascal

4 Layout hints

Previous examples show the pascal default formatting mode. Possibly, this is not a very

standard style and, as we suggest in the introduction, it is di�cult to understand pro-

grams when the reader is not used to this style. But this is not a problem for the

philosophy behind pascal : the reader can choose another mode and recompile the �le.

Unfortunately, by now, this is the only implemented mode in pascal .

176 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

In this section we present the layout hints. These elements allow to locally change

defaults options but they must be used exclusively in those places where the understand-

ing of the code would improve if it is not presented in the default mode. Anyway, their

use must be limited because it is against the declarative form behind pascal .
pascal only has three layout hints. Each of them speci�es a kind of operation which is

normally used to write Pascal programs: to break a line, to join two lines, and to align

to a point. Respectively, they are activated by the three control symbols \>, \< and \!.

For example:

[\decls{listdec}\type\!Element\!Node;]

\Type\! \!List = ^\!Node;

\!Node =\! \Record\<

\!value: \!Element;

\!next: \!List;

\End;

type List = "Node;

Node = record value: Element;

next: List;

end;

Layout hints work in a coherent form: if a line is broken, then the rest of the text is

indented using a value (that depends on the context); if two lines are joined, a small

separation is inserted; an alignment only remains in the corresponding context. In short,

the layout hints know the mechanism of the structured construction of Pascal programs,

and thus they are much more abstract than formatting by hand.

Using layout hints in a systematic way, other format styles can be obtained. For

instance, the previous example presents a very frequent style where type declarations

are aligned. Another style appears when these declarations are split:

[\useDecls{listdec}]

\Type\> \!List = ^\!Node;

\!Node =\> \Record\<

\!value: \!Element;

\!next: \!List;

\End;

type

List = "Node;

Node =

record value: Element;

next: List;

end;

pa
sc

al
: formatting Pascal using TEX 177

This shows the expressiveness of the chosen layout hints and why it is so easy to add

new format styles to pascal .

5 Other options

In addition to the de�nition of identi�ers, the pascal options system allows to indicate

many aspects of the �nal result. Below, we summarize some of the most signi�cative

options

\lineNumbers,\noLineNumbers This option allows (or does not) the numeration of

lines.

\firstLine The count of lines is made globally. This option has an argument which

changes the default value (i.e. 1).

\cap,\Cap,\CAP Alternative options indicating the capitalization of reserved words.

\autoEnd,\noAutoEnd This option indicate that a message corresponding to the end

of functions, procedures or programs appears (or does not).

\markStringSpaces,\noMarkStringSpaces These options indicate that blank spaces

must be substituted by or just a space is left.

\abstractAssign/\textualAssign Complementary options indicating if assignation

is represented either by \:=" or by \ ."

An example showing these features follows:

[\useDecls{listdec}

\global\abstractAssign

\noAutoEnd\Cap

\lineNumbers\firstLine{1}]

\Function \!exists(\!e:\!Element; \!l:\!List): \Boolean;

\Var\! \!find: \Boolean; \!aux: \!List;

\Begin

\!find := \False;\< \!aux := \!l;

\While \Not\!find \And (\!aux \not=\Nil) \Do\> \Begin

\!find := \!aux^.\!value = \!e;

\!aux := \!aux^.\!next

\End;

\!exists := \!find

\End;

1 Function exists(e: Element; l: List): Boolean;

2 Var �nd: Boolean;

3 aux: List;

4 Begin

5 �nd False; aux l;

6 While Not �nd And (aux 6= Nil) Do

178 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

7 Begin

8 �nd aux":value = e;

9 aux aux":next

10 End;

11 exists �nd

12 End;

If these options are used together with \global, their e�ects remain in sub-

sequent program schemes. For instance, in the previous example we have declared

\global\abstractAssign, and thus, all the assignations appearing in the rest of the

paper will be denoted by .

6 The �elds problem

Nowadays, almost every Pascal compiler allows several record declaration sharing �eld

names. They also allow that �eld identi�ers can be used to denote other objects. pascal
also allows this. For example, we can de�ne a function computing the left subtree of a

tree:

[\decls{treedec}]

\Function \!left(\!t: \!Tree): \!Tree;

\Begin

\!left := \!t^.\!left;

\End;

function left(t: Tree): Tree;

begin

left t":left;

end; fEnd of left functiong

In the left hand side of the assignation, \left" denotes a function, while in the right hand

side, \left" denotes the �eld of the record implementing the type \Tree."
pascal can distinguish from the context among the di�erent uses of an identi�er which

is simultaneously used as a record �eld and as another object. Nevertheless, pascal is more

limited than a Pascal compiler, because it does not keep type informations. This problem

appears when using the with sentence:

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\With \!l \Do

\!value := \!value + \!nodes(\!left(\!t));

with l do value value + nodes(left(t));

pa
sc

al
: formatting Pascal using TEX 179

In the previous example, pascal has misunderstood the call to the function \left" for a

use of the �eld \left." In general, whenever pascal analyzes a with command, it does not

use the type information of the expression associated with the with. All the identi�ers

associated with �eld declarations will expand as a �eld, without taking care of the

possible association with another object. In order to indicate pascal that some symbol

does not represent a �eld, one must pre�x it with \), which indicates a local closure of

a with. For example, the previous program would be

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\With \!l \Do

\!value := \!value + \!nodes(\)\!left(\!t));

with l do value value + nodes(left(t));

In addition to \), the pre�x \(locally opens a with. For example, the previous

program, assuming an external with, would be

[\useDecls{treedec}\useDecls{listdec}\var\!l\!t;]

\(\!value := \(\!value + \!nodes(\!left(\!t));

value value + nodes(left(t));

7 Di�erences with respect to Pascal and TEX

There exist two aspects in Pascal syntax which pascal implements in a slightly di�erent

way: comments and subrange types.

Comments are written using the control sequence \Comment, which has two argu-

ments: the �rst one is an optional dimension (enclosed between squared brackets) and

the second is the text.

If the �rst one is omitted, the text is written using a horizontal box. Otherwise, the

optional parameter indicates the horizontal size of a vertical box. For example

\Const \!max = \cdots; \Comment{Maximum size of the stack}

\Type \!stack = \!\Record

\!top: [0..\!max];

\!data: \Array [1..\!max] \Of \Integer

\End;\< \Comment[7cm]{Invariant: the

{\it top} field contains the

index of the last pushed element.}

const max = � � �; fMaximum size of the stackg

type stack = record

180 Pedro Palao Gostanza and Manuel N�u~nez Garc��a

top: 0 : : max;

data: array [1 : : max] of Integer
end; fInvariant: the top �eld contains the index

of the last pushed element. g

In this example, we show another di�erence with respect to Pascal: subrange types

must be enclosed between square brackets, as done in Modula. With this, we allow

arbitrary expressions appearing in both range limits:

[\const\!a\!b\!c\!d;]

\Type\! \!range = [(\!a+\!b)*(\!c+\!d)..100];

\!colors = (\!red,\!green,\!blue);

type range = (a + b) � (c + d) : : 100;

colors = (red, green, blue);

Without using \[]", an expression beginning with \(" will be taken as an enumeration.

As we have shown along the paper, any math mode control sequence can be used

inside Pascal expressions. Nevertheless, ^ and ' have been rede�ned in order to respec-

tively represent an indirection and the beginning of a string. Superscripts appears in

Pascal expressions using \^. If one wants to write primes, the whole de�nition must be

used, that is \^\prime.

8 Conclusions and future work

In this paper we have presented the system pascal , which has been developed for helping

in the typesetting of texts where Pascal programs appear. pascal is very operative, and

excepting the absence of several modes, ful�lls all of our proposed objectives. We have

used it to write exercises and it has proved to be very useful when presenting either

bottom-up decompositions or top-down ones.

We think that the most important future task is to implement some major modes

including the most usual ones. This is relatively easy because of the organization of pascal :

most of the code is independent of the format style and the three major Pascal syntactic

groups (types, sentences and declarations) are distributed in di�erent �les. Then, modes

can be chosen by syntactic groups.

Another task is to translate the ideas behind pascal to other programming languages

such as Modula-2, Ada or ML. Most of the code related with formatting and the

declarations sets is independent of the language, and thus it can be shared.

Beyond the bounds of paper and within the bounds of

screens; the perfect match of TEX and Acrobat

J. Hagen

Pragma

P.O.Box 125

8000 AC Zwolle

The Netherlands

1 Introduction

TEX, both a typographic programming language and a typesetting engine, has some

powerful primitives, that enable communication between its internal processes and the

outside world. Of these primitives \special has proved that, although more than 10

years old, TEX will certainly survive the next decades.

With \special we can tell other applications what special things we want them

to do. It's \special that makes TEX one of the �rst systems that supports the new

portable document format PDF from Adobe Systems. Adobe supports this format with

the Acrobat-family of viewers and conversion programs. PDF is a portable, extensi-

ble, readable and programmable page description language. In fact, PDF is a subset of

PostScript with hypertext extensions. It has the duality of TEX: it's both a programming

language and a viewing engine.

At the moment PDF does not have the stability of TEX, because it's still under

development. This means that future PDF-options can cause trouble with older Acrobat

viewers. We think however that within a few years PDF will be stable enough to become

one of the most important standards in the distribution of documents. We can still read

books that are hundreds of years old. Electronic texts need a descriptive medium that

is at least as stable as paper.

One of PDF's characteristics is interactivity. It supports active documents in which

we can use all kind of hyperlinks. One does not have to program texts in the PDF-format

directly, because it can be generated from PostScript code. The interface between the

181

182 J. Hagen

hyperlink mechanism and PostScript is provided by the PostScript pdfmark operator.

This operator accepts arrays of commands, that are unique to PDF.

PDF describes a page in terms of typography and not in terms of structure, like for

instance HTML does. Because HTML viewers format on the
y, authors and designers

have no guaranties of the typographic quality of their products. With PDF however one

has complete control, but the programs that are used to produce portable documents

that are highly interactive have to support pdfmarks.

When Acrobat entered the market, no programs were available that supported the

generation of pdfmarks. One reason for this is that it's not a trivial task to include

verbatim PostScript in texts. Another reason is that the necessary positioning informa-

tion is not available to users. Depending on the DVI-drivers used, TEX has the means

to include verbatim PostScript, i.e. pdfmarks. Users of TEX also have all the necessary

information at hand. That's why only a few days after Acrobat arrived in fall 1993, we

could produce interactive documents with TEX.

Adobe claims that with Acrobat mankind will go beyond the bounds of paper. When

using TEX, one is accustomed to high quality portable output on paper. We think that

Adobe (again) has proven that it is possible to produce high quality portable output on

screens too. This is however an area where software is years ahead of hardware: most

computers simply are not yet able to show this high quality, especially not portable ones.

Experimenting with TEX and Acrobat learns that new boundaries show up: those

imposed by screens. Some we can use to our advantage, some we can't. Both programs

enable us to �nd these boundaries. In this article we will show some results from our

experimenting. We highlight some aspects of typesetting that are closely related to

portable documents, at least we think they are. We use the terms portable document

and interactive text for documents presented on computers. We talk of screen in stead

of computers and displays.

Looking at the options supported by pdfmark we see that, in version 1.0 (1993) as

well as in version 2.0 (1994), many of them are tuned to desktop publishing programs.

These programs are page oriented and so are nearly all pdfmark options. Our experiments

show however that PDF lacks some document oriented options, but we believe they will

be supported in future versions.

2 Aspect ratios

One of the more prominent di�erences between paper and screen is the di�erence in

aspect ratio. As a result compatible layouts are nearly impossible: paper has height and

screens have width. Long lines can't be read too well, so we can only use the full width

of the screen when we use big fonts. This is why in most cases the amount of text on

the screen is limited.

The aspect ratio of screens in
uences the overall esthetics quality of the text. When

we have a lot of tables, �gures and/or formulas and also use white space between

Beyond the bounds of paper and within the bounds of screens 183

paragraphs, it's a tough job to get a good layout. Because we don't have enough height

(\vsize) available for moving things around,
oats do
oat indeed.

So, while waiting for displays with high resolutions, we have to use small fonts to get

things right. When we also pose limits on the width of the text (\hsize), we have a lot of

marginspace available. But too much white space doesn't look to well either, especially

when it's not used. In the near future some sort of standard has to be de�ned for the

aspect ratio of portable documents. The Personal Data Assistants that are showing up

de�nitely have a di�erent aspect ratio than desktop and portable computers.

3 Enhanced pagebody

Because portable documents are not as tactile as books, one needs navigation tools to

manoeuvre through the text. Navigation tools are active typographic elements, that are

provided by the viewers or, which is preferred, by the document itself. As we will see

further on, we need some space to provide these navigation tools, and fortunately the

width of screens allows for this. Figure 1 shows us an example of this.

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta

Figure 1

Figure 2

Figure 3

alfa

gamma

delta

left right

Figure 1: Screen layout

We distinguish three areas: text, margin and border. We can use the margin for

marginal notes or
oats and the border for navigation tools. Not shown are the left

margin and left border area. Even more room is available when we extend the header

and footer lines into these areas, as shown. Still more room is available above header and

under footer lines, but because the height is already limited, maybe we should avoid to

use them. Also not shown, and in most cases not used either, are the areas for company

logos. Of course everything is implemented and available.

At the moment we are developing and adapting the relevant macros to support a

dual layout, depending on a switch. In an interactive version
oats are put in the margins

and in a non-interactive version, they are placed as speci�ed.

184 J. Hagen

4 Parallel documents

Reading from paper still is, and perhaps will be forever, more pleasant than reading from

screen. However, when we print a part of a portable document, with a layout adapted

to the characteristics of screens, the results look rather silly. For instance, only half of

the paper is used and minimal white space is on top and left or right.

With TEX it's not too di�cult to generate di�erent layouts from the same source.

This enables us to provide documents in di�erent versions tuned for screen or paper.

We can even o�er more paper variants, like single sided and double sided, color and

grayscale, letter and A4.

alfa

alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa

beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

variant 1

variant 2

1

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta

gamma

gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma

delta

delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta
delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta delta

variant 1

variant 2

2

Figure 2: Document synchronization

To facilitate multiple versions we have to enhance our portable document with 'par-

allel document jumps'. Maybe the most simple and elegant alternative is providing small

buttons after the titles of chapters and sections, one button for each parallel text. Al-

though simple, it does not always look nice. A second solution lies in a visual analogy

of TEX's \mark. We can o�er the reader up to three possible jumps on each page: to

the end of the previous page (for experts: \topmark), to the �rst on the current page

(\firstmark) and to the last on the current page (\bot). The corresponding buttons

can be placed anywhere on the page. In Figure 2 we see both alternatives. The titles

are followed by two buttons, that let us jump to two alternative versions. The buttons

in the lower right corner show the jumps per page: on page 1 there are two jumps: alfa

(top and �rst) and beta (bot), on page 2 we have three jumps: beta (top), gamma

(�rst) and delta (bot).

At the moment both mechanisms are implemented. They work well but a connection

with the printing mechanism would be nice. Technically spoken, we can launch programs

with PDF, e.g. a printer driver, that prints the corresponding pages.

Beyond the bounds of paper and within the bounds of screens 185

5 Typographic interface

The user-interface of a book is contained in the book itself. The only tools we use when

reading are our hands. The look and feel of a book is determined by the designer. One

of the characteristics of programs and user-interfaces is that they change. The beauty

of books is that they don't change. Apart from their content, they give us insight in the

era in which they were written and produced. Also, in high quality books, the layout is

adapted to the content and the intended use. Although a lot of the underlaying principles

are �xed and based on years of typographic experience, books look di�erent. So why

should we give every portable document the same interface? And what exactly is a

typographic interface?

Because the medium (with such quality) is quite new, there is no unique answer to

this question yet. We can think of hot spots, menus or active words. But an interface

does not have to be explicit. One may expect that clicking in a table of contents of

index may result in some kind of jump. At the moment there are many non-interactive

documents around. This means that we must provide readers with some cues, at least

for the next few years. For the moment color su�ce.

inleiding

richtlijnen

objecten

acties

accenten

aspecten

CATALOGUS DEFENSIEDOELEN

Figure 3: Typographic interface

The interface of a portable document must be determined by designers and not

by programmers. The non intelligent part of the user interface, like goto �rst, next,

previous or last page, can be programmed by means of references. Options like going to

the previous jump or searching for words on the other hand, are to be provided by the

program. At this moment these 'intelligent' options are not accessible as pdfmark.

We can think of some sort of dynamic typography, but still some constraints should

be de�ned. One day, when computers will be real fast, TEX can be used for real-time

formatting.

With Acrobat, texts can be presented full screen, i.e. without windows, standard

buttons and other items. This feature enables typographers to determine the interface.

Some day there will be portable computers, tuned for reading text, with simple manual

186 J. Hagen

controls, a high resolution display (� 300 dpi), no battery problems and lots of memory.

Personally I hope printed matter will be around for at least my lifetime. I just don't want

to think of electronic bookstores yet. All those 'metaphores' or visual look-alikes will

loose their meaning when one doesn't know the originals any more.

6 Selective printing

An integrated user-interface confronts us with a problem: when we print (part of) a

document, we also print the user-interface. This means that viewing programs must be

able to hide marked parts of the text from printing. Acrobat 2.0 supports embedded

printer-only commands, so will probably support its counterpart, embedded viewer-only

commands, in the near future .

7 Layers of control

We can think of many extensions to both Acrobat and our TEX macros. One for instance

is 'layers of control'. By this we mean that certain properties of the document, like

typographic menus and statusbars, can be hidden or made visible by users. Typographic

elements that enable us to navigate through the text, don't always add to the beauty

of the text. It would be nice if users could turn them of when they are not necessary or

when they irritate when reading.

8 Tables of contents

The concept of tables of contents slightly changes when developing portable documents.

Acrobat provides bookmarks. These are entries to some sort of system table of contents.

Because we don't have typographic control over such lists and because they claim too

much space on the screen we don't use them. To be honest, we don't even need them

because TEX can generate them.

Of course, clicking on an entry in a table of contents, has to result in a jump to the

corresponding chapter or section. Because active words are colored (as users expect), we

only make the numbers of chapters and sections active. Too much color simply doesn't

look so well. We don't click on pagenumbers, because in many cases we don't show

them.

Tables of contents are active by default. The necessary links are generated without

any interference of the author. That's the way it should be and that's the way it's done.

But to make this possible, we had to enhance the table of contents macros, that are

written to an auxiliary �le, with two extra arguments: an internal referencing number

and, to accommodate Acrobat 1.0, an extra real pagenumber. We can't use section

Beyond the bounds of paper and within the bounds of screens 187

Kwaliteit

1 Inleiding 3

2 Kwaliteit 4
2.1 Inleiding 4
2.2 Wat is kwaliteit? 4
2.3 De gebruikersgerichte benadering van kwaliteit 4
2.4 Kwaliteit en de klant 5
2.5 Interne en externe klanten 6
2.6 Kwaliteit en de organisatie 6
2.7 Kwaliteitszorg 8
2.8 Kwaliteitssysteem 10
2.9 Normalisatie 11
2.10 Normen 12
2.11 De NEN–ISO–9000–serie 13
2.12 Het documentatiesysteem 15
2.13 Kwaliteitskosten 16
2.14 De kwaliteitskostengrafiek van Juran 17

3 Meting van kwaliteit 20
3.1 Inleiding 20
3.2 Spreiding en tolerantie 20
3.3 Het gemiddelde 21
3.4 De mediaan 23
3.5 De range 24
3.6 De standaardafwijking 24
3.7 Het in beeld brengen van gegevens 25

Index

Arbeidsomstandigheden Milieu

Figure 4: Table of contents

numbers as reference, because they are not unique { how about �ve chapters 1 in �ve

parts of a manual { and sometimes they are not even there.

We see that there can be more than one reference to a chapter or section:

a hidden one, supplied by the system and used for tables of contents, and visible,

user de�ned ones. Actually in ConTEXT we can give lists of references, just because

chapters can handle more subjects and labels for references have to be meaningful:

\chapter[a,b,c]{Alphabet}.

9 Structuring elements

Not every document has chapters and sections. Quality System manuals for instance

have their own ways of structuring, often with an alternative numbering of sections.

These manuals contain a lot of references, like references to forms and speci�c proce-

dures.

A consistent system of numbering is a necessity for robust (automatic) referencing

and local tables of contents. This means that, when producing documents with alterna-

tive numbering, we have to supply TEX with structuring commands like \nextchapter,

which means as much as: 'here we go to another level 1 structuring element'. When

using these commands, we can still produce a table of contents for this speci�c chapter.

This problem is not unique to portable documents, but it showed up producing them.

10 Multiple indexes

Indexes, of which there may be many, have to be active too. Because pagenumbers are

not unique as reference, macros had to be extended. Because an entry in an index can

contain more references, resulting in more pagenumbers after a typeset entry, we make

188 J. Hagen

Beheer

Stuurketen bij een afsluiter.
Regelkring bij een afsluiter.
Niveauregeling van een reservoir.
Schematische weergave van een gedeelte van een net.
Serieschakeling.
Parallelschakeling.
Het logo van het KLIC.
Mogelijke monsterpunten in een vertakt leidingnet.
Mogelijke monsterpunten in een vermaasd leidingnet.
Een lokator t.b.v. een straatpot of metalen leiding.
Het principe van water–lucht spoelen.
Enkele voorbeelden van proppen.
Het principe van proppen.
Schoonspuiten met hogedruk.
Cementeren: schrapen van een leiding.
Cementeren: ruimen van een leiding.
Cementeren: kalibreren van een leiding.
Cementeren: inwendig cementeren van een leiding.
Relinen met behiulp van een opgevouwen buis (a).
Relinen met behiulp van een opgevouwen buis (b).
Relinen met behiulp van een opgevouwen buis (c).
Relinen met behulp van een kous: inbrengen.
Relinen met behulp van een kous: uitharden.
Lekdetectie met behulp van afluisterapparatuur.
Lekdetectie met behulp van tracergas.
Het principe achter de correlatormethode.

inleiding

waterkwaliteit

waterzuivering

Beheer

eerste vorige volgende laatste

Figure 5: Structuring elements

those references active. Of course we could make a jump list out of the pagenumbers

(see 'reader pro�les' below), but this has no real use.

Pagenumbers in portable documents seldom have a meaning, so why should we make

them active and/or even show them? But isn't it a bit overdone to keep pagenumbers

in a document for the sole purpose of a register? That's why we have some alternatives.

Because the number itself doesn't say much we can use substitutes like �, or letters.

It looks better and works �ne.

11 Cross referencing

A whole book can be written on referencing and the mechanisms to support this. There

are references to structuring elements, like chapters and sections, and to typographic

ones, like �gures and tables. Referencing can be done by page or by text: see page 5 or

see also �gure 3.1. Portable documents o�er some more, like references to locations:

highlighted words in the text that one can click on. Clicking brings us to the world

behind these words. These three types of references can be characterized by \on, \in

and \to, shorthand for on page, in something and to somewhere else. There is another

one: \from, that stands for from document.

Of course there are more types of references. In portable texts we can activate (jump

to) programs. We can refer to lists of publications (\by), to items in lists, to margin

words and to enumerations, like questions and answers (all \on's and \in's). Although

it's best not to refer too much, electronic documents can't do without. It's just one way

more to navigate them.

Beyond the bounds of paper and within the bounds of screens 189

12 Local and global referencing

Take a table of contents or an index. In a book, we can hold our �ngers at an index

page and walk through the text with our other hand. In a portable document, there is

no clear (tactile) concept of the beginning and the end of a document. On the other

hand, we can o�er as much tables of contents and indices as we want, because it doesn't

spill paper. We can for instance start each chapter with a table of contents and o�er

the reader the possibility to jump to this table from each page in this chapter. For this

purpose we can provide a button in one of the margins.

It is quite logical to label a table of contents with the reference [contents]. But

with many tables of contents, let's say one for each chapter, we can't distinguish between

them when we refer to one. This problem can be solved by introducing reference pre�xes.

By giving each reference an invisible pre�x, like chapter this:, section that: or just

a system supplied number, we have unique local tags and references. When a reference

can't be solved locally, the underlying mechanism can always check if there is an not-

pre�xed global one. In our example this can be the table of contents of the whole

document. It's even possible to walk through all pre�xes until one is found, but because

this is not very transparent, we have this option disabled.

Maybe the mechanism described isn't easy to understand without seeing it at work in

practice. One has to take our word that from the users point of view, things are simple.

The mechanism, that most of the time operates behind the screen, is also enhanced

with cross-document referencing. We don't think we would have needed and developed

such a complete and complex mechanism when only paper text was to be produced.

13 Multiple word references

Multiple word references normally only occur with \to or \from. On paper it's no problem

if a reference crosses a line or page boundary. In an portable document we have to make

each word in such a reference active. At the moment, we don't break up individual words.

Because words belonging to the references are to be given explicitly and references are

to be broken up in individual words, the mechanism of typesetting references is a bit

more complicated than the one normally needed for paper texts.

One could state that Acrobat should handle this, but we don't agree. Acrobat has

no knowledge of the meaning of text and the typographic used in it. Acrobat is perfectly

able to recognize words and its search engine works �ne { in version 2.0 it even accepts

legislatures like �,
 and �! { but it would be a nearly impossible job to guess what a

typographer means. Do we want to let the user click beyond the end of a line (speci�ed

with a pdfmark) or do we want to continue on the next line? Enhanced pdfmarks would

be necessary to accomplish this.

190 J. Hagen

14 Exact positioning

Version 1.0 of Acrobat only had a primitive referencing mechanism: one had to supply

pagenumbers. Normally, when tagging a location to refer to, the pagenumber is remem-

bered. A reference mechanism uses the page numbers as they appear in the text. When

we number by chapter, pagenumbers look like 6.14 or 2{4{37. Acrobat 1.0 expected

real pagenumbers. Because of this incompatibility in pagenumbers, we had to adapt our

macros. With version 2.0, referencing by label became available, so the reference mech-

anism could be simpli�ed. In fact we didn't and now we have a dual mechanism, just in

case we have to support more document formats.

object — AVCAT–installatie

AVCAT–installatie

Gebruik BOS–installatie.

averijmateriaal

Gebruik gereedschapsuitrusting.

B
badinstallatie

Het geheel van badapparatuur, het materiaal, reserve–onderdelen en de hulpuitrusting.

ballastinstallatie

Installatie die er voor zorgt dat het vaartuig vast ligt.

basisbegrip

Gebruik begrip.

bataljon

Gebruik eenheid.

batterij

Bedoeld wordt een elektrische batterij. Gebruik waar mogelijk eenheid.

bedrijfsadministratie

Gebruik administratie.

bedrijfsgereedstelling

Het installeren en voor gebruik gereedmaken van apparatuur.

bedrijfskunde

De leer en de kennis van het beheer van bedrijven.

inleiding

richtlijnen

objecten

acties

accenten

aspecten

terug

verder

Figure 6: Exact positioning

Before Acrobat came available, we were already experimenting with dviwindo from

Y&Y. This viewer o�ers a very simple, but powerful hyperlink mechanism, that only uses

labels. It o�ers more: jumping to some location results in an exact positioning of the

cursor. When this feature comes available in Acrobat too, PDF-documents will be more

powerful. Think of dictionaries in which clicking on references like see that other word

too brings us to right page and positions the cursor at that other word.

Acrobat o�ers the option to magnify the target location of a jump. It is also possible

to show only part of the page. Because we layout our portable documents for screens,

we don't use this feature. We think it is better to show the reader the page as it

is, but future applications can make us change our mind. For instance, I think it is

possible to de�ne cyclic references, e.g. clicking on a �gure means going to the �gure

itself. Because it is possible to magnify the target location, we could use such a cyclic

reference to magnify the �gure to full-screen size (click: magnify, and click again:

previous view). To accomplish this in Acrobat, one needs to specify the part of the page

that is to be magni�ed. Because TEX has no absolute coordinates available { as a result

of the dynamic character of composing pages { this feature can't be used. A solution

to this would be an extension of PDF in which relative coordinates can be used.

Beyond the bounds of paper and within the bounds of screens 191

15 Multiple documents

Referring to other documents was not hard to implement, but again, it required an

adaption of our reference mechanism. We already mentioned pre�xes. A reference to

another document is done by an extra pre�x. In [texbook::somewhere] we have the

document pre�x texbook::. When using multiple documents it is not necessary to have

the other documents references available when we are only using \to. When we want

to refer to text (\in, like �gure 3.2) or page (\on, like see page 12 of the TEXbook),

we do have to load the references of the other document. Each reference generates

one macro, in which the several components of the reference are packed (pagenumber,

text and real pagenumber). As long as we do have enough memory available, this is

no problem. Because our macro-package ConTEXT is over three times the size LATEX

and has a memory extensive user-interface, the memory left for names of macros is

already low. Of course all references can be packed in one macro, but only at the

cost of processing time. (Packing works �ne for two-pass optimization. We use lists

of references for marginword placement,
oat reordering, optimal list breakup, version

control and more.)

16 Common data

Using more documents together means that they must be as consistent with each other

as possible, specially when they change a lot, like some kind of manual. This means that

information sensitive to changes has to be as abstract as possible and has to be de�ned

only once. This is one of the powers of TEX, but at the cost of memory. As we've seen

before, time will solve this.

17 Parallel constructs

One of the �rst things we implemented in ConTEXT was a block-move mechanism. We

use this mechanism to relocate blocks of text, independent of their location in the ASCII-

text. We put the answers after the questions, hide the answers and recall questions and

answers in an appendix. It is also possible to label blocks and call them up by name.

The mechanism, that is completely handled by TEX itself, keeps track of the original

structure of the text. This is necessary because the numbers of questions and answers

can be pre�xed by the numbers of chapters. It's also necessary to keep track of the

local character of blocks: do we call them up at the end of each chapter and/or at

the end of the document. In our example questions and answers can be seen as parallel

typographical constructs.

This already (in terms of macros) complicated mechanism seemed complete. But

portable documents make it possible to link corresponding blocks together: click on a

question and go to the answer and vice versa. Here we see a kind of reference that is

unique to portable documents.

192 J. Hagen

18 Alternative pagenumbers

One of the disadvantages of portable documents is its higher degree of abstractness.

Numbers of pages, megabytes and scrollbars don't mean as much as a handful of paper

or a bookshelf of volumes. Numbers of pages have lost their meaning, because we don't

go to pages but to locations.

1 Greek

1.1 alfa

alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa

1.2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

Figure 7: Subpagenumbering

Because we don't want our readers to get lost, we have to o�er them some kind of

status-information. One kind of pagenumbering that makes sense is subpagenumbering.

We can for instance give the reader some indication about the length of the current

section he or she is reading. We can o�er small bars, one for each subpage (screen)

and highlight the current one. These bars are active: click on bar two means going to

subpage two. Of course we can give cues like page n of m, but in that case we miss the

interactivity.

19 Status bars

We can mimic the more traditional user-interfaces. One of the advantages of this is that

users know what to expect. Although a text is no tape- or videoplayer, everyone seems

to know what to do when / and . appear. Acrobat uses // and .. to navigate through

the list of jumps. This analogies is a bit strange, because video recorders use this symbol

for fast for- and backward and CD-players for going to a previous or next track. We now

have at least three incompatible interfaces.

When we take volume 8 of 20 volumes of an encyclopedia from the shelf, we have

some impression of what we are reading. Size and structure are obvious. Portable doc-

uments are much more abstract. One has to visualize its size and make some mental

map of it. On computers, scroll bars can give some insight in the size of the information

at hand. At the cost of a lot of overhead in terms of pdfmarks, it is possible to provide

Beyond the bounds of paper and within the bounds of screens 193

1 alfa

alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa
alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa alfa

2 beta

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta

/ / . .

beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta beta
beta beta beta beta beta beta beta beta beta beta

3 gamma

gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma
gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma gamma

Figure 8: Statusbars

scrollbars in PDF. Because TEX is such a strong typographic language, only our fantasy

is the limit.

20 Active �gures

If we can make text active, why not make �gures active too? In instructional texts it

would be handy when pointing to some part of an object (like a drawing of a machine,

a photograph of some tool or a
owchart) would bring us to an explanation of this part

(and vice versa).

It is common practice to let TEX place �gures. TEX handles �gures as an abstraction:

a �gure has dimensions and a name. Normally, �gures are made with specialized programs

and not by TEX. Usually \special is used to communicate the characteristics of �gures

(name, scale and/or dimensions) to the DVI-processor.

7 Figuren

Het is mogelijk van en naar figuren te springen, bijvoorbeeld als er een verwijzing in de trant van zie
figuur 7.1 in de tekst is opgenomen. Door op het nummer te klikken gaat men naar de bladzijde waarop
de figuur2 staat afgebeeld.

Figuur 7.1 Het produktieproces.

2 Wie meer wil weten over het gebruik van illustraties in teksten zou eens wat moeten lezen van E.R. Tufte.

inhoud

index

10

0 5 10 15 20 25
0

5

10

15

20

1

2

3

4

proces

1 → (10.7,9.4) (4.3,2.3) [r:psfile]

2 → (16.5,16.5) (4.3,2.3) [r:pdffile]

3 ← (10.7,9.4) (4.3,2.3) [m:psfile]

4 ← (16.5,16.5) (4.3,2.3) [m:pdffile]

Figure 9: Active �gures

It's not very handy to fall back on drawing-packages when we want to make �gures

interactive. First, drawing packages don't support this. Second, if they do, scaling is

194 J. Hagen

not possible outside such a package unless buttons de�ned by pdfmark do scale too.

Fortunately, TEX can do what we want.

One way to make �gures interactive is to overlay them with an invisible grid with a

�xed number of (let's say 25) ticks. This grid can be scaled along with the �gure. We

now can de�ne active areas (tagged by a label) in terms of coordinates and dimensions.

The same can be done with areas that are referred to. These reference areas (of type

\to) can be used in the common way.

21 Reader pro�les

Tables of contents, menus and indices are examples of structuring elements of texts. In

huge, complex and continuously changing documents, there is another one: the reader

pro�le. In terms of text, such a pro�le tells speci�c readers what parts of the document

are worth reading. In portable documents, viewing programs can take us by the hand

and show us what's to be read.

To me, Acrobats 'article thread' mechanism seems originally meant for connecting

columns in periodicals. When we look at examples of interactive periodicals, we often

see a one to one similarity of the paper and portable version. This means that articles

start on one page and continue on a following one. Because of their cramped pages, the

article mechanism is useful: one starts at the column, that is or can be magni�ed for

better reading, and jumps from column to column and page to page. This is just one

more example of the page-oriented character of PDF.

We can abuse this mechanism for reader pro�les. When we produce the text, we can

tag parts of it by logical names. A collection of such tags, connected to a starting point,

forms a reader pro�le. Clicking on the starting point starts the article reading mechanism

and the reader just has to click to follow the path. At the moment the mechanism works

but misses some userfriendliness, this as a result of Acrobats pagewise behavior. We are

in need for some mechanism that spans pages and provides some background color of

gray when viewing the threaded text.

22 Version control

A variant of reader pro�les is version control. We can mark the adapted parts of a

document and o�er readers the option of reading only these. This mechanism works in

concert with a mechanism for selective printing of updated pages. Version control works

by numbers and not by tags. This makes it possible to o�er more than one reading path:

version 1.2 and higher, 1.3 and higher, 2.0 and higher and so on.

A combination of version control and reader pro�les are supported too. A reader can

read only the updated parts of his or her pro�le. This is useful in for instance updated

manuals.

Beyond the bounds of paper and within the bounds of screens 195

23 Color

Color can also be used to make texts more attractive. Of course color can be used

in �gures. Used with care and with consistency in mind, color can enhance texts. It's

common use to mark active words in a text by color. When using colored �gures, we

can use a colorbar to tell readers which parts of a �gure are active. This means that

we must use our color with care, especially in �gures. Although not unique to portable

documents, the color mechanism used in TEX must support consistent use of colors. One

has to keep in mind that not Acrobat but TEX is responsible for the quality of typesetting.

This nearly always means that the users of TEX are to blame for poor esthetics and not

TEX and Acrobat.

24 Conclusion

As we mentioned before, PDF and its accompanying Acrobat programs, have to prove

their stability yet. Users of TEX know that quality and stability are no guarantee for a

wide acceptance. On the other hand the nearly perfect match of TEX and Acrobat will

undoubtedly lead to acceptance in the TEX-community.

We already mentioned that the PDF format is still under development. Some obvious

options are still missing and the present options are not yet explored to their limits. One

of the mayor problems we will face in the (near) future is incompatibility. We can use

new options, but can not be sure if readers have the most recent version of the viewers.

(Paper documents don't have this problem, except when we change the language.)

Maybe this is no real problem because the basic viewer is in the public domain and can

be distributed with the documents.

A maybe even bigger problem is that we don't know what new viewing devices will

come available. With tools like TEX at least we can explore the bounds of the devices

already available.

PPCHTEX: typesetting chemical formulas in TEX

J. Hagen and A.F. Otten

Pragma

P.O.Box 125

8000 AC Zwolle

The Netherlands

Abstract

This article is about a package for typesetting chemical formulas. The primary interface of

this package is in the dutch language. Because PPCHTEX has a multilingual interface, all

commands and keywords can be toggled to english. The Dutch version of this article is

published in NTG's MAPS (94.2) and is translated to English by H. de Weert.

1 Introduction

The macro-package PPCHTEX can be used to typeset chemical formulas. The macros are

based on PICTEX, a macropackage that was created to facilitate the drawing of graphics

and other line diagrams. PICTEX was brought to the public domain by M.J. Wichura. We

consider a second implementation, using PSTRICKS of T. van Zandt.

The macros can be used within di�erent TEX-environments and only depend on

Knuth's plain TEX. In addition, some general macros of our ConTEXt-library are utilized.

Besides, macros are typeset in such a way that further development is quite easy.

At �rst, macros are created to typeset chemical structure formulas. Moreover, reac-

tion mechanisms can be re
ected. Chemical structures can be typeset in di�erent sizes

and comparable formulas can be linked optically. Structures of frequent occurrence can

be prede�ned and recalled.

During the development of the macros, processing speed is subordinated to
exibility,

simplicity and quality. No use has been made of the mechanism (available in PICTEX) to

store parts of �gures in a �le. It turned out that this mechanism does not produce a

gain of time.

The macros are still being developed. For example, the mechanism to place texts

still has to be re�ned and some structures like CHAIR still have to be added.

197

198 J. Hagen and A.F. Otten

2 Structures

The number of commands that is used to typeset chemical structure formulas is reduced

to four.1 In the following example all of these commands are used.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

1

2

3

4

5

6

Example 1

\setupchemical[axis=on,border=on]

\startchemical

\chemical[SIX,B,R,RZ][1,2,3,4,5,6]

\stopchemical

Di�erent features of the typesetting can be set up with \setupchemical. If some-

thing is set up in this way, the setups are valid for all the following formulas.2

............................
.............
...........
...........
............
................

...

...................................
...

...................................

............
............
............
............
.

A

B

C

..
.............
...........
...........
............
.................

................

...................................
............
............
............
............
.

..

D

E

F

Example 2

\startchemical[border=on,width=6000]

\chemical[CARBON,CB1][A,B,C,D,E,F]

\stopchemical

As can be seen from both examples, \chemical is the central command. This

command, that can be typed many times within a \start-\stop-pair, gets one or two

arguments. These arguments are given between []. The �rst argument refers to the

bonds that are to be drawn. The second argument contains the atoms or molecules that

are to be re
ected. Text is typesetted in a mathematical mode, so everything that is

normally allowed between $ $ can be given.

We work out the �rst example. First of all the keyword SIX is given. By using this

word we can indicate that we want to draw a sixring structure. In the same way we can

use the keywords ONE, THREE, FOUR, FIVE, NEWMAN and CARBON.

1. The concept structure in this manual only refers to the chemical structure. It is not related to the

structure of the text that is used to typeset the formula.

2. Obviously the scope can be con�ned by using f g and the grouping macros ..group. The setups can

also be given immediately after \startchemical. In that case the setups are applied to one formula.

PPCHTEX: typesetting chemical formulas in TEX 199

......................
......................

......................

......................

......................
..............
........
..........
..

..............
........

1

2

3

4

5

6

7

8

..
...........
...........
...........
..

............................

............
............
....

1

2

3

...
...........
...........
...........
...

...............
............

............................
............................

...............
.............

1

23

4

One Three Four

...
.............
.............
.............
..............
.............
.............
.............
..

..........

..

............................

...........
...........
......

1

2

3

4

5

...
.....................

..................
...........
...........
...........
...........
.................
.....................
.....................
..

.......

............................
............................

............................

.....................
.......

...........

...........

......

1

2

3

4

5

6

............................
.......................................

............................

............
............
............
...

.........................
............
...........
............
..................

...
1

2

3

4

Five Six Carbon

...............
...............
...............
..........

...

...............
...............
...............
..........

............................
............................

...........

...........

......

.............
...........
...........
...............
...

1

2

3

45

6

1

����!
 ����

2

Newman Symbol

Within these structures chemical bonds between C-atoms can be indicated in a

comparable way. For instance, in this example we use B and R. Bonds are numbered and

can be indicated in di�erent ways:

\chemical[SIX,B1,B2,B3,B4,B5,B6]

\chemical[SIX,B135]

\chemical[SIX,B1..5]

These commands create parts of a sixring structure. R enables us to add substituents

to the sixring structure. The command R draws the beginning of a bond with a substituent

from an angular point in the sixring structure (6 120�). The concerning angular point is

indicated with a number.

\chemical[SIX,B1..6,R1..6]

200 J. Hagen and A.F. Otten

The above mentioned command only places bonds to substituents. Substituents

themselves are indicated with RZ. Therefore in this case, numbers are being used to

mark the position. In the second optional argument substituents are given as text.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

CH
3

CH
3

OH

Example 3

\startchemical[border=on,width=4500]

\chemical[SIX,B1..6,R1..6,RZ1..3][CH_3,CH_3,OH]

\stopchemical

If the second argument is omitted, no text is placed, so the command RZ1..3 has

no e�ect.

3 De�nitions

It is possible to build a library of structures. As we wish, we can recall these structures

at a later point of time and provide them with extra components. Furthermore they can

serve as building blocks for more complex structures. Structures can be prede�ned with

the TEX-primitive \def.

If a structure, for example [SIX,B,R,RZ], is often used, it is practical to prede�ne

this structure.

\def\sixring{\chemical[SIX,B,R,RZ]}

Instead of \def the following command can be used. In this case an already existing

de�nition will be announced.

\definechemical[sixring]

{\chemical[SIX,B,R,RZ]}

Although both ways of de�ning are allowed, the second way is more robust. Protec-

tive measures are taken to avoid con
icts with existing commands.

PPCHTEX: typesetting chemical formulas in TEX 201

The commands \chemical[sixring] provides a sixring structure without sub-

stituents. No second argument is given.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

Example 4

\definechemical[sixring]

{\chemical[SIX,B,R,RZ]}

\startchemical[border=on,width=6000]

\chemical[sixring]

\stopchemical

If we want to add six substituents, we have to carry out the following actions:

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

R
1

R
2

R
3

R
4

R
5

R
6

Example 5

\definechemical[sixring]

{\chemical[SIX,B,R,RZ]}

\startchemical[border=on,width=6000]

\chemical[sixring]%

[R_1,R_2,R_3,R_4,R_5,R_6]

\stopchemical

The sixring structure can also be de�ned without substituents (RZ). In this case no

substituents are expected if the command \chemical is given. Even now substituents

can be placed, as is shown by the following example.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

A

B

C

D

E

F

Example 6

\definechemical[sixring]

{\chemical[SIX,B,R]}

\startchemical[border=on,width=6000]

\chemical[sixring,RZ][A,B,C,D,E,F]

\stopchemical

Essentially the number of possibilities is unlimited. One should be aware of the fact

that the atoms and molecules of the second argument are raised in the sequence of the

�rst argument.

In a de�nition atoms and molecules (texts) can also be placed.

202 J. Hagen and A.F. Otten

\definechemical[sixring]

{\chemical[SIX,B,R,RZ135][R_1,R_3,R_5]}

So in this de�nition always three substituents are added. If we decide to add more

substituents, we have to explicitly state that we are dealing with a sixring structure

(SIX).

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

R
1

R
3

R
5

AB

C

Example 7

\definechemical[sixring]

{\chemical[SIX,B,R,RZ135][R_1,R_3,R_5]}

\startchemical[border=on,width=6000]

\chemical[sixring,SIX,RZ246][A,B,C]

\stopchemical

So in de�nitions, the command \chemical has a global character and the command

\chemical[][] has a local character. The idea behind this is that in the �rst case a

series of commands is inserted and in the second case a complete independent structure

is inserted.

In a de�nition the command \chemical can occur more than once. The last example

can also be recalled with:

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

R
1

R
3

R
5

AB

C

Example 8

\definechemical[sixring]

{\chemical[SIX,B,R,RZ135][R_1,R_3,R_5]

\chemical[SIX,RZ246]}

\startchemical[border=on,width=6000]

\chemical[sixring][A,B,C]

\stopchemical

If PPCHTEX makes mention of an unknown command, one has probably forgotten

to type a structure command, like SIX or FIVE.

4 Bonds

In this chapter we show the bonds that can be found in the di�erent chemical structures.

The meaning of the commands will be explained by the reviews that are stated further

in this article.

PPCHTEX: typesetting chemical formulas in TEX 203

In the left column the complete bonds are shown, in the right column only the

shortened bonds. Due to these shortened bonds, atoms and molecules can be attached

to a bond. Bonds can be shortened on both sides, left (-) as well as right (+).

B Bond SB Single Bond

-SB Left Single Bond

+SB Right Single Bond

Table 1: Saturated bonds

A bond can be followed by one or more numbers or a range, for instance: B1, B135

and B1..5. If all bonds are necessary, only B can be given.

In a ring structure an extra bond can be given and furthermore double or triple bonds

can be introduced between atoms and molecules.

EB Extra Bond DB Double Bond

TB Triple Bond

Table 2: Unsaturated bonds

A bond, in a sixring structure for example, can be shortcut. In this case the atom is

given that has to be omitted, therefore a circle can be drawn in a sixring structure.

S Shortcut C Circle

Table 3: Special bonds

Substituents can be attached to the angular points. Depending on the presence of

atoms and molecules, bonds can be short or long.

R Radical SR Single Radical

-R Left Radical -SR Single Left Radical

+R Right Radical +SR Single Right Radical

Table 4: Bonds to substituents

It is possible to bind substituents to the structure by double bonds.

Text can be linked to bonds. These texts are collected from the second set behind

\chemical in the sequence that is given.

The atoms|/|molecules are numbered clockwise. In this case, combinations are

allowed. With Z0 (z zero) a text can be placed in the middle of a structure.

204 J. Hagen and A.F. Otten

ER Extra Radical DR Double Radical

Table 5: Double bonds to substituents

Z Atom RZ Radical Atom

-RZ Left Radical Atom

+RZ Right Radical Atom

Table 6: Atoms and molecules (radicals)

While positioning the atoms and molecules in the text, their (possible) dimensions

are taken into account. In this case the width of C and the height of Cn
m
play a prominent

role. However, this mechanism can still be re�ned.

5 Combinations

Structures can be combined to complex compounds. Structures can be moved to other

structures by using MOV, ROT, ADJ and SUB.

MOV Move move the same kind of structure in the

direction of a bond

ADJ Adjace move a di�erent kind of structure in the

direction of the x- or y -axis, linked to a

bond

SUB Substitute move a structure relative to another one

in the direction of the x- or y -axis

ROT Rotate rotate a structure

Table 7: Displacements and rotations.

These four commands have another e�ect within the di�erent structures. For ex-

ample, the angle used to rotate at \chemical[FIVE,ROT1,B] di�ers from the angle

that is used at \chemical[SIX,ROT1,B].

In addition, within CARBON it is possible to mirror a structure. This can be done with

MIR.

MIR Mirror mirror a structure

Table 8: Mirroring

PPCHTEX: typesetting chemical formulas in TEX 205

The direction of a displacement or the amount of the rotation is indicated by

a number. Since these commands are closely related to the actual structure, they

must be given before bonds and texts are drawn. It makes a di�erence whether

\chemical[FIVE,B,ROT1,R] is given or \chemical[FIVE,ROT1,B,R]. The �rst call

delivers an unwanted result.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
... ...

.....................
.....................

..............
...........
...........
...........
...........
...........
.................
.....................
.....................
...

Example 9

\startchemical[border=on,width=4500,right=3500]

\chemical[SIX,B,MOV1,B]

\stopchemical

Successively a sixring structure is drawn: SIX,B, a displacement is realized in the

direction of bond 1: MOV1, and a second sixring structure is drawn: B. A displacement

with MOV concerning a sixring structure can be realized in six directions, as opposed to

a displacement with ADJ, which is realized in the four axis-directions (x , �x , y , �y). In

a sixring structure some of these displacements coincide. The above example also could

have been achieved with: [SIX,B,ADJ1,B].

It is also possible to combine di�erent structures. For instance, SIX can be linked to

a structure FIVE. The mechanism that is responsible for this linking is for the greater

part hidden from the user. In the following example a sixring structure is successively

drawn: SIX,B, a displacement along the positive x-axis is achieved: ADJ1, and a rotated

�vering structure is drawn: FIVE,ROT3,B.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
...

...........

...........

...........

...........

...........

...........

................................
..................................

...
..................................

.. Example 10

\startchemical[border=on,width=4500,right=3500]

\chemical[SIX,B,ADJ1,FIVE,ROT3,B]

\stopchemical

A transition to a connected structure can be achieved with ADJ. To get a good

connection, one of the two structures have to be rotated with ROT. If a structure is

not directly linked, but through a bond, one uses SUB. Rotations are made in steps

206 J. Hagen and A.F. Otten

of 90 degrees, clockwise. Displacements with ADJ and SUB are achieved in the four

axis-directions.

...
............
............
.............
............
.............
.............
............
............
............
............
..

...................................

...
.............
.............
.............
.............
..............
.............
.............
.............
.............
..

...................................

Example 11

\startchemical[border=on,width=4500,right=3500]

\chemical[SIX,ROT2,B,R6,SUB1,FIVE,B,R4]

\stopchemical

We can therefore conclude that the sequence of the given commands is very

important. An obvious sequence of commands is as follows:

\chemical

[structure, % SIX, FIVE, ...

bonds inside the structure, % B, C, EB, ...

bonds outside the structure, % R, DR, ...

locations of atoms, % Z

locations of substituents] % RZ, -RZ, ...

[atoms,

substituents]

As a rule, the connection of structures is reduced to some translations and rotations.

Although it may not seem so, a certain systematic is enclosed. In fact, the process could

be simpli�ed. The automation that was already achieved in former versions, has been

undone: it turned out that 'hidden' rotations induce misunderstandings with regard to

the place of bonds. Furthermore, it is easier to provide a structure that is not rotated

with bonds, atoms and molecules than to provide a rotated structure. It is better to

de�ne the parts of a complex structure �rst, possibly with translations, and to rotate

the complete complex structure later.

6 Axis

Structures are typeset in a bounded space, for convenience indicated by axis. The dimen-

sions of the axis and the location of the origin can be de�ned in the setup. In addition

PPCHTEX: typesetting chemical formulas in TEX 207

the axis can be made visible (for the sake of the location in the text) and a border can

be drawn.

Example 12

\startchemical

[axis=on,

width=6000,height=4000]

...

...

\stopchemical

Example 13

\startchemical

[axis=on,

left=2000,right=4000]

...

...

\stopchemical

Example 14

\startchemical

[axis=on,

width=6000,right=1000]

...

...

\stopchemical

The dimensions of the structure are determined by the dimensions of the axis. How-

ever, if width=�t+ and/or height=fit is given, the dimensions of the total structure

are determined by the real dimensions. Whatever is chosen is depending on the way

structures are placed in the text. Side by side, on top of each other, etc. Example 12

shows the standard setups.

208 J. Hagen and A.F. Otten

Within a \start-\stop-pair PICTEX-macros can be used. Of course, some caution

must be taken into account.

Example 15

\startchemical

[axis=on,

width=6000,top=1000,bottom=3000]

...

...

\stopchemical

7 Setups

The behavior of the macro's and the layout of the formulas can be adapted to personal

needs. After both \startchemical and \setupchemical setups can be given.

variable values default

width number 4000

height number 4000

left number

right number

top number

bottom number

resolution number see manual

corps 8pt 9pt 10pt etc. see manual

style \rm \bf etc. see manual

scale number small medium big medium

size small medium big medium

status start stop start

option test

axis on o� o�

border on o� o�

alternative 1 2 1

o�set HIGH LOW LOW

Table 9: Setups for structures

PPCHTEX: typesetting chemical formulas in TEX 209

The axis reaches from �2000 till +2000, in height as well as in width. The point Z0

is situated at (0,0). Other setups can be set up with left, right, above and/or under

in combination with width and height.

The dimensions of the characters can be set up with size. In doing so, the TEX-

primitives \textsize, \scriptsize and \scriptscriptsize are used. The dimensions

of the structure itself can be set up with scale (1..1000). The scale is also determined

by corps. The keywords small, medium and big are attuned.

In the mathematical mode commands like \rm, \bf and \sl can be utilized in TEX

as well as in ConTEXt. PPCHTEX by default uses \rm. An alternative command can be

set up with style. For instance in example 16 the substituents are typeset slanted.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

A

B

C

D

E

F

Example 16

\startchemical[border=on,style=\sl]

\chemical[SIX,B,R,RZ][A,B,C,D,E,F]

\stopchemical

For the time being style is valid for chemical formulas in the text as well as in a

�gure. The sub- and superscripts also change, as can be seen from: CH
4
, CH

4
and CH

4
.

Successively the setups are: \rm, \bf and \sl. When formulas are typeset in italic (\it),

baseline-distances can be greater than normal. Within ConTEXt bold-slanted (\bs) and

bold-italic (\bi) are also available. All these commands automatically adjust to the

actual style (\ss, \rm, \tt): CH
4
, CH

4
etc.

The time-consuming calculations can be short-circuited with status. The variables

border and axis speak for themselves. A border round a text can be drawn with

option=test. By doing so, one can see how things are aligned. The quality of the

lines is set up with alternative. By default, PICTEX uses a 5 point period to draw the

lines. As one chooses alternative 2 smaller points are used. Therefore thinner lines are

drawn.

210 J. Hagen and A.F. Otten

The o�set refers to the position of the sub- and superscripts. By using HIGH the

subscripts are positioned high (H2O). Self-evident, with LOW the subscripts are positioned

a little lower (H
2
O).

R
1

R
2

R
3

R
4

R
5

R
6

Example 17

\startchemical[border=on,option=test,alternative=2]

\chemical[SIX,B,R,RZ][R_1,R_2,R_3,R_4,R_5,R_6]

\stopchemical

8 Dimensions

A structure can be shown in di�erent sizes. Dimensions can be set up with size and

scale.

...
.....................

..................
...........
...........
...........
...........
.................
.....................
.....................
..

.......

............................
............................

............................

.....................
.......

...........

...........

......

1

2

3

4

5

6

Example 18

\startchemical[scale=small,size=small]

\chemical[SIX,B,R,RZ][1,2,3,4,5,6]

\stopchemical

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................
...................................

...................................

.....................
..............

...........

...........

...........

..

1

2

3

4

5

6

Example 19

\startchemical[scale=medium,size=medium]

\chemical[SIX,B,R,RZ][1,2,3,4,5,6]

\stopchemical

PPCHTEX: typesetting chemical formulas in TEX 211

...
.....................

.....................
.....................

...........

...........

...........

...........

...........

...........

...........

..................
.....................
.....................
.....................
...

.....................

..
..

..

.....................
.....................

...........

...........

...........

.........

1

2

3

4

5

6

Example 20

\startchemical[scale=big,size=big]

\chemical[SIX,B,R,RZ][1,2,3,4,5,6]

\stopchemical

Scaling can take place between 1 and 1000. The values belonging to the keywords

small, medium and big are attuned.

9 Symbols

To typeset reaction equations some symbols are available. In the following �gure an

equation is shown. This equation is de�ned as follows:

\setupchemical

[width=fit,

height=5500,

under=1500]

\hbox

{\startchemical

\chemical[SIX,B,ER6,RZ6][0]

\stopchemical

\startchemical

\chemical[SPACE,PLUS,SPACE]

\stopchemical

\startchemical

\chemical[FIVE,ROT4,B125,+SB3,-SB4,Z4,SR4,RZ4][N,H]

\stopchemical

\startchemical

\chemical[SPACE,GIVES,SPACE][?]

\stopchemical

\startchemical

\chemical[SIX,B,EB6,R6,SUB4,FIVE,ROT4,B125,+SB3,-SB4,Z4][N]

\stopchemical}

212 J. Hagen and A.F. Otten

The command \hbox is necessary to position the structures behind each other. The

symbols GIVES and PLUS speak for themselves. Extra space can be achieved with SPACE.

...
.....................

..................
...........
...........
...........
...........
.................
.....................
.....................
...

...........

...........

......

...........

...........

......
0

+

...
...........
...........
...........
...........

...
..................

.....

N

..............
H

?

����!

...
.....................

..................
...........
...........
...........
...........
.................
.....................
.....................
...
......................................

...........

...........

......

...
...........
...........
...........
...........

...
..................

.....

N

An equilibrium can be shown with EQUILIBRIUM. A text can be set above GIVES and

EQUILIBRIUM. In the example this text is a question mark.

10 Special features

By using ONE, Z0 can consist of more than one atom. In this case, the reserved space is

insu�cient. If more space is needed for the command Z0, the bonds 1, 2 and 8 can be

moved with the command OFF, which means 'o�set'. Below, an example of the use of

this command is given.

\startchemical[width=fit]

\chemical

[SIX,B,C,ADJ1,

FIVE,ROT3,SB34,+SB2,-SB5,Z345,DR35,SR4,CRZ35,SUB1,

ONE,OFF1,SB258,Z0,Z28]

[C,N,C,O,O,

CH,COOC_2H_5,COOC_2H_5]

\stopchemical

In this case the o�set is 1, which means that we use one extra character. Similar, at

�rst sight quite complicated, de�nitions can best be constructed by de�ning the separate

parts �rst. The rotation can best be made last.

PPCHTEX: typesetting chemical formulas in TEX 213

...
.....................

..................
...........
...........
...........
...........
.................
.....................
.....................
...

............
...........
...........
......

.............................
...

..

..
..........................

...........................

..................................
.......

..................................
.......

C

N

C

...........
...
...........
...

..............
..............

..............

O

O

......................

......................
..............
........

CH

COOC2H5

COOC2H5

A new command is seen in the above example: CRZ. This command can be used to

position an atom or a molecule in line with a bond, which is desirable in this case. This

positioning could have been achieved with the command RZ, since one can in
uence the

spacing with the second set: {\,O} instead of {O}.

OFF O�set CRZ Centered Radical Atom

Table 10: Special commands

11 Textformulas

Along with the typesetting of structure formulas, the typesetting of reaction equations

is supported too. Therefore, the former described command \chemical has another two

versions:

\chemical{formula}

\chemical{formula}{text}

This command will �t to the position in the text. This means that a di�erence is

made between:

� a text-mode

� a mathematical text-mode

� a mathematical display-mode

If the command is given in the current text, automatically $ $ are set round the

command. In this way the command \chemical{NH_4^+} delivers the formula NH+
4 .

The same result is achieved by placing the command between $ $. Therefore in

both cases the second argument is omitted. If we type the command between $$ $$,

the second argument is obliged. The second argument may be empty:

$$

\chemical{2H_2}{} \chemical{PLUS}{} \chemical{O_2}{}

\chemical{GIVES}{} \chemical{2H_2O}{}

$$

214 J. Hagen and A.F. Otten

gives:

2H
2

+ O
2 ��! 2H

2
O

This formula can also be de�ned in a shorter way:

$$\chemical{2H_2,PLUS,O_2,GIVES,2H_2O}{}$$

or even:

$$\chemical{2H_2,+,O_2,->,2H_2O}{}$$

The more experienced TEX-user will notice that the plus-sign as well as the arrow

are located at the base-line. If you just compare + and +. Independent of the size of

re
ection, the + and the �! are aligned.

In addition to PLUS and GIVES, EQUILIBRIUM can be given, which delivers double

arrows (<->).

This formula can also be typeset in the current text, where a smaller layout is chosen:

2H
2
+O

2
�! 2H

2
O. It is also possible to show bonds. For example, the rather long

sequence \chemical{H,SINGLE,CH,DOUBLE,HC,SINGLE,H} gives H CH HC H.

This can also be achieved in a shorter way: \chemical{H,-,CH,--,HC,-,H}. A triple

bond can be called with TRIPLE or --: HC CH.

Now we just return to the display-mode. The second argument can be used to give

an explanation of the formula:

$$

\chemical{2H_2}{hydrogen} \chemical{PLUS}{} \chemical{O_2}{oxygen}

\chemical{GIVES}{violent} \chemical{2H_2O}{}

$$

gives:

2H
2

hydrogen

+ O
2

oxygen

violent
�����! 2H

2
O

The size of the formulas that are placed in the text can be set up with the setup-

command:

variable values default

textsize small medium big big

Table 11: Setups for textformulas

PPCHTEX: typesetting chemical formulas in TEX 215

When big, medium or small is used,

\chemical{H,SINGLE,CH,DOUBLE,HC,SINGLE,H}

gives the successive formulas:

H CH HC H H CH HC H H CH HC H

12 Subscripts

Sub- and superscripts are placed a little lower, as is recommended by Knuth in the

TEXbook. Like this, the example on page 179 in the TEXbook, that is chemically a bit

strange, can be typeset by typing \chemical{Fe_2^{+2}Cr_2O_4}. This command gives

Fe+22 Cr
2
O
4
. Without a correction the command would have given the result: Fe+22 Cr2O4.

The location of the subscript is by default determined by the offset: HIGH or LOW.

The offset can be overruled by the commands of the same name.

NH3

Example 21

\startchemical[border=on,option=test,alternative=2]

\chemical[SIX,B,R1,HIGH,RZ1][NH_3]

\stopchemical

Although the location of the subscript can be set up by substituent, it is advisable to

do this with \setupchemical. By doing so, all the formulas will be set up in the same

way.

The keywords LOW and HIGH can also be used in text formulas, although this may

lead to inconsistencies in layout. We can see that \chemical{HIGH,H_2O}{} results in

H2O and \chemical{LOW,H_2O}{} in H
2
O.

13 Installation

The package PPCHTEX is developed as an extension to ConTEXt but can be used with

other packages. The macros can be found in the �le m-chemie.tex, with the m standing

for module. Therefore the macros are not standard available.

Furthermore, the package can be used in combination with LATEX. In this case the �le

m-chemie.sty is used too.3 PPCHTEX can be activated by means of \documentstyle:

\documentstyle[m-chemic]{}

3. The dutch word chemie stands for chemics in english.

216 J. Hagen and A.F. Otten

In addition to the english interface that was described earlier, a dutch interface is

available. The dutch version is loaded with:

\documentstyle[m-chemie]{}

14 Some dutch

The original interface of PPCHTEX is dutch. One can switch back to dutch with:

\resetinterface

Switching back to english can be done with:

\setinterface[english]

Although more interfaces are possible, only the dutch and english are implemented.

The �le m-chemie.sty shows how an interface is de�ned.

...
.....................

.....................
..............
...........
...........
...........
...........
...........
.................
.....................
.....................
..

..............

...................................

A

B

Example 22

\startchemie[assenstelsel=aan,kader=aan]

\chemie[SIX,B,R12,RZ12][A,B]

\stopchemie

15 Extensions

Of course, all TEX-users are allowed to use the PPCHTEX-macros in another, non-

commercial, way. However, some caution has to be taken into account, since the macros

are still being developed, optimized and made more robust. Some macros may seem quite

complicated, but appearances are deceptive. For example, commands in the shape of

\setup... utilize the macros that support nesting and di�erent ASCII-layouts. Compare

for instance:

\setupchemical[size=small]

with:

PPCHTEX: typesetting chemical formulas in TEX 217

\setupchemical

[size=small,

scale=500,

textsize=big]

Setups can be given in an arbitrary sequence. When possible, spaces and newline-

characters are suppressed and errors are announced.

The following overview shows the available structures. We use a somewhat smaller

corps to save space. The manual of PPCHTEX is a bit more extensive in its overviews.

16 One

..
................
................
..
......
..............
..

..
................
................
..........
......
..........
......

................
................

................
..........
......
..

................
................
..........
......
..........
......

................
................

................
..........
......

................
................

..............
..

..............
..

Z0 Z1

Z2

Z3

Z4

Z5

Z6

Z7

Z8

SB DB TB Z

17 Three

...
...........
...........
...

...........

.....
...........
.........
....................
....................

..........................
...........
...

...........

...........

... ...
...........
...........
...

B DB SB -SB +SB

...
...........
...........
...
....................

............
........

...
...........
...........
...

....................

....................

...
...........
...........
...

..........

..........

..........................
...........
...

..........

..........

..........................
...........
...

..........

..........

R -R +R SR -SR

..........................
...........
...
..........

..........

...
...........
...........
...
....................
....................

............
........
........

..........................
...........
...

....................

....................

..........................
...........
...

Z1

Z2

Z3

...
...........
...........
...
....................

............
........

R1

R2

R3

+SR ER DR Z RZ

218 J. Hagen and A.F. Otten

18 Four

...
...........
...........
... ...

...........

...........

...
...........
...

..
...........
.........
...........
.........
..

...
...........
........
.................... ...

...........

...........

...

B EB DB SB -SB

...
...........
...........
... ...

...........

...........

...
...............

.....................
.....................

...............
......

...
...........
...........
..

..........

.....

..

.................... ...
...........
...........
...

....................
....................

..........

..........

...
...........
........
....................

....................

..........

+SB R -R +R SR

...
...........
........
.................... .

.........

..........
..........

..........
...

...........

........
....................

..........
..........

.......... ...
...........
...........
...

...............
..
...............
......

.....................
.....................

.....................
.....................

...............
......
......

...
...........
........
.................... ...

.................

..

..........
...

...........

........
....................Z1

Z2Z3

Z3

-SR +SR ER DR Z

...
...........
...........
...

...............

.....................
.....................

...............
......

R1

R2R3

R4

...
...........
...........
...

...........

.....

..

....................

R1

R2

R3

R4
...

...........

...........

...

....................
....................

...........

.........
R1

R2

R3

R4

RZ -RZ +RZ

PPCHTEX: typesetting chemical formulas in TEX 219

19 Five

...
.............
.............
..............
.............
.............
... ...

.............
.............
..............
.............
.............
..
.............
..

............................
....................

....................
.............
....
.............
.......
.............
....................
.......
....................

....................
...........................

.............
.............
.......

.............
.............
..............
.............
.............
...

B EB DB SB -SB

...
.............
.............
..............
.............
.............
... ...

.............
.............
..............
.............
.............
...

...

..

.....................

...........
..........

...
.............
.............
..............
.............
.............
...

..........

....................
....................

....................

....................
...

.............
.............
..............
.............
.............
...

..

.............
.......

.............
.......

....................
...........................

.............
.............
.......

..........
..........

..........

..........

+SB R -R +R SR

....................
...........................

.............
.............
.......

..........

..........

..........

..........

..........

....................
...........................

.............
.............
.......

....................

..........
..........

...
.............
.............
..............
.............
.............
..

......
.................
...

..
....................

.....................

...........
..........
.........

....................
...........................

.............
.............
.......

.................

..............................
..........

..........

...................

.

....................
...........................

.............
.............
.......Z1

Z2
Z3

Z3

Z4

-SR +SR ER DR Z

...
.............
.............
..............
.............
.............
...

...

..

.....................

............
.........

RZ1

RZ2

RZ3

RZ3

RZ4

...
.............
.............
..............
.............
.............
..

.........

..........

..........

..........

..........
RZ1

RZ2

RZ3

RZ3

RZ4

...
.............
.............
..............
.............
.............
...

....................

..........
..........

RZ1

RZ2

RZ3

RZ3

RZ4

...
.............
.............
..............
.............
.............
...

............
...........
.......

..............................
..............................

..............................
.............................. ...

.............
.............
...................................

...............................

RZ -RZ +RZ C S

220 J. Hagen and A.F. Otten

20 Six

...
.....................

..........

...........

...........

.................
.....................
.. ...

.....................
..........
...........
...........
.................
.....................
..
.....................

.......

.....................
.......

....................
....................

....................
...........
.........
...........
.........
..

....................
....................
..

...........

.........
....................

...
.....................

..........

...........

...........

.................
.....................
..

B EB DB SB -SB

...
.....................

...........

...........

...........

..................
.....................
.. ...

.....................
...........
...........
...........
..................
.....................
..

..

....................

....................
..........
..........

...
.....................

...........

...........

...........

..................
.....................
..

..........

....................

....................

....................

....................

....................

...
.....................

...........

...........

...........

..................
.....................
..

..

....................

..........

..........

....................
..

...........

.........
....................

..........
..........

..........

..........
..........

+SB R -R +R R

....................
..

...........

.........
....................

.....

...........

...........
...........

...........

...........

....................
..

...........

.........
....................

..........

....................

..........

..........
..........

...
.....................

...........

...........

...........

..................
.....................
...

...
....................

..
....................

....................
....................

....................
..........
..........
..........
..........

....................
..

...........

.........
....................

....................
....................

....................

..........
....................

....................
..

...........

.........
....................

Z1

Z2

Z3

Z3

Z4

Z5

-R +R ER DR Z

...
.....................

...........

...........

..........

.................
.....................
..

..

....................

....................
..........
..........

RZ1

RZ2

RZ3

RZ3

RZ4

RZ5

...
.....................

...........

...........

..........

.................
.....................
...

..........

...........

...........
...........

...........

........... RZ1

RZ2

RZ3RZ3

RZ4

RZ5

...
.....................

...........

...........

..........

.................
.....................
..

....................

..........

..........
..........

RZ1

RZ2
RZ3

RZ3

RZ4 RZ5

...
.....................

...........

...........

..........

.. ...
.....................

...........

...........

..........

.................
.....................
..

...........
...........
.......

.........................
.................................

.............................

.............................
..............

RZ -RZ +RZ S C

PPCHTEX: typesetting chemical formulas in TEX 221

21 Carbon

....................
............................

....................
............
............
....

......................
...........
............
...

....................
............................

....................
............
............
....

......................
...........
............
...

B C CB

....................
............................

....................
............
....

......................
...........
............
...

....................
............................

....................
............
............
....

Z0 Z1

Z2

Z3

Z4

......................
...........
............
...
....................

............................

....................
............
............
....

Z1

Z2

Z3

...
...........
............
..................

....................
............
............
....

..

Z4

Z5

Z6

MIR Z CB3

22 Newman

...............
...............
..........

..

...............
...............
..........

....................
....................

..........

..........

............
...........
...............
..

...............
...............
..........

..

...............
...............
..........

....................
....................

..........

..........

............
...........
...............
..

...............
...............
..........

..

...............
...............
..........

....................
....................

..........

..........

............
...........
...............
..

Z1

Z2

Z3

Z4Z5

Z6

B C CB Z

23 Symbol

����! ����!
 ����

+

GIVES EQUILIBRIUM PLUS SPACE

24 Other features

The following features of PPCHTEX are not described here, but one can �nd more on

them in the manual.

� coloring parts of formulas

� active formulas in interactive texts

222 J. Hagen and A.F. Otten

� automatic adapting to the corps size

� adapting to the resolution of printers

� the multi-lingual interface

� manipulating super- en subscripts

Also, the manual is a bit more extensive in its overview of the rotations and displace-

ments.

LATEX, HTML and PDF, or the entry of TEX into the

world of hypertext
1

Yannis Haralambous and Sebastian Rahtz

haralambous@univ-lille1.fr, s.rahtz@elsevier.co.uk

1 The relationship between hypertext and LATEX

Unlike hypermarket, hyper tension and hyperactivity, where the pre�x hyper expresses

high quantity, and excess, hyper text is not a giant text, but a text with an internal

structure that viewers can exploit to allow for arbitrary navigation through the document.

There is thus a relationship between the notion of hypertext and the markup system

of LATEX: both add structure to a document. For example, the LATEX notion of cross ref-

erencing corresponds to the notion of linking in hypertext. The main di�erence between

the two concepts is the lack of interest of TEX in screen interaction. TEX deals with

boxes that can contain characters, rules, images, etc. The task of replacing these boxes

with the actual characters falls to the screen or printer drivers. TEX being a tool for

typographical composition, does not use a screen other than for previewing, and screen

display is seldom considered the �nal aim of a TEX compilation.

This lack of interest in TEX of the screen is even more important when we recall that

many PostScript constructions, introduced into a DVI �le by \special commands, are

typically ignored by previewers.
2

We claim that, for e�ectively the �rst time in its existence, TEX is becoming seriously

useful for creating documents whose aim is to be read on the screen. In fact, LATEX is

totally adequate for the automatic production of hypertext links, and the methods that

will be presented in this article allow for an automatic conversion of almost every existing

LATEX document into an hypertext document. It is worth insisting that such a document

1. LATEXThis paper is based on one published by Yannis in Cahiers GUTenberg #19, January 1995. The

translation from French was undertaken by Leonor Barroca and Sebastian Rahtz, who apologize to Yannis for

the massacre of his elegant writing style. The article was revised and extended by Sebastian Rahtz.

2. Except for the lucky ones amongst us who can use operating systems with Display PostScript.

223

224 Yannis Haralambous and Sebastian Rahtz

keeps all the typographical quality of LATEX, and can be printed exactly in the same way

as before.

2 Overview

TEX and LATEX read a �le that contains the text of a document with structural and visual

labels, and create a second �le which describes the printed page with great precision.

This output �le is called DVI (DeVice Independent) because it only contains abstract

data: the position of each character on the page, the name of the font in which the

program will �nd the pixels for this character, its code in this font, etc.

The visualization or printing of a DVI �le presupposes the availability of a certain

number of fonts. This is usually easy in the case of large systems or network-connected

workstations, but it becomes problematic in the case of personal systems. The situation

is even more critical when one wants to distribute electronic documents: a document

that can be viewed and printed by a large number of people can hardly be distributed

in DVI format (since this is only of interest to the TEX community, and one would be

e�ectively limited to CM fonts, which are the only fonts (almost) guaranteed to be

present on all TEX systems). In practice it is almost impossible, for anything but very

simple documents, to keep on disk the document itself plus enough utilities to allow for

its immediate previewing and printing, without having to install a complete TEX system.

Finally, hypertext links are not catered for in the syntax of the DVI format;
3
every

attempt to develop an hypertext program to use the DVI format will lead to a new

`Hyper-DVI' format, with all the problems of compatibility with the TEX community

which is (rightly) proud of the stability of its tools. It seems then that the DVI format is

not the ideal candidate for a �le format which is easily usable and su�ciently interactive

to allow for the integration of hypertext links.

What then can we do? An obvious candidate for storing documents { at least,

today { is the PDF format (Portable Document Format) developed by Adobe Systems.

It is an extension of the PostScript language, closely resembling the syntax of �les

produced by Adobe's Illustrator program, with two important additions: support for

device independent screen viewing and printing, regardless of the fonts used in the

document, and the integration of hypertext functionality.

We shall return to the details of the PDF format in Section 7.1. For the moment, we

describe how the PDF format can be integrated into the process of document production

(electronic or printed). In Figure 1, input/output �les are represented by oblique boxes,

the software by rectangles, operations (visualization, printing, etc) by boxes with rounded

corners, while arrows indicate the basic transformations described in this article.

The .tex �le is our starting point (it is in the central circle). TEX will produce a

.dvi �le (it also uses macro �les, and font metrics). If the LATEX format is used, and

3. The description of the DVI format can be found on CTAN in the directory

dviware/driv-standard/level-0/dvistd0.tex.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 225

Screen View

Visualisation
Navigation

Printing
non

PostScript

HTML to
LaTeX

File
HTML

Mosaic
File
*.tex

TeX
File
*.dvi

DVI(h)PS

File
*.ps

Acrobat
Distiller

File
*.pdf

Acrobat
Reader

Visualisation

Printing
PostScript

File
*.ps

File
*.rep

Repere

Figure 1: Flow diagram for processing hypertext LATEX �les

the hyperref package has been loaded, the cross reference commands, bibliographic

citations and indexing will produce hypertext links, included in the .dvi �le with the

help of \special commands.
4

Another possible starting point is an HTML �le (in the top left of the diagram). An

HTML �le can be easily converted to LATEX, and the hypertext links in the former can

be kept in the latter.

But let's get back to our .dvi �le. We can inspect it directly, using a previewer, or a

non-PostScript printer. But we can also convert it to PostScript with the dvips program.

An extended version of dvips by Mark Doyle, called dvihps (DVI to HyperPostScript),

keeps the hypertext links contained in the .dvi �le. Once the PostScript �le has been

created, we can print on a PostScript printer (or a non-PostScript printer with the help of

the GhostScript program), or convert it to PDF format using Adobe's Acrobat Distiller.

This program recognizes the hypertext links and includes them in the PDF document.

Finally, to visualize a PDF document we can use Adobe Acrobat Reader, which is

freely available for Mackintosh, Windows, DOS and Sun Unix. This program allows us

4. These commands have no e�ect on the typesetting of a page and their argument is written verbatim to

the DVI �le, so that they constitute excellent means to communicate information to post-processors.

226 Yannis Haralambous and Sebastian Rahtz

to browse and navigate the document and print it on any printer supported by the host

system.

It is easy to see that if the starting point is an HTML document, all the hypertext

functionality will be kept, but we have also gained the typographic presentation of LATEX.

A PDF document is a faithful copy of the printed document (it can even be photo-typeset

to produce a professional quality result with color images, graphics, etc.). On top of that

it o�ers hypertext navigation using links, which, with version 2 of Acrobat, refer not only

to points inside the document, but also to other documents on the network.

The structure of a LATEX document can be exploited by a wide application domain:

the most striking example is the vocal synthesizer ([3]) for the use of visually impaired

people, which can pronounce a mathematical formula, and indicate the structure of the

document by use of sound.

We will describe in this article another application: the creation of electronic books,

whose presentation is no worse than the traditional books (since they can be printed with

no loss of quality) but that o�er some interactivity: hypertext navigation between table

of contents, index, bibliography and text, on the same machine or across a network.

In the remainder of this article we will study each step of the process indicated by

the fat arrows in the diagram of Figure 1.

3 HTML to LATEX

The HTML markup system is de�ned according to the SGML standard. It contains

a limited number of tags, mainly for screen appearance; there are also various logical

text styles (emphasis, address, quotation,lists, etc.), and visual styles like italic, bold,

underline, etc, but there is no support for fundamental page objects like tables and

footnotes. It is obvious that LATEX is a much richer language than HTML, and so the

conversion from HTML to LATEX is essentially trivial.
5
The conversion has to do some

simple jobs:

1. convert certain tags straight to a LATEX environments, such as <CITE> and </CITE>

going to \begin{quotation} and \end{quotation};

2. convert other tags to LATEX commands with arguments, such as and

going to \emph{...};

3. replace a very few tags with simple LATEX commands, like \par for <P>;

4. deal with accented character entities, so that é becomes \'e and çla

becomes \c{c} and so on.

There are two classes of tags which present more problems:

1. Those which have no direct equivalent in LATEX, such as ; the appropri-

ate action for these is to convert them to new LATEX environments, and provide

appropriate de�nitions in a style �le. Thus

Very important!

5. Going in the other direction is much harder (see [2])

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 227

would be converted to

\begin{strong}

Very important!

\end{strong}

and an appropriate de�nition might be:

\newenvironment{strong}{\bfseries\itshape}{}

2. Tags for hypertext functions. For these we can conveniently use the hyperref pack-

age described below, to place the complete functionality of the hypertext commands

into the dvi �le. There are four situations we need to deal with:

a. De�nition of a target (an \anchor" in HTML jargon) is achieved with . . . (where keyword) is a unique (to the document)

name chosen for the target; this is represented in LATEX by

\hyperdef{}{keyword}{}{. . . }, where . . . is the chosen text.

b. De�nition of a link to an anchor in the same document, represented in HTML

with . . . (where keyword is the name of the an-

chor to point to); in LATEX we would write

\hyperref{}{keyword}{}{. . . } where . . . would be the text which a user

selects to make the hypertext jump.

c. De�nition of a link to another document, which HTML marks as <A HREF=

"address"> . . . where address is a valid URL. The equivalent LATEX

markup would be \hyperref{address}{}{}{. . . }.

d. Linking to an image, which in HTML would be ; in

LATEX, we convert this into \hyperimage{address}

4 LATEX to DVI

Let us be clear from the start: any valid LATEX2" document can produce a electronic

equivalent, by the simple addition of

\usepackage{hyperref}

at the end of the document preamble. This loads Sebastian Rahtz' hyperref package,

which rede�nes the following LATEX macros to produce hypertext links:

� \label, \ref and \pageref (cross-referencing)

� \chapter, \section, \subsection etc (made into hypertext anchors)

� \cite (provides link to references; references can also be made to link back to their

place of citation)

� \index (index creation)

� \includegraphics (inclusion of pictures)

Nothing more needs to be done to the document source, unless speci�c links are needed

in a manner not supported by the generic LATEX markup, in which case the \raw"

commands \hypertarget and \hyperlink and \hyperimage can be used.

228 Yannis Haralambous and Sebastian Rahtz

4.1 The HyperTEX speci�cation and the hyperref package

The hyperref package derives from and builds on the work of the HyperTEX project,

described in the World Wide Web document http://xxx.lanl.gov/hypertex/. It aims

to extend the functionality of all the LATEX cross-referencing commands (including the

table of contents) to produce \special commands which are parsed by DVI processors

conforming to the HyperTEX guidelines (i.e. xhdvi and dvihps); it also provides general

hypertext links, including those to external documents.

The HyperTEX speci�cation
6
says that conformant viewers/translators must recog-

nize the following set of \special commands:

href: html:

name: html:

end: html:

image: html:

base name: html:<base href = "href_string">

The href, name and end commands are used to perform the basic hypertext op-

erations of establishing links between sections of documents. The image command is

intended (as with current HTML viewers) to place an image of arbitrary graphical format

on the page in the current location. The base name command is used to communicate

to the dvi viewer the full (URL) location of the current document so that �les speci�ed

by relative URL's may be retrieved correctly.

The href and name commands must be paired with an end command later in the TEX

�le { the TEX commands between the two ends of a pair form an anchor in the document.

In the case of an href command, the anchor is to be highlighted in the dvi viewer, and

when clicked on will cause the view to shift to the destination speci�ed by href string. The

anchor associated with a name command represents a possible location to which other

hypertext links may refer, either as local references (of the form href="#name string"

with the name string identical to the one in the name command) or as part of a URL

(of the form URL#name string). Here href string is a valid URL or local identi�er, while

name string could be any string at all: the only caveat is that `"' characters should be

escaped with a backslash (\), and if it looks like a URL name it may cause problems.

The hyperref package rede�nes or overloads a lot of LATEX macros to express all the

common constructs in terms of this generic functionality. It is hoped that the rede�nition

is robust, but some aspects of it are quite complex, and some other packages may con
ict

with it { it should always be loaded last! Anything which uses cross-referencing and the

internal \setref command should convert, but sophisticated packages like AMSLATEX

can cause problems.

The package supports the following options:

draft makes the low-level macros no-ops;

colorlinks colors the links and anchors (this needs the standard LATEX2" color package).

The colors can be changed by rede�ning two macros; the default setting is:

6. This description is derived from Arthur Smith's documentation.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 229

\def\LinkColor{red}

\def\AnchorColor{blue}

nocolorlinks turns o� coloring, if it has been activated by default;

backref if the backref package is used, which lists citation points for each entry in

the bibliography, this option sets up back-referencing to be hyper links by section

number;

pagebackref sets up back-referencing by page number;

hyperindex makes index entries be links back to the relevant pages;

nohyperindex disables hypertext indexing;

plainpages in this package, every page is make a target for links; this option normalizes

all page numbers to be plain arabic, since typesetting commands like \textbf can

cause the main hyperref macros to break;

noplainpages turns o� the above behavior, so that sequences like roman numbering of

a preamble is respected;

hyper�gures makes included �gures (assuming they use the standard graphics package)

be hypertext links;

nohyper�gures turns o� the above behavior;

nonesting currently, dvihps doesn't allow anchors to be nested within targets, so this

option tries to stop that happening. Other processors may be able to cope;

nesting allows nesting to take place;

The following options are the default: nocolorlinks, noplainpages, nonesting, hyperindex

and nohyper�gures

4.2 Creating an enriched PDF �le with REPERE

As we can see in Figure 2, Acrobat gives us the possibility of displaying a hierarchical,

active, table of contents on the left-hand side of the window. The dvihps program does

not, in its current version, directly support this facility; to remedy this lack, Yannis

Haralambous developed a post-processor for the output of dvihps which creates the

necessary extra material. The program, repere, is written in Flex, and can be compiled

on most platforms with a Flex implementation and a C compiler.

The repere program works in conjunction with the hyperref package, whose macros

write all sectioning titles to an external �le with the su�x .rep. After processing the

�le with LATEX, and running dvihps, the .rep �le is prepended and appended to the

PostScript �le, and the result run through repere. For a �le foo.tex, the sequence

would be (for Unix, or other systems with pipes:
7
)

latex foo

latex foo

dvihps -z foo -o footemp.ps

cat foo.rep footemp.ps foo.rep | repere > foo.ps

7. DOS or VMS users will have to use copy/append commands to create a temporary �le

230 Yannis Haralambous and Sebastian Rahtz

This would result in a PostScript �le, foo.ps which can be given to Adobe Distiller

which will produce the table of contents. The repere program works by writing pdfmark

commands for Distiller.

The trickiest part of the operation is the conversion of the encoding of the LATEX

�le which is written to the .rep �le into the PDF Encoding (an combination of the

Windows, Mac and Adobe Standard encodings) needed for the table of contents. When

LATEX writes the .rep �le, it may expand accented characters and the like, depending on

the encoding used; command sequences like \TeX also get expanded to strange forms.

While repere tries to locate accented letters and replace them with the 8-bit equivalent

from the PDF Encoding, there remain considerable problems in getting a totally clean

table of contents without some manual editing. Luckily, this a�ects only the appearance

{ the hypertext links between the table of contents and the main document remain

intact regardless of how horrible the contents may look.

4.3 Problems at the TEX level

The fact that dvi �les were designed solely to produce printed pages means that we

have to take some precautions when preparing material which is to be converted to PDF.

The precautions have largely to do with the fonts used in the document. The biggest

problem for a program like Acrobat, which sets out to display and print any PostScript

�le whatsoever, is the range of PostScript fonts used in the document. 99% of the

existing PostScript fonts (and there are thousands of them. . .) are commercial, and

their usage is determined by the license agreement between the vendor and the user.

How do we arrange it so that an author can distribute a document using one of these

fonts, and be sure that the reader has a copy of the same font?

Adobe solved this problem with the Multiple Master technology; this is similar to

the principles of METAFONT
8
, by which fonts have certain meta-characteristics which

can be varied to produce di�erent looking glyphs (in terms of their weight, width, etc.

along up to four axes). Using the extended Adobe Type Manager (Super ATM, or ATM

version 3), and two Multiple Master fonts (one serif, and one sans-serif), Acrobat is able

to mimic the look of any PostScript font which is not present on the reader's system.

The Acrobat document simply contains the font name, and a set of metrics; if the font

can be found, it is used, but otherwise a Multiple Master instance is created to get (at

least) the weight, spacing and size right.

Can Multiple Masters mimic any font? Not quite. If the font has a non-standard set

of characters (i.e., it is not a Latin text font), such as mathematics, phonetic symbols or

Greek, simply substituting characters from a text font will obviously produce catastrophic

results. There are two solutions to this:

1. The `exotic' font can be fully imbedded in the PDF document, so that it is available

to the viewing system. This avoids the problem of inappropriate Multiple Master

substitution, but raises copyright issues { the author needs permission from the

8. Compared to METAFONT, Multiple Master fonts are in fact quite simplistic.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 231

font vendor to distribute it in this way. In Version 2 of Acrobat, Adobe implemented

partial font downloading { for each font used, Distiller makes a subset containing just

those characters actually used. This makes for smaller �les, and goes a considerable

way toward alleviating the fears of font vendors, many of whom do now permit their

fonts be in distributed in this partial way.

2. In the case of TEX, fonts can be included in PK bitmap format. The copyright

problem does not arise, since only bitmap representations are included in the PDF

�le.
9
Unfortunately, Acrobat Reader does not display such bitmap fonts at all well,

since they need to be reduced for screen resolution, and the characters usually appear

very emaciated. Printing, by contrast, presents no problems, if the resolution of the

bitmap font corresponds to that of the printer, rather than the screen.

A third solution is to avoid the problem by using the standard fonts which you can

be almost certain are available for any PostScript device (Times, Helvetica, Symbol,

Courier, Palatino etc). Unfortunately, we cannot produce any mathematics or Greek of

more than trivial quality using the Symbol font, so this approach is of limited e�ectiveness

for traditional LATEX documents.

A practical approach for mathematics is to use the Computer Modern fonts for

symbols, and Times for alphanumeric characters (this can be done using Alan Je�rey's

mathptm package), and to use PostScript Type1 versions of the CM fonts. These can

be purchased from Blue Sky Research, and Y&Y Inc, or there are free versions in the

CTAN archives of almost equal quality. Prospective users of these latter fonts should

check the license conditions which only allow non-commercial use.

A �nal problem to consider is the possible ill-e�ect of virtual fonts which produce

accented characters by combining separate accents and characters (such as can be done

by Alan Je�rey's fontinst package). The reason for this is that Acrobat has a facility

to search for strings in documents; if accented characters are in fact represented in the

PostScript/PDF �le by two separate glyphs, searching will not be complete or accurate

(whereas genuine 8-bit characters can be searched for and found). For example, if the

word `d�eg�en�er�e' is represented as

de<acute accent>ge<acute accent>ne<acute accent>re<acute accent>

in the PDF document, then a search for d�eg�en�er�e, where �e is an 8-bit character, will

not be successful.

The solution to this problem is to use PostScript fonts encoded in the LATEX T1

(Cork) standard, and based on re-encoding at the PostScript level to allow access to

the full range of accented characters. How this is achieved is beyond the scope of this

article, but the CTAN archives contain sets of metrics for many common PostScript

fonts derived in this way, suitable for immediate use. Some characters like �z are simply

not present in most fonts, and so these will always have to be created by composite

characters, but most Western European languages will come out `correctly'. It is worth

9. However, if the bitmaps are derived from a commercial PostScript font, the user would be well advised

to check with the vendor that bitmaps can be distributed in this way.

232 Yannis Haralambous and Sebastian Rahtz

pointing out that LATEX2" will automatically transform 7-bit markup like \'e into the

8-bit single character on output, if T1 encoding is used.

5 DVI to (hyper)PostScript

Like TEX, dvips is a good example of a very high-quality public domain program, available

for almost all operating environments and producing good quality PostScript output. In

order to get the most out of the translation to PDF, however, it is necessary to alter

the program a little. Mark Doyle undertook this task, and the result is the dvihps variant

of dvips, which also runs on all systems.
10

Why are changes necessary? To de�ne hypertext links, Acrobat Distiller needs (at

least) two bits of information: the active `button' area, and the document element

to be displayed. These areas are de�ned in terms of rectangular areas, whose page

coordinates are given in PostScript points (72 to the inch) in relation to the bottom left

corner of the page. In order to establish the coordinates of the target area, which may

occur pages after the point of departure, it is necessary to make an extra pass through

the output, after all the text has been positioned in PostScript coordinates. While it

would theoretically be possible to program all this at the LATEX level, the transformation

from DVI coordinates to PostScript coordinates is distinctly hair-raising, and it seems

sensible to leave this to the modi�ed dvips program. At all the points where links are

desired, \special commands are inserted into the output by LATEX macros, and these

are converted by dvihps if the new -z command line option is used.

We may note that the PostScript �le produced by dvihps contains code in the

preamble to deactive the hypertext commands if the �le is processed by an application

other than Acrobat Distiller. It also detects di�erent versions of Distiller, since version

2 has more advanced features than version 1, which are used if possible.

6 PostScript to PDF

This stage, which is certainly the longest in terms of elapsed time for the user, is entirely

under the control of the Acrobat Distiller program; anyone wishing to create serious

PDF documents needs to purchase a copy. It is, on the side, a very good debugger of

PostScript programs, and a good interpreter. It is a good way to preview any PostScript

�le, although the processing is rather slow.

7 Viewing, navigation, and printing of a PDF �le

These operations are achieved with the help of the Adobe Acrobat Reader software.

Search functions, zooming, navigation, text copy, etc, are available from menu options

10. It is to be expected that the functionality will be merged back into the `real' dvips by Tom Rokicki in

due course.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 233

Figure 2: PDF �le being displayed with Acrobat Reader

or key combinations. To compare the screen presentation of a TEX �le, the reader will

see in Figure 2 a copy of an Acrobat Reader screen on a Macintosh, and in Figure 3

the printed version of the same document. The LATEX hyperref package allows the user

to choose the presentation of active areas of hypertext links (in red by default) as well

as the anchor areas (in green by default). The PDF format also allows us to frame the

active areas.

7.1 Some information on the PDF format

The PDF format is even more hermetic and incomprehensible to the average user than

the PostScript language. However, it is interesting to know a bit of its structure, to

perform, if needed, some minor modi�cations to the presentation �le (the PDF format

is still quite new and we desperately lack tools to modify PDF documents).

A PDF �le can be either a 7-bit ASCII �le or an 8-bit binary �le. It consists of four

parts: the header, the body, the cross reference table and the trailer. The header, for

the current version, is composed of a single line: %PDF-1.1. The body is composed of

objects: each page is an object; the links, the notes, the marks, the font codes, the

234 Yannis Haralambous and Sebastian Rahtz

Figure 1: Le vaisseau Entreprise survole la planète Latèque

1 Exemple d’utilisation des liens hypertexte

Ce mot-ci est un lien vers le titre ci-dessus, et ce mot-là un lien vers l’image ci-
dessous. Les deux se trouvent en page 1.

1.1 Autour de la planète Latèque

Figure 3: Result of printing the PDF �le

font descriptors, and the systems for color description, are all objects. The advantage of

using objects is that one can change the order, insert or remove pages, without breaking

the existing hypertext links: the order of the pages is kept in the cross reference table,

deleted pages are kept in the document and are only virtually removed. Each change will

lead to a change in the cross reference table and in the trailer. A PDF display application

starts by reading the end of the document, and retrieves the cross reference table of

pointers to the objects in the document.

Most of the objects are compressed and then coded in 7 bits; four methods of

compression can be used: Lempel-Ziv, run length, CCITT Fax group 3 or 4, and JPEG;

then two methods can be used for the conversion to 7 bits: hexadecimal or \ASCII base

85" notation.

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 235

Adobe Acrobat Distiller allows for compression to be turned o�, although this is

not very interesting, since no tool is provided to allow for a posteriori compression of

modi�ed PDF objects.

We will describe here only some of the non-compressed objects, which can be freely

modi�ed by the user. However, it should be noted that each modi�cation of a PDF �le

(except one that will be mentioned below) needs an update of the cross reference table:

this table contains, for each PDF object, its o�set relative to the start of the document.

Each object has a number, which is the �rst item data for the object. The objects are

not necessarily ordered by number in the PDF �le. The cross reference table contains

one line for each object; this line contains the o�set of the object to the start of the

�le (a number of 10 digits), followed by a blank, a 5 digit number which is the number

of times this object has been modi�ed, another blank, and the letter `n'. If the object is

deleted, the number of the object will be available and the syntax of this line will change:

the 10 digit number indicates the number of the next free object in the table (it is nil if

it is the last free object) and the letter `f' at the end of the line.

Every time an object is modi�ed, it is necessary to change the o�set of all the

objects which physically follow it in the �le; we must also change a number at the end

of the �le which indicates the o�set of the table of cross-references relative to the start

of the �le.

As an example, the following is an extract from a PDF �le, showing the start, the

�rst object (a color descriptor), the last few objects, part of the cross-reference table,

and the trailer.

%PDF-1.1

1 0 obj

[/CalRGB

<<

/WhitePoint [0.9505 1 1.089]

/Gamma [1.8 1.8 1.8]

/Matrix [0.4497 0.2446 0.02518 0.3163 0.672 0.1412 0.1845 0.08334 0.9227]

>>

]

endobj

.........

9 0 obj

<<

/Type /Pages

/Kids [2 0 R 10 0 R 14 0 R 20 0 R]

/Count 4

/MediaBox [0 0 612 792]

>>

endobj

41 0 obj

<<

/Type /Catalog

/Pages 9 0 R

>>

endobj

42 0 obj

236 Yannis Haralambous and Sebastian Rahtz

<<

/CreationDate (D:19950420210508)

/Producer (Acrobat Distiller 2.0 for Windows)

>>

endobj

xref

0 43

0000000000 65535 f

0000000017 00000 n

0000251348 00000 n

0000000182 00000 n

0000021336 00000 n

......

0000211955 00000 n

0000220508 00000 n

0000251821 00000 n

0000251877 00000 n

trailer

<<

/Size 43

/Root 41 0 R

/Info 42 0 R

/ID [<a7b776d0fb5478b29f5739c089a2c83f><a7b776d0fb5478b29f5739c089a2c83f>]

>>

startxref

251984

%%EOF

The number 251984 is the o�set from the start of the �le of the beginning of the

cross-reference table. An extract from an object in the main part of the �le shows the

uncompressed version of some text being displayed:

3 0 obj

<<

/Length 21095

>>

stream

BT

/F4 1 Tf

7 0 0 7 72 759.67 Tm

0 Tr

0 g

0.014 Tc

[(T)108(e)7(s)19(t)-363(of)-352(c)7(m)25(r)14(1)0(0)-343(o)

0(n)-349(A)0(p)27(r)14(i)27(l)-383(20,)-349(1995)-308(at)-363(1712)]TJ

ET

129.36 719.59 0.48 -16.08 re

...

\end{verbatim}

A hypertext link is an object of type `Annot'; an example is

\begin{verbatim}

17 0 obj

<<

/Type /Annot

/Subtype /Link

/Rect [107 565 171 577]

/Dest [16 0 R /FitH 842]

LATEX, HTML and PDF, or the entry of TEX into the world of hypertext 237

/T (page.5)

/C [0 0 1]

/Border [0 0 1 [3 3]

]

>>

endobj

While the /Rect key simply gives the coordinates of a rectangle around a link area, the

/Dest area is more interesting. In this example, it points to a page number, and says

that the page is to sized to �t a certain height, but it can also (in Version 2) point to

an external �le, or `named' destination. This allows us to have the same functionality as

HTML, opening another �le at a named point, rather than having to know the actual

page number and position in the other �le.

The /Border key describes the appearance of the link; in Version 1, this was either

a frame or nothing, but Version 2 allows for colored frames, and di�erent line types. The

values in this example indicate that the `active' area which is to be clicked on is outlined

with a blue dashed line (the color is given by the /C key, an abbreviation for /Color).

How can we modify this �le? At the end of the example above, we see the key

/Producer (Acrobat Distiller 2.0 for Windows); we may want to change this

object, and use some of the other available keys, to produce:

/Author (Mr Kipling)

/Title (My favorite PDF sample)

/Creator (LaTeX, of course)

It is easy to simply edit this in, but we would also have to go through and change the

cross-reference table for all the objects that follow it, a tedious and error-prone proce-

dure. Yannis Haralambous has written another Flex program, recticrt, which performs

this task for you, reading a PDF �le and writing a new version with a checked and

updated cross-reference table.

Full documentation of the PDF format can be found in [1], and in the PDF

documents distributed with Acrobat Distiller.

8 Conclusions

We have tried to show in this paper that a complete, viable, electronic publishing system

can be built with LATEX as its base, and the Portable Document Format as its delivery

medium. While the tools we describe, and those we have developed ourselves, are func-

tional, we believe that only a small part of the potential has been realized. We hope that

others will develop more tools to make richer and richer electronic documents, using

TEX typography as a solid foundation.

Obtaining the programs

The hyperref package can be obtained from any of the CTAN (Comprehensive TEX

Archive Network) archives, from the directory

238 Yannis Haralambous and Sebastian Rahtz

macros/latex/contrib/supported/hyperref. The repere and recticrt programs are

supplied in source form (Flex code) and as compiled MSDOS binaries. The source of

dvihps is available in dviware/dvihps in the CTAN archives, and an MSDOS binary is

also stored in the hyperref directory.

The HyperTEX project, whose standards form the basis of the work described in this

article, should be visited on the World Wide Web at

http://xxx.lanl.gov/hypertex/.

Michael Mehlich has written another LATEX2" package for encapsulating hypertext

functionality in LATEX output, to the same HyperTEX standards as hyperref, with com-

parable functionality. This is available on CTAN in

macros/latex/contrib/supported/hyper.

The PostScript Type1 versions of the Computer Modern fonts by Basil Malyshev

(the BaKoMa collection) can be obtained from CTAN, in the directory

fonts/cm/ps-type1/bakoma.

The free Acrobat Reader for Windows, Macintosh and Sun Unix can be obtained

from Adobe (Internet FTP site ftp.adobe.com, for instance) or from many other col-

lections. In order to create good quality PDF �les from PostScript, it is necessary

to purchase the more expensive Acrobat Pro package (the PDF Writer included with

Acrobat Exchange does not translate all the pdfmark information) from Adobe Systems.

References

[1] T. Bientz and R. Cohn. Portable Document Format Reference Manual. Addison

Wesley, 1993.

[2] M. Goossens and J Saarela. From LATEX to html and back. to be published in

TUGboat, 1995.

[3] T.V. Raman. An audio view of TEX documents. TUGboat, 13.4, 1992.

The release 1.2 of the Cork encoded DC fonts and the

text companion symbol fonts

J�org Knappen

Institut f�ur Kernphysik

Johannes Gutenberg-Universit�at Mainz

D-55099 Mainz

knappen@vkpmzd.kph.uni-mainz.de

Abstract

I present the release 1.2 of the dc fonts and the companion text symbol fonts. I give an

overview of the improvements on the dc fonts from version 1.1 to 1.2. The rationale for

introducing a text symbol font is explained and the text symbol encoding TS1 is presented.

In the appendix, there are font tables of the mentioned fonts.

1 Introduction

In 1990 at the TUG meeting at Cork, Ireland, the european TEX user groups agreed on

a 256 character encoding supporting many european languages with latin writing. This

encoding is both an internal encoding for TEX and a font encoding. This double nature

is a consequence of the fact, that both kind of encodings cannot be entirely separated

within TEX.

The design goals of the Cork encoding are to allow as many languages as possible to

be hyphenated correctly and to guarantee correct kerning for those languages. Therefore

it includes many ready-made accented letters.

It also includes some innovative features, which have not become very popular yet,

though they deserve to become so. First to mention is a special, zero width invisible

character, the compound word mark (cwm). The second is the separation of the two

characters <hyphen> and <hyphenchar>. By appropriate design of the hyphenchar

glyph, hanging hyphenation can be achieved.

A group around Norbert Schwarz started the implementation of a Cork encoded

font in METAFONT in 1990. The �rst release was published in 1990, called dc fonts.

It was stated that after some improvement and bug �xing they should be �nally named

239

240 J�org Knappen

ec fonts. A second release was made public in 1993. Unfortunately Norbert Schwarz

has not the time to complete the ec fonts, and he has resigned from the work at the

DANTE meeting at M�unster in spring 1994. The author of this article now coordinates

the further development of the ec fonts.

In the meantime, other Cork encoded fonts have become available: The Malvern

fonts, a sans serif face, are implemented with METAFONT and contain the full Cork

character set. Many commercial faces are available in the Cork encoding implemented

as virtual fonts with the fontinst package by Alan Je�rey [4]. Those fonts lack some

characters, especially the dotless j and the letter eng, which are replaced with black

blocks and produce warning messages. The reason is, that there are no glyphs for them

in the basic fonts and it turns out to be hard to fake them.

The need for a text companion font was �rst articulated in the discussion of new

256 character mathematical fonts in 1993. In order to achieve a better orthogonality

between text and math, some text symbols stored in the math fonts should be moved to

the text companion fonts.1 The text companion fonts are also the ideal place to store

some new characters, like currency symbols.

Users of commercial fonts with expert sets want to access the complete set of glyphs

provided. Again, a text companion font is the apropriate place to store those glyphs.

2 Improvements to the DC fonts

2.1 Accents

In good typography, the accent marks should look di�erent for capitals and lowercase

letters respectively. The accent over a capital should be of a `
at' design, while the

accent on a lowercase letter should be `steep'. The Computer Modern fonts by D.E.

Knuth only have steep accents, well made for lowercase letters. The accented capitals

grow too tall, leading to uneven line spacing.

�o�x �O�X

Figure 1: Letters with acute accent in the cmr font

There are no readily accented letters provided which leads to problems with proper

hyphenation and kerning. However, the
oating accent approach guarantees the consis-

tency of all accented letters.

With the version 1.1 of the dc fonts, the situation is di�erent. We have readily

designed accented letters for all languages included in the ISO standards 8859-1 and

8859-2. If an `exotic' accented letter is needed, it does not �t to the provided ones.

1. The archives of the math-font-discuss mailing list are available for ftp on ftp.cogs.susx.ac.uk in

directory pub/tex/mathfont.

The Cork encoded DC fonts and the text companion symbol fonts 241

ó�x Ó�X

Figure 2: Letters with acute accent in the dcr font (v 1.1)

Note that the
oating acute accent is the same for capitals and lowers, but di�erent

from both, being even steeper than the lowercase one.

With the version 1.2 of the dc fonts, all inconsistencies have gone. The accents

are di�erent between capitals and lowers as they should be, and
oating accents can be

applied in a consistent manner.

ó�x Ó�X

Figure 3: Letters with acute accent in the dcr font (v 1.2)

Since the Cork encoding does only provide one slot for each accent, the capital acute

accent is taken from the text companion font tcr. This is possible, because TEX allows

cross-font accenting.

The acute accent and the readily accented letters were taken with kind permission

of the authors from the polish pl fonts [3], which provide the highest available quality

for these shapes.

The hungarian double acute accent and the grave accent follow the design of the

acute accent.

2.2 Quotation marks

The design of quotation marks provides another challenge to the ec fonts. In the

Computer Modern fonts, they are optimised to english usage.

\ "

Figure 4: Quotation marks in the cmr font

They lie asymmetrically in their boxes, which widens the space before and after a

quotation. However, this kind of design produces a disaster, if the same english opening

quotation mark is used as a german or polish closing quotation mark. Currently, macros

have to compensate for this.

In the dc fonts v 1.2, the quotation marks are lying symmetrically in a tighter box,

the additional space is generated using kerning against the boundarychar.

242 J�org Knappen

� �

Figure 5: Quotation marks in the dcr font (1.2)

The boundarychar feature was introduced with TEX3 and METAFONT2, it is

reasonable to assume that nowadays every TEX user has access to these or later versions.2

2.3 Miscellaneous

The shapes for polish letters are now taken from the polish pl font, leading to improved

shapes on the ogoneked letters and the crossed l.

¡ ¦ ª » � � � �

Figure 6: Polish special letters in the dcr font (1.2)

With the help of the czechoslovak TEX users' group, the shapes of czech and slovak

special letters [7] have been improved, too.

¤ ¥ © ´ � � � �

Figure 7: Some czech and slovak special letters in the dcr font (1.2)

The height of umlaut dots has been adjusted to the value contributed by the

czechoslovak group (�a occurs in slovak), the value used in the version 1.1 of the dc

fonts was considered too low even by german users.

�a ä ä

Figure 8: The letter �a in cmr, dcr v1.1, and dcr v1.2

The hyphenchar is now designed to hang out of its bounding box, thus allowing for

hanging hyphenation.

The release 1.2 also contains a new shape, a classical serif italic font. It was

already prepared in version 1.1, but no parameter and driver �les were present for it.

2. Maybe it was not a reasonable assumption in 1990, when the Cork encoding was born and the above

mentioned versions were brand new.

The Cork encoded DC fonts and the text companion symbol fonts 243

- �

Figure 9: Hyphen and hyphenchar with their bounding box

It is an italic with upper serifs instead of ingoing hooks. This paragraph is typeset the

dcci font to show its appearance.

3 The TC fonts

3.1 A text symbol encoding

Over the years, many reasons have accumulated for a new text symbol encoding. There

are some text symbols stashed in the math fonts, the footnote marks (�, x, {, y, z,

k) and the bullet (�) are among them. In 256-character math fonts they should not be

preserved, but moved to a text symbol encoding.

* § ¶ � � �

Figure 10: Footnote symbols from the tc font

The ISO standards 8859-1 (Latin 1), 8859-2 (Latin 2), and 6937 contain several

custom signs. It will be easier to typeset text encoded according to those standards if

the neccessary symbols were easily accessible through a text symbol font.

£ $ ¢ ¥ ¤ � � �

Figure 11: Some currency signs from the tc font

Finally, I wanted to have di�erent style accents for capitals and lowercase letters.

Since the Cork encoding does not have the space for another thirteen accent glyphs, I

decided to have the lowercase accents which are far more often needed in the dc fonts,

and to put the accents for capital letters into the text companion fonts.

The users of commercial font also want to access all glyphs stored in those fonts.

Since most of those glyphs are textual, they all should be included into a text symbol

font encoding.

3.2 The font encodings TS1 and TSA

For mainly technical reasons, I think the candidates for a text symbol encoding should

be distributed over two fonts, their encoding named TS1 and TSA respectively. There

244 J�org Knappen

are important di�erences between the technology supported by METAFONT and TEX

compared to the path most commercial font suppliers choose.

The computer modern family of fonts supports the notion of a designsize, i. e. there

are subtle di�erences between the shapes at di�erent point sizes as illustrated in the

next section. TEX is able to raise and lower letters, thus it does not need a readily raised

digit to produce a superscript. It can also produce nice fraction using a macro from the

TEXbook, exercise 11.6, like 1/2, 1/4, and 1/6.

Most commercial vendors took the easier path, their fonts come in only one size and

are scaled up and down to the other sizes. Thus, a small superscript does not look right,

and to compensate this a readily designed superscript is added to the fonts. A subscript

is also added, because earlier text processors weren't able to raise or lower letters. For

similar reasons, fraction glyphs were provided, or fractions were constructed out of a

sequence <superscript digit> <fraction> <subscript digit>, where <fraction> is a

special slash to construct fractions.

On the other hand, it is almost impossible to follow this path with TEX and META-

FONT: The size of the superscripts can be in
uenced by TEX macros, and therefore there

is no unique `virtual designsize' for ready-made superscripts.

The selection of superscripts o�ered by commercial vendors is at the moment rather

sparse, many often needed ones are lacking.

2
i�eme

5
th

M
c

Figure 12: Some superscript letters missing in expert fonts

Therefore the rule of thumb for the distribution of glyphs is the following: Put all

glyphs which can be conveniently made with METAFONT and are needed with TEX into

the encoding TS1, and put the remaining glyphs, mainly superscripts and subscripts,

into the encoding TSA. There are some duplications and deviations from this rule of

thumb, e. g. superscript 1, 2, and 3 are part of ISO 8859-1, thus they occur in TS1 as

well as in TSA.

3.3 Contents of the TS1 encoding

In the �rst thirteen positions are accents for capital letters. There are two new dashes

with a length between endash and emdash, the longer of them corresponding to

<threequartersemdash>. Oldstyle digits are included to facilitate the building of vir-

tual fonts with oldstyle digits instead of the usual ones. The genealogical symbols from

Knuth's gen fonts are included, as well as the remainder of the latin 1 and latin 2 stan-

dards. ISO-6937 contributes the arrows, the musical note, the trademark sign, and the

Ohm sign, the mho sign is added for consistency. The two always troublesome glyphs $

and $ have found their �nal rest in the TS1 encoding. Note, that there are also oldstyle

The Cork encoded DC fonts and the text companion symbol fonts 245

variants of dollar and cent provided, as well as a lira sign di�erent from pounds. Ac-

cording to the dutch authority Karel Treebus, the abbreviation for dutch guilders should

just be the letter `f' out of the current font, therefore the
orin sign is designed to be

identical to the letter f in the tc fonts. Other designers may not agree here.

There should be a kern between <degree> and <C> to form a proper centigrade

sign. Since kerning is impossible (the two characters live in di�erent fonts) a ready-made

centigrade symbol is included. Last, but not least, a ready-made per thousand sign is

included.

The assigned code points of the TS1 encoding are listed in appendix A of this paper.

A font table of the TS1 encoded font tcr1000 can be found in appendix B.

4 Using the full power of the DC fonts

The dc fonts support very strongly the notion of a design size. Just as in the famous

example sentence \Ten point type is di�erent frommagnified five point type"

[6] exempli�ed, linear scaling a font over a large range of sizes gives wrong results. In

fact, scaling should be avoided at all. Instead, the designsized fonts should be used.

The �le dcstdedt.tex generates small parameter �les for the standard plain TEX

and LATEX sizes. However, a class author may want to use unconventional sizes such as

9.5pt.

4.1 A new naming scheme

Here the problem occurs, how should a font with designsize of 9.5pt should be uniquely

named. Of course, a completely general soulution to the problem, which is also compat-

ible with the famous 8+3-restriction of some operating systems, cannot be given. For

example, any scheme will fail to name dcr with a designsize of 3.14159 dd.

Let us make some reasonable assumptions: The designsize is given in usual TEX's

points (1/72.27 inch), it is less then 100pt, and the accuracy is two trailing digits (the

same level of accuracy is employed by plain TEX and LATEX). Under these circumstances,

the designsize can be given by four digits, the canonical sizes are represented by 0500,

0600, 0700, 0800, 0900, 1000, 1095, 1200, 1440, 1728, 2074, and 2488. The largest

possible design size would be 9999 or 99.99pt.

We are left with four (or less) letters for the speci�cation of the font. Here we can

resort to the scheme described by Knuth [5] which compressed the Computer Modern

font names to six characters, two of them denoting the design size.3

With this scheme, the font name consists of the two letters `dc', one or two let-

ters denoting the weight and shape, and four digits giving the design size. Most font

names are unchanged except for the new way of specifying the designsize. Some names

3. This scheme was given by the rule: \Take the �rst three character + the last three characters to get an

unique font name".

246 J�org Knappen

which are contracted include dcbi < dcbxti, dcsi < dcssi, and dcsq < dcssqi. An

irregularity occurs through dcqi < dcssqi.

4.2 Exploiting NFSS2

With the New Font Selection Scheme (NFSS2) of LATEX2", it is in principle possible to

load the dc fonts at arbitrary size without resorting to magni�cation.

To achieve this, the following is necessary: Test, if the tfm �le for the requested size

is already available. If not, isue a warning a write an entry to a �le missing.bat. Proceed

with a magni�ed font, but write a note to the terminal, that the missing font should

be generated. This should be progammable in NFSS2, the main di�culty is testing the

existence of the tfm �le.

There are two possible methods, both having their drawbacks.

1. Actually try to load the font, but do this in \batchmode to skip the two errors that

could occur. The di�culty is to switch back to the original interaction mode after

this. The failure can be detected by looking at some fontdimension.

2. Softly open the tfm �le with \openin. Here you need to specify the path, where the

tfm �le is to be searched, except your TEX implementation also searches TEXFONTS

if you try to \openin a �le. This needs an additional entry in the LATEX2" �le

texsys.cfg.

At the time this paper is written, no decision on the �nal algorithm has beeen made,

nor does a test implementation exist.

5 Outlook and summary

5.1 Changes to the Cork encoding?

In past years, several people have suggested some changes to the Cork encoding to

support one other language, which is currently not completely supported, and to take

out one letter or some symbols currently in the Cork encoding. Language missed by just

one letter include catalan, azeri, and sami.

On the other hand, the Cork encoding has now really caught on and has a growing

user base. It is not only implemented in two METAFONT font families (dc fonts and

Malvern fonts), but also in virtual fonts for many popular commercial faces. It has

become the T1 encoding of LATEX2" and is well documented in the LATEX2" literature [2].

Any change to the encoding would divide the user base. It would also slow down the

completion of the dc fonts.

Therefore I suggest not to change the Cork encoding anymore. There are more font

encodings (real or virtual) for latin fonts to come. Presently there are T1, the Cork

encoding covering latin-1 and latin-2, and T4, the fc encoding for african latin. At least

three more are needed, one for vietnamese which has plenty special letters, one covering

The Cork encoded DC fonts and the text companion symbol fonts 247

latin-3 and latin-6 (catalan, maltese, esperanto, baltic languages, sami)4, one for celtic

languages (welsh, irish gaelic, breton, scotish gaelic), and maybe a fourth one for native

american languages.

5.2 Suggestions to "-TEX

There are a few points, where an extension to the current TEX is suggested. The �rst

point is the wish to switch between modern and oldstyle digits easily. At the moment,

this can be done in math mode by just changing ten \mathcodes. However, in text

mode one has either to tag each number or digit (including those generated by macros)

explicitly as oldstyle, or to resort to virtual fonts, replacing the complete set of text

fonts. Both solutions look very much like overkill to me, a decent \textcode command

would be helpfull here.

Second, TEX can controll the space (both the extension and its stretch or shrink)

by the help of the spacefactor. However, there is no mean to in
uence the space before

a special character.

5.3 Promotion from DC to EC

The dc font should be promoted to the than �xed ec fonts as soon as possible, but not

sooner as possible. As long as I am able to do, I'll stay the contact for bug �xes to the

dc fonts. Hopefuly in about a year, we can see the advent of the ec fonts.

References

[1] J.S. Bie�n. Polish texts in multilingual environments (a case study). Proceedings

of the eigth european TEX conference, Gda�nsk, Poland, September 1994.

[2] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX companion. Addison-

Wesley, Reading, Mass, 19941.

[3] B. Jackowski and Ry�cko M. Polishing TEX: From ready to use to handy to use.

Proceedings of the seventh european TEX conference, Prague, Czechoslovakia,

September 1992.

[4] A. Je�rey. Building virtual fonts with fontinst. File bville.tex, distributed with

fontinst through the CTAN archives, 1994.

[5] D.E. Knuth. Computers and Typesetting, Vol. E: The Computer Modern Fonts.

Addison-Wesley, Reading, Mass, 1986.

[6] D.E. Knuth. Computers and Typesetting, Vol. A: The TEXbook. Addison-Wesley,

Reading, Mass, 19899.

[7] J. Zlatu�ska. Automatic generation of virtual fonts with accented letters for TEX.

Proceedings of the sixth european TEX conference, Paris, France, September 1991.

4. To make an encoding covering these languages was proposed by Janusz Bie�n at Gda�nsk 1994 [1].

248 J�org Knappen

Appendix A: The TS1 encoding

position description

(octal)

Accents for capital letters

000 grave

001 acute

002 circum
ex

003 tilde

004 umlaut

005 hungarian

006 ring

007 hachek

010 breve

011 macron

012 dot above

013 cedilla

014 ogonek

Miscellaneous

015 base single straight quote

022 base double straight quotes

025 twelve u dash

026 three quarters emdash

030 left pointing arrow

031 right pointing arrow

040 blank symbol

044 dollar sign

047 straight quote

052 centered star

057 fraction

Oldstyle digits

060 oldstyle digit 0

061 oldstyle digit 1

062 oldstyle digit 2

063 oldstyle digit 3

064 oldstyle digit 4

065 oldstyle digit 5

066 oldstyle digit 6

067 oldstyle digit 7

070 oldstyle digit 8

071 oldstyle digit 9

Miscellaneous

115 mho sign

127 ohm sign

136 arrow up

137 arrow down

140 backtick (ASCII grave)

142 born

144 died

154 leaf

155 married

156 musical note

176 low tilde

177 short equals

TS1-symbols

200 ASCII-style breve

201 ASCII-style hachek

202 double tick (ASCII double acute)

203 double backtick

204 dagger

205 ddager

206 double vert

207 per thousand

210 bullet

211 centigrade

212 dollaroldstyle

213 centoldstyle

214
orin

215 colon

216 won

217 naira

220 guarani

221 peso

The Cork encoded DC fonts and the text companion symbol fonts 249

222 lira

223 recipe

224 interrobang

225 gnaborretni

226 dong sign

227 trademark

Symbols from ISO-8859-1 (latin-1)

242 cent

243 sterling

244 currency sign

245 yen

246 broken vertical bar

247 section sign

250 high dieresis

251 copyright

252 feminine ordinal indicator

254 logical not

256 circled R

257 macron

260 degree sign

261 plus-minus sign

262 superscript 2

263 superscript 3

264 tick (ASCII-style acute)

265 micro sign

266 pilcrow sign

267 centered dot

271 superscript 1

272 masculine ordinal indicator

274 fraction one quarter

275 fraction one half

276 fraction three quarters

326 multiplication sign (times)

366 division sign

250 J�org Knappen

Appendix B: Font tables

Font table of tcr1000

The layout of the text companion font tcr1000. The table shows the shapes implemented

on June 30, 1995. Some more characters will be added to the �rst release.

�0 �1 �2 �3 �4 �5 �6 �7

�00x � � � � � � � �
}0x

�01x � 	
 � �

�02x � � �
}1x

�03x � �

�04x $ '
}2x

�05x * /

�06x 0 1 2 3 4 5 6 7
}3x

�07x 8 9

�10x
}4x

�11x M

�12x W
}5x

�13x ^ _

�14x ` b c d
}6x

�15x l m n

�16x
}7x

�17x ~ �

�20x � � � � � � � �
}8x

�21x � � � � �

�22x � �
}9x

�23x

�24x ¢ £ ¤ ¥ ¦ §
}Ax

�25x ¨ ¬ ¯

�26x ± ´ µ ¶ ·
}Bx

�27x

�32x Ö
}Dx

�33x

�36x ö
}Fx

�37x

}8 }9 }A }B }C }D }E }F

The Cork encoded DC fonts and the text companion symbol fonts 251

Font table of dcr1000

This table shows the font dcr1000. The encoding is LATEX2"'s T1 encoding. The

compound word mark in position �027 is an invisible character of zero width.

�0 �1 �2 �3 �4 �5 �6 �7

�00x � � � � � � � �
}0x

�01x � 	
 � �
 � �

�02x � � � � � � � �
}1x

�03x � � � � � � � �

�04x ! " # $ % & '
}2x

�05x () * + , - . /

�06x 0 1 2 3 4 5 6 7
}3x

�07x 8 9 : ; < = > ?

�10x @ A B C D E F G
}4x

�11x H I J K L M N O

�12x P Q R S T U V W
}5x

�13x X Y Z [\] ^ _

�14x ` a b c d e f g
}6x

�15x h i j k l m n o

�16x p q r s t u v w
}7x

�17x x y z { | } ~ �

�20x � � � � � � � �
}8x

�21x � � � � � � � �

�22x � � � � � � � �
}9x

�23x � � � � � � � �

�24x ¡ ¢ £ ¤ ¥ ¦ §
}Ax

�25x ¨ © ª « ¬ ­ ® ¯

�26x ° ± ² ³ ´ µ ¶ ·
}Bx

�27x ¸ ¹ º » ¼ ½ ¾ ¿

�30x À Á Â Ã Ä Å Æ Ç
}Cx

�31x È É Ê Ë Ì Í Î Ï

�32x Ð Ñ Ò Ó Ô Õ Ö ×
}Dx

�33x Ø Ù Ú Û Ü Ý Þ ß

252 J�org Knappen

�34x à á â ã ä å æ ç
}Ex

�35x è é ê ë ì í î ï

�36x ð ñ ò ó ô õ ö ÷
}Fx

�37x ø ù ú û ü ý þ �

}8 }9 }A }B }C }D }E }F

Font table of fcr1000

The aFrican Computer modern font fcr10. The fc encoding is now LATEX2"'s T4

encoding.

�0 �1 �2 �3 �4 �5 �6 �7

�00x � � � � � � � �
}0x

�01x � 	
 � �
 � �

�02x � � � � � � � �
}1x

�03x � � � � � � � �

�04x ! " # $ % & '
}2x

�05x () * + , - . /

�06x 0 1 2 3 4 5 6 7
}3x

�07x 8 9 : ; < = > ?

�10x @ A B C D E F G
}4x

�11x H I J K L M N O

�12x P Q R S T U V W
}5x

�13x X Y Z [\] ^ _

�14x ` a b c d e f g
}6x

�15x h i j k l m n o

�16x p q r s t u v w
}7x

�17x x y z { | } ~ �

�20x � � � � � � � �
}8x

�21x � � � � � � � �

�22x � � � � � � � �
}9x

�23x � � � � � � � �

�24x ¡ ¢ £ ¤ ¥ ¦ §
}Ax

�25x ¨ © ª « ¬ ­ ® ¯

�26x ° ± ² ³ ´ µ ¶ ·
}Bx

�27x ¸ ¹ º » ¼ ½ ¾ ¿

The Cork encoded DC fonts and the text companion symbol fonts 253

�30x À Á Â Ã Ä Å Æ Ç
}Cx

�31x È É Ê Ë Ì Í Î Ï

�32x Ð Ñ Ò Ó Ô Õ Ö ×
}Dx

�33x Ø Ù Ú Û Ü Ý Þ ß

�34x à á â ã ä å æ ç
}Ex

�35x è é ê ë ì í î ï

�36x ð ñ ò ó ô õ ö ÷
}Fx

�37x ø ù ú û ü ý þ �

}8 }9 }A }B }C }D }E }F

Font table of wnrir10

The Washington Romanised Indic font wnrir10. It is designed for typesetting sanskrit and

other indic languages in scienti�c transscription. It is available from the CTAN archives

in tex-archive/fonts/wnri.

�0 �1 �2 �3 �4 �5 �6 �7

�00x � � � � � � � �
}0x

�01x � 	
 � �
 � �
�02x � � � � � � � �

}1x
�03x � � � � � � � �
�04x ! " # $ % & '

}2x
�05x () * + , - . /
�06x 0 1 2 3 4 5 6 7

}3x
�07x 8 9 : ; < = > ?
�10x @ A B C D E F G

}4x
�11x H I J K L M N O
�12x P Q R S T U V W

}5x
�13x X Y Z [\] ^ _
�14x ` a b c d e f g

}6x
�15x h i j k l m n o
�16x p q r s t u v w

}7x
�17x x y z { | } ~ �
�20x � � � � � � � �

}8x
�21x � � � � � � � �
�22x � � � � � � � �

}9x
�23x � � � � � � � �

254 J�org Knappen

�24x ¡ ¢ £ ¤ ¥ ¦ §
}Ax

�25x ¨ © ª « ¬ ­ ® ¯
�26x ° ± ² ³ ´ µ ¶ ·

}Bx
�27x ¸ ¹ º » ¼ ½ ¾ ¿
�30x À Á Â Ã Ä Å Æ Ç

}Cx
�31x È É Ê Ë Ì Í Î Ï
�32x Ð Ñ Ò Ó Ô Õ Ö ×

}Dx
�33x Ø Ù Ú Û Ü Ý Þ ß
�34x à á â ã ä å æ ç

}Ex
�35x è é ê ë ì í î ï
�36x ð ñ ò ó ô õ ö ÷

}Fx
�37x ø ù ú û ü ý þ �

}8 }9 }A }B }C }D }E }F

Font table of wnpsr10

The Washington Puget Salish font wnpsr10. It is designed for the typesetting of american

indian languages. The layout is rather chaotic, because it mimics the layout of some older

font. It is available from the CTAN archives in tex-archive/fonts/wnri.

�0 �1 �2 �3 �4 �5 �6 �7

�00x � � � � � � � �
}0x

�01x � 	
 � �
 � �
�02x � � � � � � � �

}1x
�03x � � � � � � � �
�04x ! " # $ % & '

}2x
�05x () * + , - . /
�06x 0 1 2 3 4 5 6 7

}3x
�07x 8 9 : ; < = > ?
�10x @ A B C D E F G

}4x
�11x H I J K L M N O
�12x P Q R S T U V W

}5x
�13x X Y Z [\] ^ _
�14x ` a b c d e f g

}6x
�15x h i j k l m n o
�16x p q r s t u v w

}7x
�17x x y z { | } ~ �

The Cork encoded DC fonts and the text companion symbol fonts 255

�20x � �
}8x

�21x � � � � �
�22x � � � � � �

}9x
�23x

�24x ¡ ¢ £ ¤ ¥ ¦ §
}Ax

�25x ¨ © ª « ¬ ­ ® ¯
�26x ° ± ² ³ ´ µ ¶ ·

}Bx
�27x ¸ ¹ º » ¼ ½ ¾ ¿
�30x Á Â Ã Ä Å Æ Ç

}Cx
�31x È É Ê Ë Ì Í Î Ï
�32x Ð Ñ Ò Ó Ô Õ Ö ×

}Dx
�33x Ø Ù Ú Û Ü Ý Þ ß
�34x à á â ã ä å æ ç

}Ex
�35x è é ê ë ì í î ï
�36x ð ñ ò ó ô õ ö ÷

}Fx
�37x ø ù ú û ü ý þ

}8 }9 }A }B }C }D }E }F

A METAFONT{EPS interface

Bogus law Jackowski

BOP s.c.

Gda~nsk

Poland

ekotp@univ.gda.pl

Do not explain too much.

W. Strunk Jr. and E.B. White,
\The Elements of Style"

1 Introduction

TEX is not a lion, TEX is an octopus: : : This sounds like a heresy, but it is my deepest

convincement that one of the most wonderful features of the TEX/METAFONT sys-

tem is its openness, i.e., the capability of collaboration with other systems. Hence the

association with an octopus:

The paper illustrates this statement by presenting a brief description of an interface

METAFONT-to-POSTSCRIPT, MFTOEPS. The kernel of the package is a METAFONT

257

258 Bogus law Jackowski

program (MFTOEPS.MF) which provides necessary de�nitions for translating the descrip-

tion of graphic objects from METAFONT to POSTSCRIPT. The POSTSCRIPT code is

written to a log �le. It can be extracted from the log �le either manually or with a help

of additional utilities. There are two programs in the package for performing this task:

an AWK program and a TEX program, the latter a bit slower but more universal.

The POSTSCRIPT �les (precisely, Encapsulated POSTSCRIPT �les) produced by

MFTOEPS are readable by some popular graphic programs, namely, by Adobe Illustra-

tor (Macintosh and PC compatibles), CorelDRAW! (PC compatibles), and Fontographer

(Macintosh and PC compatibles). In other words, graphic objects programmed using

METAFONT can be further processed by these programs.

It should be stressed that not the idea of employing METAFONT to produce POST-

SCRIPT code is important here. Much better tool for this purpose is J. D. Hobby's META-

P OS T. This is a possibility of further processing of the objects generated by MFTOEPS

which makes this package worthy of mention.

2 Overview of the MFTOEPS package

The MFTOEPS.MF program contains the de�nitions of the following macros which are

meant to be used for generating EPS �les:

eps_mode_setup fix_line_width

write_preamble fix_line_join

write_postamble fix_line_cap

find_BB fix_miter_limit

set_BB fix_dash

fill_C fix_fill_cmyk

draw_C fix_draw_cmyk

clip_C

Obviously, not all possibilities of POSTSCRIPT are exploited, but the main idea was to pro-

vide a simple tool for producing output \eatable" by programs which are not POSTSCRIPT

interpreters. Therefore only a small subset of the POSTSCRIPT language can be taken

into account. Nevertheless, these 15 commands are enough to produce innumerable

variety of graphic objects.

METAFONT programs using MFTOEPS have the following structure:

1 input mftoeps;

2 \input eps_mode_setup; % instead of mode_setup

3 < METAFONT code >

4 find_BB <list of paths>;

5 write_preamble jobname;

6 < METAFONT code containing fill_C, draw_C, clip_C, etc.>

7 write_postamble;

8 end.

A METAFONT{EPS interface 259

The structure seems straightforward, except for some notational details which will be

explained momentarily. Perhaps only the fourth line needs a few remarks. A properly

formed EPS �le should contain the coordinates of the corners of the bounding box in

a comment line at the beginning of the �le. Macro write_preamble needs to know

the respective coordinates, as it is responsible for generating the header of an EPS �le.

Macro find_BB simply prepares the data for write_preamble.

As you can see, using the plain beginchar and endchar commands is not essential,

although usually it is convenient to make use of them.

Synopsis of the interface of the MFTOEPS package

Conventions: In the following I shall use words number, pair, string, and path as an ab-

breviation for numeric expression, pair expression, string expression, and path expression,

respectively. The angle brackets, h and i, used for marking parameters of macros, are

\meta-characters," i.e., they do not belong to the METAFONT code.

COMMAND:

eps_mode_setup

USAGE:

eps_mode_setup <an optional number (0 or 1)>;

REMARKS:

This command should be used instead of the usual mode_setup command. The forms

eps_mode_setup and eps_mode_setup 1 are equivalent. One of them (preferably the

former one) should be used for normal processing, i.e., for generating EPS �les. Invoking

eps_mode_setup 0 is meant primarily for testing purposes and is supposed to be used

by experienced programmers who know what they are doing.

COMMAND:

write_preamble

USAGE:

write_preamble <string>;

REMARKS:

This command initializes the process of writing of the POSTSCRIPT code. The string

expression is the name (without extension) of the resulting EPS �le; the extension is

always EPS. METAFONT is switched to the batchmode in order to avoid slowing down

the process by writing mess(ages) to the terminal. The inspection of a log �le is thus

highly recommended.

260 Bogus law Jackowski

COMMAND:

write_postamble

USAGE:

write_postamble;

REMARKS:

This command ends the writing of the PS code, switches METAFONT back to the

errorstopmode, and performs necessary \last minute" actions (see below).

COMMANDS:

set_BB find_BB reset_BB

USAGE:

set_BB <four numbers or two pairs separated by commas>;

find_BB <a list of paths separated by commas>;

reset_BB;

REMARKS:

Commands set_BB or find_BB should be invoked prior to invoking write_preamble.

set_BB sets the coordinates of the corners of the bounding box of a graphic object; it is

useful when the bounding box of a graphic object is known in advance or if it is required

to force an arti�cial bounding box. find_BB computes the respective bounding box for

a list of paths; if several find_BB statements are used, the common bounding box is

calculated for all paths that appeared in the arguments. The result is stored in the vari-

ables xl_crd, yl_crd, xh_crd, and yh_crd. There are two functions, llxy and urxy,

returning pairs (xl_crd,yl_crd) and (xh_crd,yh_crd), respectively. The last com-

mand, reset_BB, makes xl_crd, yl_crd, xh_crd, and yh_crd unde�ned (the initial

situation); reset_BB is performed by the write_postamblemacro, which is convenient

in the case of generating several EPS �les in a single METAFONT run.

COMMANDS:

fill_C draw_C

USAGE:

fill_C <a list of paths separated by commas>;

draw_C <a list of paths separated by commas>;

REMARKS:

These commands are to be used instead of the usual METAFONT fill and draw ones.

They cause that a list of paths followed by the POSTSCRIPT operation eofill (fill_C)

or stroke (draw_C) is translated to a POSTSCRIPT code. The list of paths constitutes

a single curve in the sense of POSTSCRIPT.

A METAFONT{EPS interface 261

COMMAND:

clip_C

USAGE:

clip_C <a list of paths separated by commas, possibly empty>;

REMARKS:

The macro clip_C with a non-empty parameter works similarly to the fill_C com-

mand, except that the eoclip operator is issued instead of eofill. This causes an

appropriate change of the current clipping area. According to POSTSCRIPT's principles,

the resulting area is a set product of the current clipping area and the area speci�ed

in the argument of the eoclip command. The empty parameter marks the end of the

scope of the most recent clip_C command with a non-empty parameter. In other words,

nested clip_C commands form a \stack" structure. If needed, the appropriate number

of parameterless clip_C commands is issued by the write_postamblemacro, thus the

user needs not to care about it. WARNING: �les produced using clip_C are interpreted

properly by Adobe Illustrator (provided paths directions are de�ned properly) but not by

CorelDRAW! (ver. 3.0).

COMMANDS:

fix_line_width fix_line_join

fix_line_cap fix_miter_limit

fix_dash

USAGE:

fix_line_width <a non-negative number (dimension)>;

fix_line_join <a number (0, 1 or 2)>;

fix_line_cap <a number (0, 1 or 2)>;

fix_miter_limit <a number � 1 (dimension)>;

fix_dash (<a list of numbers (dimensions) separated by commas, possibly

empty>) <a number (dimension)>

REMARKS:

These command are to be used in connection with the draw_C command. The command

fix_line_width �xes the thickness of the outline. The other four commands cor-

respond to POSTSCRIPT operations setlinejoin, setlinecap, setmiterlimit, and

setdash (see \POSTSCRIPT Language Reference Manual" for details). All commands

should be used after write_preamble, as write_preamble sets the default thickness

(0.4 pt), default line join (1), default line cap (1), default miter limit (10 bp), and a

solid line as a default for stroking (fix_dash () 0).

262 Bogus law Jackowski

COMMANDS:

fix_fill_cmyk fix_draw_cmyk

USAGE:

fix_fill_cmyk <four numbers separated by commas>;

fix_draw_cmyk <four numbers separated by commas>;

REMARKS:

These commands de�ne the colors of the interiors of graphic objects (fix_fill_cmyk)

and colors of outlines (fix_draw_cmyk) using cyan-magenta-yellow-black model (the

basic model of the MFTOEPS package). They should be used after write_preamble

(because write_preamble de�nes the black color as a default for both macros) and

prior to invoking the corresponding fill_C and draw_C commands. There are also (just

in case) macros fix_fill_rgb and fix_draw_rgb using red-green-blue model; the ar-

gument to both macros is a triple of numbers. (The user can control the process of

conversion from RGB to CMYK by the rede�nition of macros under_color_removal

and black_generation.) The numbers forming the arguments of the macros are sup-

posed to belong to the interval [0..1].

Besides the �fteen basic macros there are two functions and two control variables

that may be of some interest for a virtual user of the MFTOEPS package:

ADDITIONAL FUNCTIONS:

pos_turn neg_turn

USAGE:

pos_turn (<path>)

neg_turn (<path>)

REMARKS:

Each function returns the path passed as the argument, except that the orientation

of the path is changed, if necessary: pos_turn returns paths oriented anti-clockwise,

neg_turn|oriented clockwise. This may be useful for creating pictures which are to be

processed further by Adobe Illustrator, because this program is sensitive to the orienta-

tion of paths.

CONTROL VARIABLE:

yeseps

REMARKS:

No EPS �le will be generated unless the variable yeseps is assigned a de�nite value. It

is advisable to set this variable in a command line (see section \Examples").

A METAFONT{EPS interface 263

CONTROL VARIABLE:

testing

REMARKS:

If the variable testing is assigned a de�nite value, the whole POSTSCRIPT code is
ushed

to the terminal, thus slowing down signi�cantly the process of generation of an EPS �le

(cf. the description of the write_preamble command).

3 Examples

All sample programs in this section are presented in extenso. The reader is not supposed

to study the code thoroughly. Nevertheless, I prefer to leave the reader to decide which

parts of the code are to be skipped.

Let us start with a trivial example of a \pure" METAFONT program:

1 beginchar(48, % ASCII code

2 2cm#, % width

3 1cm#, % height

4 0cm# % depth

5);

6 fill unitsquare xscaled w yscaled h;

7 endchar;

8 end.

The program, obviously, generates a font containing one character: a darkened rectangle

2 cm � 1 cm. In order to generate an EPS �le containing the same �gure, a few

modi�cations are necessary:

1 input mftoeps;

2 eps_mode_setup;

3 beginchar(48, % just something

4 2cm#, % width

5 1cm#, % height

6 0cm# % depth

7);

8 set_BB 0,-d,w,h; % coordinates

9 % of the corners

10 % of the bounding box

11 write_preamble "rectan";

12 fill_C unitsquare xscaled w yscaled h;

13 write_postamble;

14 endchar;

15 end.

264 Bogus law Jackowski

Four new commands appeared: eps_mode_setup, set_BB, write_preamble, and

write_postamble; moreover, fill has been replaced by fill_C. This is a usual routine

for converting an \ordinary" METAFONT program to a form suitable for generating EPS

�les. Obviously, draw should be replaced by draw_C, and filldraw|with two operations

fill_C and draw_C. In the latter case the order of operations fill_C and draw_C is

signi�cant if the drawing and �lling colors are di�erent.

Having done this changes you can easily generate the respective EPS �le, provided

you are a DOS user. Assume that the modi�ed program is stored in the �le RECTAN.MF.

In the package MFTOEPS you will �nd a DOS batch, M2E.BAT (subdirectory PROGS),

which|perhaps after slight adjustments|can be used for this task. It is enough to write

m2e rectan

(no extension, please) from the command line in order to obtain the required

RECTAN.EPS �le. The batch makes use of AWK for extracting the POSTSCRIPT code

from the log �le. There is also an alternative batch, M2E-ALT.BAT, that employs

TEX for this purpose. In both batches METAFONT is called in the following way:

mf386 &plain \yeseps:=1; input %1

Observe the assignment yeseps:=1. In fact, assigning a de�nite (arbitrary) value to

the yeseps variable triggers the action of the generation of an EPS �le.

I hope that making scripts for other operating systems should not be extremely

di�cult. I would be very much obliged if others could contribute such scripts to the

package.

Let us consider now a more complex example. Suppose that the �le POLYGON.MF

contains the following de�nitions:

1 vardef regular_polygon(expr n) =

2 % n is the number of vertices;

3 % the diameter of the circumscribed

4 % circle is equal to 1, its centre is in the origin

5 (up % first vertex

6 for i:=1 upto n-1:

7 -- % next vertices:

8 (up rotated (i*(360/n))) endfor

9 -- cycle) scaled .5

10 enddef;

11 vardef flex_polygon(expr n,a,b) =

12 % n is the number of vertices,

13 % a, b are the angles (at vertices)

14 % between a tangent to a ``flex side''

15 % and the corresponding secant

16 save zz;

17 pair zz[]; % array of vertices

18 for i:=0 upto n-1:

A METAFONT{EPS interface 265

19 zz[i]:=up rotated (i*(360/n));

20 endfor

21 (zz[0] {(zz[1]-zz[0]) rotated a}

22 for i:=1 upto n-1:

23 .. {(zz[i]-zz[i-1]) rotated b}

24 zz[i]

25 {(zz[(i+1) mod n]-zz[i]) rotated a}

26 endfor

27 .. {(zz[0]-zz[n-1]) rotated b} cycle)

28 scaled .5

29 enddef;

The �rst function, regular_polygon, returns a closed path being|as the name

suggest|a regular polygon with a given number of vertices. The second function,

flex_polygon, returns a curve being in a sense a \generalised polygon"|the following

examples show why this epithet is adequate:

1 2 3

4 5

The �rst picture was generated by the following program:

1 input polygons;

2 input mftoeps;

3 eps_mode_setup;

4 beginchar(0,16mm#,16mm#,0);

5 path P[]; % ``room'' for two polygons

6 % preparing:

7 P[1]:=regular_polygon(7)

8 scaled w shifted (.5w,.5h);

9 P[2]:=flex_polygon(7,0,0)

10 scaled w shifted (.5w,.5h);

11 % exporting:

12 find_BB P[1], P[2];

13 write_preamble jobname;

14 % 25 percent of black for filling:

15 fix_fill_cmyk 0,0,0,.25;

16 fix_line_width 1pt;

266 Bogus law Jackowski

17 fill_C P1; draw_C P2;

18 write_postamble;

19 endchar;

20 end.

The remaining four �gures can be obtained by a simple modi�cation of the line 9 of the

program:

P[2]:=flex_polygon(7,-180/7,180/7) % 2

P[2]:=flex_polygon(7,45,45) % 3

P[2]:=flex_polygon(7,-45,45) % 4

P[2]:=flex_polygon(7,45,-45) % 5

These fairly trivial objects can be used for achieving not so much trivial e�ects

(METAFONT sources are included in the MFTOEPS package):

So far the examples have contained fill_C and draw_C commands with arguments

being single paths. POSTSCRIPT, contrary to METAFONT, accepts groups of paths as

a single curve. Therefore the fill_C and draw_C commands were de�ned to accept

the lists of METAFONT paths as arguments. In the resulting POSTSCRIPT code they

constitute a single object. The main reason is that such objects may contain transparent

holes. This enables achieving such e�ects as:

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

It is a transparent hole.

The graphic object was generated by the following simple program:

1 input mftoeps; eps_mode_setup;

2 w#=4cm#; h#=2cm#; define_pixels(w,h);

3 set_BB origin, (w,h);

A METAFONT{EPS interface 267

4 write_preamble jobname;

5 % 25 percent of black for filling:

6 fix_fill_cmyk 0,0,0,.25;

7 fix_line_width 1pt;

8 for oper:="draw_C", "fill_C":

9 scantokens oper

10 % outer edge:

11 fullcircle

12 xscaled w yscaled h

13 shifted (.5w,.5h),

14 % inner edge:

15 reverse fullcircle

16 xscaled .7w yscaled .7h

17 shifted (.5w,.5h);

18 endfor

19 write_postamble;

20 end.

One innocent trick was used in order to shorten the code: the loop in the combination

with the scantokens command (lines 8 and 9). It is advisable to have paths that form

transparent holes appropriately oriented|therefore the operator reverse is used line 15.

A TEX code for obtaining the above �gure is obvious: it is enough to put the picture on

the top of a text box, using, e.g., the \llap command.

Removing the command fix_fill_cmyk (line 6) and replacing the command

fill_C (line 8) by clip_C gives the opportunity of obtaining yet another e�ect:

It is a clipped text.

It is a clipped text.

It is a clipped text.

It is a clipped text.

In this case, however, the TEX code is somewhat complicated, since macros for

inclusion of an EPS �le (I use Tomas Rokicki's EPSF.TEX) embed the code of the

EPS �le into a POSTSCRIPT save { restore group. A clipping path is subjected to

such a grouping, contrary to the state of the currently painted picture. Therefore some

\special hackery is needed (the respective TEX source is included with samples in the

MFTOEPS package).

The di�erence between single and multiple paths in the context of drawing outlines

(draw_C) is meaningless.

The �nal example shows how to use clipping for generating a geometric �gure known

as \Sierpi�nski's carpet." In order to construct the \carpet" you start with a square with

a central hole being a square thrice smaller. Now you divide the �gure into nine squares

268 Bogus law Jackowski

and replace all �lled small squares with a scaled down thrice the original square. Then

you apply the same procedure to the smaller squares, an so on, ad in�nitum.

Here you have the program accomplishing this task (in�nity \equals" three):

1 input mftoeps; eps_mode_setup;

2 % ---

3 def ^ = ** enddef; % syntactic sugar

4 primarydef i // n = % ditto

5 (if n=0: 0 else: i/n fi)

6 % why not to divide by 0?

7 enddef;

8 def shifted_accordingly(expr i,j,n,D)=

9 shifted ((i//n)[0,w-D],(j//n)[0,w-D])

10 enddef;

11 % ---

12 w#=16mm#; h#=16mm#; define_pixels(w,h);

13 for N:=1,2,3: % 4, 5, 6, ..., infinity

14 set_BB 0,0,w,h;

15 write_preamble jobname & decimal(N);

16 D:=3w;

17 for n:=

18 0 for q:=1 upto N-1: , 3^q-1 endfor:

19 % i.e.:

20 % ``for n:=0, 3^1-1, ..., 3^(N-1)-1:''

21 path p[], q[]; D:=1/3D; k:=-1;

22 for i:=0 upto n: for j:=0 upto n:

23 k:=k+1;

24 p[k]=unitsquare scaled D

25 shifted_accordingly(i,j,n,D);

26 q[k]=reverse unitsquare scaled 1/3D

27 shifted (1/3D,1/3D)

28 shifted_accordingly(i,j,n,D);

29 endfor; endfor;

30 clip_C p0, q0

31 for i:=1 upto k: , p[i], q[i] endfor;

32 endfor;

33 fill_C unitsquare scaled w;

34 write_postamble;

35 endfor;

36 % ---

37 end.

A METAFONT{EPS interface 269

The program is lengthy mainly because of technical details that are not especially inter-

esting, however, there are three points worthy of comment. First, observe that a couple

of EPS �les is produced in one METAFONT run (the loop in line 13 is relevant here);

second, loops are used for forming arguments to the loop in line 18 and to the clip_C

command in line 31|it is a very useful feature of METAFONT that loops behave ex-

actly like macros; and third, observe that only once the operation fill_C is used. The

resulting EPS �les are shown in the following picture:

You may argue that such a �gure can be generated easily without clipping. True,

yet I like this approach|can you imagine a simple method for generating a \circular

carpet"

without clipping? But, on the other hand, �nding the precise bounding box for a

clipped �gure becomes a non-trivial task. You must remember, moreover, that clipping

consumes a lot of the resources of a POSTSCRIPT interpreter, thus it should be used

with a great care.

4 Final remarks

The MFTOEPS package was not devised as a competitive software for such giants like

Adobe Illustrator or CorelDRAW!. On the contrary, it can be regarded as their little ally.

Interactive programs cope not so well with tasks that bear logical structure. In such cases

METAFONT|with its wealth of programmable path operations, absent \by de�nition"

from the menus of interactive programs|is certainly a preferable tool.

One of the advantages of the applied approach is its portability|the only software

needed is METAFONT and either AWK or TEX. Another advantage is its
exibility. It is not

particularly di�cult to modify the MFTOEPS package to produce another POSTSCRIPT

dialect, if for some reason the dialect of Adobe Illustrator is inconvenient. MFTOEPS

can also be modi�ed to produce output in other lingos, e.g., HP-GL (Hewlett-Packard

Graphic Language).

There is still a lot of work to be done. Of course, every program can be improved,

but perhaps more important would be preparing a library of METAFONT routines useful

for creating objects with a vector representation.

270 Bogus law Jackowski

For example, it would be convenient to have a procedure which for a given set of

graphic objects �nds a single curve (outline) �lling of which would give the same optical

result. In other words, such a procedure would perform the task of �nding an outline for

a set union of graphic objects. Such a procedure is known as removing overlaps. The

example of the \circular carpet" (see above) illustrates a similar problem: to �nd an

outline for a set intersection of a group of graphic objects.

If the carpet is generated using clipping, the POSTSCRIPT �le contains, in fact, the

following elements:

They are partially invisible because of clipping, still they are there. In some contexts,

e.g., if the �gure is to be cut on a cutting plotter, it is crucial to replace such a multiplicity

of objects by a single object:

Note that routines for �nding the outline of a set union or a set intersection of a

group of graphic objects are not MFTOEPS-oriented. I guess that METAFONT program-

mers would appreciate having it as well METAP OS T programmers. Universal routines of

that kind are important from the point of view of the openness of the TEX/METAFONT

system, and the openness|as was already mentioned|is one of the most powerful

features of the system.

Note also that the openness of a system concerns both output and input. MFTOEPS

accomplishes the �rst part of the conjunction, but one can think also about an import

from POSTSCRIPT to METAFONT. A \prototype" of such a package is under testing. Its

kernel is the converter (written in POSTSCRIPT and using the GHOSTSCRIPT interpreter

of POSTSCRIPT) of a general POSTSCRIPT code into a canonical Encapsulated POST-

SCRIPT form; the result of such a conversion can be translated to a METAFONT program

using, e.g., AWK. This would complete a link between METAFONT and POSTSCRIPT. I

do believe that providing such links is one of the most e�cient ways towards a limitless

development of the TEX/METAFONT system.

5 Glossary

AWK a simple yet powerful batch text processor.

A METAFONT{EPS interface 271

Bounding box the smallest rectangle surrounding the glyph of a picture; coordinates

of its lower left and upper right corners (in big points) should appear in a structural

comment in a header of an EPS �le.

EPS �le Encapsulated POSTSCRIPT �le; a single-page POSTSCRIPT document; the

purpose of the EPS �le is to be included (\encapsulated") as a part of other

POSTSCRIPT programs and to exchange graphic data among applications.

Even-odd rule a rule that speci�es the interior of a (multiple) path in the following way:

if for a given point and for any ray drawn from this point to in�nity the number of

intersection points of the ray and the path is odd, the point is inside; if the number

is even, the point is outside; command eofill and eoclip operators follow this

rule.

Path orientation nodes of a closed single path are ordered; if traversing a path following

the order of its nodes results in an anti-clockwise turn(s), the path is positively

oriented, if it results in a clockwise turn(s), its orientation is negative; number of

turns (signed) is called a turning number (METAFONT) or a winding number (POST-

SCRIPT); the operators fill and clip make use of a winding number, the operators

eofill and eoclip ignore it.

TEX is a trademark of the American Mathematical Society.

METAFONT is a trademark of Addison Wesley Publishing Company.

POSTSCRIPT is a registered trademark of Adobe Systems Incorporated.

Fontographer is a registered trademark of Altsys Corporation.

Adobe Illustrator is a trademark of Adobe Systems Incorporated.

CorelDRAW! is a registered trademark of Corel Corporation.

GHOSTSCRIPT is a copyrighted product of Aladdin Enterprises.

6 Availability

The MFTOEPS package can be found at ftp.pg.gda.pl

in the directory TeX/GUST/contrib/BachoTeX95/B_Jackowski

References

[1] Adobe Systems Inc. POSTSCRIPT Language Reference Manual. Addison-Wesley,

1991.

[2] A.V. Aho, B.W. Kernighan, and P.J. Weinberger. The AWK Programming Lan-

guage. Addison-Wesley, 1988.

[3] B. Jackowski and M. Ry ko. Labyrinth of METAFONT paths in outline. conference

proceedings, EuroTEX'94, Sobieszewo, 1994.

[4] D.E. Knuth. The METAFONTbook. Addison-Wesley, 1992.

Use of TEX as database with AnyTEX

Kees van der Laan

Hunzeweg 57

9893 PB Garnwerd

The Netherlands

cgl@rc.service.rug.nl

Abstract

The use of BLUe's format databases has been treated. A new issue is introduced since the

emerge of BLUe's Format system this spring. Boolean tags can be added to for example

address.dat entries to denote �elds and their contents. Together with \search one can

easily obtain the list of names { and via these names the full entries, i.e., the addresses { of

those who have not paid their membership fee, for example.

1 Introduction

Why couple the buzzword database to TEX? What has TEX got to do with it? Vaguely

the answer is that we like to store collections of the right granularity, such as addresses,

references, copy parts, tools and formats outside of TEX { or one of its
avours { and

only borrow what we need. You don't have to pay for what you don't use. Important is

also the data integrity aspects which can be achieved via databases. We only store the

information once for use in di�erent contexts. At the heart is the process of selective

loading. The bene�ts are that next to your stable TEX formatting system, you have also

a stable TEX database tool,
1
which can be adjusted to your applications. And because

it is written in plain it can be used with AnyTEX.

But, just embracing the database approach is not enough. It also important to hide

TEXnical details of storing and have access to material in a transparent way. Let me

show you by example what can be achieved with databases as a TEXnical tool.

1. And as a consequence stable data �les. No conversions!

273

274 Kees van der Laan

2 Formats

I consider it very convenient, when I need a format, that I just can say \<formatname>

without to worry where the formats are stored, especially when I have to work on several

di�erent computers.

This is trivial as such except when we wish to have variant formats stored separately.

The e�ect of the above command is that the database, which name you can forget

about, will be searched and the requested format will be selectively loaded.

3 Tools

After having made the decision which tools should be made available by default { as

part of the kernel { and which on request { as part of a module { we have the problem

how to provide the commands such that the user does not have to worry about TEXnical

details. The tools must be transparently available. Examples are:

\beginbintree{<no>}

{<contents>}...{<no>}{<contents>}{<order>}

\endbintree

\hanoi3

\beginpascal...\endpascal

\begincrosswords...\endcrosswords

\beginbridge...\endbridge

\loadntglogo\copy\ntglogobox

etc.

For all of the above cases the user does not know whether the environment is already

available or whether it will be loaded �rst. IMHO, the user should not be aware of it,

normally.

4 Pictures

I use pictures generally twice: in the article and for a transparency. Of late I also adopted

the possibility to vary the visibility. For example the user can ask for a full-blown picture

or for the simple variant.

The idea is that we load all the pictures we will need by name, via

\picturesf\hname1i : : :\h namenig

The picture can be used, at best within math display, via the invocation

\h namexi

preceded by for example \thispicture{\fulltrue}, or with an adjustment of the

default scaling.

Use of TEX as database with AnyTEX 275

5 References

With references we have to deal with the cross-referencing aspects, and that the list of

references is usually typeset at the end. To meet this requirements I chose to specify

the references at the beginning of the script, via the references command, in the order

you wish.

\referencesf\hname1i : : :\h namenig

The e�ect of this command is that the speci�ed references will be loaded and set in

a box to be pasted up later. In order to allow cross-referencing the names are rede�ned

with the (implicit) sequential number in the speci�ed list as replacement text. A reference

to an entry in the list of references can be simply done via

\h namexi

The list of references can be put at the appropriate place via \pasteupreferences,

preceded by for example \thisreferences{...}.

6 Addresses

Usually addresses are merged with letters (and a background) to format letters. First

we have to activate the \letter format. Similarly as with references and pictures you

are requested to specify the address(es) and the addressee(s), next to other issues like

\subject and \ourreference, \yourreference.

\input blue.tex \letter % Preliminary initializations

\subject{\TeX{} for BLU}

\ourreference{22 1 95}

\yourreference{\TB}

\addresses{\knuthde}

\addressee{\knuthde} % Initializes \addresseename

% \affiliationbox

% \thisscript{\notlastscript}

\beginscript % \beginletter is an alias

\dear

First of all ...

...

\sincerely

%backmatter such as \ps, \cc

\endscript

It also possible to send out a letter to a bunch of people from the database, for example

to all in the database.
2

\input blue.tex \letter

\subject{\TeX{} for BLU}

2. The letter proper is assumed to be available in letter.tex.

276 Kees van der Laan

\yourreference{\TB}

\ourreference{1 2 95}

\lettertoall

\bye

Apart from the above it is also desirable to manipulate addresses for address labels.

Example: Search for addresses from RUSSIA in the database address.dat

In order to justify my use of the word database in relation to TEX, I provided the search

macro to browse the databases lit.dat and address.dat. Below the input has been given

of the search of address.dat for the pattern RUSSIA. The result is contained in the toks

variable \namelst. The names are also written to the log �le to give you a check for

whether the right names have been selected.

\input blue.tex

\searchfile{address}

\search{RUSSIA}

\bye

For the detailed use see the chapter Formats in the `Publishing with TEX,' user's guide.

7 And what about �elds?

As can be seen from the conventions for the database entries I did not elaborate much

on the database �elds. However, there are a few nice exceptions. First, I allow for

the markup tag \annotation with an argument. This gives us the possibility to add

annotations to the literature entries. While typesetting we can control the layout via an

appropriate de�nition of \annotation. Most of the time I use the empty de�nition, and

occasionally the identity, i.e., the argument as such is typeset.

Another nice extension is to allow for logicals, for example \ifregisteredblue,

with the functionality of a binary �eld. These `�elds' can be inserted in an address

entry if you like. For ordinary use they don't hinder. However, with the command

\search{\registeredbluetrue} all the names of entries with the �eld on will be

selected, i.e., all the registered users of BLUe's Format system. For NTG this can be

applied to monitoring the status of the payment of the subscription fee, if the treasurer

thinks of letting TEX take care of the membership database.

8 What more?

As usual goodies like those mentioned above have their price. To extend a database

needs some attention. First, because of the conventions adopted, and second, we have

to do some more, also add storage allocations and the user interface commands. The

addition of references, pictures and addresses is simple, once the convention for the

Use of TEX as database with AnyTEX 277

entries has been obeyed. For the details I refer to the appropriate places in PWT. It is

advised to verify the database for its integrity via for example making a list of entries.
3

The `Publishing with TEX,' user's guide which comes with BLUe's Format system has

been made available on the CTAN in directory /pub/archive/info/pwt/<filename>

Trivial details which are entailed by the personal format idea have been omitted as

a consequence. Remember BLUe's Format system is a personalized format. It knows

about you!

8.1 TEXnical details

The deeper aspects { like selective loading { have been treated in `BLUe's format

databases.' All the user aspects have been addressed in the earlier mentioned PWT

guide. The picture which summarizes the model has been appended for your convenience.

extras BLUe's format

Extensions

Publ. formats outer tags

blue.tex

inner tags

ppt

ref

man

gkp

crs

vrb

btb

abr

fmt.dat

Data

Bases

tools.dat
obsolete.dat
pic.dat
lit.dat
address.dat

8.2 Future work?

Perhaps, I should supply a selection macro which allows multiple queries.

3. The commands are \contentstoolsorfmt, or \contentsdatabase{<database>}, with for database

address, lit, or pic.

Indexing in TEX with AnyTEX

Kees van der Laan

Hunzeweg 57

9893 PB Garnwerd

The Netherlands

cgl@rc.service.rug.nl

Abstract

The creation of a modest index within a one-pass TEX job has been treated. In general a

proof run and a �nal run are needed.

1 Introduction

Making an index is an art. The fundamental problem is What to include in an index?

Computer-assisted indexing is not simple either. Issues are

� the markup of keywords or phrases

� to associate page numbers

� to sort and compress raw Index Reminders (IRs), and

� to typeset the result.

My approach is to create proof indexes { also called mini-indexes { for each chapter

and learn from those what should be included in the total index. I perceived this as very

pleasant in practice. Even if you prefer \makeindex for the real index, this processing

on the
y of a chapter index can be of great help.
1

This paper is essentially a chapter from the user's guide `Publishing with TEX,' which

comes with BLUe's Format system.

2 Use

I'll show how to mark up Knuth's four types of IRs, how to mark up accents, how to

mark up font switching, and how to mark up spaces as part of the IR.

1. It is said that the automatic generation of an index is a feature of the Literate Programming tools. For

LP with TEX as such, as for example Gurari's ProTEX, this on-the-
y indexing within TEX can be used.

279

280 Kees van der Laan

Example Markup, commands and resulting index

The right column has been obtained via

� \loadindexmacros, at the beginning of the script

� \sortindex, at the place of indexing, and

� \pasteupindex, for the pasteup of the index.

Types of IR

0 ^{return}

1 ^|verbatim|

2 ^|\controlsequence| < and > 1

3 ^\<syntactic quantity> bold 1

Accents ^{\'el\`eve!}, control symbol 1

font changing ^{\bf bold} \controlsequence1

and spaces ^{control\ symbol} �el�eve! 1

Control sequences Lamport and LATEX 1

^{\TeX, and \AmSTeX} TEX, and AMS-TEX 1

^{Lamport and \LaTeX} return 1{3

brackets ^{\tt< \rm and \tt>} hsyntactic quantityi 1

\newpage ^{return} verbatim 1

\newpage ^{return}%on purpose

\sortindex\pasteupindex\bye

The representation of page numbers as a range comes out automatically.

Question What makes a good index? Of course this is a million-dollar question. Let us

concentrate on the number of entries and on the number of page numbers per entry.

Which of the two extremes sketched below is the better one in your opinion? One with

many entries pointing to issues spread throughout the book { like The TEXbook ;-))),

and pushing the limits just for the imagination, an index with pointers to related work

on the internet, accessible by just clicking the mouse { or one with few page numbers

per entry?
2

Answer As usual it all depends on your application. End of answer. But { there is always

a but { the complaint I heard most about The TEXbook was that the information is

spread all over, and that it is hard to �nd what you are looking for. Therefore I consider

a few page numbers per entry bene�cial. (Let us forget about the intrinsic complexity of

the subject, certainly at the time.) BLUe's format supports scrutinizing parts of an index,

because it is so easy to generate an index per chapter on the
y. It is hardly not more

di�cult than generating a table of contents. An index per chapter can be scrutinized

more easily, and redundancies removed. That the index provides a mechanism to link

things over chapters is a good thing, however. Don't misunderstand me. But don't

overuse it, IMHO, with all respect. Remember DeVinne's adage `The last thing to learn

is simplicity.'

2. Courtesy Erik Frambach.

Indexing in TEX with AnyTEX 281

3 Markup of Index Reminders

IR-s are at the heart of the process. Knuth distinguished 4 types to facilitate the outside

processing. I'll adopt his IRs syntax and types.

3.1 Syntax

Knuth's IRs obey the following syntax. IR, syntax

<word(s)>t!<digit>t<page number>.

The digits 0, 1, 2, or 3 denote the types: words, verbatim words, control sequences,

and syntactic quantities. A user does not have to bother about the digits nor about the

page numbers. Knuth has adopted the accompanying conventions for the word(s) of

IRs.
3

Mark up Typeset in copy
�

IR

^{...} !0 hpage noi.

^|...| |...| ... !1 hpage noi.

^|\...| |\...| ... !2 hpage noi.

^\<...> h: : :i�� ... !3 hpage noi.

� j : : : j denotes manmac's, TUGboat's,. . . verbatim
��
in \rm

For the user the word(s) is (are) important. The markup allowed for the IRs and the

result in the copy are given in the accompanying table.

3.2 Markup

The markup for IRs is near to natural. Precede the entry by a circum
ex, or a double

one in case of a silent
4
index entry.

Example IR markup

^{\'el\`eve!}^|verbatim text|^|\controlsequence|

^\<a metalinguistic variable>

^^\<a metalinguistic variable> %for silent ones, double the ^

{\sl^{ligatures}} |'$|^|\,||$''|%from the TeX book script

^^{markup commands, see control sequences}

^{Lamport and \LaTeX} %text and control sequences

%with sort keys

3. See The TEXbook 424, for the IR types, and what is typeset in the result. In \vref the markup is inserted

as replacement text of \next. What is set in the index is governed by the macros which are included after

\begindoublecolumns in the TEXbook script.

4. Silent IRs mean that these will appear only in the index, not on the page.

282 Kees van der Laan

3.3 Spaces

Spaces are di�cult as always. In the IR they separate parts of the IR and are used in

the word part.

� Just typing a space has as an e�ect that it will be neglected during sorting

� The markup `\ ', a control space, will yield a space subject to sorting, according to

the ordering table

� \space as markup will be neglected during sorting. This token is default member of

the set of control sequences to be ignored. It will be set in the index as \ .

Question What to do when part of a title should reappear in the index?

Answer The naive approach is to enclose that part by braces and precede it by a cir-

cum
ex. However, that goes wrong because a title is stored and reused in many places.

So copy the words and mark them as a silent IR.

Example Spaces

Explanation. \space belongs to the set of control sequences to be ignored, ICSs for

short. This means that it is skipped with respect to sorting, except when it occurs as

the last token of the word part. In that case they are ordered as a space, i.e., according

to the lowest value. This explains the position of `\space.' `\TeX,' and `\TeX book,'

are subject to the default sorting keys. `xyza' precedes `xyz beta,' because the space is

silent. When word ordering is preferred a \ , a control space, must be included.

^{\space}%an ignored cs Sorted result in �le index.srt

^{a\ a} %control space

^{aa} \space {} !0 1.

^{a\ b} a\ \bf a{} !0 1.

^{a \TeX} a\ a{} !0 1.

^{a\ \bf a} a\ b{} !0 1.

^{\TeX book} aa{} !0 1.

^{xyz beta}%space neglected in a \TeX {} !0 1.

%sorting space{} !2 1.

^{xyza} \TeX book{} !0 1.

^|\space| xyza{} !0 1.

\sortindex\pasteupindex\bye xyz beta{} !0 1.

3.4 Special tokens

Tokens are either neglected or replaced by another sequence while sorting. blue.tex

provides two sets of tokens to be ignored while sorting: \conseqs and \consyms.5

Replacing a control sequence by another sequence is called associating a sorting key to

the control sequence.

Active symbols can't be part of the IR, for the moment.

5. There are two sets because of the handling of the space after the token in the result.

Indexing in TEX with AnyTEX 283

3.5 Tokens to be ignored

In practice I needed things like \tt as part of the IR, which must be neglected while

sorting.
6
I decided to ignore those tokens while sorting and to include the tokens in the

�nal index.elm as such. Default blue.tex knows about the following sets of tokens to

be ignored.

\conseqs{\c\space\bf\it\rm\tt\sub\relax}

\consyms{\`\'\"\^\~}

3.6 Sorting keys

In order to extend a set, use the macro \add.

Example Use of sorting keys

Default blue.tex provides the following sorting keys.

\srtkeypairs{\AmSTeX{amstex}

\LAMSTeX{lamstex}

\LaTeX{latex}

\TeX{tex}

\PS{PostScript}}

Suppose that we have \fourtex and that we like this to be sorted as `4tex.' This

can be done by extending the set of \srtkeypairs, as follows.

\add\fourtex{4tex}to\srtkeypairs

Copy with ^{IR \fourtex} then the �le index.srt will

^{IR 1} contain the IRs

^{IR 5}

^{IR a} IR 1 !0 <pageno>.

% IR \fourtex{} !0 <pageno>.

\sortindex %with 4tex for \fourtex IR 5 !0 <pageno>.

\pasteupindex%Set `IR \fourtex{} IR a !0 <pageno>.

%<pagenumbers>'

\bye

with \fourtex sorted on 4tex.

Question What to do when `to' is part of the sorting key?

Answer Add an extra level of braces.

4 Ordering

A fundamental issue with indexes is the ordering. The ASCII table is not suited because

lowercase and uppercase letters di�er by 32. I decided to rank these as equal, more

6. The reason is that <, and > are used, and printed wrongly.

284 Kees van der Laan

precisely to assign the lowercase ASCII values to both. I prefer from the accompanying

table the 1
st
column to the 2

nd
one.

Moreover, accented letters are not part of ASCII . How should we order for example e,

�e, �e, ê, �e? I decided to rank accented letters equal to those without an accent, because

I prefer from the accompanying table the 3
rd

column to the 4
th
one.

I know that non-letters precede letters, but what about their relative ordering? I

decided to stay as close as possible to the ASCII ordering.

Then there is the problem of digits. In IRs they come as part of the word(s) and as

page numbers. For the latter I used the numerical ordering. For the former I used the

alphabetical ordering.
7

Furthermore, a user can select the so-called word ordering,
8
by \ , TEXnically a

control space, as markup for a space. Personally, I like from the accompanying table the

5
th
column better than the 6

th
.

lower vs. upper case accents vs. unaccented word ordering

el el el el sea lion seal

El�eve em �el�eve em seal sea lion

em El�eve em �el�eve

5 Typesetting the index

The speci�cations for typesetting a blue.tex index are

� represent the four IR types the same as in the TEXbook

� set in two-columns, balanced, possibly preceded by one-column copy

� set subsidiary entries analogous to the TEXbook

� indent continuation lines by 2em

� indent subsidiary entries by 1em

Users can edit index.elm { read: add markup { and provide the necessary macros in

for example \preindex. In short follow Knuth. To please Frans Goddijn I introduced the

tag \numberstyle, by default equal to \oldstyle.

6 Customization

A user might wish to interfere in places

� to include other tokens to be ignored while sorting

� to supply an ordering of his/her own

� to enrich the sorted and compressed �le index.elm.

7. I could have applied a look ahead mechanism and use numerical ordering throughout. Maybe another

time.

8. This means that a space precedes all letters. A space as such is neglected in the ordering.

Indexing in TEX with AnyTEX 285

6.1 Adding tokens

What are reasonable requirements to impose upon the handling of markup control

sequences (cs for short)? In my opinion

� the cs must be de�ned

� \makexref writes the cs unexpanded

� ordering? unknown, and therefore must be supplied

� \setupnxtokens guards that the cs-s are written to index.srt and index.elm.

As a consequence I decided to neglect the `in between' control sequences while sorting.

For those who favour a one-pass job, I have provided the following, though.
9

The extension of a set of tokens can be done via

\add\hfil to\conseqs or \add\`to\consyms

or \add\hfil{hfil}to\srtkeypairs

%with auxiliary \def\add#1to#2{...}

Each element from \conseqs is rede�ned in such a way that the control sequence

token is written to the �le with a space appended.
10

6.2 Modifying ordering

A general way is to `copy' the ordering table and to modify it.
11

And what about a macro to add to the table? This can be done easily, and super-

�cially looks convenient for an innocent user. At the moment I don't trust the macros

to be worthwhile for an innocent user, unless a very modest index has to be made. And

this completes the circle: di�erent ordering is not wanted, I guess.

6.3 The process and �les involved

Like in manmac, blue.tex stores the raw IRs in the �le index. The �le index
12
is read and

stored in an array for internal sorting. After sorting, the number of entries is reduced,
13

and the result is written to the �le index.srt. Then, index.srt is transformed into

the �le index.elm.
14

The result is typeset via \pasteupindex. Schematically it comes

down to the following.

9. It is simpler to add those control sequences to index.elm.

10. \noexpand is used instead of \string.

11. My \fifo is just a shortcut, which also prevents typos in assigning the ASCII values. For \fifo, see my

`FIFO and LIFO sing the BLUes.'

12. Default index is the value of the toks variable \irfile, which is used in \sortindex.

13. Those which di�er by page number are collected in one entry.

14. Default index.elm is the value of the toks variable \indexfile, which is used in \pasteupindex. The

transformation abandons the IR syntax. The part which speci�es the kind of IR is deleted and the word part

marked up accordingly.

286 Kees van der Laan

Result

\pasteupindex

\sortindex

`Enrich' index.elm

Copy + IR markup

\loadindexmacros

\loadindexmacros loads the index and sorting macros, and performs initializations.

It is safeguarded against double loading.
15

6.4 Enriching the index

This use is necessary when for example

� control sequences have to be typeset

� special symbols are needed, or

� cross-references within the index are required.

The best way is to start from the index.elm �le.

6.5 Typesetting the enriched �le

When the default name is used { index.elm { just say \pasteupindex. For another

�le name assign this name to the toks variable \indexfile, prior to the invocation of

\pasteupindex.

7 Extras

Ubdoubtedly people favor their own subset of TEX, or more likely L
ATEX. The good news

is you don't have to use BLUe's format system. I gathered the sorting and indexing stu�

as an indpendent self-contained set in the �le plainindex.tpl.

The bad news is that up till now I did not do much about preventing name clashes.

15. I introduced this because I start each chapter with \loadindexmacros, independent from whether it is

run on its own or as part of the total.

Indexing in TEX with AnyTEX 287

7.1 TEXnical details

The details with respect to indexing have been treated in `BLUe's Indexes,' and the

sorting aspects have been treated in `Sorting in BLUe,' both available from the CTAN,

in the directory /pub/archive/info/pwt/<filename>

A Russian style for Babel: problems and solutions

Olga Lapko and Irina Makhovaya

Mir Publishers

2, Pervyi Rizhskii Pereulok

Moscow, 129820

Russia

irina@mir.msk.su

Abstract

As with other languages using nonlatin basis there are some typographic features and national

peculiarities that must be shown in the style. The paper describes the Russian style with

macros \captionrussian for four standard Russian documents, \daterussian, \Asbuk

and \asbuk for Russian alphabet counters and \mathrussian for Russian math operators.

Some problems concerning the usage of this style (e.g. usage of di�erent encodings) are

described.

1 Introduction

As is generally known, TEX is based on Latin alphabet and theoretically it is possible to

use TEX for other alphabets: Greek, Arabic, Cyrillic and so on. But there are a lot of

troubles when we try to use TEX for other alphabets in practice. Babel package is the

�rst successful attempt to solve the problems of multilingual TEX.

In this paper we discuss the concrete di�culties we encountered when creating the

russianb1 �le for Babel. There are a lot of typographic features in Russian documents

that can be separated into 3 classes:

1. the features that were borrowed from European typography, especially German and

French;

2. the features that are peculiar for Russian typography only and there are no problems

to describe them in the �le russianb;

1. The �lename of Babel style for Russian language is russianb as an analog of germanb to avoid probable

confusion with LATEX2.09 versions. Now the russianb is a beta-version { part of CyrTUG-emTEX appendix.

289

290 Olga Lapko and Irina Makhovaya

3. the features that are peculiar for Russian typography and there are some di�culties

in describing and using them.

We also see two very important problems: variety of encoding schemes and necessity of

portability of this �le to di�erent platforms, which we can solve only partially.

Now we shall describe the macros of the �le russianb according to the classi�cation.

2 Macros that were borrowed from other styles

The �le russianb was derived initially from the original versions of german (for

LATEX2.09) and germanb (for LATEX2") and francais (for LATEX2"). These �les have

the language-speci�c macros which Russian typographic rules need:

1. from germanb

� macros for French and German double quotes. Note: French double quotes are

created by METAFONT in Cyrillic font and have their own ligature (e.g. <<)

� \shorthands" for hyphenation in compound words and words with nonliteral

characters (Russian words are not so long as German ones but rather long

too). As in germanb the sign " was done active, certainly.

� \lefthyphenmin{\righthyphenmin: for the Russian (as well as for the Ger-

man) language hyphenation patterns are used with values 2{2;

2. from francais

� macros for :, ;, ?, ! signs: the amount of white space is increased before these

signs: TEX looks for a space between word and this sign, then, if it is, TEX

\unskips" it and places a little white space about 0.1em. Note: in francais

TEX places such space in case of space between word and sign and the amount

of this space is somewhat larger;

� \frenchspacing is switched on;

� some additional signs (as well as in francais) are described in our style, e.g.

number sign.

3 Macros that are created in Russian style and have no problems

in usage

There are some macros borrowed from russian.sty (for LATEX2.09) of di�erent re-

leases:

1. macros for math operators whose names di�er from English ones (e.g in Russian

manuscripts we write tg and ctg instead of tan and cotan);

2. there are additional macros for printing counter values with uppercase and lowercase

Cyrillic letters (\Asbuk and \asbuk as analogs to \Alph and \alph).

A Russian style for Babel: problems and solutions 291

We created an additional \shorthand" for Russian emdash ("---): in our printing doc-

uments this sign is shorter a little, and it has spaces about 0.2 of font size (e.g. for

size 10pt it is about 2pt) around and never breaks with word before emdash. Note: the

macro for explicit hyphen sign ("-) was, certainly, rewritten because of creating macro

for Russian emdash.

4 Macros, which have some di�culties or questions in usage

In this section we discuss macros of breaking in text formulas. By Russian typography

tradition we must repeat last sign in broken formula on the next line.

There is a package which includes macros for repeating signs in formulas.

This package includes two possible ways:

1. hand breaking { in this way \binoppenalty= \relpenalty= 10000; for breaking

we must use commands \brokenbin{ } and \brokenrel{ };

2. automatic breaking { in this way \relpenalty > \binoppenalty > 10000; some

signs are equal to \mathcode=8000 and divided into two groups: binary and rela-

tional signs + - < > = allow break after them, signs * ([/ . , protect break;

also almost all mathematic signs are rewritten using new commands \brkbin and

\brkrel to allow or protect breaking, e.g.:

\def\wedge {\brkbin{\mathchar"225E}}

\def\gg {\brkrel{\mathchar"321D}}

\def\exists {\mathchar"0239\unbrk}

\def\bigl#1 {\mathopen{\big#1}\unbrk}

\def\bigm#1 {\mathrel {\big#1}\unbrk}

\def\langle {\delimiter"426830A \unbrk}

the command \not, for example, must be rede�ned:

\def\not#1 {\brkrel{\mathchar"3236 #1}}

and so on. In this case TEX breaks formulas by itself but sometimes we must handle

breaking using special commands \unbrk or \allowbrk.

There are the drawbacks in this package but rather exotic:

� one must write $x \brkbin{{+}^1} y$ instead of $x +^1 y$;

� operators \sin must be written with arguments in parenthesis;

� in formulas like x + : : : + y one must write $x \unbrk + \ldots + y$ to

protect �rst breaking (or breaking signs must look forward);

� in case the signs ^ and _ are redescribed, we cannot use AMS-TEX's macros

like \Sb..\endSb (i.e. ^\bgroup..\egroup) otherwise it is impossible to use

something as ^\leq and ^*.

As you see we must rewrite all de�nitions for binary and relation signs and some signs

which protect the break after them. In other words we must rewrite TEX formats.

Now this style exists as additional
2
and is switched on by user.

2. Now it is beta-version style.

292 Olga Lapko and Irina Makhovaya

5 Encoding and font problems

The �le russianb was created for \nonlatin user" who uses Cyrillic alphabet. One of the

problems is: there are a lot of di�erent encodings in which Cyrillic letters have di�erent

codes.

Because of this, our �le has some particular features as compared with Babel's

analogs.

To make this style independent of encoding, we have to use macros-names in-

stead of Cyrillic letters themselves. Russian letters and signs in this style are used

in macros for date (\daterussian) and the strings for four standard styles of LATEX

(\captionsrussian), and also in commands for printing counter values with use of

Cyrillic uppercase and lowercase letters (\Asbuk and \asbuk).

The macros-names for Cyrillic letters and some signs are switched on by a �le-

satellite (e.g. lhrcod.sty) which is created for necessary encoding. This �le also

switches on Cyrillic font family.
3

In Russia, papers are typesetted by special encodings where the Cyrillic letters are

joined with Latin ones and placed by necessary encoding in upper part of the code table,

so there is the tradition of using Russian letters in macronames (the usage of familiar,

Russian words is more convenient { Russian letters are letters too, aren't they?). To tell

more: there are packages which are based on Russian-word commands. So, in russianb

Cyrillic letters were made as \catcode\letter.

Now we must say that \mathcode for Russian letters equals to 70??, i.e. we set

class 7 { variable family and use font of \fam0 (\rm) to join the Russian typography

tradition.

6 What we must do

Now our style is adapted for Russian \8-bit" documentation, in which we sometimes

use Latin fragments. In this case a �le-satellite russianb (in current version we input

lhrcod for Alternative encoding) simply declares new font family and encoding at the

beginning of document
4
and then toggles Russian/Latin hyphenation only { this way

takes less memory. For Russian-Latin papers typesetted with transliteration (using Latin

letters as Cyrillic) we must declare sometimes to Latin letters that they are Cyrillic, so

we have to toggle fonts and encodings too. These two ways should be described and

divided in russianb.

The main problem of �le russianb is that we have to use macros-names of Cyrillic

letters. Now these letters are described as \def\CYRa{a}. In this case the commands

\uppercase and \lowercase don't work correctly (e.g we can't use standard style book

3. Now the switching on of the Cyrillic family is made for LATEX2" only.

4. Such �le now is created for LATEX2" only.

A Russian style for Babel: problems and solutions 293

{ we will never get uppercase \chaptername in running heads).5 Maybe other de�nitions

for letters or/and strings for styles will solve this problem.

The paragraphs above described some solutions of portability of the �le russianb

to di�erent platforms. Since we have no practice in other platforms (e.g. Unix) we don't

know about probable di�culties there.

Our work is the �rst attempt only and we hope to provoke discussion and further

work of our colleagues. We hope also that Omega package can help to solve the described

problems, especially those that are connected with encoding schemes and portability.

7 Acknowledgements

In conclusion we would like to note that a lot of our colleagues make the valuable

contributions to creation of the �le russianb: Mikhail Grinchuk, Eugenii Ivanov, Andrey

Slepukhin, Yurii Tyumentsev, and others. We are very much obliged to all of them.

References

[1] J. Braams. Babel, a multilingual style-option system for use with LATEX's standard

document styles. TUGBoat, 12.2:291{302, 1991.

[2] P. Gilenson. Spravochnik tekhnicheskogo redaktora. Moscow, Kniga, 1979.

[3] M. Goossens, F. Mittelbach, and A. Samarin. The LATEX Companion. Addison-

Wesley, Reading, MA, 1994.

[4] Y. Haralambous and J. Plaice. First application of Omega: Greek, arabic, khmer,

poetica, iso 10646/unicode, etc. TUGBoat, 15.3:344{352, 1994.

[5] A. Khodulev and I Makhovaya. On TEX experience in Mir Publishers. Proceedings

of the 7th EuroTEX Conference, Prague, 1992.

[6] O. Lapko. MAKEFONT as part of CyrTUG-emTEX package. Proceedings of the

eight European TEX Conference, Gda�nsk, 1994.

5. If Cyrillic letters would be described as \def\CYRa{\char160} or \chardef \CYRa=160 we won't get

uppercase/lowercase texts in principle.

Data with ��TEX

Andries Lenstra, Steven Kli�en and Ruud Koning

lenstr@sci.kun.nl

Abstract

The authors explain how to handle data in TEX documents, in particular, how to avoid ever

having to type in { and check! { the same data or text twice. These data may be stored in

ordinary (non-TEX) databases, in ASCII �les arranged according to the easy ��T format, or

in the TEX document itself. ��TEX works in plain TEX and is supposed to work in LATEX.

1 Introduction

As soon as one uses the same data more than once, or the same text with di�erent

data, a classical problem arises: how far should one go in leaving the repetitions to the

machine? ��TEX, a collection of TEX macros for storing and retrieving data, is an engine

that enables one to go all the way, so that document source texts are as short as possible

and integrity of the data is guaranteed, as well as uniformity in typesetting.

That TEX is suitable for repetitive tasks such as mail merges, was already shown e.g.

in [2]; that a more general approach is also feasible, and that, in fact, TEX is an ideal

word processor for data handling, is what we hope to show here.

The key feature of TEX, of course, is its programmability in plain, readable text,

so that in the �rst place the manipulating c.q. processing of data and the perfect �ne-

tuning of text to data are easy and rewarding tasks { certainly also for non-TEXnicians,

as practice has shown. One could say that the personalizing of printing, or data handling

in general, opens up a whole new realm of applications for the power of TEX as a

programming language. Now this beautiful machinery not only generates the typography,

but prior to this the very text. Examples can be found in [2] and [1].

In the second place the existence of expandable, plain text macros has great bene�ts

in the set-up and maintenance of databases. Such macros can be a substitute for real,

explicit data, and their expansion can be changed according to di�erent circumstances.

Imagine, for instance, someone who uses TEX for the typesetting of concert programmes

in several languages. In his database of music pieces, the contents of the �eld `key'

belonging to some piece in A major (some music pieces have a coordinate called key; `A

295

296 Andries Lenstra, Steven Kli�en and Ruud Koning

major' is a key) will not be A major, but something like \Amaj, which auxiliary �les will

translate into `A major', `A Dur', `La majeur', or `A grote terts', etc., dependent on the

desired language. Or think of the printing of a price list: the contents of the �eld `price'

need not be the explicit digits of the price, but may expand into a formula from which

the explicit digits will follow after a calculation with adjustable parameters.

This possibility of �lling the contents of a data base with `meta'data, TEX macros

that expand to the actual, printed data, can even be exploited further. Consider

in the �rst example the �eld `composer' (most of the music pieces have a com-

poser). Instead of putting there a speci�c name, e.g. Mozart, or W.A. Mozart, or

W.A. Mozart (1756--1791), why not put the command

\Some Later To Be Specified Set Of Fields

Belonging To The Entry `Mozart2'

(in ��TEX abbreviated as *Mozart2* *), if there is a second database, of composers,

with an entry that is identi�ed by the string Mozart2, and TEX is told where to �nd this

entry? { Then all questions as to the inclusion of initials and dates can safely be left

unanswered until the time of typesetting. Besides, apart from being more versatile and

less error-prone, in the presence of this second database such an approach is mandatory

because of the problem of data integrity: as soon as the same explicit data are entered

more than once, how can one be sure that a change or correction is carried through in

all occurrences in all documents?

One will realize that with this method of letting �elds of one entry refer to other

entries by means of commands built around an entry-identifying string, one can give

shape to many relationships between data, in a readable and easily memorized way, so

that with minimal e�ort a coherent, structured set of data is obtained. The workings of

��TEX, which uses the idea of the identifying string, are now readily sketched.

2 Sketch of ��TEX

With ��TEX, the referencing facility also exists in ordinary document source text. Sup-

pose TEX has learned ��TEX and that one writes

\Of *Mozart2* * {\bf\Name, \Initials} (\TownOfBirth)

in the document. Suppose also that earlier in the document, or in a separate data �le,

the following lines occur:

**Mozart2* \Name Mozart; \Initials W.A.;\TownOfBirth Salzburg;

. . .

**zzzz*

Then the typeset result will be

Mozart, W.A. (Salzburg)

The string *Mozart2* * is an abbreviation for

{\Of *Mozart2* * \Type}

Data with ��TEX 297

The \Type is a �eld that every entry should have; for Mozart2 one could choose \Type

to be \Composer:

**Mozart2* . . . \Type \Composer;\YearOfBirth 1756; . . .

Then \Type will expand to \Composer and \Composer acts as a template, say

\def\Composer{%

{\bf \Name, \Initials}

(\TownOfBirth, \YearOfBirth)%

}%

With this de�nition of \Composer the typeset result of writing *Mozart2* * will be

Mozart, W.A. (Salzburg, 1756)

Instead of writing

\Of *Mozart2* * \TownOfBirth

(with a space after the �nal *) in order to get `Salzburg', one can also write

\def\Composer{\TownOfBirth}*Mozart2* *

The latter may seem too much if it is used only once, but imagine the possibilities if the

referencing is repeated. For instance, with these three templates

\def\Mpiece{\Comp}%

\def\Composer{\TownOfBirth}%

\def\Town{\Country}%

the result of *hsome music piecei* * will be the country where one can �nd the town

where the composer was born, assuming that one �lled the proper �elds in the proper

databases with the proper types and the proper three-starred identifying strings c.q.

data. In the next section we will do this explicitly as an illustration of the ��T format

for storing data.

For repetitive tasks, however, it is immediately clear that the template is the perfect

tool. A template is put implicitly in the document by *han identifying stringi* * as

above; writing three \Composers

Bach *

Mozart2 *

Beethoven *

(or as one line *Bach* **Mozart2* **Beethoven* *) gives three times the expansion

of \Composer, in the �rst case separated by spaces. This repetition is done automatically

by \Filter. In ��TEX the \Filter command �lters a data �le according to a certain

\Type, i.e. it considers every entry in consecutive order and, if the \Type corresponds to

the given \Type, e.g. \Composer, it expands the template, in this case \Composer. So

this is the way to perform mail merges, in which a form letter, the template, is merged

with a data �le that contains the data of the persons that are supposed to receive the

letters. The exact description and an example can be found in Section 7.

Explicitly asking for one or more �elds of a certain entry, as in

The composer \Of *Mozart2* * \Initials{} \Name{} ...

At that time, \YearOfBirth, the town \TownOfBirth{} was ...

298 Andries Lenstra, Steven Kli�en and Ruud Koning

follows the rule that should be obvious from the use of \Of: all �eld names give the

contents belonging to the last identi�ed entry, which means that as soon as \Of *ha

di�erent identifying stringi* * appears, \Of *Beethoven* * say, all �eld contents are

of the new entry, Beethoven; those of Mozart2 are forgotten. If Mozart2 has a �eld

\YearOfBirth, but Beethoven has not, then after the appearance of \Of *Mozart2* *

the text \Of *Beethoven* * \YearOfBirth will cause the error message

Use of \YearOfBirthOf doesn't match its definition.

and if the same text is not preceded by any \Of *hstring identifying an entry which has

a �eld \YearOfBirthi* *, then it will cause the error message

! Undefined control sequence.

With the help of the ��TEX command \IfField\YearOfBirth\Exists such embar-

rassing moments can be avoided. Tools like this one can be found in Section 5.

Under circumstances to be explained later, it will save time to tell TEX in which

database it should look for the desired identifying string. Such a speci�cation may take

the place of the space between the second and the third *, as in

*Mozart2*c:/music/data/comp.dat*

or in

\def\Dpath{c:/music/data/}%

\Of *Mozart2*\Dpath comp* \YearOfBirth

the extension .dat being supplied by ��TEX if no extension has been speci�ed.

3 Storing data

��TEX has its own way of storing data, the ��T format. In order for data to be accessible

to ��TEX, they should be stored according to this format, for instance in a ��T �le. The

user of ��TEX may use his own data base programs as long as they are capable of

producing intermediate ASCII �les; these are the subject of Section 6. As soon as the

composition of the identifying string has been speci�ed, the conversion to the ��T format

can be taken care of by ��TEX.

Data base programs other than ��TEX often o�er facilities, such as sorting, that

until now for ��T �les only exist in cooperation with such a data base program via an

intermediate �le, or with the operating system. (Sorting inside TEX is possible; see [3].)

The ��T format, on the other hand, is very simple, versatile, and easy to learn, while

��TEX has a very powerful sorting-out mechanism. Files according to the ��T format are

as portable as ordinary TEX document source text �les; in fact, they can be integrated,

wholly or partially, into the document, as we shall see.

In the ��T format data are stored in data blocks. A ��T �le has a name with a

one, two, or three character extension, but not necessarily with the extension .dat, and

consists of a number of data blocks. Before and between these data blocks one should

put only \NoDefaults and \Default commands (to be described shortly) or comments,

Data with ��TEX 299

and after the last data block a ��T �le should be empty { at least until one exactly knows

what is going on.

A data block consists of a number of entries. An entry starts with **hthe identifying

stringi* followed by any number of �elds and occurrences of this three-starred identifying

string. A �eld consists of optional spaces followed by a control word denoting the �eld

name (a control word is of the form \ha string of letters without spacesi) followed by

the �eld contents followed by a semicolon,

h�eld namei h�eld contentsi;

and an entry ends with the occurrence of **ha di�erent identifying stringi*, with

which a new entry starts, except when this last string is zzzz. The string zzzz is

supposed to be di�erent from all strings used for entries; after **zzzz* the data block

ends. The �elds may be broken by the identifying strings; the entry minus all occurrences

of **hthe identifying stringi* should be a sequence of �elds. So

**Mozart2*\Name Mozart;\Type\Composer; \ChristianNames Wolfgang%

Mozart2* Amadeus ;Beethoven* \Name Van Beethoven;\Type \Composer

; **Beethoven***Salzburg*\Type\Town;\Country Austria;

**zzzz*

is a data block, albeit a somewhat untidy one. The rationale for allowing the identifying

strings breaking the �elds is that **hthe identifying stringi* should occur at the beginning

of every line of the entry and nowhere else, so that no two entries share the same line.

For such data blocks some manipulations with the data are possible with the help of

common outside tools. Before we discuss these possibilities, let us clean up the above

data block, adding some data and \Defaults.

\NoDefaults

\Default\Type\Composer;

\Default\Name\Ident;

**Mozart2*\Name Mozart;\TownOfBirth *Salzburg* *;

\ChristianNames Wolfgang%

**Mozart2* Amadeus ;

**Mozart2* \YearOfBirth1756; \YearOfDeath 1791;

**Beethoven* \Name Van \Ident;

**Bach*

**Salzburg*\Type\Town;\Country Austria;

**KV 488*\Type\Mpiece;\Key \Amaj;\Comp *Mozart2* *;

**zzzz*

Now with the de�nitions from the previous section *KV 488* * will indeed give `Austria'.

The control word \Ident always expands to the identifying string of the entry. For

the entry Bach two �elds exist (by \Default), the �eld with �eld name \Name and

contents \Ident, and the �eld with �eld name \Type and contents \Composer. In

the entry Mozart2 the contents of the �eld with �eld name \ChristianNames are

300 Andries Lenstra, Steven Kli�en and Ruud Koning

Wolfgang Amadeus , with a space at the end. Without the %-sign there would have

been two spaces between these names.

In practice, one probably would not mix up so many di�erent \Types in one data

block, and one would add a list of �eld names for every \Type, just to be sure that

no such things happen as using together \Forenames and \ChristianNames. But one

has the complete freedom to invent new �elds on the spot and to list them in any

order, independent from other entries, as long as all �elds are closed by the delimiter ;

(semicolon). This should be carefully checked, apart from the explicit data themselves.

Vice versa, as soon as a semicolon appears, chances are high that it terminates the

�eld contents. If one needs the semicolon in the contents of a �eld, one should use

\Semicolon. The typeset asterisk, `*', is available as \Star.

The choice of the identifying string is free, as long as it identi�es the entry (i.e.

all entries have di�erent strings), is not empty, and only contains letters, digits, spaces,

and no two spaces in a row. ��TEX will only check this to a limited extent.

Whole, closed data blocks can be put anywhere in the document. A ��T �le can

be absorbed, i.e. memorized, searched for an entry, or \Filtered; a data block in the

document is always absorbed.

3.1 Manipulations with data blocks

If all entries of a data block have their **hidentifying stringi* at the beginning of every

line and nowhere else, then sorting the block on the �rst column means sorting the data

on the identifying string. This is useful in its own right and also a means of bringing

together the di�erent parts of an entry that is scattered around the block. A way of

taking care of broken �elds would be by inserting sorting dummies like \zz1, \zz2,

\defined as {}.

Moreover, with the help of the grep command, well known to Unix users, one can

sort on �eld contents by having \Filter make a list of these contents paired with the

identifying strings,

h(possibly processed) �eld contentsi hidentifying stringi

sorting the list on �eld contents, and asking grep to rearrange the data block according

to the new order of the identifying strings.

Finally, grep allows preprocessing of TEX documents in which ��TEX is invoked. The

searching of �les for strings by grep will be faster than by ��TEX, so that having grep

search the document for three-starred identifying strings, search the ��T �les for the

lines on which these occur, and putting these lines in the document (taking care of the

proper \Defaults and the closing of the data block by **zzzz*) will sometimes save

time.

Data with ��TEX 301

4 System set-up

For simple ��TEX tasks there is nothing left to learn except the use of a few tools, and

the fact that the size of data blocks in documents is limited because they are absorbed

(how much TEX can absorb, depends on the local implementation). If ��TEX has to

search unspeci�ed ��T �les, however, ��TEX has to know these �les and may need some

guidance in their treatment. The

\TheDataFiles h�rst �le namei(x) ... \InSearchOrder

command tells ��TEX which ��T �les should be absorbed ((x)=(a)), which ��T �les

should be searched if no search-�le has been speci�ed after the second star ((x)=(s) or

(x)=()) and in what order they should be searched, and which of these default search-

�les get a `search-only' treatment ((x)=(s)) under \DefaultMemoryProtection.

Whenever

*han identifying stringi*hoptional ��T �le speci�cationi*

or

\Of *han identifying stringi*hoptional ��T �le speci�cationi* \h�eld namei

invoke ��TEX to retrieve data, ��TEX will normally try to remember these. If the data

block was absorbed in which the identifying string occurs, or if ��TEX has looked up

the data already once before, it will succeed in searching its memory and �nd the data.

Otherwise the data are looked up in the search-�le speci�ed after the second star or, if

there is no such �le, in the default search-�les, i.e. all non-absorbed �les of the list of

\TheDataFiles.

So the normal way is that the more strings ��TEX looks up, the more data it will

remember. This means that when ��TEX is invoked for many di�erent strings, TEX

may run out of memory. Therefore \DefaultMemoryProtection allows for something

special: if a ��T �le has been speci�ed in the list as (s), `search-only', and has been

speci�ed between the second and third star, as in *han identifying stringi*hname of a

search-only ��T �lei*, then ��TEX will not try to remember the data but will look them

up immediately in the speci�ed �le, use them, and forget them.

In the \DefaultMemoryProtection mode the protection of the memory has to

be activated by specifying a search-only �le after the second star. However, in the

\StrongMemoryProtection mode the memory is always protected; the only way to

have ��TEX search its memory immediately is by specifying an absorbed, (a), �le after

the second star. In this mode the speci�cation of any non-absorbed �le makes ��TEX

act as after the speci�cation of a search-only �le in the default mode. If there is no

speci�cation at all, ��TEX will not try to remember the data (this would involve the

forming of a control sequence, and the number of control sequences that TEX can see in

a single run is limited), but search the default search-�les for them. If it �nds the data,

it uses them and forgets them; in the absence of success it will conclude that the data

must have been absorbed and only then search its memory.

��TEX always starts in \DefaultMemoryProtection but the user can alternate

between this mode and \StrongMemoryProtection.

302 Andries Lenstra, Steven Kli�en and Ruud Koning

4.1 File speci�cation

When between the second and third star an absorbed �le or a search-only �le is speci�ed,

taking the place of the space, then in order for ��TEX to be able to recognize this �le

as absorbed or search-only, it is not only necessary that the \TheDataFiles command

has been executed already, but also that the `canonical' �le name of this �le on this

place in the document is the same as when it was listed in the list of \TheDataFiles.

The canonical �le name is the result of the following reduction: ��TEX expands all

control sequences in the typed-in �le name, e.g. \Dpath in \Dpath comp in Section 2,

then it tries to remove possible spaces at the beginning and at the end, and checks if

the result has an extension, i.e. ends on .x or .xy or .xyz, with x, y, and z letters. If

there is an extension then this is preserved, otherwise the extension .dat is attached.

So always writing the same name is by no means necessary, but for the same ��T �le

one should not switch between �le name with full path included, and �le name.

If the expansions of the control sequences in the typed-in �le names do not begin

or end with a space and there are no + signs in �le names, then there will most probably

be no problems with spaces around the �le names or around the delimiters (a), (s),

and (). For instance, one can write *hidentifying stringi* \Dpath comp * as well as

hidentifying stringi\Dpath comp* and

\TheDataFiles

\Dpath comp.dat (a)

\Dpath mpiece(s)town ()

\InSearchOrder

as well as

\TheDataFiles

\Dpath comp.dat(a)\Dpath

mpiece (s)

town()\InSearchOrder

{ \TheDataFiles, for that matter, provides a check-list.

5 Tools

5.1 Default �elds

The \NoDefaults and \Default commands, introduced in Section 3, may only be given

outside a data block, so when one wants to change the default contents of a �eld, or

wants to add a default �eld, then one should �rst put **zzzz*. The syntax of \Default

is

\Defaulth�eld namei hdefault �eld contentsi;hspacei

which is the same as \Default hdefault �eldi hspacei. The necessary space after the

semicolon could be provided by giving every \Default a line of its own. ��TEX puts the

default �elds immediately behind the �rst **hidentifying stringi* of an entry in the given

Data with ��TEX 303

order (new default �elds behind the old ones), before the �elds that are explicitly typed

in. The contents of a �eld are overridden by those of a subsequent �eld with the same

�eld name. This holds for all �elds, default or explicitly typed in, so that by

\Defaulthsame �eld namei hnew default �eld contentsi;hspacei

one can change the default contents of a �eld. ��TEX starts with an empty list and will

not change this list unless it is told to do so by a \Default or \NoDefaults command.

In order to know the exact contents of this list at every moment and to avoid surprise

results when ��TEX absorbs or searches a sequence of ��T �les, one should have it

emptied often by the \NoDefaults command { for instance at the beginning of every

��T �le.

5.2 Conditionals

We introduce three \If... commands. Like TEX's ordinary \if...s, they have an

optional \else part, are closed with \fi, and may be nested. ��TEX allows \Fi instead

of \fi. All examples refer to the second data block of Section 3.

The de�nition of a control word can be inspected by the command

\IfCshcontrol wordi\IsDefinedAs{ha stringi}

After \Of *han identifying stringi* * the control word \Ident is de�ned as hthis

identifying stringi, so that the typeset result of

\Of *Mozart2* *

\IfCs\Ident\IsDefinedAs{Mozart2}%

{\bf\Name}%

\Fi

is `Mozart'. With \Of *hany other identifying stringi* * the result will be nothing.

The possibility of checking on the existence of �elds was announced already in

Section 2. The condition

\IfFieldh�eld namei\Exists

is true for all entries for the �eld names \Type and \Name, e.g.

`\Of *Bach* * \IfField\Name\Exists' is true;

`\Of *Bach* * \IfField\TownOfBirth\Exists' is false.

Finally, here is a facility for testing if an existing �eld looks like a given �eld:

\IfExistingField\LooksLikeh�eld namei hgiven �eld contentsi;

In this comparison the �eld contents are left untouched by TEX, i.e. they are not expanded

or processed otherwise. So the typeset result of

\Of *Mozart2* *

\IfField \TownOfBirth \Exists

\IfExistingField\LooksLike \TownOfBirth*Salzburg* *;%

{\bf\Name}%

\Fi

\Fi

304 Andries Lenstra, Steven Kli�en and Ruud Koning

is `Mozart'. With \Of *hany other identifying string from our data blocki* * the result

will be nothing. Furthermore:

\Of *Mozart2* * \IfExistingField\LooksLike \Name Mozart; is true,

\Of *Beethoven* * \IfExistingField\LooksLike\Name Van \Ident; is true,

\Of *Beethoven* * \IfExistingField\LooksLike\Name Van Beethoven; is false,

\Of *Bach* * \IfExistingField\LooksLike \Type \Composer ; is true.

The comparison of a given string with processed �eld contents is a di�erent matter.

Consider, for instance, the string Van Beethoven. This string is equal to the result

of processing the �eld contents Van \Ident in the following way: expand all that is

expandable until there is nothing expandable left. After \Of *Beethoven* * the process

of producing out of \Name the �eld contents Van \Ident themselves, also only involves

expansion. Therefore, for the control word \nAme the e�ect of

\Of *Beethoven* * \edef\nAme{\Name}%

is the same as

\def\nAme{Van Beethoven}%

All other �elds \Name in our data block also have contents that can be expanded com-

pletely, i.e. until there is nothing expandable left. This means that in this case we are

back to the \IfCs technique learnt above. The typeset result of

\Of *Beethoven* * \edef\nAme{\Name}%

\IfCs\nAme\IsDefinedAs{Van Beethoven}%

{\bf\Name}%

\Fi

is `Van Beethoven', and with \Of *hany other identifying stringi* * the test will work

but the result will be nothing. (We could have used \Name itself instead of \nAme, but

then the protection against misuse of the �eld name \Name, as exposed in Section 2,

would have disappeared.)

Field contents of the form *han identifying stringi* * cannot be expanded com-

pletely; they cannot be put in an \edef without TEX having to stop and complain, or

behaving in some other undesirable manner. If in our data block there had been an entry

of which the \Name had contents of this form, the above test would not work properly

and the \IfExistingField\LooksLike test should be preferred.

Now for processed �eld contents where the processing involvesmore than expansion.

The comparison of

1. �eld contents that refer to other entries, but of which the stage that is to be

compared is completely expandable, with

2. strings in which nothing expandable is left,

is possible with \xdef (=\global\edef). Consider, for instance, the string Austria,

the result of *KV 488* * with the templates of Section 2. After \Of *Salzburg* * ,

the process of producing Austria out of \Country only involves expansion, but after

\Of *KV 488* * the process of producing Austria out of \Comp involves more than

sheer expansion, and

Data with ��TEX 305

\Of *KV 488* * \edef\cOmp{\Comp}%

is not recommended. The \Comp �eld contents *Mozart2* * refer to other entries, but

the stage \Country, that is to be compared, is completely expandable. The solution is

to have TEX do its work, but put the result aside for later testing, wrapped in a control

word: when

\def\Town{\xdef\cOuntry{\Country}}*KV 488* *%

hence

\IfCs\cOuntry\IsDefinedAs{Austria}%

is true. Of course, more would be needed to make the test work for arbitrary \Mpieces.

Now the \Comp and all other �elds have to exist down to \Country.

One can also test immediately and export the result. This will be shown for strings

and �eld contents that should not be touched. If the \Country �eld contents are

Austria *, then after

\newif\ifTheRightOne

\def\Town{\global\TheRightOnefalse

\IfExistingField\LooksLike\Country*Austria* *;%

\global\TheRightOnetrue

\Fi

}%

KV 488 *%

it will be seen that \ifTheRightOne is true.

5.3 Wrapping

In the last test only the result of the comparison was available, not a control word

like \cOuntry for further testing or processing. As an analogue to \xdef, the \WrapIn

command provides this facility whenever TEX should not touch the �eld contents to be

compared. After \Of *han identifying stringi* *

\WrapIn hpseudo �eld namei h�eld namei

is equivalent to

\gdef hpseudo �eld namei{h�eld contentsi}

Here is the penultimate example again; the \Country �eld contents are assumed to be

Austria *. The condition in

\def\Town{\WrapIn\cOuntry\Country}*KV 488* *%

\IfCs\cOuntry\IsDefinedAs{*Austria* *}%

is true, and \cOuntry is available for other purposes.

6 Conversion

Most data base programs are capable of reading and producing ASCII data �les. ��TEX

o�ers two utilities that facilitate the cooperation with such programs. The �rst reads

almost all ASCII data �les that the latter may produce, and converts these data �les

306 Andries Lenstra, Steven Kli�en and Ruud Koning

into ��T �les. The second converts, for almost every data base program, a ��T �le into

the particular ASCII format that is readable for the program. These utilities are currently

under construction.

7 Filtering

The \Filter command, announced in Section 2, �lters a ��T �le according to a certain

\Type:

\Filter h��T �le speci�cationi\Type hthe �lter typei

for instance,

\Filter \Dpath comp \Type\Composer

considers every entry of \Dpath comp in consecutive order and, if the \Type is equal

to \Composer, it expands \Composer. ��TEX reduces the ��T �le speci�cation to the

canonical �le name, as explained in Section 4. A space before `\Type' should not cause

any problems.

The restriction to one \Type is not essential. Suppose one has a big ��T �le

mail.dat with many entries of di�erent \Types sorted on some postal code. If all

entries should receive a letter, then \Filtering the ��T �le once for every \Type would

destroy the ordering. The solution is to replace, in mail.dat, all occurrences of `\Type'

by `\ProType' (i.e. to change the �eld name \Type into \ProType), to add, at the top

of mail.dat, the line

\Default\Type\FormLetter;

if there is one template, \FormLetter, or the line

\Default\Type\ProType;

if every old \Type has its own template, and to

\Filter mail.dat \Type\FormLetter

or to

\Filter mail.dat \Type\ProType

respectively. For detailed examples of form letters we refer to [1].

We conclude with an example that �lters a ��T �le of \Composers. If there is a

�eld \TownOfBirth, its contents refer to a ��T �le of towns, i.e. are of the form *ha

towni* *. Every \Town has \Default \Name \Ident;, and a \Country with contents

that are macros to be translated by a translation �le:

\def\Town{\xdef\nAme{\Name}\WrapIn\cOuntry\Country}%

\def\Composer{%

\IfField \TownOfBirth \Exists

\TownOfBirth

\IfCs\cOuntry\IsDefinedAs{\Austria}%

{\bf\Name}, from \nAme, \cOuntry\par

\Fi

\Fi

Data with ��TEX 307

}%

\Filter c:/dat/comp \Type\Composer

The result is a list of all composers in c:/dat/comp.dat that are born in Austria, with

their towns of birth.

References

[1] A. Lenstra, S. Kli�en, R. Koning, and K. Aardal. Tips and tricks with ��TEX. to

appear, 1995.

[2] M. Pi�. Text merges in TEX and LATEX. Taken from the �le textmerg.dtx provided

with the program source code, April 21, 1995.

[3] K. van der Laan. Sorting in BLUe. MAPS, 10, 1992.

Modifying LATEX
1

LATEX3 Project Team

Abstract

This is an updated version of a document that was �rst written to be part of the distribution

of the new standard LATEX. It was produced in response to suggestions that the modi�cation

and distribution conditions for the �les in our system should be similar to those implied by

Version 2 of the GNU General Public Licence, as published by the Free Software Foundation.

Although we are by now convinced that the principles described here are sound, the detailed

consequences of these for the distribution and modifation conditions are still evolving. Thus

this article should not be treated as a de�nitive version of these conditions, even at the date

of its publication.

1 Introduction

This article describes the principles underlying our policy on distribution and modi�cation

of the �les comprising the LATEX system. It has been produced as a result of detailed

discussions of the issues involved in the support and maintenance of a widely distributed

document processing system used by diverse people for many applications. These dis-

cussions have involved users, maintainers of installations that support LATEX and various

types of organisations that distribute it. The discussions are continuing and we hope

that the ideas in this article will make a useful contribution to the debate.

Our aim is that LATEX should be a system which can be trusted by users of all types

to ful�ll their needs. Such a system must be stable and well-maintained. This implies that

it must be reasonably easy to maintain it (otherwise it will simply not get maintained at

all). So here is a summary of our basic philosophy:

We believe that the freedom to rely on a widely-used standard for document

interchange and formatting is as important as the freedom to experiment with

the contents of �les.

1. Copyright 1995; all rights reserved

309

310 LATEX3 Project Team

We are therefore adopting a policy similar to that which Donald Knuth applies

to modi�cations of the underlying TEX system: that certain �les, together with

their names, are part of the system and therefore the contents of these �les

should not be changed unless the following conditions are met:

� they are clearly marked as being no longer part of the standard system;

� the name of the �le is changed.

2 The system

In developing this philosophy, and the consequent limitations on how modi�cations of

the system should be carried out, we were heavily in
uenced by the following facts

concerning the current widespread and wide-ranging uses of the LATEX system.

1. LATEX is not just a document processing system; it also de�nes a language for

document exchange.

2. The standard document class �les, and some other �les, also de�ne a particular

formatting of a document.

3. The packages that we maintain de�ne a particular document interface and, in some

cases, particular formatting of parts of a document.

4. The interfaces between di�erent parts of the LATEX system are very complex and

it is therefore very di�cult to check that a change to one �le does not a�ect the

functionality of both that �le and also other parts of the system not obviously

connected to the �le that has been changed.

This leads us to the general principle that:

with certain special exceptions, if you change the contents of a �le then the

changed version should have a di�erent �le name.

We certainly do not wish to prevent people from experimenting with the code in

di�erent ways and adapting it to their purposes. However, we are concerned that any

distribution of modi�cations to the code should be very clearly identi�ed as not being

a part of the standard distribution. The exact wording and form of the distribution

conditions is thus something that is
exible, but only within the constraint of keeping

LATEX as a standardised, reliable product for the purposes described above: the exchange

and formatting of documents.

3 Some examples

Here we elaborate the arguments that have led us to the above conclusion.

Separate development considered harmful!

In many �elds, the use of LATEX as a language for communication is just as important

as its capacity for �ne typesetting; this is a very important consideration for a large

population of authors, journal editors, archivists, etc.

Modifying LATEX 311

Related to this issue of portability is the fact that the �le names are part of the

end-user syntax.

To take a real example, the LATEX `tools' collection contains the package `array.sty'.

A new user-level feature was added to this �le at the end of 1994 and a document using

this feature can contain the line:

\usepackage{array}[1994/10/16]

By supplying the optional argument, the document author is indicating that a version

of the �le array.sty dated no earlier than that date is required to run this document

without error.

This feature would be totally worthless if we were to allow an alternative version

of the array package to be distributed under the same name since it would mean that

there would be in circulation �les of a later date, but without the new feature. If the

document were processed using this `alternative array' then it would certainly produce

`unde�ned command' errors and would probably not be processable at all.

What's in a �le-name?

In a pure markup language, such as SGML, it is reasonably clear that control over the

�nal presentation lies with the receiver of a document and not with the author.

However, the way that LATEX is often used in practice means that most people

(at least when using the standard classes and packages) expect the formatting to be

preserved when they send the document to another site.

For example, suppose, as is still the most common use of LATEX in publishing, you

produce a document for `camera-ready-copy' using the class `article' and that you care-

fully tune the formatting by, for example, adding some explicit line breaks etc, to ensure

that it �ts the 8 page limit set by the editor a journal or proceedings.

It then gets sent to the editor or a referee who, without anyone knowing, has a non-

standard version of the class �le `article' and so it then runs to 9 pages. The consequence

of this will, at the least, be a lot of wasted time whilst everyone involved works out what

has gone wrong; it will probably also lead to everyone blaming each other for something

which was in fact caused by a misguided distribution policy.

It should also be noted that, for most people, the version of the class �le `article'

that gets used is decided by a site maintainer or the compilers of a CD-ROM distribution.

To most users, the symbols a r t i c l e in:

\documentclass{article}

are just as much part of LATEX's syntax as are the symbols 1 2 p t in:

\hspace{12pt}

Thus they should both de�ne a standard formatting rather than sometimes producing 1

more page or a 5pt larger space.

Users rely on the fact that the command (or menu item) `LaTeX' produces a com-

pletely standard LATEX, including the fact that `article' is the `standard article'. They

would not be at all happy if the person who installed and maintains LATEX for them were

312 LATEX3 Project Team

allowed to customise `article' every second day so as (in her or his opinion) to improve

the layout; or because another user wanted to write a document in a di�erent language

or typeset one with di�erent fonts.

TEX itself

We have modelled our policies on those of the TEX system since this has for some time

now been widely acknowledged as a very stable and high quality typesetting system.

The distribution policy set up by Donald Knuth for TEX has the following features:

� There is a clearly speci�ed method for changing parts of the software by the use of

`change �les'.

� Although arbitrary changes are allowed, the resulting program can be called TEX only

if its functionality is precisely the same as that of TEX (i.e. neither less nor more) in

all important areas.

� There are many �les in the system that cannot be changed at all (without chang-

ing the name): examples are the �le plain.tex and the �les associated with fonts,

including the Metafont source �les.

Maintaining complexity

Our experience of maintaining LATEX has shown us just how complex are the interactions

between di�erent parts of the system.

We have therefore, with lots of help from the bug reports you send in, developed a

large suite of test �les which we run to check the e�ects of every change we make. A

non-negligible percentage of these test runs give unexpected results and hence show up

some unexpected dependency in the system.

4 Some assurances

We are certainly not attempting to stop people reformatting LATEX documents in any way

they wish. There are many ways of customising incoming documents to your personal

style that do not involve changing the contents of LATEX's standard �les; indeed, this

freedom is one of the system's many advantages. The simplest way to achieve this is to

replace

\documentclass{article} by \documentclass{myart}

Nor do we wish to discourage the production of new packages improving on the

functionality or implementation of those we distribute. All we ask is that, in the best

interests of all LATEX users, you give your superbly improved class or package �le some

other name.

Modifying LATEX 313

5 Con�guration possibilities

The standard LATEX system format can be con�gured in several ways to suit the needs

and resources of an installation. For example, the loading of fonts and font tables can be

customised to match the font shapes, families and encodings normally used in text mode.

Also, by producing the appropriate font de�nition �les, the font tables themselves can

be set up to take advantage of the available fonts and sizes. The loading of hyphenation

patterns can be adjusted to cover the languages used; this has to be done as part of

making the format since this is the only stage at which patterns can be loaded.

A complete list of these con�guration possibilities can be found in the distributed

guide Con�guration options for LATEX2" (cfgguide.tex). However, as it says there,

the number of con�guration possibilities is strictly limited; we hope that having read

this far you will appreciate the reasons for this decision. One consequence of this is that

there is no provision for a general purpose con�guration �le, or for adding extra code

just before the \dump of the format �le.

This was a deliberate decision and we hope that everyone (yes, that includes you!)

will support its intent. Otherwise there will be a rapid return to the very situation,

of several incompatible versions of LATEX 2.09, that originally prompted us to produce

LATEX2": the new, and only, standard LATEX. This will make LATEX unmaintainable and,

hence, unmaintained (by us, at least).

Therefore you should not misuse the con�guration �les or other parts of the

distribution to produce non-standard versions of LATEX.

6 Modi�cation conditions

It is possible that you need to produce a version of LATEX which is su�ciently distinct

from standard LATEX that it is not feasible to do this simply by using the con�guration

options we provide or by producing new classes and packages.

If you do produce such a version then, for the reasons described above, you should

ensure that your version is clearly distinguished from standard LATEX in every possible

way, including the following.

� Ensure that it contains no �le with a name the same as that of a �le in the standard

distribution but with di�erent contents.

� Ensure that the method used to run your version is clearly distinct from that used

to run standard LATEX; e.g. by using a command name or menu entry that is clearly

not latex (or LaTeX etc).

� Ensure that, when a �le is being processed by your version, the use of non-standard

LATEX is clearly proclaimed to the user by whatever means is appropriate;

� Ensure that what is written at the beginning of the log �le clearly shows that a

non-standard LATEX has been used.

314 LATEX3 Project Team

7 What do you think?

We are interested in your views on the issues raised in this document. The best way to

let us know what you think, and to discuss your ideas with others, is to join the LaTeX-L

mailing list and send your comments there. To subscribe to this list, mail to:

listserv@vm.urz.uni-heidelberg.de

the following one line message:

subscribe LATEX-L <your-first-name> <your-second-name>

The proposed TEX Directory Structure

Joachim Schrod

The past has seen many discussions why TEX is conceived to be so di�cult. Four years

ago, at EuroTEX '91 in Paris, we even had a panel on \Why is TEX unusable?" A basic

criticism that came up in almost all these discussions was

a. the di�culty to install TEX and maintain the installed system afterwards,

b. that there is no agreement what components belong to an installed TEX system,

and

c. that the structure of TEX installations is too di�erent from site to site, thereby

making it di�cult to maintain a TEX installation.

Over the last 15 months, a TUG working group has been busy preparing a draft for

a standard TEX Directory Structure (TDS). We hope to serve the TEX community by

attacking item (c) mentioned above. In fact, when the draft is accepted, we hope that

item (a), the di�culty to install and maintain TEX systems, will be reduced as well.

The TDS draft addresses primarily the TEX system administrator at a site and people

preparing TEX distributions. It explicates where �les of a package will reside in a �nal

installation, thus making it easier for the administrator to �nd his or her way around.

If someone is responsible for TEX installations on more than one platform, it will also

reduce the needed time to �nd �les as the structures will all be the same.

One TEX system can be used (e.g., via NFS mount or mounted from a CD-

ROM) for both Unix-based workstations and DOS-based PCs, thereby reducing the

maintenance time again. To support that aim, only the location of implementation-

independent �les are �xed; locations for implementation- and platform-dependent �les

are only recommended.

If developers of a package can assume a common directory structure, the package's

installation can be automated, or at least the instructions can be made very speci�c.

Last, but not least, many users will be interested in a de�ned installation structure, as

they want to have a look at the system they are using.

The basic idea behind the TDS is that the �les from a distributed package may

fall in di�erent categories: macro �les for one (or even more) TEX formats, fonts and

font metrics, auxiliary �les for utility programs, etc. For each category, a package gets

315

316 Joachim Schrod

assigned a set of directories where its �les are placed. If more than one �le exists for a

category, a whole (exclusive) directory is allocated for that package. Otherwise this �le

is placed in a directory named misc.

When an update for such a package arrives, the current �les in the assigned direc-

tories (or the one �le in misc) may be thrown away and the new ones may be installed.

(It's as { or even more { important to know which �les to remove on update, as to

know which �les to install. Everybody who has maintained any system for some time

has stumbled over that problem.)

This distribution of �les over a directory tree implies that both TEX ports and utility

programs (like DVI drivers) must be able to search a �le recursively in a directory tree.

A survey among developers showed that most widely used TEX software supports subdi-

rectory searching already; other implementations will get it soon. Actually, the majority

of developers were not willing to spend much work in sophisticated cache and search

strategies, so the proposed layout pays attention to that restriction. As always, one had

to make compromises.

Members of the working group are Barbara Beeton, Karl Berry, Vicki Brown, David

Carlisle, Alan Je�rey, Pierre MacKay, Rich Morin, Sebastian Rahtz, Joachim Schrod,

Elizabeth Tachikawa, Ulrik Vieth, and Norman Walsh (chair). These members have

either years of experience in maintaining TEX systems or they are active in preparing

distributions for important TEX packages or they are engaged in the preparation of

complete TEX distributions (or all of these points). So we are reasonably con�dent that

our proposal is not hot air; it is in use already and we hope that it will be utilized by all

important TEX distributions in the future.

The current TDS draft is available on any CTAN host, in various formats (LATEX, DVI,

PostScript, etc.) It is placed in subdirectories of /tex-archive/tds/. Any feedback to

that draft should be sent by email to twg-tds@shsu.edu or by paper mail to the chair

of the working group (Norman Walsh, O'Reilly & Associates, Inc., 90 Sherman Street,

Cambridge, MA 02140, USA).

Occam's Razor and macro management

Laurent Siebenmann

Universit�e de Paris-Sud

Mat�ematiques, Bâtiment 425

F-91405, Orsay, France

lcs@topo.matups.fr

Abstract

The philosophical principle known as Occam's Razor asserts that entities should not be

multiplied beyond necessity. The TEX utility OCCAM is a tool to eliminate from a collection

of supporting TEX macros (composite commands) those that are unnecessary in a given

typescript. Hopefully, it will serve to (a) let Plain TEX users produce typescripts which can

be electronically posted in a compact form that is nevertheless autonomous and perfectly

archival, and (b) to simplify a macro package before making modi�cations for a special

purpose.

The OCCAM utility will ultimately be programmed entirely in TEX language to assure that it

is universally available. Today it is just an evolving prototype implemented with a bit of help

from an editor (on Macintosh) that has a programmable control language based on GREP.

To achieve reasonably automatic functioning of OCCAM, not requiring surveillance by a TEX

programmer, it is necessary to maintain a carefully structured master version of each macro

package involved; this .occ version can double as the documented source version of the

package.

Keywords: Occam's Razor, macro management, Plain TEX, .tex typescripts, electronic

publication, docstrip, LATEX.

1 The aphorism

At this European congress, let me remind you that the English philosopher William of

Occam (or Ockham) was, like Abelard or Erasmus, a consummate European; he worked

successively in Cambridge, Avignon, and Munich.

Occam's Razor is

317

318 Laurent Siebenmann

entia non sunt multiplicanda praeter necessitudinem

entities should not be multiplied beyond necessity

William of Occam 1285-1349(?)

Experts believe that Occam did not formulate it in exactly these famous words, but

rather as

What can be done with fewer assumptions

is done in vain with more.

or

Plurality is not to be assumed without necessity.

The Razor is sometimes called the `Principle of Parsimony'.

2 Introduction

Have you ever felt guilty about burdening a friend with macros that are not really nec-

essary for composing your typescript? I certainly have; and would ideally like to follow

Knuth's example of using macro �les that de�ne exactly what is necessary for a document

and nothing more.

However, pruning a macro �le that has served for other purposes is a pain. Most of

us respond to this pain by adopting a rather messy maximalist approach in which all the

macros that have a genealogy related to the necessary macros are transmitted.

But there is another approach! One can seek e�cient mechanisms to ease the task

of weeding out unnecessary macros.

One such mechanism is auditor.tex, which makes a list of names of those macros

of macro �le that turn out to be unnecessary in a given typescript.

A complementary tool is DEFSTRIP. This utility exploits a specially arranged OCCAM

version of the macro �le to be cleaned up, in conjunction with the list of unused macros

provided by auditor.tex in order to delete the macros listed (and some annexed

material).

Ultimately, DEFSTRIP will hopefully be a .tex program defstrip.tex resembling

the docstrip.cmd utility of LATEX fame. Today, there exists only a QUED/M command

script called \DefStrip-QUEDCmds". (QUED/M is an inexpensive editor with conve-

nient composite command capabilities, its own `macros'. It is available on Macintosh

computers, distributed by Nisus Software Inc. of Solano Beach Calif.) Methods suitable

for programming defstrip.tex are described in [2].

AUDITOR and DEFSTRIP together make up the system called OCCAM. Let us consider

two classes of situation where the OCCAM system will be useful.

Occam's Razor and macro management 319

2.1 Weeding one's personal macro �les

Many TEX users build up a cumulative personal macro �le through composing many

articles with TEX. A time inevitably comes when it is embarrassing, cumbersome, or

confusing to submit (or post electronically) the whole macro �le along with the article.

The OCCAM system makes the pruning of the macro �le painless. It is necessary to

tidy up the total macro �le and maintain it with `OCCAM structure', which is usually

distinguished by the extension .occ; this structure will be described in Section 4. Then,

and only then, will auditor.tex and DEFSTRIP collaborate to automatically produce a

minimal version of the macro �le suitable for the article at hand.

2.2 Preparing autonomous and archival \.tex" postings

Suppose that one proposes to post in electronic .tex form an article prepared using a

remarkable but not really standard package such as the harvmac.tex macro package

of Paul Ginsparg for Plain TEX.
1 Such a macro package is not immune to alteration

with time, and unfortunately the principles of upward compatibility are just pious hopes,

not laws. Consequently, one is well advised to post, along with the .tex version, the

macros necessary to compile it { especially if modi�cations to the macros have been

used. Unfortunately, the harvmac.tex macros are as voluminous as a 10 page article.

This is an unfortunate obstacle to electronic posting of shorter.tex typescripts.

The solution proposed requires harvmac.occ, which is harvmac.texmacros set out

in a form designed for use with OCCAM. Then the necessary macros for a given article

can be extracted by OCCAM. This is illustrated (in the OCCAM distribution) for a famous

article by Edward Witten posted electronically in November 1994. The resulting archival

posting (Plain based) requires only 6Ko of macros rather than the original 20Ko. The

68Ko body of Witten's article is unmodi�ed.

Recently harvmac.tex has been enhanced by inputting hyperbasics.tex, the

hyper-reference macros of Tanmoy Bhattacharya, (and the new name is lanlmac.tex).

The archival nature of the TEX postings that have been minimized using OCCAM still

depends on Knuth's Plain format being archival. Plain TEX will probably forever remain

unchanged, or at least be upwardly compatible in the best sense. If this does not seem

a sure bet to you, your posting could be made archival on the scale of the life of TEX

by subjecting the Plain macros to standard OCCAM discipline to produce plain.occ.

An article might require half the macros of plain.occ (or 20Ko) to have its own

format built from INITEX. This may seem needlessly radical to an English speaking user;

however, for longer works in the many other languages that in any case require a special

compilation from INITEX, I consider bootstrapping from INITEX the best approach to fully

archival .tex postings.

1. The alternative .dvi form is undeniably convenient, but also less
exible. For instance, the .tex version

can be redimensioned and then retypeset to be read in comfort on any computer screen whereas a .dvi

version (or anything derived from it) often has lines too long for the viewer. Other output formats like .ps,

being derived from the .dvi, are similarly in
exible.

320 Laurent Siebenmann

There are many other macro packages that might bene�t from OCCAM's .occ struc-

turing. The `picture' macro package embedded in LATEX is an example; interestingly these

macros run on Plain. The amssym.tex math symbol de�nition package for AMS fonts

is another; it de�nes hundreds of control sequences, of which precious few are used in

any given article. Both will be included in .occ form in the OCCAM distribution.

Would it be reasonable to convert AMS-TEX into a Plain macro package with .occ

structuring, much as it has been converted by the AMS into a documented LATEX

package? This would be a move toward abandoning AMS-TEX's status as a full-
edged

format. In particular the AMS-Plain package would have no in
uence outside of math

mode.

In the long term, the structuring of a macro package for use with OCCAM will be the

responsibility of the author of the package. Clearly such structuring will catch on only if

OCCAM performs well as a fully portable TEX utility.

3 How Auditor operates

The �rst utility, AUDITOR, of the OCCAM package is already a perfectly portable TEX

program auditor.tex. On a small scale, AUDITOR is independently useful, so it should

help you learn about OCCAM interactively.

Suppose you have a Plain TEX typescript x.tex that inputs a macro �le x.sty whose

size and history lead you to suspect it to be full of unused macros. AUDITOR serves to

provide a list of macros de�ned in x.sty that are not used in x.tex.

The basic idea used by AUDITOR is easy to grasp if described in a simpli�ed form as

follows. Auditor changes the de�nition of many a new (top level) macro \mymacro in

x.sty so that its expansion includes an `auditing' device able to report whether \mymacro

has been been used in x.tex. If the expansion of \mymacro is originally blablabla then

during use of AUDITOR it becomes:

\global\let_mymacro_\@Used blablabla

Here \@Used is a macro with some arbitrary expansion such as @@Used. With a bit of

luck, a use of \mymacro with this new de�nition will cause an arti�cial macro whose

name string is _mymacro_ to become de�ned and have expansion @@Used { and do so

without disturbing the normal functioning of \mymacro.2

The arti�cial macro _mymacro_ can clearly be polled after typesetting x.tex; that

will record whether \mymacro has been used. Of course, AUDITORmust somehow �nd out

which macros _mymacro_ should be polled. That is easy, and is done as follows, along

with the above rede�nition of \mymacro. Before the audit, \def\mymacro is replaced by

\Def\mymacro; this \Def �rst stores _mymacro_ in a token sequence for later polling,

and then makes the modi�cation of the expansion of \mymacro we have exhibited above.

2. Variants are possible. To identify macros that are little used, one could count how many times \mymacro

is used.

Occam's Razor and macro management 321

We have seen the simple idea behind auditor.tex. Programmers will have also

noticed that the idea can fail to work in unfortunate cases; we shall return to that.

3.1 How to make \audit.tex" list unused macros

Here now is a user-oriented recipe to get a list of unused macros { they can often be

quickly eliminated by hand. Recall that the typescript is x.tex and its macro �le is

x.sty.

� make a copy x.occ of x.sty.

� temporarily have x.tex \input x.occ in place of m
ogo.dtxx.sty.

� at the top of x.occ add: \input auditor.tex

� wherever an `outer' (top level) de�nition \def\mymacro... occurs in x.occ, replace

\def by \Def. The latter is a special auditing version of \def, which is de�ned in

auditor.tex.

� typeset x.tex; this will produce a �le audit.lst containing a list of all the macros

de�ned using \Def; in it the macros that are unused by x.tex are specially marked.

Using audit.lst to eliminate from x.sty the unused macros is sometimes tiresome to

do by hand; the chief role of the DEFSTRIP utility described in the next section 4 is to

automate this.

AUDITOR is a bit more general than indicated so far: \Def has a number of cohorts

that behave similarly:

\Def (variant of \def)

\gDef (variant of \gdef or \global\def)

\Let (variant of \let)

\gLet (variant of \global\let)

\Mathchardef (variant of \mathchardef)

\Newsymbol (variant of \newsymbol)

These replace corresponding uncapitalized control sequences in the �le x.occ. Here,

\newsymbol (from amssym.def) is a macro used copiously for declaration of sym-

bols from the AMS math fonts msam� and msbm�, as in amssym.tex. Note that

\mathchardef and \newsymbol de�ne a `mathchar' not a macro; but the capitalized

versions de�ne macros.

As has been mentioned, auditor.tex is not bullet-proof. Any change whatever

in the expansion of a macro can in principle alter its behavior. For example, TEX can

use \ifx and many other means to examine the expansion of a macro; a `perverse'

x.tex can always be constructed that stops compilation if there is any tampering with

de�nitions.

However, if one exercises prudence this is unlikely. Here is some cautionary advice:

322 Laurent Siebenmann

� Use \Let only with macros; e.g. \Let\mymacro\thymacro is allowable only when

the control sequence \thymacro is a macro; the test command \show\thymacro

will tell you if it really is one.

� Do not modify \def's etc. within other de�nitions. This would often be pointless

and perhaps dangerous. (But see section 5.)

� Avoid de�nitions involving \\outer" and \\long" macros; (But perhaps \outerDef

and \longDef will be introduced to handle them.)

If there is trouble in using x.occ, then opt (by dialog) to compose without an audit.

There should be no change from the original behavior of x.tex. Correct any misbehavior

{ often simply arising from a typing error in constructing x.occ. Sometimes, here and

there in x.occ, one has to change \Def back to \def etc; (in that case the macro in

question is clearly used!).

4 Occam structuring for macro packages, and the action of

DefStrip

As described in the last section 3 above, the AUDITOR half of OCCAM uses both the

macros x.sty and the typescript x.tex to establish a list audit.lst indicating macros

unused in x.tex. OCCAM's second half, DEFSTRIP, serves to delete them from x.sty

in a quite automatic way. The �le x.tex is not further used but the specially structured

version x.occ of x.sty is required. In addition, more structuring must be added to

x.occ than was necessary for AUDITOR { the fully structured macro �le is said to be

OCCAM structured.

The goal of this section is to specify the syntax of the more basic OCCAM structuring,

and indicate how DEFSTRIP should interpret it.

This structuring is less simple than the easy description of the action of AUDITOR in

the last section 3 above might lead one to expect. It is true that DEFSTRIP ultimately

merely serves to delete selected lines of the �le x.sty. However, the result would be

rather messy and less than minimal if only the lines occupied by the unused de�nitions

were deleted. For example, one wants to delete comments attached to deleted macros,

and possibly some auxiliary commands like \newif... not mentioned in audit.lst.

We now make this more precise through describing the syntax by which these blocks

are unambiguously speci�ed, and the rules for block deletion.

4.1 Main speci�cations of the OCCAM syntax

Two composite symbols %^ and %_ are employed in conjunction with \Def etc. to delimit

possible deletions; the percentage sign % makes them invisible to TEX. On its line, %^ is

always preceded by spaces only (zero or more); similarly %_ is always followed by spaces

only.

Occam's Razor and macro management 323

Unconditionally deleted material

%%^_ <delete me>

The block of lines from %%^_ to the end of �le is then deleted. To delete just a segment

use

%^ <delete me> %_

The block of � 1 lines deleted must include no blank line. Note that it may well contain

\Def etc. but not %^, %_.

The unconditional deletions will occur as if done in the order described, and before

conditional deletions (described below) are considered.

Conditionally deleted material

\Def \somemacro ...

...%_

may cause deletion of the block of lines beginning with \Def etc. and ending with %_.

This material is really deleted, precisely if the macro \somemacro is marked for deletion

in the the �le audit.lst.

The material <maybe delete me> must contain no blank line nor %^, %_, \Def etc;

but it is otherwise arbitrary; in particular, macro arguments, comments, and auxiliary

de�nitions are permissible.

Along with this material some additional preceding material is deleted, namely con-

tiguous preceding lines (if any) that (a) are nonempty and (b) contain no %_ (but \Def

etc; are allowed). Typically, such preceding material might be comments or commands

`owned' by the macro being deleted. For example the whole block

%_

\ifx\undefined\eightpoint

\Def\eightpoint{}

\fi %_

will be deleted, precisely in case \eightpoint is marked as unused in audit.lst. (The

�rst %_ could be replaced by a blank line.)

Note that %_ is not really a closing delimiter since it can exist in arbitrary numbers

without belonging to a matching pair. For another example, consider:

\Def\amacro ...%_

\newtoks\btoks %_

\Def\cmacro ...%_

Here, the the �rst two %_ prevent \newtoks\btoks being deleted { in all circumstances.

The example

\Def\amacro ...

324 Laurent Siebenmann

\Def\bmacro ...%_

is incorrect because the block beginning with \Def\amacro ... contains \Def\bmacro.

Sentinels

There is a second type of conditional deletion. Suppose \amacro is not used and is so

designated in audit.lst. It often occurs that several disjoint blocks of lines should be

deleted along with the block containing the de�nition of \amacro. These blocks should

each be designated as follows:

%/^\amacro

<stuff>

%/_

\amacro is called the sentinel (watchman) for the block. The sentinel's line %/^...

must contain nothing more than %/^\amacro and blank space. The initial and terminal

lines will vanish along with <stuff>.

Summary of primary deletions by DefStrip

Any block %^...%_ is unconditionally deleted, while a block signalled by \Def, \gDef,

etc. with the help of %_ and/or blank lines is deleted or not according as the macro

following \Def etc. is or is not marked for deletion in audit.lst. Similarly for blocks

with sentinel macro. None of these blocks for conditional or unconditional deletion is

allowed to contain an empty line nor any extraneous %^, %_, %/^, %/_, %%^_, \Def,

\gDef, etc. The blocks introduced by \Def, \gDef, etc. include material extending

backward as far as (but not including) a preceding line that is blank or terminated by

one of %_, %/_. No such extension for blocks introduced by %^, %/^ is allowed { nor

would it be helpful.

Secondary cleanup by DefStrip

Beyond these primary deletions, the utility DEFSTRIP performs a few auxiliary tasks:

� All remaining \Def, \gDef, etc. are converted to \def, \global\def, etc. Also, if

a remaining %_ is alone on its line (spaces ignored), the whole line disappears. And

each remaining %_ not alone on its line becomes % (this is the only deletion that can

a�ect a line that survives, and TEX is una�ected).

� Any empty line sequence (usually created by the deletion of blocks of lines) is reduced

to a single empty line.

� Residual appearances in x.occ of macros marked for deletion in audit.lst will be

marked by %%[VESTIGE] (on a new following line).

Such an occurrence of %%[VESTIGE] should be considered an error warning concerning

the OCCAM structuring of x.occ. Users may �nd such vestiges hard to deal with. Thus

the programmer should enquire whether (for example) the vestige could be automatically

Occam's Razor and macro management 325

deleted using the sentinel mechanism. For their part, users should report vestiges to the

programmers along with the involved audit.lst �le from auditor.tex.

In most cases, anyone who programs TEX macros at an intermediate level will �nd it

an easy task to provide OCCAM structuring for any simple macro �le. However, as soon

as the macro �le has interdependent macros, and de�nitions of control sequences other

than macros3, attention from a programmer will be needed { plus testing.

The author of the macro package himself is the most appropriate person to introduce

Occam structuring:

� The author has the opportunity to add extra documentation to the .occ version

and make of it a fully documented master copy of the package. Using conditional

deletions, one has
exible control of which documentation is passed on by DEFSTRIP

to the user.

� The author can often remodel the macro package to allow OCCAM to do a better

job more simply.

� The author protects his work against the erosion of time; it becomes unimportant

that large parts of a package become antiquated; only the parts that remain viable

will be exported by OCCAM into users typescripts.

� Once committed to OCCAM (or similar means of macro distillation) the author can

out the usual rules of upward compatibility, provided it is made clear from the outset

that the package is to be used exclusively to produce autonomous typescripts.

5 Nested macros

Unused macros whose de�nitions are nested within those of other macros that are used

can often be be eliminated, although that would be very di�cult on the basis of features

of OCCAM described thus far.

We now describe suitable additional syntax. It was was implemented in 1995 through

modifying both auditor.tex and DEFSTRIP. This is probably more subject to change

than features in earlier sections.

Where DEFSTRIP is concerned, the new syntax is currently implemented quite trivially

by making several passes, and the example below is conveniently explained in this way.

However, the TEX version defstrip.tex will almost certainly reduce this to a single

pass; the audit.tex utility already acts in a single pass.

Here is a generic `example'. The original macro �le contains:

\def\MACRO{<stuff1>%

<stuff2>

\def\macro{<stuff3>}%

<stuff4>%

<stuff5>}

3. For example, unused fonts are hard to eliminate.

326 Laurent Siebenmann

An OCCAM structured version is:

\Def\MACRO{<stuff1>%#_

<stuff2>

\DDef\macro{<stuff3>}%

<stuff4>%#_

<stuff5>}%_

The macro \DDef, de�ned in audit.tex, behaves much like \Def except that the associ-

ated sign distinguishing unused macros in audit.lst is *# in place of *.

Note that if \MACRO is unused then the whole block vanishes.

We are interested in the case where \MACRO is used. Then, on �rst pass of the

macro �le through DEFSTRIP, \DDef is converted to \Def; and the marks %#_ therein

are converted to %_. At the same time, the �le audit.lst undergoes one wave of

changes *#\) #*\ and *\) #\, i.e. asterisks move right or die on backslash.

On the second pass through DEFSTRIP, one is treating:

\def\MACRO{<stuff1>%_

<stuff2>

\Def\macro{<stuff3>}%

<stuff4>%_

<stuff5>}%

and, in response to an entry #*\macro in the current audit.lst, DEFSTRIP will delete

the block

<stuff2>

\Def\macro{<stuff3>}%

<stuff4>%_

i.e. this block is deleted precisely if \macro is unused. (Only a programmer can guess

whether this elimination is safe!)

5.1 Nested Sentinels

The macros in such nested de�nitions are allowed to be sentinels for blocks, as follows.

Often, one wants to delete other material along with the block surrounding \macro.

The syntax for a block to be eliminated along with \macro is:

%#/^\macro

<stuff6>

%#/_

It is permissible to use _ in place of /_ on the above syntax. But not ^ in place of /^

since that would give an unconditional deletion.

Occam's Razor and macro management 327

5.2 Nested unconditional deletions

There is also a notion of nested unconditional deletion. The syntax is:

%#^

<stuff6>

%#_

The developments of this section �rst proved desirable in harvmac.occ, which is a

`worked example' in the OCCAM package.

Until the TEX program defstrip.tex is built, I would particularly welcome sugges-

tions for improvements of OCCAM structuring.

6 Afterthoughts

6.1 Is Occam's Razor now dull?

Occam's Razor was one of the guiding principles of scienti�c thought for several hundred

years before the coming of age of computers. However, I suspect the philosophy of

Aristotle or Descartes is far more likely to appeal to computer scientists. One might

go so far as to say that programmers have discarded Occam's Razor. Indeed, in object

oriented programming they consciously cultivate the art of multiplication of entities, and

even LATEX users do this sort of thing with commands such as \newheading. What can

the minimalism of Occam's Razor o�er TEX users at this late date? Probably just a few

things.

� Friendliness to human beings. Unnecessary entities that cost a microprocessor only

microseconds can cost the human mind a signi�cant amount of time.

� Extra storage space and computing power. Both are in a period of exponential

growth. But so is the TEX related software we use. Thus performance in a �xed

task can occasionally decline. When this happens, the old-fashioned minimalism of

Occam's Razor can prove essential to derive pleasure and pro�t from progress.

6.2 Plain versus LATEX

The goals of OCCAM do not make much sense in the LATEX world. The LATEX group

is building o�cial LATEX macro modules that cover more and more territory, and are

universally available. If upward compatibility is fully maintained, there will be little reason

to use OCCAM in the everyday LATEX world since all macros used will be standard. This

is LATEX's greatest strength. It assures LATEX an important and possibly dominant role in

electronic scienti�c publication based on .tex typescript format. The role OCCAM seeks

to play in this sort of electronic publication lies mostly within the realm of Plain TEX

and INITEX.

328 Laurent Siebenmann

However, I have been alarmed by the growing di�culties facing an individual when

programming LATEX beyond its current capabilities { I mean more than routine reparam-

eterizing and renaming. It is not just LATEX's exponentially growing internal complexity

that is alarming, nor the fact that LATEX runs slower and slower relative to Plain. The

most debilitating problem is that internal macros should probably not be reprogrammed

since (unlike the user macros) they are open to change. Thus the results of such indi-

vidual programming e�orts risk being electronically `unpublishable' even if the macros

involved are posted along with the article they produce { indeed the version of LATEX's

internal macros on which they were based may vanish from the next LATEX update,

and that may well invalidate the posting. A related fundamental di�culty is that TEX

primitives are not guaranteed to be/remain accessible from within LATEX. The logical

conclusion would seem to be that all programming of LATEX su�ciently deep to modify

LATEX internals should be left to the o�cial LATEX group.

Don Knuth seems to have had similar premonitions and takes a possibly more doubt-

ful attitude. I repeat what he said on the occasion of the 10 th anniversary celebration

of TEX 82.

Suppose you were allowed to rewrite all the world's literature; should you try to

put it all into the same format? I doubt it. I tend to think such uni�cation is a

dream that's not going to work.

[TuGboat, vol 13 (1992), page 424]

I (and Knuth?) may be unduly alarmed. OCCAM is nevertheless to some extent my

attempt to stop the decline of Plain. (There is nothing signi�cant I know how to do for

this real or imaginary malady of LATEX.)
4

LATEX continues to perform well for an expanding palette of routine tasks, and I am

happily using it to prepare this article! The most favorable outcome would be for both

approaches to work well. If this comes about, I expect the \look and feel" of Plain and

LATEX to nevertheless steadily diverge.

In summary, the TEX utility OCCAM o�ers a novel response to the most debilitating

problem of Plain TEX, namely the confusion and incoherence that come from contin-

ual and uncoordinated accretion of macros. Naturally, this weakness of Plain is clearly

perceived by Leslie Lamport who stated (on the net in 1994):

Because Plain TEX is �xed, it seems likely that the Plain TEX community will

fragment into numerous small islands in a sea of incompatibility.

The LATEX programming group deals with the accretion of macros by constantly improv-

ing infrastructure while selectively enlarging LATEX, whereas my partial answer for Plain

TEX is to use OCCAM to cull out inessential macros, restoring simplicity in the macro

4. An author who absolutely needs many of the basic talents of LATEX and new performance, might consider

using a frozen but hopefully permanent format like LAMS-TEX or `classic' LATEX 2.09 and macros distilled by

OCCAM from personal of public packages whose permanence is in doubt.

Occam's Razor and macro management 329

set actually used in each document, and thereby making new infrastructure and stan-

dardization largely unnecessary. OCCAM's action has a parallel in classical programming,

namely the use of a compiler { whereas the LATEX approach is parallel to the use of a

big and constantly evolving interpreter.

My hope is that, with OCCAM's help, Plain TEX will regain vigor and prove as viable

as LATEX, and indeed complementary to it.

References

[1] L. Siebenmann. Elementary text processing and parsing in TEX { the appreciation

of tokens. TUGboat, 13:62{73, 1992.

[2] L. Siebenmann. OCCAM, a TEX utility. the electronic master posting in 1995 is on

ftp://matups.math.u-psud.fr://the CTAN archives, 1993-5.

A package for Church-Slavonic typesetting

Andrey Slepuhin

pooh@shade.msu.ru

1 Introduction

The multilingual ability of TEX is one of its most important properties. Due to TEX it

became possible to produce high-quality books in many di�erent languages (sometimes

with very exotic grammatic rules). For more than 10 years of its existence TEX became

a real polyglot and it seems that it doesn't want to stop evaluating. In this paper one

more, may be rather exotic, example of practical usage of TEX is considered, and also

many ideas and solutions which result from 5-year experience of TEX using.

2 General solutions

How does a language-speci�c package have to look like from the point of view of a

computer publishing system? It must include at least the following components:

� quality fonts;

� tools for simplifying the text formatting;

� hyphenation table;

� punctuation or some other poligraphic rule description;

These requirements became a basis to �«¢~TEX development. The two �rst items got

quite satisfactory realization. As to the realization of the third one { it depends on the

volume of the dictionary, which is not su�ciently complete yet. The fourth item is absent

because the Church-Slavonic language has no precise rules of punctuation or whatever

similar things.

3 Fonts

Designing the quality-fonts is, in general, a very hard task and moreover the author's

knowledge on this subject at the beginning of this work were minimal. So, the designing

331

332 Andrey Slepuhin

of the base version of fonts took more than half a year, and di�erent improvements are

still under development. Among the factors that made the work more complicated, a

large number of symbols (only letters { 44) in the Church-Slavonic alphabet should be

noted. Also the glyphs of symbols have a very few similar elements. The typeface, which

had a wide spreading at the beginning of the XX century, was taken as a model of created

fonts. The following technology was applied for the fonts developing: the symbols were

magni�ed and separate elements were extracted, then base and control points of outline

curves were placed manually and the METAFONT macros were designed; the obtained

symbols were �nally improved using the METAFONT graphic output.

4 The diacritical signs problem

The main problem, that occurred during the �«¢~TEX development, was connected with

the fact, that every word in a Church-Slavonic texts has at least one diacritical sign.

None of computer publishing systems (except TEX, of course), known to the author,

contains any convenient tools for typesetting a text with accents. TEX uses \accent

macro for this purpose, but this macro seems to be designed for rather rare usage,

because it gives the following undesirable e�ects:

� the kern between accented and previous symbols disappear;

� TEX doesn't make any hyphens in the remainder of the word after accented symbol

and can make invalid hyphens in the initial part of the word;

These e�ects are arising because TEX uses explicit kern while expanding \accent

macro. So, it seems, that the best solution of the diacritical signs problem (realized

for many European languages, for example) is a method, when a letter together with

an accent is represented by a single character in the font. However, in the case of the

Church-Slavonic language this solution cannot be applied in proper form, because there

are too many possible pairs `letter { accent', and a limit of 256 symbols will be exhausted.

It would be wonderful if the following idea works: several pairs `letter { accent' have

positions equal modulo 256, and their metrics are identical. Unfortunately, it's impossible

to force TEX to put a symbol with character code greater than 256 into DVI-�le. Such

restriction is especially misunderstanding, because the DVI-�le format supports the usage

of symbols with character codes up to 232 � 1. One more well-known method to deal

with the accents is their realization as strongly shifted left characters of zero width.

Such a variant is unsatisfactory too, because it does not solve the kerning problem and

signi�cantly complicate the hyphenation table constructing.

To solve the accent problem we need to understand how the diacritical signs in

Church-Slavonic language are placed. It can be found, that some of them can be placed

only over the �rst letter in the word, and some can be placed only over the last letter.

These two cases are realized by special macros \fcaccent and \lcaccent. The last

macro can be written in a very simple way, because it needs only to locate the accent

A package for Church-Slavonic typesetting 333

with the help of kerns. The macro \fcaccent has \nobreak\hskip0pt construction in

addition, which enables the hyphenation of the word after the diacritical sign.

As for the accents in the middle of a word, some of them are realized together

with the corresponding letters, and other are representing symbols, used, in general,

for abbreviation of certain words (in Church-Slavonic language they are called `titlo').

The words, containing these symbols, as a rule, cannot be hyphenated, so it became

possible to write a special macro, placing an accent and preserving kern both before and

after the symbol. It is a quite sophisticated macro, which use such powerful TEX tool as

\futurelet. The text of this macro is given below:

\def\caccent#1#2{%

#2\setbox2=\hbox{#2}\setbox1=\hbox{#1}%

\dimen0=\ht2\advance\dimen0 by -1ex%

\dimen1=\wd1\advance\dimen1 by \wd2%

\divide\dimen1 by 2%

\kern-\dimen1\raise\dimen0\hbox{#1}%

\advance\dimen1 by -\wd1%

\kern\dimen1%

\def\tmp{\explkern{#2}\next@}%

\futurelet\next@\tmp%

}%

The \explkern macro simply adds the kern, that must be placed between its arguments:

\def\explkern#1#2{%

\def\next@@{}%

\ifcat#2a%

\explkern@#1#2\else%

\ifcat#2.%

\explkern@#1#2\else%

\ifx#2\-%

\explkern@#1#2\else%

\fi\fi\fi%

}%

\def\explkern@#1#2{%

\setbox0=\hbox{#1#2}%

\setbox1=\hbox{{#1}{#2}}%

\dimen1=\wd0\advance\dimen1by-\wd1%

\kern\dimen1%

}%

For the convenience of the text typesetting, the symbols ', ", `, ~, _, | and < are made

active and are expanded to the corresponding macros. The selection of Church-Slavonic

334 Andrey Slepuhin

mode is realized by the \beginslav macro, and return to usual mode is realized by the

\endslav macro.

5 Slide making

Another problem, that come into consideration during package development is the

problem of slide making. Almost all Church-Slavonic texts are two-colored. For the im-

plementation of the color separation and for obtaining separate slides for each color, the

SliTEX's idea of using `invisible' fonts was applied. However, kerning problems make im-

possible the usage of pure SliTEX. Indeed, having a word with a �rst letter emphasized by

another color (in Church-Slavonic texts it occurs very often), SliTEX looses the required

kern between the �rst letter and the remainder of the word when switching to another

font. So, for such cases we need special macros. To implement the color separation a spe-

cial font selection scheme was designed, slightly similar to NFSS. After including the font

description �le and appropriate macros, user can declare usage of any color via the macro

\newcolor(<color>). This macro induces the macros \<color>g{<any text>} and

\<color>. The �rst of them switches the color, preserving kern, and the second switches

it without preserving any implicit kern (TEX interprets this macro in the simplest way, so

its usage is approved). Now, typing \showcolor(<color>) or \hidecolor(<color>)

in the input �le, we can make any selection by a speci�ed color visible or invisible in

output. The text before the �rst usage of \<color>g{<any text>} or \<color> will

be always visible.

6 Numeration

In Church-Slavonic language a literal numeration is accepted, which can be described by

the following algorithm:

Given an integer n � 0. Let S(n) be its representation in Church-Slavonic language.

See also Table 1.

The representation of zero is absent in Church-Slavonic language, but let it be empty

for conveniency.

If 10 � n < 20, then S(n) = S(n mod 10)S(10). If 20 � n < 100, then S(n) =

S(n � (n mod 10))S(n mod 10). If 100 � n < 1000, then S(n) = S(n � (n mod

100))S(n mod 100). If 1000 � n < 10000, then S(n) =�S(n � (n mod 1000)S(n mod

1000).

There are disagreements about representation of numbers greater than 9999, and

by this reason it is not implemented yet. The macro \slnum(<number>) automatically

generates the number representation in the Church-Slavonic language. For example,

\slnum(1995) gives � æ~ç¥. One would be careful, because this macro is valid only in

Church-Slavonic mode.

A package for Church-Slavonic typesetting 335

n S(n) n S(n) n S(n)

1 ~ 10 ~� 100 ~à
2 ~¢ 20 ~ª 200 ~á
3 ~£ 30 ~« 300 ~â
4 ~¤ 40 ~¬ 400 ~�
5 ~¥ 50 ~­ 500 ~ä
6 ~s 60 ~x 600 ~å
7 ~§ 70 ~o 700 ~z
8 ~̈ 80 ~̄ 800 ~w
9 ~f 90 ~ç 900 ~æ

Table 1: Numeration in Church-Slavonic language

7 TEX without encoding

During the work on �«¢~TEX an idea appeared which allows to solve the compatibility

problem while transferring any package to another platform. This problem is especially

actual in Russia, because Russian letter encodings on di�erent platforms do not coincide.

A version of TEX cyrillisation made by CyrTUG is speci�c for PC-compatible computers

under MS DOS. It causes, in particular, the disgust of numerous UNIX users in big

research institutes, which need TEX most of all.

The idea of easy transferring any TEX package to di�erent platforms is given below:

� The encoding table containing a map between character codes and their sym-

bolic names (for example, like PostScript names) must be de�ned for each speci�c

platform and font family.

� The certain utility must be written (it can be done even by TEX!) which generates

two �les: TEX encoding table and METAFONT encoding table, from the original one.

� The set of METAFONT macros must be added to rede�ne beginchar macro; it

must allow the usage of symbolic names instead of character codes by declaring

usenames:=1 or whatever like this.

� Hyphenation table must be written, using the symbolic names; when generating base

�le, �rstly TEX should read encoding, then it should convert original hyphenation

table into temporary �le using current encoding and then it should read the �le

obtained.

� \catcode, \lccode and \uccode should be de�ned using symbolic names.

This idea is implemented in the last version of the package represented and is now

in the process of testing. It should be hoped that new CyrTUG's cyrillisation versions

will be written in the form described above. It would facilitate the work for many TEX

users in Russia and for people who need to typeset Russian (or other Cyrillic) texts.

336 Andrey Slepuhin

8 Type 1 from Metafont?

The one more idea, implemented as a part of �«¢~TEX project, came from the article[3].

Its realization was forced by appearing a PostScript-printer on the author's table. There

was written a set of METAFONT macros which allow to obtain a text representation

of Type 1 fonts from METAFONT sources and, furthermore, a downloadable font by

L. Hetherington's Type 1 utilities. This macro package initially was designed to solve the

speci�c problem of representation Church-Slavonic in Type 1 format, but the conversion

of Computer Modern fonts (and others) is also possible. This work requires a special

consideration and is not described in the paper.

9 Problems and plans

The most important of the update problems is the adaptation of �«¢~TEX package to

LATEX2". When this paper was being written, the author had the distribution of LATEX2"
for a month, and this distribution was not installed due to the lack of the time. Another

problem is connected with the fact that the current font version contains only symbols of

modern Church-Slavonic language, whereas symbols from ancient versions of language

are often needed. The author also plans to develop a package for typesetting music in

non-linear notation (so-called `krjuki') being in use before XVIIIth century. The following

problems connected to Church-Slavonic typesetting also would be noted: designing a

font of initial caps and a special font for headings. In this font di�erent combinations of

letters must have speci�c glyphs (this task seems to be a little fantastic, because such

font should have a monstrous number of symbols and ligatures).

It would be hoped that somebody shares the author's interest in the problem of

Church-Slavonic and ancient texts. May be sometime a multilingual edition of Bible

(in Church-Slavonic, Greek, Latin, Hebrew . . . what else?) made by TEX come in

appearance.

10 Examples

A simple example of a Church-Slavonic text:

£|á¤¨ <i_¨á¥ å|áàâ`¥, á_­¥ ¡_¦i©,

¯®¬'¨«ã© ¬`ï £à'íè­ £®

and the result of its compilation:

A package for Church-Slavonic typesetting 337

£¤�¨ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
An example of color separation: a sequence of macros

\beginslav\family(slav)\size(12)%

\def\pray{%

\redg �|á{¤¨} <i_¨á¥ å|áàâ`¥, á_­¥

¡_¦i©, ¯®¬'¨«ã© ¬`ï £à'íè­ £®

}%

\black%

\showcolor(red)%

\par\noindent\pray

\hidecolor(red)%

\showcolor(black)%

\par\noindent\pray

\showcolor(red)%

\par\noindent\pray

\endslav

gives the result

�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®
�¤�̈ Â~̈á¥ åà�â¥�, á­~¥ ¡¦~ i©, ¯®¬´«ã© ¬ï� £àºè­ £®

This example shows that accents can be placed over a group of symbols, not only over

a single symbol.

References

[1] Donald E. Knuth. The TEXbook. Addison Wesley, Reading, MA, 1990.

[2] Donald E. Knuth. The METAFONTbook. Addison Wesley, Reading, MA, 1990.

[3] Bogus law Jackowski, Marek Ry�cko. Labyrinth of METAFONT paths in outline.

EuroTEX Proceedings, 1994: 18{32.

[4] Ieromonakh Alipiy (Gamanovich). Grammatika tserkovno-slavjanskogo jazyka.

Palomnik, Moscow, 1991.

[5] Slovar' russkogo jazyka XI{XVII vv. Nauka, Moscow, 1975.

The W95 environment

Anton��n Strejc

strejc@vc.cvut.cz

Abstract

Since 1992 `WORKSHOP 9x' has taken place at the Czech Technical University (CTU) each

year. The aim of this broadly-based seminar is to give all CTU researchers and research teams

an opportunity to present their research projects in twenty minutes of spoken presentation

and two pages of seminar proceedings. I have dealt with the technical problem of making the

proceedings using LATEX. As the number of contributions has increased year by year and the

time for making the book is limited, some automation of the typesetting process was and

still is necessary. W94 and W95 are attempts to transfer part of the typesetting work from

the �nal typesetter to the authors. W9x is a simple single-purpose user-interface between

LATEX and the MS-DOS user, who may know nothing about TEX and LATEX. Some experience

(both technical and psychological) of using this system in the two last years is discussed in

this paper and may be useful for organizers of seminars, conferences etc. where contributors

are not TEX users and the proceedings are to be made with TEX.

1 Introduction { the history

The Czech Republic has passed through a great political, economic and social transfor-

mation process in the last �ve years. Of course, great changes have also a�ected the

CTU in Prague. The old system of state support for education and research, based on

long-term central planning has changed into a grant system based on competition be-

tween research projects. At present, 607 research and educational projects are supported

by grants from various Czech and foreign grant agencies.

More and more projects have brought more and more need for publishing the results

of research work. In 1991, the �rst ideas of establishing an annual broadly-based univer-

sity seminar { Workshop 9x { appeared at the CTU. Workshop 92 was the �rst in the

series and took place at the CTU in January 1992 and subsequent Workshops have been

held regularly every year. The seminar gives an opportunity to present research projects

in spoken form (20 minutes) and in two pages of proceedings.

In 1991, I was given a job at the CTU Computing Centre, where a small group of

young people working with TEX was set up. The Centre was asked to co-operate with

339

340 Anton��n Strejc

the Workshop 92 organizing committee and the small group to make the proceedings

with LATEX.

As the conditions have changed rapidly year by year (see Table 1), it has been

necessary to �nd and improve our methods of work. Our experience is described in the

following sections.

Number of Number of Number of Time for pg/man
Year contributions pages typesetters completion per day

Method of work

1992 210 484 4 30 days 4.03

Manual conversion from text editor

1993 293 662 3 30 days 7.35

Conversion from text editor, partially automated

1994 303 688 2 20 days 17.2

W94 Environment

1995 436 928 2 15 days 30.9

W95 Environment

Table 1: Conditions, elapsed time and methods of work

1.1 1992 { no experience, great confusion...

A desperate situation... In 1991 someone announces a seminar for which contributions

are to be word processed. Even this fact was quite a shock for many people at a time

when PC 386 SX was a great hit for a small number of lucky people. Many department

o�ces still preferred typewriters and many people were still starting to learn how to use

a personal computer. Most computers were XTs and 286s.

Authors were asked to prepare their contributions with the simple text editor

Text602, which is a WordStar-type editor without mathematical fonts. Mathematical

equations were therefore written by hand into empty spaces in the text and camera-ready

�gures were enclosed. The organizing committee collected all contributions (diskettes,

Text602 prints and enclosures) and this complete pile of papers was given to us. First

we made a LATEX style �le and started to convert ASCII text �les into the source form

that LATEX needs. Reading and typesetting mathematical formulas was particularly hard

work. Very often it was impossible to �nd out what the formula should have been and

it was necessary to consult with the authors (by phone or in person).

As we had no experience we did not know how to organize our work, how to sort

the contributions, where and how to store the ready prints and �les, how to divide the

work optimally among a number of people, etc., etc. Due to these problems we were

very short of typographic time and so the �nal typographic standard of the proceedings

The W95 environment 341

was low, though much higher than it would have been in the case of direct processing

of the Text602 prints. The proceedings were therefore well received.

1.2 1993 { �rst rules of the game

A year later I become the leading typesetter in our group and also a member of the

organizing committee of Workshop 93. I had to bear all the responsibility for making the

proceedings. My situation was a bit easier as I had about six months in which to prepare

all the strategy.

I started by analyzing the previous year's proceedings, and I found the structure of

all the contributions quite similar. At that time I got the idea to turn this similarity into

an identity of structure, to set up an obligatory structure for contributions. I supposed

that text �les of this obligatory structure could be pre-processed with some tool (a short

Pascal program). I wrote this tool to read data from some known parts of the �le and

to add some formatting commands to them. I anticipated that this would save much

typesetting time.

This involved telling authors (very exactly) what and in which way I wanted them

to write. So I wrote detailed `Instructions for Authors' in which the following sentences

appeared:

`The �rst line of your text �le should contain the title of your article. Use all upper-

case letters. Then leave one blank line. The next line should contain the initial letter of

your �rst name, a point, one space and your surname. Then leave a line again. Then. . .

etc., etc.' These detailed instructions were intended to ensure the output uniformity of

all articles in the proceedings.

The output should have looked something like Figure 1. Seven obligatory parts can

be seen in this �ctitious example of an article:

� the title

� names of the authors

� addresses of the authors

� key words

� main article body

� references

� information about grant support

This structure became a standard not only for Workshop 93 but also for subsequent

years. This is the basis from which the idea of the W94 and W95 environment has

grown, as we will see in the following sections.

In 1993 the processing was much easier than it had been a year before, though

not everything went according to my plans. The problem was that most authors did

not follow my instructions exactly. This led to the fact that most �les could not be

pre-processed directly.

All the �le-by-�le processing had the following stages:

342 Anton��n Strejc

WORKSHOP 93 MATHEMATICS

THE TITLE OF THE ARTICLE

J. Hora, A. Strejc*

CTU, Fac. of Electrical Eng., Dept. of Computers
Karlovo nam. 13, 120 00 Praha 2

*CTU, Computing Centre
Zikova 4, 166 35 Praha 6

Key words: article, example

This is the main body of the article that should have the form of an extended abstract not
exceeding two pages. No sectioning is allowed.

a
2 =

√
c2 � b2

It can contain mathematical formulas and space left for �gures.

References:

[1] KNUTH, D. E.: The TEXBook. Addison{Wesley, 1991.

This research has been conducted at the Department of Computers and has been supported

by CTU grant No. 1234.

345

Figure 1: A �ctitious Workshop contribution

The W95 environment 343

1. checking the incoming �les and editing them to get the exact form for pre-processing

2. pre-processing with a specially written tool

3. LATEX typesetting itself, i.e. editing/LATEX compiling/viewing the pre-processed �le

until the de�nitive output form.

The results were not bad. As can be seen in Table 1, fewer people were needed to process

more contributions than in 1992. Indirectly, the typographic level of the proceedings

was higher because more time was spent on actual typesetting. The proceedings were

received very well. All this �lled me with the feeling that the method was right but that

more steps would have to be taken to make the process more automated and to keep the

idea alive in the case of even more contributions. One more fact can be seen in Table 1.

The number of team members decreases year by year. Some people have left and some

are still leaving the University for better conditions o�ered in the private sector of the

economy. . .

1.3 1994, 1995 { the environment is in action

More exactly, the child was born in 1993, several months after the Workshop 93 seminar.

1994 was the year of the Workshop 94 seminar and the �rst use of the W94 Environment.

I will not write about this system in detail here but will describe only the improved version

W95 in the text that follows.

Experience from the previous year had led me to the following opinions:

� the idea of central LATEX processing non-LATEX contributions is vital, and this method

leads to a higher typographic standard of the proceedings that cannot be reached

by simple camera-processing

� an obligatory structure for contributions (Figure 1) is good for this special purpose

and there is no need to change it

� in the case of an obligatory structure the user-interface can be written to collect

part of the data in a user-friendly manner and convert it automatically into LATEX

source code.

2 The W95 environment

The whole system can be divided into two basic parts, as follows:

1. a very reduced installation of emTEX (as minimal as possible) as a kernel of the

system

2. a user-friendly interface based on the menu system controlling all the operations

concerned with writing the article, i.e. collecting the data, and running all necessary

applications (editor, TEX, dvi-drivers, packing programs etc.)

It was not di�cult to deal with the kernel of the system. The following elements of

a usual TEX installation were taken:

344 Anton��n Strejc

� TEX compiler (emTEX version 3.141)

� the latex.fmt format �le

� Mattes dvi-drivers version 1.5a (dviscr, dvihplj)

� only the necessary fonts (in 300 dpi) that can appear in the article for both the

screen previewer and laser printer

The main goal was to write Pascal program w95.exe { the interface. It has two basic

kinds of functions { to collect user data and to run applications working with it.

Figure 2 shows the structure of the whole system. Here arj.exe is used as

a packer/unpacker of user data, keybcs2.com is a resident keyboard driver, dbedit.com

is an ASCII text editor, *.bats are batch �les running TEX, screen previewer (dviscr) and

laser printer driver (dvihplj) respectively, USER DATA is all data concerning the logged

user and COMMON DATA is all data common to all users (helps, examples, bases,

address lists etc.)

USER

W95.EXE

ARJ.EXE DBEDIT.COM VIEW.BAT USER DATA

KEYBCS2.COM COMPILE.BAT DVI2HP.BAT COMMON DATA

Figure 2: The W95 general structure

2.1 User data

As was explained above, we can divide each Workshop article into seven parts. Six of

them (all except the body of the article) correspond to �les: title.bin, authors.bin,

address.bin, keywords.bin, refer.bin and this res.txt. The �rst �ve are binary

�les (Pascal records) keeping information about the title, authors etc., the sixth �le is

a text �le storing the �nal paragraph, which begins with the words `This research. . . '

and contains information about grant support (see Figure 1).

The seventh part of the article { the article body { is the most complex part. It

consists of one or more �les that contain subparts (let us call them `blocks') of the

body of the article. These �les have user-speci�ed names with one of the eight valid

extensions (.txt, .equ, .dis, .eqa, .lst, .fig, .2fi or .tab). Here the extensions

The W95 environment 345

specify the `type of block' i.e. what type of information the block contains. The block

types will be described later.

The last �le, which is accounted as a user data �le, is body map.bin. This is a

very important �le that says what blocks are de�ned (it keeps their �lenames), which of

them are `active' i.e. which should be included in the body of the article) and the order

in which the blocks are to be taken.

2.2 Logging into W95 { unpacking user data

W95 is a multi-user system, i.e. it can store the user data of more than one user.

When it is started it asks you for your username (if you are a new user you can choose

a name). Each user has all his user data stored in a �le called username.arj. After

logging as username ARJ unpacks the user data (Figure 3) and puts it into the working

subdirectory.

*.arj

title.bin

authors.bin

address.bin

keywords.bin

refer.bin

this res.txt

block 1.typ

block 2.typ

block n.typ

body map.bin

...

ARJ.EXE

Figure 3: Unpacking the user data

2.3 Editing user data

All binary user data �les (6 �les *.bin) are edited directly within the W95 menu system.

The �le this res.txt and all blocks are edited using the built-in text editor. All these

operations are done through the W95 main menu by selecting the proper item. Since

binary data consists of Pascal records of constant length, some limitations of data size

must be given (e.g. a maximum of 4 lines of title, 12 authors, 4 addresses etc.). Editing

these things is very easy and user-friendly. As for addresses, the complete list of all CTU

346 Anton��n Strejc

faculty names, department names and locations is part of the menu system. This kills

two birds with one stone: it saves typing time and guarantees error-free and uniform

structure of the addresses.

The body of the article can be edited block by block. The number of blocks can

be from 0 (theoretically) to 16. People who are accustomed to writing in TEX or LATEX

will probably write everything in a single block without problems. Making more blocks

is better for those who know little or nothing about the system. The following section

tells you more about blocks.

2.4 The philosophy of blocks

A user of W95 may or may not be familiar with LATEX. This is the fundamental problem

I had to solve. The idea of blocks as elements of the article body seemed to be a solution.

A LATEX user just opens one block and writes the body of his article in LATEX without

any problem, because he knows LATEX. Someone who is not familiar with these things

will create the body of his article in the following way:

1. The user divides his article into several `homogeneous' parts. He will write each part

separately in a block of corresponding type. W95 o�ers the following block types:

� TXT for writing a piece of plain text

� LST for lists

� DIS for equations without number

� EQU for numbered equations

� EQA for equation arrays

� TAB for tables

� FIG for �gures `per extension'

� 2FI for a pair of �gures

2. He opens a block. This means that he runs the editor that opens a text �le called

name.typ where name is the user-de�ned name of a block and .typ is an extension

specifying the block type.

3. Though the opened �le is new it is not empty, since it is prepared for writing ap-

propriate things. For example if the �le *.equ is opened, one can see the lines

nbegin{equation} and nend{equation} and more commentary lines with instruc-

tions on how to type equations. This is like a context help, but here helps are parts

of �les so no special keys for their activation are necessary.

4. Swapping to a �le with examples concerning the proper block type is available after

pressing a hot key. The editor makes it possible to copy these examples into the

user's block. So all examples can be LATEXed and the user can compare their source

form with the screen output. This can be considered as a quick tutorial (I took this

idea from the Borland Turbo Pascal environment).

5. When a block is ready it can be `turned o�' and the next one can be dealt with. So

the blocks can be LATEXed either separately or together, or any subset of them can

The W95 environment 347

be taken. In this way the user can, for example, create text parts in the �rst stage,

then all equations etc.

Generally, the philosophy is based on a fact that is well-known from programming. You

may write simple programs before you become a real programmer. Indeed, you may write

programs and never become a programmer. Similarly, you may write an article in LATEX

and never become a LATEX user. If you have good helps and ready examples and an

average I.Q. you should be able to create the correct LATEX input. You certainly do not

need to learn all the LATEX commands. Only a little subset of them and a few specially

de�ned macros are necessary for writing the article. The philosophy of LATEX is to reduce

the great number of TEX commands and provide macros for several document styles.

Only one style is needed for the Workshop article. The obligatory article structure is

given. Therefore a next-step reduction of LATEX commands can be performed.

2.5 Pre-processing user data

Pre-processing is always done automatically when the `Compile' function is called from

the W95 main menu and it is followed immediately by the LATEX compilation. In the

stage of pre-processing a compact input �le called article.tex is generated from the

various-format user data.

1. A standard preamble is generated.

2. Binary data from title.bin, authors.bin, address.bin and keywords.bin are

transformed into parameters of special de�ned macros

ntitle{}{}{}{}, nauthors{}{}{}{} etc.
3. Blocks that are set `active' are appended to article.tex. Filenames of all blocks

and their activity
ags are stored in body map.bin.

4. Binary data from refer.bin are transferred into parameters of specially de�ned

macros nrefitem{}{}{} generating a list of references.

5. The �nal paragraph this res.txt is appended to article.tex

6. The nen macro is generated (end of article).

Let us come back to Figure 1. This is the example article. Figure 4 now shows the

appropriate input �le article.tex as a result of W95 pre-processing.

2.6 Other operations

LATEX compilation, previewing and printing the article are standard functions of all TEX

installations and there is no need to describe them here.

Other functions are saving user data, copying the article.tex �le to diskette and

exiting the environment.

348 Anton��n Strejc

\documentstyle[12pt,w95]{book}

\pagestyle{wpage}

\nofiles

\beg

\title

{THE TITLE OF THE ARTICLE}

{}

{}

{}

\authors

{J. Hora, A. Strejc*}

{}

{}

\addresses

{{}CTU, Fac. of Electrical Eng.,

Dept. of Computers}

{Karlovo nam 13, 120 00 Praha 2}

{{*}CTU, Computing Centre,

}

{Zikova 4, 166 35 Praha 6}

{}{}

{}{}

\keywords

{article,

example}

This is the main body of the article that should have the form of an

extended abstract not exceeding two pages. No sectioning is allowed.

\begin{displaymath}

a^2=\sqrt{c^2-b^2}

\end{displaymath}

It can contain mathematical formulas and space left for figures.

\references

\refitem

{KNUTH, D. E.:}

{The \TeX Book.}

{Addison--Wesley, 1991.}

\vspace{4mm}

{\it This research has been conducted at the Department of

Computers and has been supported by CTU grant No.~1234.}

\end

Figure 4: Example of article.tex

The W95 environment 349

3 Experience of using W95

This section is about processing the proceedings of the most recent Workshop. I prepared

the W95 installation packet consisting of an installation program, the packed W95

system and a `readme' �le in Czech. The size of the packet was about 1Mbyte. I uploaded

it on our ftp archive and prepared installation diskettes for people not familiar with ftp

or not connected to the network.

A hotline number and e-mail address were announced where any problems could be

consulted. Both were often used and many authors received quick hints from me.

The results were very good. Only a few typographic corrections had to be made and

many contributions were error-free. This fact allowed us to process such a great number

of contributions within 15 days (Table 1).

3.1 Psychological problems

While writing W95 I realized this operation could be quite dangerous and I was sure

some people would be against it. In the event, many people did not like W95 but they

succeeded in writing their contributions very well. I received only two letters strongly

rejecting W95. Most opponents changed their opinion when they received the ready

proceedings. Everybody appreciated the typographic level of the proceedings.

Here are some fundamental negative statements that everyone must expect if

preparing such a Workshop.

1. Why must I use W95? I have my WordPerfect (or something else) and I want to

use it. And you should convert it into your TEX. . .

2. W95 is based on TEX and nobody will make me study this terrible system (i.e. TEX).

3. I do not have time to install W95 and to study your instructions.

All these arguments were very awkward for me. I tried to explain to those people that

it would be impossible for me to convert more than 400 contributions from various

tools. I explained that we wanted the proceedings in TEX and not a camera-processed

patchwork. I explained that nobody needed to know LATEX or TEX and nobody would

have to learn it. I myself installed W95 in the computers of those people who `did not

have time' (the installation takes about 20 seconds) and showed them how to work with

it.

I can add that one very positive result also occurred. Some people found the way

from W95 to `full' LATEX and TEX and have become regular users of these systems.

4 Conclusions

This is some advice for organizers of similar seminars who would like to follow the

described way of processing the proceedings in TEX and for TEX-typesetters who would

like to participate in such work.

350 Anton��n Strejc

1. Dealing with the idea on such an environment is possible only if an obligatory (or at

least very similar) structure of contributions is given.

2. Close cooperation between the organizing committee and typesetters is necessary.

The best results can be obtained if one typesetter (head of the team) is a member

of the committee.

3. General information and instructions should be announced at least six months before

the deadline. The environment installation packet must be available to all authors

at least two months before the deadline.

4. All necessary helps must be part of the program. On the other hand helps must

not be too detailed for psychological reasons. People do not have time to study

excessively long helps.

5. During the time when contributions are being written, a hotline and hot e-mail must

be available for authors. It is often more e�cient to make a call and get a quick

answer than to search in helps or manuals.

6. Personal consultations are a good method for people in trouble who are not far from

the typographic center. Expect about 1{2% of all authors to be helped in person.

7. The organizing committee must collect all contributions and decide the order in

which they are to be included in the �nal book. Then (and not earlier) the com-

plete pile of contributions is to be transported to the typographic center. Any other

channels from authors to typesetters must be strictly forbidden.

8. Expect most negative statements just after the announcement of the seminar. The

number will decrease slightly after installations and after getting familiar with the

environment, and it will fall almost to zero when authors receive the proceedings.

MusiXTEX, even more beautiful than MusicTEXfor music

typesetting

Daniel Taupin

Laboratoire de Physique des Solides

Centre Universitaire

F-91405 ORSAY Cedex

France

taupin@rsovax.lps.u-psud.fr

Abstract

MusiXTEX is a new music typesetting package derived from MusicTEX, but it provides more

beautiful scores than MusicTEX did. While MusicTEX was a single pass package, MusiXTEX

is a three pass system: the �rst pass performs a rough TEXing which reports the spacings

of each music section, the second pass is a computation of the best note spacings, and the

third one is the �nal TEXing process.

The beauty of single notes does not signi�cantly di�er from MusicTEX, but slurs are much

more beautiful, and notes are regularly spaced instead of being irregularly spaced with glue.

1 History

MusicTEX is now well known and widely spread over the world for music typesetting.

It is mostly used by highly skilled amateurs, but even sometimes by music typesetting

professionals.

Nevertheless, most connoisseurs actually regretted the questionable aesthetic of its

slurs and ties; this ugliness was due to the fact that only horizontal lines (`\hrule')

would resist the glue inserted by TEX to achieve line1 justi�cation. This would lead to

something like:

1. We use the word `line' to meet TEXers' way of thinking, but the correct musical word describing a

synchronous set of sta�s tied together with braces or bar rules, is `system'.

351

352 Daniel Taupin

Various suggestions were proposed, all of them resulting in a several pass system, for

example inserting \specials in the DVI, analyzing this DVI byte after byte to compute

the accurate size of needed slurs, and eventually invoking metafont when needed to

generate the �nal text with the slurs/ties of the exact required length.

In 1992, Ross Mitchell2 proposed another package (initially called `Mu
ex') in which

TEX explicitly writes in a �le the spacings consumed { regardless of an arbitrary unique

scale factor { by each group of notes.

At the next pass, this �le read by a small program { musixflx initially in Fortran,

now in C { which determines the optimal value of the elementary spacing (\elemskip)

so that each score line exactly �ts in a TEX line (i.e. one \hsize) without any additional

glue to be inserted.

Then, at �nal pass, TEX reads the brainstorming results of this small Fortran or C

program, and it readily knows which spacing it must assign to the various notes in order

to avoid any glue inclusion to �ll the line. Thus, if the unit length \elemskip is known to

be 14.25 pt, while a given slur is 13 units long3, it is then easy to choose the convenient

sequence of symbols to build a smart curve of the right length, with an accuracy of one

point.

Thus, using MusiXTEX the previous sequence becomes:

and when the spacings are increased, one obtains:

After this preliminary trial MusiXTEX was created by Andreas Egler4 and Daniel

Taupin, tuning the Mu
ex by Ross Mitchell and `negotiating' some features of MusicTEX.

2. CSIRO Division of Atmospheric Research, Mordialloc, Victoria { Australia.

3. In fact this is seldom an integer, due to additional spaces for bars and special insertions.

4. Ruhr{Uni{Bochum, D-44793 Bochum.

MusiXTEX, even more beautiful than MusicTEX for music typesetting 353

2 The characteristics of MusiXTEX

Most commands are taken from MusicTEX, sometimes with name changes such as

debutmorceau becoming startpiece. Some people may smile about this point, but

as a matter of fact the existence de keywords taken from the French language some-

times triggers allergy reactions5... In addition, MusiXTEX provides speci�c macros to

achieve slurs whose �nal altitude is di�erent from the initial, for example:

Here is another example { Intermezzo op. 117,1 by Brahms { according to data

provided by Miguel Filgueiras

3 MusiXTEX's advantages and di�culties

3.1 The glue problem

Obviously, the glue notion is essential to TEX, since it enables justi�cations equally spread

over the text lines. MusicTEX also reasonably uses this feature, in order to approximately

5. Werner Icking humoristically suggested that German people use something like

\HierbeginntmeinePartitur instead of \debutmorceau.

354 Daniel Taupin

justify the lines of music scores, with that speci�c di�culty that music `paragraphs' may

not �nish with partial lines.

However, the MusicTEX experience was that glue imposed slurs and ties with a

wide horizontal section, in order to enable overlappings or extensions of the \hrule

form. Moreover, if the user was poorly careful, glue would introduce wide empty spaces

between compact sequences of notes.6

MusiXTEX solves all these problems, but the unfortunate counterpart is that the

least parasitic space:

� forgotten % at end of line when not ended with a keyword,

� boxes containing text (lyrics) spilling out of the horizontal length allocated to the

group of notes,

results in, at best some Underfull boxes �lled in extremis with glue, at worst catas-

trophic Overfull boxes.

As a consequence, when getting these messages, hunting spilling boxes or parasitic

spaces becomes sophisticated operation, of the competences of a skilled TEXpert only.

3.2 Compatibility with MusiXTEX

Our idea { as well as of another musician, Werner Icking { was to build a new package

using the same commands as MusicTEX except hard impossibility, and o�ering in addition

a more automatic page layout, and an aesthetic slur generation by means of a set of

additional commands.

But later, one of the co-authors { Andreas Egler { wanted to do the other way,

namely a distinct new package, obviously taking advantage of the bases of MusicTEX

but providing di�erent internal and external commands:

� uni�cation of certain distinct commands whose choice could have been automa-

tized... with deletion of the old ones;

� compilation speed enhancement replacing many \def by \let, admittedly faster but

badly encapsulated;

� replacement of command names taken from French and Italian with English looking

keywords;7

�locking some internal identi�ers by inserting @ ;

�ambiguous shortening of command names, which were really long but

self-explanatory, probably due to memory problems in his computer.

Nevertheless, although he claimed that music typesetters should give up using Mu-

sicTEX to de�nitely move to MusiXTEX, with no possible backstepping, he accepted

6. This the unfortunate experience of most MusicTEX beginners.

7. However Andreas Egler is German, and I would have de�nitely preferred that he replace \barre with the

German word \Takt rather than \bar which is confusing with basic TEX/LATEX.

MusiXTEX, even more beautiful than MusicTEX for music typesetting 355

to develop an optional set of macros, musixcpt, which superposes the fundamental

MusiXTEX most of the commands commonly used by the `old-fashioned' MusicTEX-ers.

And all this works... except some details presently under revision.

Thus, it is presently possible to have a unique source �le which can be compiled

with both MusicTEX or MusiXTEX. To do that il su�ces changing the \inputs at the

beginning or, even better, creating two formats:

1. a format with Plain TEX+musicnft+musictex,

2. a format with Plain TEX+musixtex+musixcpt.

3.3 The remaining problems

1. A persisting controversy between A. Egler on one side, and D. Taupin and W. Icking

on the other, about the developing strategy for MusiXTEX.

2. Clean lyrics insertion, since musixflx/Muflex is unable to handle and shrink text

lengths to meet zero glue justi�cation.

4 Availability

� Original version (presently T.396) supported by D. Taupin at

ftp://rsovax.lps.u-psud.fr/[anonymous.musixtex]) and at

ftp://hprib.lps.u-psud.fr/pub/musixtex);

� Copies in the various CTANs (directory macros/musixtex/taupin);

� Andreas Egler's version is also available now in the various CTANs (directory

macros/musixtex/egler). Note that Egler's version is not compatible with sources

designed for MusicTEX.

5 Two examples

On page 356 is the beginning of Charles Gounod's `Ave Maria', transcribed for organ and

soloist (violin and/or singer), typeset with format musictex.fmt (MusicTEX); in page

357 is the output of the same source �le using format musixtex.fmt (MusiXTEX).

Note the di�erent slur shapes, and the unfortunate exceeding glue at bars 10{12 with

MusicTEX.

356 Daniel Taupin

MusiXTEX, even more beautiful than MusicTEX for music typesetting 357

"-TEX: a 100%-compatible successor to TEX

Following humbly in the foosteps of the Grand Wizard

Philip Taylor

Royal Holloway & Bedford New College

University of London

United Kingdom

p.taylor@vms.rhbnc.ac.uk

1 Introduction

"-TEX is the �rst concrete result of an international research & development project, the

NTS Project, which was established under the �gis of DANTE during 1992. The aims

of the project are to perpetuate and develop the spirit and philosophy of TEX, whilst

respecting Knuth's wish that TEX itself should remain frozen.

The group were very concerned that unless there existed some evolutionary
exibility

within which TEX could react to changing needs and environments, it might all too

soon become eclipsed by more modern yet less sophisticated systems. Accordingly they

agreed to investigate a possible successor or successors to TEX, successors which would

enshrine and encapsulate all that was best in TEX whilst being freed from the evolutionary

constraints which Knuth had placed on TEX itself. To avoid any suggestion that it was

TEX which the group sought to develop against Knuth's wishes, a working title of NTS

(for New Typesetting System) was chosen for the project.

During the initial meetings of the NTS group, it became clear that there were two

possible approaches to developments based on TEX: an evolutionary path which would

simply continue where Knuth had left o�, and which would use as its basis the source

code of TEX itself (i.e. TeX.Web); the other a revolutionary path which would be based

on a completely new implementation of TEX, using a modern rapid-prototyping language

which could allow individual components of the system to be modi�ed or replaced in

a simple and straightforward manner. The group agreed that the latter (revolutionary)

approach had much greater potential, but were aware that the re-implementation would

be non-trivial, and would require external funding to bring it to fruition in �nite time;

359

360 Philip Taylor

accordingly they agreed to concentrate their initial e�orts on the former (evolutionary)

path, and set to work to specify and implement a direct derivative of TEX which became

known as "-TEX. The " of "-TEX may be read as extended, enhanced, evolutionary or

European at will (!), and is also an acknowledgement of the parallel developments which

have lead the LATEX3 team to modify their initial goal and to release an interim LATEX,

LATEX2", which is directly derived from the earlier LATEX sources.

The group took as starting point for the development of "-TEX the many contri-

butions which had been made on NTS-L (the open mailing list on which discussions

pertinent to "-TEX & NTS take place), together with the extremely interesting list of

ideas which Knuth gives at the end of TeX82.Bug, and which he describes as `Possibly

nice ideas that will not be implemented' (and which he contrasts with `Bad ideas that

will not be implemented'!). Individual members of the group also contributed ideas of

their own which had not necessarily been discussed publicly. All proposals were then

subjected to a rigorous vetting procedure to ensure that they conformed to the "-TEX

philosophy, which may be summarised as follows:

"-TEX will in all ways demonstrate its a�nity to, and derivation from, Knuth's

TEX; it will be implemented as a change-�le to TeX.Web, and will not exploit

features which could only be achieved by using a particular implementation,

operating system or language; it will be capable of being used successfully on a

machine as small as an 80286-based PC or similar.

At format-generation time, a user will have the option of generating either a

TEX-compatible format or an "-TEX format; if the TEX-compatible format is

subsequently used in conjunction with "-TEX, the result will be Trip-compatible>

(i.e. indistinguishable from TEX proper). If an "-TEX format is generated and used

in conjunction with "-TEX, then provided that none of the new "-TEX primitives

are used, the results will be identical to those which would be produced using TEX

proper. If an "-TEX format is used in conjunction with "-TEX and if one or more of

the new "-TEX primitives are used, then those portions of the document which are

a�ected by the new primitive(s) may be processed in a manner unique to "-TEX;

other portions of the document will be processed in a manner identical to that

of TEX proper. Only if an "-TEX format is used in conjunction with "-TEX and if

an explicit assignment is made to one of the enhanced-mode variables to enable

that particular enhanced mode will "-TEX behave in a manner which may be

distinguishable from that of TEX even if no other reference to an "-TEX primitive

occurs anywhere in the document. (These modes of operation are referred to

as compatibility-mode, extended-mode and enhanced-mode respectively.)

All new "-TEX primitives will be syntactically identical to existing TEX primitives:

that is, they will be either control-words or control-symbols within a normal cat-

code regime. Where an analogous primitive exists within TEX, the corresponding

"-TEX primitive(s) will occupy the same syntactic niche. Every e�ort will be made

"-TEX: a 100%-compatible successor to TEX 361

to ensure that new "-TEX primitives �t into the existing set of TEX datatypes;

no new datatype will be introduced unless it is absolutely essential.

In brief, this implies that "-TEX will follow the principle of least surprise: an existing

TEX user, on using "-TEX for the �rst time, should not be surprised by "-TEX's behaviour,

and should be able to take advantage of new "-TEX features without having either to

unlearn some aspects of TEX or to learn some new "-TEX philosophy.

2 Installation

It is intended that "-TEX be available ready-compiled for those systems for which pre-

compiled binaries are the norm (e.g. MS-DOS, VMS, . . .); for other systems such as

Unix
TM

, "-TEX is supplied as a change-�le which will need to be applied to TeX.Web in the

normal way. However, since there will already be an implementation-speci�c change-�le

for the system of interest, some means will be required of merging TeX.Web with not

one but (at least) two change-�les; possibilities include PatchWeb, Tie, etc. , but if

none of these is available then WebMerge, a TEX script, is supplied and can be used as a

slower but satisfactory alternative. In practice, two or three change-�les may be needed:

the "-TEX system-independent change-�le, the TEX system-dependent change-�le, and

perhaps a small "-TEX system-dependent change-�le. The system-independent "-TEX

change-�le is supplied as part of the "-TEX kit, and sample system-dependent "-TEX

change-�les are also supplied which may be used as a guide to those places at which

system-dependent interactions are to be expected: an experienced implementor should

have little di�culty in modifying one of these to produce an "-TEX system-dependent

change-�le for the system of interest. Once "-TEX has been tangled and woven, it should

be compiled and linked in the normal way.

Once a working binary (or binaries, for those systems which have separate executa-

bles for IniTeX and VirTeX) has been acquired or produced, the next step will be to

generate a suitable format �le or �les. Whilst "-TEX can be used in conjunction with

Plain.TeX to produce a Plain e-format, it is better to use the supplied e-Plain.TeX �le

which suplements the "-TEX primitives with additional useful control sequences. When

generating the format �le, and regardless of the format source used, one fundamental

decision must be made: is "-TEX to generate a compatibility mode format, or an extended

mode format? If the former, all "-TEX extensions and enhancements will be disabled, the

format will contain only the TEX-de�ned set of primitives, and any subsequent use of

the format in conjunction with "-TEX will result in completely TEX-compatible behaviour

and semantics, including compatibility at the level of the Trip test. If the latter option,

however, is selected, then all extensions present in "-TEX will automatically be activated,

and the format �le will contain not only the TEX-de�ned set of primitives but also those

de�ned by "-TEX itself; any subsequent use of such a format in conjunction with "-TEX

will result in "-TEX operating in extended mode; documents which contains no references

to any of the "-TEX-de�ned primitives will continue to generate results identical to those

362 Philip Taylor

which would have been produced using TEX, but compatibility at the Trip-test level can

no longer be accomplished, and of course any document which makes reference to an "-

TEX primitive will generate results which could not have been accomplished using TEX. It

should be noted that neither a compatibility mode format nor an extended mode format

may be used in conjunction with TEX itself; they are only suitable for use in conjunction

with "-TEX, since formats are not in general portable. Finally it should be emphasised

that even if an extended mode format is generated, any document processed using such

a format but not referencing any "-TEX-de�ned primitive will produce results identical

to those which would have been produced had the same document been processed using

TEX; only if the document makes an explicit assignment to one of the enhanced mode

state variables (\TeXXeTstate is the only instance of these in V1 of "-TEX) will compat-

ibility with TEX be compromised: "-TEX is then said to be operating in enhanced mode

rather than extended mode.

The choice between generating a compatibility mode format and an extended mode

format is made at the point of specifying the format source �le: assuming that the

operating system supports command-line entry with parameters, then a normal TEX

format-generation command would probably resemble:

IniTeX Plain \dump

or if the more verbose interactive form is preferred:

IniTeX

**Plain

*\dump

With "-TEX, exactly the same command will achieve exactly the same e�ect, and the

format generated will be a compatibility-mode format; thus assuming that the Ini-

version of "-TEX is invoked with the command eIniTeX, the following will both generate

compatibility-mode formats:

eIniTeX Plain \dump

and

eIniTeX

**Plain

*\dump

In order to generate an extended mode format, the �le-speci�cation for the format source

�le must be preceded by an asterisk (*); whilst this may seem an inelegant mechanism,

it has the great advantage that it avoids almost all system dependencies (GUI systems

excepted, of course), and the asterisk as a component element of a �lename is a very

remote possibility (most �ling systems reserve the asterisk as a `wild card' character,

"-TEX: a 100%-compatible successor to TEX 363

which can therefore not form a part of a real �le name per se). Thus to generate an

extended mode Plain format, the following dialogue may be used:

IniTeX *Plain \dump

or

eIniTeX

***Plain

*\dump

and to generate an extended mode e-Plain format, the following instead:

eIniTeX e-Plain \dump

or

eIniTeX

***e-Plain

*\dump

Once suitable formats have been generated, they can then be used in conjunction both

with e-IniTeX and e-VirTeX without further formality: in particular, no asterisk is

needed (nor should be used!) if a format is speci�ed, since the format implicitly de�nes

(depending as its mode of generation) in which mode (compatibility or extended) "-TEX

will operate. Thus, for example, if a Plain format had been generated in compatibility

mode, and an e-Plain format had been generated in extended mode, then both:

eIniTeX &Plain

and

eVirTeX &Plain

will cause "-TEX to process any subsequent commands in compatibility mode. On the

other hand, both

eIniTeX &e-Plain

and

eVirTeX &e-Plain

will cause "-TEX to process any subsequent commands in extended mode, but only

because the e-Plain format was generated in extended mode: it is not the name of the

format, nor is it the contents of the source of the format, which determine the mode of

operation { it is the mode of operation which was used when the format was generated.

Any format generated in compatibility mode will cause "-TEX to operate in compatibility

364 Philip Taylor

mode whenever it is used, whilst the same format generated in extended mode will cause

"-TEX to operate in extended mode whenever it is used.

Although "-TEX is completely TEX-compatible, and there is therefore no real reason

why any system should need both TEX and "-TEX, it is anticipated that until complete

con�dence exists in the compatibility of "-TEX many sites and users will prefer to retain

instances of each. For this reason the supplied change-�les and binaries will ensure that

both TEX and "-TEX can happily co-exist on any system by a careful choice of non-

overlapping name-spaces. This might, for example, by achieved by changing the default

extension for e-format �les to (say) .efm rather than .fmt, or by referencing a di�erent

format directory and/or environment variable (for example, eTeX_formats rather than

TeX_formats).

3 The new features

Bearing in mind the contraints outlined in the introduction, the group identi�ed approx-

imately 30 new primitives which they believed would give added functionality to "-TEX

without compromising its compatibility with TEX; of the 30 new primitives, 25 are ex-

tensions (which by de�nition do not a�ect the semantics of existing TEX documents),

whilst just six (all concerned with the implementation of TEX{XET) are associated with

an enhancement. In addition to the new primitives, additional functionality was added

to some existing primitives, and TEX's behaviour in some unusual boundary conditions

was made more robust (this last has been subsumed in the most recent version of TEX,

so this is no longer "-TEX-speci�c).

The new features are listed and brie
y described below, clustered together to in-

dicate related functionality; it is intended that a full description of each together with

appropriate examples will be published in The "-TEX Manual, which it is hoped will

become the de�nitive reference manual for "-TEX.

3.1 Additional control over expansion

� \protected

� \detokenize

� \unexpanded

\protected is a pre�x, analogous to \long, \outer, and \global; it associates with the

macro being de�ned an attribute which inhibits expansion of the macro in expansion-only

contexts (for example, within the parameter text of a \write or \edef); if, however, the

parser or command processor (TEX's `�sophagous' and `stomach', in Knuth's alimentary

paradigm) is currently demanding a command, then the \protected macro will expand

in the normal way. This behaviour is identical to that displayed by the explicit expansion

of a token-list register through the use of \the; the same model is used elsewhere in

"-TEX to achieve a consistent paradigm for partial expansion.

"-TEX: a 100%-compatible successor to TEX 365

\detokenize, when followed by a general text, expands to yield a sequence of

character tokens of catcode 10 (space) or 12 (other) corresponding to a decomposition

of the tokens of the balanced text of the unexpanded general text; c.f. \showtokens.

The e�ect is rather as if \scantokens (q.v.) were applied to the general text within a

regime in which only \catcodes 10 and 12 existed. Note that in order to preserve the

boundaries between control words and any following letter, a space is yielded after each

control word including the last.

\unexpanded, when followed by a general text, expands to yield the balanced text

of the unexpanded general text. No further expansion will occur if "-TEX is currently

performing a \write, \edef, etc. , but further expansion will occur if the parser or

command processor is currently demanding a command. The e�ect is as if the general

text were assigned to a token list register, and the latter were then partially expanded

using \the, but no assignment actually takes place; thus \unexpanded can be used in

expansion-only contexts.

3.2 Provision for re-scanning already read text

� \readline

� \scantokens

\readline is analogous to \read, but treats each character as if it were currently of

catcode 10 (space) or 12 (other); the text thus read is therefore suitable for being

scanned and re-scanned (using \scantokens, q.v.) under di�erent catcode regimes.

\scantokens, when followed by a general text, decomposes the balanced text of the

general text into the corresponding sequence of characters as if the balanced text were

written unexpanded to a �le; it then uses TEX's \input mechanism to re-process these

characters under the current catcode regime. As the \inputmechanism is used, even hex

notation (^^xy) will be re-interpreted. Parentheses and a single space representing the

pseudo-file will be displayed if \tracingscantokens (q.v.) is positive and non-zero.

3.3 Environmental enquiries

� \eTeXrevision

� \eTeXversion

� \grouplevel

� \grouptype

� \ifcsname

� \ifdefined

� \lastnodetype

\eTeXrevision: an primitive which expands to yield a sequence of character tokens

of catcode 12; these represent the minor component of the combined version/revision

366 Philip Taylor

number. Pre-release versions will be characterised by an initial minus sign (-), whilst post-

release versions will be implicitly positive; both will contain an explicit leading decimal

point, which will follow any minus sign present.

\eTeXversion: an internal read-only integer representing the major component of

the combined version/revision number.

\grouplevel: an internal read-only integer which returns the current group level

(i.e. depth of nesting).

\grouptype: an internal read-only integer which returns the type of the innermost

group as an integer in the range 0::16. Textual de�nitions of these types are provided

through the an associated macro library, but it is intended that these de�nitions shall

be easily replaceable by national language versions in environments within which English

language texts are sub-optimal.

\ifcsname: similar in e�ect to the sequence

\unless \expandafter \ifx \expandafter \relax \csname

but avoids the side-e�ect of the cs-name being ascribed the value \relax, and also

does not rely on \relax having its canonical meaning. No hash-table entry is used if

cs-name does not exist. (\unless is explained below.)

\ifdefined: similar in e�ect to \unless \ifx \undefined, but does not require

\undefined to actually be unde�ned, since no explicit comparison is made with any

particular control sequence.

\lastnodetype: an internal read-only integer which returns the type of the last node

on the current list as an integer in the range �1::15+ (only values �1::15 are de�ned

in the �rst release, but future releases may de�ne additional values). Textual de�nitions

of these types are provided through an associated macro library, but it is intended that

these de�nitions shall be easily replaceable by national language equivalents for use in

environments within which the use of English language texts is sub-optimal.

3.4 Generalisation of the \mark concept: a class of \marks

� \marks

� \botmarks

� \firstmarks

� \topmarks

� \splitfirstmarks

� \splitbotmarks

\marks: whereas TEX has only one \mark, which has to be over-loaded if more than one

class of information is to be saved (e.g. over-loading is necessary if separate information

for recto and verso pages is to be maintained), "-TEX has a whole class of \marks (16,

in the �rst release); thus rather than writing \mark general text as in TEX, in "-TEX one

writes \mark 4-bit number general text. For example, \marks 0 could be used to retain

information for the verso page, whilst \marks 1 could retain information for the recto.

"-TEX: a 100%-compatible successor to TEX 367

There are equivalent classes for the �ve \marks variables \botmarks, \firstmarks,

\topmarks, \splitfirstmarks and \splitbotmarks.

3.5 Bi-directional typesetting: the TEX{XET primitives

� \TeXXeTstate

� \beginL

� \beginR

� \endL

� \endR

� \predisplaydirection

TEX{XET was developed by Peter Breitenlohner based on the original TeX-XeT of Donald

Knuth and Pierre MacKay; whereas TeX-XeT generated non-standard DVI �les, TEX{

XET generates perfectly normal DVI �les which can therefore be processed by standard

DVI drivers (assuming, of course, that the necessary fonts are available). Both systems

permit the direction of typesetting (conventionally left-to-right in Western documents)

to be reversed for part or all of a document, which is particularly useful when setting

languages such as Hebrew or Arabic.

\beginL: indicates the start of a region (e.g. a section of text, or a pre-constructed

box) which should be set left-to-right;

\beginR: indicates the start of a region which should be set right-to-left;

\endL: indicates the end of a region which should be set left-to-right;

\endR: indicates the end of a region which should be set right-to-left;

\TeXXeTstate: an internal read/write integer, its value is zero or negative to indicate

that TEX{XET features are not to be used; a positive value indicates that they may

be used. As the internal data structures built by TEX{XET di�er from those built by

TEX, and as the typesetting of a document by TEX{XET may therefore di�er from that

performed by TEX, \TeXXeTstate defaults to zero, and even if set positive during format

creation will be re-set to zero before the format is dumped. Explicit user action is

therefore required to enable TEX{XET semantics, and TEX{XET is thereby classed as an

enhancement, not simply an extension.

3.6 Additional debugging features

� \interactionmode

� \showgroups

� \showtokens

� \tracingassigns

� \tracinggroups

� \tracingifs

� \tracingscantokens

� Additional detail for \tracingcommands

368 Philip Taylor

\interactionmode: whereas in TEX there exist only explicit commands such as

\scrollmode, \errorstopmode, etc. , in "-TEX read/write access is provided via

\interactionmode (an internal integer); assigning a numeric value sets the associated

mode, whilst the current mode may be ascertained by interrogating its value. Symbolic

de�nitions of these values are provided through an associated macro library, but it is

intended that these de�nitions shall be easily replaced by national-language equivalents

in environments within which the use of English is sub-optimal.

\showgroups: (e-)TeX has many di�erent classes of group, which should normally

be properly balanced and nested; if a nesting or imbalance error occurs, it can be very

di�cult to track down the source of the problem. \showgroups causes "-TEX to display

the level and type of all active groups from the point within which it was called.

\showtokens, when followed by a general text, displays a sequence of characters

corresponding to the decomposition of the balanced text of the unexpanded general

text; c.f. \detokenize.

\tracinggroups: a further aid to debugging runaway-group problems, the command

\tracinggroups (an internal read/write integer) causes "-TEX to trace entry and exit

to every group while set to a positive non-zero value.

\tracingscantokens: an internal read/write integer, assigning it a positive

non-zero value will cause an open-parenthesis and space to be displayed whenever

\scantokens is invoked; the matching close-parenthesis will be recorded when the

scan is complete. If a traceback occurs during the expansion of \scantokens, the �rst

displayed line number will re
ect the logical line number of the pseudo-�le created from

the parameter to \scantokens; thus enabling \tracingscantokens can assist in

identifying why an seemingly irrational line number is shewn as the source of error (the

traceback always continues until the line number of the actual source �le is displayed).

If \tracingcommands is greater than 2, additional information is displayed.

3.7 Miscellaneous primitives

� \everyeof

� \middle

� \unless

\everyeof: this is one of Knuth's `possibly good ideas', listed at the end of TeX82.Bug;

analogous to the other \every... primitives, it takes as parameter a balanced text, the

tokens of which are inserted when the end of a �le (either real or virtual, if \scantokens

is used) is reached. This allows \input statements to be used within the replacement

text of \edefs, and allows totally arbitrary �les to be \input within a "-TEX conditional,

since the necessary \fi can be inserted before "-TEX complains that it has fallen o� the

end of the �le.

\middle: analogous to TEX's \left and \right, \middle speci�es that the fol-

lowing delimiter is to serve both as a right and left delimiter; it will be set with

"-TEX: a 100%-compatible successor to TEX 369

spacing appropriate to a right delimiter w.r.t. the preceding atom(s), and with spacing

appropriate to a left delimiter w.r.t. the succeeding atom(s).

\unless: TEX has, by design, a rather sparse set of conditional primitives: \ifeof,

\ifodd, \ifvoid, etc. , have no complementary counterparts. Whilst this normally poses

no problems since each accepts both a \then (implicit) and an \else (explicit) part,

problems occur when one is used as the �nal \if... of a \loop ... \if ... \repeat

construct, since no \else is allowed after the �nal \if.... \unless allows the sense of

all Boolean conditionals to be inverted, and thus (for example) \unless \ifeof yields

true i� end-of-�le has not yet been reached.

4 What next?

At the time of writing, "-TEX version 1 is ready to go to TeX-Implementors, although

work remains to be done on the eTrip test. Whether it will have been released to the

implementors before the conference cannot be predicted, since I discovered today that

I have only four working days left before I leave for Europe, and it will not be possible

to release it once I am away. The version being prepared for the implementors is termed

Version 1� (the NTS team themeselves acted as �-testers). Once the implementors

have given us the go-ahead and said that in their opinion "-TEX is a viable alternative

to TEX (by which I mean that it is completely compatible, and functions according to

the accompanying documentation), we will release it to the TEX world as a whole. We

will react as quickly as possible to any bug reports (we sincerely hope that there will be

few!), and we will then concentrate on new features for version 2. We certainly intend

to work as closely as possible with the LATEX2" team, not because we believe that

LATEX2" is necessarily right for everybody, but because (a) we respect the intellect and

knowledge of the members of the LATEX2" team, and (b) because it might be possible

to enable them to achieve things with LATEX and "-TEX which would either be impossible

or extraordinarily di�cult with LATEX and TEX. We have a very long list of suggestions

from Nelson, we still have many of Knuth's `possibly good ideas' to consider, and we

have an enormous number of suggestions made on NTS-L: we are unlikely to run out

of ideas for many years yet!

5 Acknowledgements

I would like to thank many people without whom both the project and this paper would

simply never have come to fruition. I would like to thank above all Don Knuth, for

creating TEX and for making it so freely available; for sparing us the time to discuss

the project when we met last year at Stanford; and for his willingness to allow us to

base "-TEX on TEX. I would also like to thank all those who have contributed ideas,

either via personal communication or via the NTS list, and I would single out Nelson

370 Philip Taylor

Beebe for presenting us with an extremely well thought through and well presented set of

proposals. I would like to thank DANTE, without whose �nancial support we could never

have a�orded to meet (and experience has shewn that unless we meet fairly regularly,

very little gets done!). And �nally I would like to thank all the members of the team, who

have contributed ideas, time, enthusiasm and expertise: they are Joachim Lammarsch

(Managing Director), Peter Breitenlohner (project leader, "-TEX), Ji�r�� Zlatu�ska (project

leader,NTS), Bernd Raichle (2-i/c, "-TEX &NTS projects), and Friedhelm Sowa (color,

and user interfaces). And I would like to single out for a special vote of thanks Peter

Breitenlohner: without his expertise in TeX.Web, there is absolutely no doubt whatsoever

in my mind that this project would never have been possible: thank you Don, thank you

Peter, thank you everyone.

Adobe
TM

Acrobat 2.0
TM

Beyond the bounds of paper

Wiegert Tierie

Adobe Systems Benelux B.V.

Europlaza, Hoogoorddreef 54a

1101 BE Amsterdam Z.O.

The Netherlands

wtierie@adobe.com

1 Introduction

Witness an exciting new development in the computer revolution. No longer content

to create documents better, faster and cheaper, we've begun to look for ways to use

documents better, faster and cheaper. We are in the midst of a shift from the paper

trail to the information superhighway. While concepts like just-in-time and on-demand

are familiar in referring to hard goods, we are just beginning to apply them to our truly

liquid assets { information. Today, if you can move it, use it or manage it more e�ciently

than the next guy, you've got a competitive edge.

Consider the following:

� June 1993. The �rst copies of Acrobat are just rolling o� the assembly line. Kenneth

Grant and W. David Schwaderer wrote in the Adobe Acrobat Handbook, `If the IRS

used Acrobat, widely accessible income tax preparation forms would print on low-

cost home printers, averting taxpayers' frantic trips to copy forms for last-minute

�lings.'

� Now roll ahead eight months: On February 21, 1994, Business Week reported, `Say

the Internal Revenue Service hasn't sent you an 8841 to request a deferred pay-

ment. Now, instead of scrambling to the nearest post o�ce or IRS o�ce, you can

get digital copies of the forms sent directly to your home computer. CompuServe

in Columbus, Ohio has arranged with the IRS and Adobe Systems to provide elec-

tronically any of the 450 federal tax forms over its on-line information service. First,

371

372 Wiegert Tierie

subscribers to CompuServe
R
, which is owned by H&R Block Inc., have to download

a copy of Adobe Acrobat software from the network { o�ered at no charge during

an introduction period. Then, by searching for keywords, such as `charitable gifts,'

subscribers can �nd just the form they want and have it sent to their computer.

Acrobat then reproduces the form on any printer { including dot-matrix models {

almost as they appear on paper from the IRS.'

� President Clinton presented the FY1995 United States Budget to Congress in

Acrobat Portable Document Format (PDF) on CD-ROM.

� Tandem Computer sends price lists, data sheets, product brochures and standard

forms to �eld o�ces in PDF on CD, providing instant access to all product marketing

and sales information.

� Over 100 World Wide Web sites o�er PDF documents on their Web server in sheets,

product information, newspapers, forms, magazines etc.

These real-life scenarios illustrate the growing interest in electronic document software,

products that let users create, view and print documents regardless of the computer,

software or fonts used by the creator or available on the recipient's machine. Adobe

Acrobat software strikes the best balance between screen and paper versions of docu-

ments, with its ability to navigate, link, search, crop and rotate; and with its PostScriptTM

language-based resolution independence and high-quality output.

2 What is Adobe Acrobat?

Acrobat software puts documents to work electronically. Anybody can create, use, store,

share, view or print them. With any computer, any application and any printer.

Acrobat guarantees that the document you create is the document everybody sees.

The Portable Document Format (PDF) has the
exibility to describe the content and

appearance of documents created with virtually any application for virtually any computer

or printer. Acrobat Exchange and Reader are powerful tools for accessing and managing

information.

Adobe Acrobat is a family of products { Acrobat, Acrobat Pro, Acrobat for Work-

groups and Acrobat Catalog { designed to bring the power of electronic documents to a

broad spectrum of users. Each product contains the right collection of components for a

speci�c user's needs (see `Getting Started with Adobe Acrobat' later in this document).

The Acrobat Reader is the perfect tool for corporate and commercial publishers

who distribute documents to large audiences. Acrobat Reader is included with all Adobe

Acrobat products and can be freely distributed without charge to others. It allows re-

cipients to view and print any PDF document they receive, and gives them access to all

the annotations, bookmarks and links that are part of the PDF �le.

The Acrobat Exchange program gives users the power to exchange documents with

other Acrobat users. They can create, view, collate, navigate and print PDF documents.

PDF Writer creates PDF �les from any application by `printing' to a �le when a user

Adobe Acrobat 2.0 Beyond the bounds of paper 373

selects Print from the application's File menu. Included in Acrobat 2.0 is Acrobat Search,

which provides full-text search capabilities for collections of PDF documents. Using

Search software, users can quickly search indexed PDF documents for single words or

terms, phrases and arbitrary character patterns speci�ed with wildcard characters. They

can also perform Boolean searches for documents that contain combinations of words

and phrases.

Acrobat DistillerTM software lets individual and network users transform PostScript

language �les into PDF documents.

The Acrobat Catalog program creates full-text indexes for collections of PDF docu-

ments. For each word or term, the full-text index lists the documents and page numbers

where the word or term is used. The Acrobat Search software uses full-text indexes to

�nd words and terms in the documents quickly, without having to open the documents.

2.1 The
exibility to use any document, anywhere

Electronic document programs facilitate document distribution for users who are working

on other computers, without requiring the recipient to have access to the applications

used to create the documents. Not only the text, but formatting, fonts, page layout and

graphics appear on-screen precisely as they would if printed on paper.

Electronic documents should be a natural extension of the existing work
ow. To

an everyday business user, that means working with any word processor, spreadsheet or

presentation package and creating an electronic document as easily as selecting the Print

command. It means adding value by easily combining elements from multiple applications

into a single document, regardless of page orientation, fonts used and so on.

Commercial publishers, writers, graphic artists and engineers create more com-

plex documents using applications and fonts that make use of industry-standard Adobe

PostScript technology. Their work
ow is di�erent and demands an easy way to turn

documents created with the PostScript language into shareable electronic documents,

with the ability to �ne-tune the �le size and quality parameters.

Consumers look for the ability to view and print any document { not just docu-

ments they create, but those they receive from a multitude of sources { at the best

quality possible. The process should �t seamlessly into the existing work
ow and should

accommodate any document.

Who needs electronic documents? Anybody for whom the communication, time

value or management of information is critical.

Commercial publishers distribute materials electronically with all the visual enhance-

ments that in the past required printed media.

Business organizations exchange proposals and reports electronically, enhanced with

charts, diagrams, bold text, bullets and indentation. Price lists, data sheets, con-

tracts and administrative forms are distributed days sooner. Technical documentation,

blueprints and research are stored, managed and accessed more e�ciently.

374 Wiegert Tierie

Information is central to most organizations, and making information more useful

creates a competitive advantage.

2.2 More direct access to information

The power of information lies in the ability to use it. A fundamental bene�t of electronic

documents is enhanced access. Acrobat provides unparalleled facilities for �nding and

using information:

� Sophisticated full-text search allows users to �nd detailed information in thousands

of documents { from the desktop, without assistance from reference librarians.

� Cross-document links add a new dimension to information access, linking disparate

documents across the network and allowing information to be referenced and up-

dated dynamically.

� Article threads automatically follow the story for ease of on-screen viewing.

� Bookmarks and links take the user to topics of interest.

� Thumbnails provide visual browsing and navigation.

2.3 Better ways to manage information

These days, it seems to be a given that hard disk use and network tra�c will expand

to exceed whatever capacity is allocated. Adobe Acrobat provides an opportunity to

ease some of the strain of managing the varied collections of information that any

organization must deal with:

� Documents can be indexed on existing networks without changing the way they are

organized or stored.

� Document security controls access and reduces the need for multiple copies of

documents in di�erent locations.

� Multi-user notes allow workgroups to review and comment on material electronically.

� Compressed, platform-independent �les can be archived on a central �le server or

distributed on a multi-platform CD-ROM.

2.4 An extensible architecture to customize and add value

Adapting electronic documents to an organization's work
ow means tailoring products

for unique environments. Acrobat Exchange 2.0 contains a complete set of Application

Programming Interfaces (APIs) for creating plug-in modules, customizing the user inter-

face and integrating with other products. Leading systems integrators are incorporating

Acrobat products into a wide variety of information systems.

Adobe Acrobat 2.0 Beyond the bounds of paper 375

2.5 More ways to integrate with other products

In today's resource-conscious market, businesses are looking for ways to create custom

plug-and-play solutions from o�-the-shelf components. In addition to the comprehen-

sive APIs, Acrobat supports industry-standard interfaces to provide integration and

customization features to the broadest set of customers, even nonprogrammers:

� Lotus Notes
R
 F/X support to seamlessly share �eld-level information with today's

most popular workgroup application. The information in PDF Document Info �elds

is used by Lotus Notes to organize their display in Views, giving users a powerful

way to browse and �nd information across the network.

� DDE, OLE 2.0 and OLE automation support. As an OLE server, the Acrobat

program integrates with important WindowsTM applications.

� AppleEvent support to connect Acrobat with HyperCard
R
, FileMaker

R
, Microsoft
R

Excel, AppleScriptTM, and many other popular Macintosh
R
 applications.

2.6 A platform for evolution

The PostScript page description language is a de facto standard that is the foundation of

the Acrobat program's Portable Document Format. Device and resolution-independent

Adobe PostScript technology ensures that the most important investment { content {

will migrate e�ortlessly into the future. Adobe published the Portable Document Format

just as it did the PostScript language de�nition, to guarantee that information is not

locked into a proprietary and transitory format. Choose any platform, monitor or printer

today { or ten years from today { and Acrobat documents will take advantage of the

bene�ts they o�er.

3 Technical overview

The goal of Adobe Acrobat is to reproduce any document (authored yesterday, today

or tomorrow) as faithfully as possible, in a form that can easily be viewed, stored and

distributed. Simple objective, many obstacles.

First, consider what's necessary to deliver on the goal:

� Create documents that handle any font or graphic, from applications that may no

longer be marketed or may not yet be developed.

� Work with the hardware and software that users have or will have.

� Create small �les.

� Perform well in networked workgroup environments.

� Assist users in navigating documents and �nding the information they need.

� Help manage electronic content.

� Print to any printer { ImageWriter
R
 to imagesetter.

� Provide an open, extensible and
exible �le format

376 Wiegert Tierie

Now, a brief look at some of the problems and solutions in the areas of fonts, graphics,

content independence and compression.

3.1 Platform coverage

Adobe Acrobat software is the only electronic document solution that works seamlessly in

the DOS, Windows, Macintosh, and UNIX
R
 environments. Because all Acrobat products

are based on core code that describes a document's content independent of hardware

platform or imaging model { and because the format is available as an open, published

standard { users are assured that they will always have solutions tailored to their current

computing environment.

3.2 The key to quality and longevity { content independence

The Adobe Acrobat program's �le format is PostScript language-base { not a bitmap

image of the page. Text is maintained as actual text characters in a speci�c font; graph-

ics are maintained as lines and B�ezier curves; images are maintained as monochrome,

grayscale or color, just as they were in the original document.

Portable Document Format (PDF) is a published standard1 and does not rely on

QuickDrawTM or GDI.

Why is this important? The market moves too rapidly to track improvements to

hardware and software in a timely way { device and resolution independence enable

documents to be displayed or printed at the full resolution of next year's device. If you

print to an 800 dpi laser printer, your text and graphics will print at 800 dpi. If you zoom

in to 538%, the text and graphics will render at exactly that resolution and give you

the best quality possible. In addition, a published �le format ensures the openness of the

solution and enables third-party vendors to embrace Adobe Acrobat and the PDF �le

format standard to deliver a wide range of solutions based on Adobe Acrobat.

Sure,
exible document handling covers common o�ce documents, the stu� we

churn out daily on our trusty word processors and empty into dumpsters weekly. But the

exibility to handle any document means legacy data and `high-end' graphics, too. The

PostScript language is the turf of both power graphics users and technical specialists

using sophisticated equation fonts. Some kinds of documents can only be printed to

Adobe PostScript output devices. Complex graphic artwork and images in Encapsulated

PostScript (EPS) language format must be processed by a PostScript interpreter to

reproduce at their full resolution.

How does Acrobat deal with PostScript language �les?:

� `�' and `
' ligatures in PostScript Type 1 fonts

� Handling of PostScript Type 1 fonts included in the PostScript language �le

� PostScript Level 2 �les, even where PostScript Level 2 is not supported

1. Bienz, Tim and Cohn, Richard. Portable Document Format Reference Manual. Adobe Systems

Incorporated/Addison-Wesley Publishing Company, 1993. ISBN 0-201-62628-4.

Adobe Acrobat 2.0 Beyond the bounds of paper 377

� Search for text within an EPS graphic

� Print without loss of quality

� Compare the size of the original PostScript language �le to the PDF document

� Recognition of PostScript page-size operators or commands; you shouldn't have to

manually change the page size in the Page Setup dialog box each time you want

to convert a PostScript language �le that is a di�erent size or orientation (Acrobat

handles this task automatically)

How does Acrobat handle these experiments? Flawlessly. Not only are all characters in

fonts correctly captured and displayed on Macintosh, Windows, DOS and UNIX systems,

but they are not stored as bitmaps, so you can display and print them at any resolution.

The following screen shot shows a zoomed-in view at 410% (Acrobat is not limited to

discrete magni�cation percentages).

����
����
�	
�

Figure 1: How does Acrobat handle any document you throw at it? Flawlesly.

3.3 Font handling

Fonts { their size, style and spacing { are the anchor of a document's appearance.

Proper display of text is the toughest single problem in electronic document software.

Even users who have standardized on cross-platform applications and typefaces

stumble over fonts when they try to share documents. Characters in fonts are refer-

enced in platform-speci�c ways. Some characters are unique to a platform, such as `�'

on the Macintosh. Acrobat handles font encoding intelligently to ensure that all charac-

ters are displayed properly regardless of platform. Further, Acrobat is the only electronic

document program to o�er full support for embedding both TrueTypeTM and Type 1

fonts. This document's Glossary contains useful information on font terminology.

378 Wiegert Tierie

There are three main approaches to representing fonts in electronic documents:

� Using local fonts

� Creating synthetic fonts (font substitution)

� Embedding the original font

Each approach involves tradeo�s among �delity, performance and ease of use. Acrobat

provides the full spectrum of options to meet the broadest set of user needs.

PDF �les contain the names and metric information (called font descriptors) for all

the fonts in the document. Adobe Type ManagerTM (ATMTM) or the native TrueType

rasterizer rasterizes the requested font if it is available to the operating system; otherwise

it creates substitute fonts based on font descriptor information in the PDF �le. The

layout, character spacing, graphics and general look of a PDF document are always

preserved.

If a source document contains only the fonts installed with the Acrobat viewers, you

don't have to worry about whether your readers have the fonts used in your document.

But if your documents use other fonts, you can choose to let Acrobat create substitute

fonts or to embed the fonts in the PDF �le.

Font substitution { for smaller �les

The Acrobat program's font substitution strategy creates synthetic fonts that closely

simulate the appearance of unavailable fonts. It preserves exactly the spacing, alignment,

stroke weights and other characteristics of the original font metric information stored

within the PDF �le. During the creation of the PDF �le using the Acrobat PDF Writer

or Distiller, the font metric information is extracted directly from the font itself (not the

ATM font database, as people sometimes assume). Once the PDF has been created,

the �le itself is completely self-su�cient in terms of font metric information. The font

metrics occupy only about 1K of space in the �le, while embedding the entire font itself

would use 25{30K.

ATM uses two special multiple master fonts to do font substitution: Adobe SansMM

and Adobe SerifMM. Not available in application font menus, they were designed specif-

ically to substitute for other fonts. Users can set preferences for substitution fonts to

tune resource use versus quality. The default is both serif and sans serif, which uses both

Adobe SerifMM and Adobe SansMM for font substitution.

Font embedding { for absolute �delity

What about decorative fonts, such as Adobe Wild TypeTM, which preserve the document

look but lose their communication punch when replaced by substituted fonts? Or True-

Type fonts, which vary between Macintosh and Windows, and aren't available for UNIX?

By embedding the actual font program into the PDF �le, Acrobat Exchange/Reader can

display the font exactly the same way on Macintosh, Windows, UNIX and DOS.

Adobe Acrobat 2.0 Beyond the bounds of paper 379

Figure 2: Acrobat uses the original font metrics and a multiple master font to preserve

the characteristics of the original. On top is the original ITC Cheltenham
R
 Condensed

Bold font; below is the Acrobat substituted font, Adobe SerifMM.

The result? Type 1 or TrueType, simple or elaborate { not only are all characters

in the font correctly captured and displayed on Macintosh, Windows, DOS, and UNIX

systems, but they can be displayed and printed at any resolution (they are not stored as

bitmaps). The following is a zoomed view at 410%.

����
����

Figure 3: Acrobat Exchange/Reader for Macintosh. Zoomed-in view (410%) of a docu-

ment that was converted from a PostScript language �le to PDF using Acrobat Distiller.

Notice the `�' character and the high-quality appearance of the text, even at this odd

magni�cation.

As with font substitution, several options allow users to balance �le size with �delity.

New in Acrobat 2.0, the Acrobat Distiller embeds font subsets { only the characters

used in the document { to reduce �le size and improve viewing performance.

It's useful to understand how Acrobat handles symbolic fonts. During conversion

to PDF, the outlines or actual font itself for the symbolic characters are placed into

the PDF �le. These character outlines are then used for on-screen display in Acrobat

380 Wiegert Tierie

Exchange or Reader. Below are 300-dpi scanned images of the printed output from Mi-

crosoft Word and Acrobat Exchange:

Figure 4: Top, original Word document (printed at 300 dpi) and below, Acrobat Ex-

change document (printed at 300 dpi)

Acrobat software properly displays symbolic fonts such as CartaTM, because all

the necessary font information (character shapes and metric information) are part of

the PDF �le and are guaranteed to be available for on-screen rendering and printing.

(Acrobat does not rely on SuperATMTM, which does not substitute for symbol fonts.)

Acrobat works with virtually any font; Type 1 and TrueType fonts can be embedded

in PDF documents. Type 3 fonts are supported for printing and viewing { bitmaps are

included in the PDF �le.

Acrobat Exchange and Reader use the original TrueType font if the PDF �le was

created using the PDF Writer on that platform. The TrueType fonts in any original

documents are converted by the driver to PostScript fonts (Type 1 or Type 3) if saved

by a PostScript printer driver and converted to PDF by the Distiller. In this case, ATM

does font substitution based on the font metric information in the PDF �le. These fonts

can be embedded by the Distiller.

In e�ect, you are embedding the Type 1 version of a TrueType font. (This is the

case even if the named TrueType font is available to the operating system, because that

font is designated as either a Type 1 or Type 3 font in the PDF �le.)

3.4 File size

Space is precious. A successful electronic document needs to be as small as possible

within the con�nes of the creator's quality requirements. Several factors a�ect �le size.

Compression results in smaller PDF �les. Acrobat employs a variety of methods to

tailor the �le size to user needs:

� Text, graphics (line art) and indexed color images are compressed using the LZW

method.

� Color/grayscale images are compressed using the JPEG (Joint Photographic Expert

Group) method. This is a lossy compression method; data is removed from the

image to produce the compression.

Adobe Acrobat 2.0 Beyond the bounds of paper 381

� Image downsampling removes pixel information to decrease resolution and reduce

�le size.

� Font subsets maintain perfect �delity by embedding only the characters used in a

document.

� Monochrome images are compressed using one of four methods. The default CCITT

Group 4 method provides the greatest compression in most cases.

CCITT Group 3 compresses monochrome bitmaps one row at a time and is used by

most fax machines.

LZW produces the best compression for images that contain repeating patterns.

Run Length produces the best results for images that contain large areas of solid

white or black.

Acrobat 2.0 defaults to a binary �le format (retaining the option for ASCII) to further

reduce �le size and provide more reliable �le transfer in certain environments.

Figure 5: A typical Microsoft Word �le and the resulting intermediate PostScript �le.

Figure 6: The resulting PDF �le is less than half the size (9,660/21,595 = 45%) of the

native Word �le.

382 Wiegert Tierie

Where appropriate to the content, Acrobat 2.0's cross-document linking capability

allows information to be broken up into separate �les with links to related information.

4 Getting started with Adobe Acrobat

Use If you For

Reader Consume information provided Browsing using links,book-
by others (without comment) marks and thumbnails;

printing

Exchange/PDF Writer Review others’ documents Browsing and printing
Search (as above) as well as adding

notes, cropping, rotating,
adding navigation

Create and receive a wide “Printing” memos, reports
variety of documents or graphics directly

from your application to
shareable PDF files

Collate and distribute “Electronically stapling”
documents from multiple pages from many docu-
platforms or application ments; drag-and-drop page

placement

Need instant access to Performing sophisticated
detailed information in searches of PDF document
multiple documents indexes

Distiller Create documents with today’s Maintaining the high
page layout, graphics and quality of PostScript
image editing software language graphics, images

and Type 1 fonts

Need to distribute documents Translating legacy docu-
created on mainframes to PC ments to shareable PDF files
and workstation users

Need to maintain the high The best resolution each
quality of PostScript language computer can offer and

graphics, no matter what the greatest flexibility in
platform they’re viewed on content and platform

coverage

Catalog Manage large volumes of Automatically building
of information on a network on-line indexes of all PDF

 documents

Acrobat

Acrobat Pro

Acrobat for
Workgroups

Acrobat
 Catalog

Figure 7: An overview of the Adobe Acrobat product family

4.1 Acrobat Exchange (included in all Acrobat products)

The Acrobat Exchange program gives you the power to exchange documents with other

Adobe Acrobat users. With it, you can create, view, collate, navigate and print PDF doc-

uments. PDF Writer creates PDF �les from any application by `printing' to a �le when

you select Print from the application's File menu. Included in Acrobat 2.0 is Acrobat

Adobe Acrobat 2.0 Beyond the bounds of paper 383

Search, which provides full-text search capabilities for collections of PDF documents. Us-

ing the Search software, you can quickly search indexed PDF documents for single words

or terms, phrases, or arbitrary character patterns speci�ed with wildcard characters. You

can also search for documents that contain combinations of words and phrases.

Font information

New note options Plug-in extensionsFull-screen mode

Binary Þle format

Drag-and-drop

copy, replace,

rearrange

Direct manipulation

of bookmarks

and thumbnails

Article threads

Security

Page

caching

Links to external documents

Copy and paste

formatted text

and graphics

Figure 8: Acrobat 2.0 at a glance.

4.2 Acrobat Search (included with Acrobat 2.0)

Acrobat Search software gives you full-text search capabilities for collections of PDF

documents that have been indexed with the Acrobat Catalog program. Acrobat Search

384 Wiegert Tierie

uses full-text indexes to �nd words and terms in the documents quickly, without having

to open the documents.

Using Acrobat Search, you can quickly �nd indexed PDF documents for single words

or terms, phrases or arbitrary character patterns speci�ed with wildcard characters. You

can also perform Boolean searches for documents that contain combinations of words

and phrases. Unlike most other full-text search products, Acrobat Search software can

�nd words and terms in illustrations, graphs and formatted tables. It can even �nd words

that are rotated or attached to a curved line.

Full-text search and retrieval

Relevance ranking
Displayed

by title

Boolean
wildcard

Document Info

Þelds

Stemming

Sounds like Thesaurus

Figure 9: Acrobat Search provides powerful data access.

Adobe Acrobat 2.0 Beyond the bounds of paper 385

4.3 Acrobat Distiller (included with Acrobat Pro and Acrobat for Workgroups)

The Acrobat Distiller program creates PDF �les from virtually any document that has

�rst been saved as a PostScript language �le. Distiller is recommended for high-quality

reproduction of EPS artwork, 24-bit images and documents that take advantage of

features (such as blends) that are only available on Adobe PostScript printers.

4.4 Acrobat Catalog (included with Acrobat for Workgroups)

The Acrobat Catalog program creates full-text indexes for collections of PDF docu-

ments. A full-text index (also referred to as an `inverted word list') is an alphabetized

list of all the words and terms that are used in a collection of documents. You can, for

example, build an index for all the PDF documents on a CD-ROM. You can also point

Acrobat Catalog at your largest network �le server and automatically build an on-line

index for all the PDF documents. As documents are added, modi�ed or removed, the

index is updated incrementally to ensure that you always search against the �les cur-

rently on the network. When used with indexes built for large PDF document collections,

Acrobat Search enables users to search hundreds or thousands of documents in seconds.

5 Glossary

article threads Documents in which text is in columns or otherwise separated and can

be `threaded' so that the reader can follow the
ow. Acrobat Exchange automatically

scrolls, centers the view and travels to additional pages in the thread.

bookmarks Used to mark parts of a document for quick access. Bookmarks are listed

in the overview area of the Exchange window to locate hard-to-�nd or often-used

information, or to create a custom outline of a document. Clicking a bookmark

displays the location marked by that bookmark. Bookmarks can have the same

actions as links (see that entry).

CCITT An abbreviation for the International Coordinating Committee for Telephony

and Telegraphy standards body.

CCITT Group 3 A lossless compression method used by most fax machines that com-

presses monochrome bitmaps one row at a time.

CCITT Group 4 A lossless compression method used by fax machines and applications

that compresses groups of monochrome bitmaps.

downsampling Deletes pixel information in an image to decrease resolution and reduce

�le size.

Encapsulated PostScript (EPS) An EPS �le contains PostScript page description lan-

guage information and maintains the full image quality across applications and

output devices.

font encoding Characters in fonts are referenced in di�erent ways depending on the

computer platform. The way Windows 3.1 �nds a lowercase `a' in a font is di�erent

386 Wiegert Tierie

from the way Macintosh or SunTM workstations �nd the lowercase `a' in the same

font.

font formats Include Type 1 fonts, Type 3 fonts, multiple master fonts, TrueType fonts.

font metrics Specify character widths so applications can determine line lengths. There

are two general types: integer metrics and fractional metrics. Font metrics also

store kerning information. Kerning is an optional adjustment factor for the spacing

between two characters. A positive kerning value moves characters apart; a negative

value moves characters closer together.

font substitution PDF �les carry information about the fonts used in a document

without actually including the font. Acrobat substitutes a multiple master font to

maintain the look and feel of the original document.

full-text index An alphabetical list of all the words and terms used in a collection of

documents. Also referred to as an inverted word list.

JPEG (Joint Photographic Expert Group) Provides signi�cant compression of color

and grayscale images. It is a lossy compression method; data is removed from the

image to produce the compression.

ligature Two or more letters tied into a single character. The sequences `�' and `
',

for example, form ligatures in most serif typefaces.

links `Hot' areas or text on a document page that the user clicks to travel to an associ-

ated destination. Links can go to another view or page in the document or another

PDF document; open another �le or program; or perform an arbitrary action de�ned

by a plug-in.

LZW (Lempel-Ziv-Welch) A lossless compression method that is useful for data con-

taining repeating patterns.

multiple master fonts Allow automatic copy �tting by starting with predetermined

base designs and manipulating width, weight and optical scaling to create all other

occurrences of the font.

page caching Storing already viewed page images in memory to improve display per-

formance.

Portable Document Format (PDF) The key to cross-platform functionality of Adobe

Acrobat products is a unique PostScript language-based �le format. PDF is an

open standard that Adobe Systems documents and publishes for use by software

developers.

proximity The Proximity search option changes the way found documents are assigned

a relevance ranking. With the Proximity option selected, the closer the words are

together in a document, the higher the relevance ranking.

Run Length Encoding A compression method that produces the best results for images

containing large areas of solid white or black.

sounds like An Acrobat Search option that �nds incorrect spellings of a search word.

Searching for misspelling, for example, also �nds mispelling.

Adobe Acrobat 2.0 Beyond the bounds of paper 387

stopwords Terms that are excluded from a full-text index. Common examples are

articles, conjunctions and prepositions.

thesaurus An Acrobat Search option that �nds words that have the same meaning as

the search word. Searching for crypt, for example, also �nds mausoleum, sepulcher

and tomb.

thumbnails Miniature pages in the overview area of the Acrobat Exchange window that

allow users to jump quickly to a page; adjust the view of the current page; and move,

copy and replace pages in a PDF document.

TrueType fonts Come in two forms on the Macintosh: bitmap and outline in one unit,

or bitmap only in one unit. They are converted to Type 1 or Type 3 fonts by the

PostScript printer driver when a PostScript language �le is generated.

Type 1 fonts Actually PostScript language programs, they were the �rst outline fonts.

They are called outline fonts because each character is described mathematically as

a collection of lines and curves that form the character's outline.

Type 3 fonts Usually bitmap format instead of outline format. They are usually not

hinted and tend to have lower quality than Type 1 fonts. Type 3 bitmaps are included

in the PDF �le. Type 3 fonts are PostScript fonts that do not work with ATM;

they allow use of the full PostScript language, and ATM is not a full PostScript

interpreter. Type 3 fonts are not hinted, resulting in poorer quality for screen display

and when printing at small point sizes, and can exist in bitmap or outline form. They

are useful for complex or ornamental fonts or logos, but they require more time for

a printer to image.

wildcard characters Characters used in a search to �nd all the words that contain

a word fragment, or all the words and terms that match an arbitrary character

pattern. The wildcard characters are the asterisk, which matches zero, one or more

characters; and the question mark, which matches any one character.

word stemming An Acrobat Search option that �nds all the words with a common

stem. With word stemming enabled, searching for manager also �nds manage,

managed and managing.

388 Wiegert Tierie

Adobe, the Adobe logo, Acrobat, the Acrobat logo, Adobe Type Manager, ATM, Carta, Distiller, PostScript,

SuperATM and Wild Type are trademarks of Adobe Systems Incorporated which may be registered in cer-

tain jurisdictions. ITC Cheltenham is a registered trademark of International Typeface Corporation. Apple,

ImageWriter and Macintosh are registered trademarks and AppleScript, QuickDraw and TrueType are trade-

marks of Apple Computer, Inc. FileMaker and HyperCard are registered trademarks of Claris Corporation.

Microsoft is a registered trademark and Windows is a trademark of Microsoft Corporation. UNIX is a reg-

istered trademark in the United States and other countries, licensed exclusively through X/Open Company,

Ltd. Sun is a trademark of Sun Microsystems, Inc. QuarkXPress is a registered trademark of Quark, Inc.

CompuServe is a registered trademark of CompuServe Incorporated. Lotus Notes is a registered trademark of

Lotus Development Corporation. All other brand or product names are trademarks or registered trademarks

of their respective holders.

Adobe Systems Incorporated Adobe Systems Benelux B.V.

1585 Charleston Road Europlaza

P.O. Box 7900 Hoogoorddreef 54a

Mountain View 1101 BE Amsterdam Z.O.

California 94039-7900 The Netherlands

USA

Adobe Acrobat 2.0 Beyond the bounds of paper 389

Font embedding

Font subsets

Individual job options

Optimized compression

settings

Figure 10: Acrobat Distiller creates PDF �les from virtually any document { created on

DOS, Windows, Macintosh, UNIX or mainframe machines.

390 Wiegert Tierie

Build index

Watched directories

Files excluded

Scheduled builds

Stopwords

Figure 11: Acrobat Catalog manages large volumes of information on a network.

Typesetting commutative diagrams

Gabriel Valiente Feruglio

University of the Balearic Islands

Mathematics and Computer Science Dept.

E-07071 Palma de Mallorca (Spain)

dmigva0@ps.uib.es

Abstract

There have been several e�orts aimed at providing TEX and its derivatives with a suitable

mechanism for typesetting commutative diagrams, with the consequent availability of several

macro packages of widespread use in the category theory community, and a long debate about

the best syntax to adopt for commutative diagrams in LATEX3 has taken place during 1993

in the CATEGORIES discussion list. From the user's point of view, however, there is not much

guidance when it comes to choosing a macro package, and even after a decision is made,

the conversion of diagrams from the particular conventions of a macro package to another

macro package's conventions may prove to be rather hard.

Typesetting commutative diagrams is a surprisingly di�cult problem, in comparison with TEX

macro packages for other purposes, as judged by the amount of code needed and years of

development invested. The existing macro packages for typesetting commutative diagrams

are reviewed in this paper and they are compared according to several criteria, among them

the capability to produce complex diagrams, quality of the output diagrams, ease of use,

quality of documentation, installation procedures, resource requirements, availability, and

portability. The compatibility of the di�erent macro packages is also analyzed.

1 Introduction

Commutative diagrams are a kind of graphs that are widely used in category theory, not

only as a concise and convenient notation but also as a powerful tool for mathematical

thought.

A diagram in a certain category is a collection of nodes and directed arcs, consistently

labeled with objects and morphisms of the category, where `consistently' means that if

an arc in the diagram is labeled with a morphism f and f has domain A and codomain B,

then the source and target nodes of this arc must be labeled with A and B respectively.

391

392 Gabriel Valiente Feruglio

A diagram in a certain category is said to commute if, for every pair of nodes X

and Y , all the paths in the diagram from X to Y are equal, in the sense that each path

in the diagram determines through composition a morphism and these morphisms are

equal in the given category. For instance, saying that the diagram1

A

��

g

//
f

B

��

g0

C //
f 0

D

commutes is exactly the same as saying that

g0
� f = f 0

� g:

As a notation, the graphic style of presentation inherent to commutative diagrams

makes statements and descriptions involving categories more clear and manageable than

textual presentations. For instance, consider the de�nition of an equalizer. A morphism

e : X ! A is an equalizer of a pair of morphisms f : A ! B and g : A ! B if

f � e = g � e and for every morphism e 0 : X 0 ! A satisfying f � e 0 = g � e 0 there exists

a unique morphism k : X 0 ! X such that e � k = e 0.

An equivalent de�nition is that e is an equalizer if the upper part of the diagram

X
//e
A

//
f

//
g

B

X
0

OO

k

>>

e0

}
}
}
}
}
}
}
}

commutes and, whenever the lower part of the diagram also commutes, there is a unique

k such that the whole diagram commutes.

As a tool for thought, proofs involving properties that are stated in terms of com-

mutative diagrams can often be given in a `visual' way, in what has been called diagram

chasing. For instance, the proposition that if both inner squares of the following diagram

commute, then also the outer rectangle commutes,

A

��

a

//
f

B

��

b

//
g

C

��

c

A0 //
f 0

B0 //
g0

C 0

can be proven as follows:

1. All the diagrams in this paper have been typeset using the XY-pic macro package, unless otherwise

stated. The reader should not infer any preference by the author for that particular macro package, but should

understand that some macro package is needed for the examples in the paper. Sample diagrams typeset with

the other macro packages are given in Appendix I.

Typesetting commutative diagrams 393

(g0 � f 0) � a = g0 � (f 0 � a) (associativity)

= g0 � (b � f) (commutativity

of left square)

= (g0 � b) � f (associativity)

= (c � g) � f (commutativity

of right square)

= c � (g � f) (associativity).

Commutative diagrams2 range from simple, rectangular matrices of formulae and

arrows to complex, non-planar diagrams with curved and diagonal arrows of di�erent

shapes.

2 Constructing commutative diagrams

Commutative diagrams are constructed in most cases as rectangular arrays, as Donald

Knuth does in Exercise 18.46 of [4]. The objects or vertices are set much like a \matrix

in TEX or an array environment in LATEX,

�

�

�

�

�

�

�

�

�

�

�

�

�

and the morphisms or arrows are set either right after the vertex where they start,

�

�

�

�

�

�

�

�

�

�

�

�

or in a cell on their own,

2. The epithet `commutative' is traditional and it is originated in the fact that diagrams may be used to

display equations such as the commutative and associative laws. Although not all such diagrams which people

draw commute in the formal sense given, this paper adheres to tradition and all such diagrams are called

commutative diagrams herein.

394 Gabriel Valiente Feruglio

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

depending on the macro package being used, where the grids correspond to the sample

diagram presented in Appendix I. (Sketching a commutative diagram on such a grid on

paper may prove to be a mandatory step before typing the actual diagram, at least for

all but the simplest diagrams.) This gives a �rst distinction,

� one object and all departing morphisms in each non-empty cell, or

� either one object or one or more morphisms in each non-empty cell.

Whether they belong together with their source object in a cell or they use a cell on

their own, morphisms are speci�ed by the address of their target cell. Such addresses

can be implicit, absolute or relative to the source cell, and they can be either arbitrary

or limited by the available diagonal slops.

Moreover, some macro packages even support symbolic addresses, by which nodes

are tagged with identi�er names and arrows are speci�ed by making reference to the

names of their source and target nodes. This is a step forward in the sense of the

LATEX principle of emphasizing structural descriptions, and in fact it is of great help for

designing complex diagrams because it divides the task into two separate subtasks, the

one of producing a correct and elegant arrangement of nodes and the other one of laying

out the correct arrows and positioning their labels.

3 Evaluation guidelines

The following aspects are considered in the next section for each of the macro packages

in turn. The spirit of these guidelines is to give the potential user a feeling of what to

expect from a macro package for typesetting commutative diagrams, and they are based

on the experience of the author during the last few years, as user of some of the macro

packages.

3.1 Arrow styles

The arrows used in commutative diagrams often are of di�erent shapes, in order to

distinguish di�erent kinds of morphisms such as monomorphisms, epimorphisms, iso-

morphisms, and inclusions, to name just a few, and sometimes they have a shaft other

Typesetting commutative diagrams 395

than a solid line, for instance dashed or dotted, to indicate that it is the existence of

the corresponding morphisms what is being characterized.

A collection of built-in arrow shapes and shafts is included in every macro package,

and some macro packages even provide facilities for de�ning new arrow styles, for in-

stance by de�ning a new control sequence name and choosing a particular combination

of tail (the piece that appears at the source end), head (the piece that appears at the

target end), and shaft, from a prede�ned palette of possible heads, tails, and shafts.

3.2 Automatic stretching

Most of the macro packages provide for the automatic stretching of arrows to meet

their source and target nodes, where meeting a node means to get as close to the

(rectangular) box enclosing the node as dictated by some prede�ned parameter.

While it may be appropriate for most horizontal and vertical arrows, in the case

of diagonal arrows it may leave the arrow too far from the node, and extra diagram

�ne-tuning (see below) is needed in such cases in order to get the arrow closer to the

node. The macro package by John Reynolds, however, incorporates basic facilities for

associating an hexagon, octagon, or diamond to a node, instead of the usual rectangle,

although it does not exploit them in the macros for commutative diagrams.

3.3 Diagram �ne-tuning

Given a correct description of the structure, a macro package has the task of choos-

ing the best possible arrows to produce the commutative diagram. Sometimes the best

choice may not seem good enough, because only a limited number of slopes may be

available for the arrows, because arrows may cross, and because arrow labels may su-

perimpose. Manual �ne-tuning belongs therefore to producing complex commutative

diagrams.

Arrow stretching can be regarded as automatic �ne-tuning. Manual �ne-tuning facil-

ities, on the other hand, include moving labels around, moving arrows around, modifying

their size, changing the distance from the source node to the beginning of the arrow,

as well as from the end of the arrow to the target node, and setting spacing parameters

such as the gap between columns and between rows. Some macro packages provide

the facility to adjust these gaps to di�erent values between speci�c rows or columns,

which is essential in order to get the proper perspective of a three-dimensional diagram.

Otherwise, empty rows and columns have to be added to the diagram to get the desired

perspective. Appendix III shows the degree of automatic stretching provided by each of

the macro packages.

3.4 Installation

None of the macro packages requires a complex installation procedure, and in most

cases the only requirement in order to get the package running is to drop a single macro

or style �le somewhere in the TEX search path. Some macro packages, however, have

396 Gabriel Valiente Feruglio

accompanying special fonts to get better diagonal lines and arrows, that is, they provide

more diagonal slopes and a wider variety of arrow heads and tails to choose from.

In such a case, installation can get more complicated. METAFONT is not as easy to

drive or as familiar to the user as TEX or LATEX; many implementations do not make it

available, and on others only the system administrator is able to install fonts. A ready-to-

use collection of the additional fonts at standard magni�cations is distributed, however,

with some macro packages.

3.5 Documentation

Ranges from small text �les to comprehensive user guides, and even to book chapters.

3.6 User support

The authors of the di�erent macro packages have been receptive to comments and will-

ing to provide user support. Almost all of the macro packages remain under development

and are open to suggestions from users. Moreover, further development of the XY-pic

macro package by Kristo�er Rose and Ross Moore is being funded by three di�erent

sources.

3.7 Ease of use

The relative ease of use of a macro package is a subjective matter, depending to a large

extent on previous experiences in using similar macro packages. Nevertheless, there are

at least two characteristics of a macro package for typesetting commutative diagrams

that are worth mentioning. The way in which the array of cells underlying a commutative

diagram has to be conceived is of most importance. The requirement, found in some

macro packages, of extra cells for morphisms makes the macro package much more

di�cult to use, because the user has to add many spurious rows and columns only to

hold these morphisms and to get proper spacing, and the code for the diagrams gets

bigger and more obscure (compare the last two grids in the previous section).

Orthogonal to the conception of the array of cells is the way in which coordinates for

the source and target nodes of the arrows have to be speci�ed. While such addresses are

implicit in the name of the arrow in some macro packages, they are absolute coordinates,

coordinates relative to the cell where they are declared, or even symbolic coordinates in

other macro packages.

The other aspect is the degree of manual �ne-tuning needed to achieve a readable

commuting diagram. Even when the macro package provides enough facilities, �ne-

tuning a complex commutative diagram may take more time and e�ort than conceiving,

designing, and coding the whole diagram. Some of the macro packages require visual

or measured adjustment by the user of the size and position of every node, arrow, and

label, whereas for others most diagrams may be input as easily as any other mathematical

formula in TEX and they are typeset nicely without any manual adjustment at all.

Typesetting commutative diagrams 397

3.8 Resource requirements

It is well known that TEX has been designed to support high-quality typesetting of math-

ematical text, and that it does not o�er much built-in support when it comes to drawing

and performing arbitrary computations. Because most of the macro packages are built

on top of TEX, they are forced to resort to indirect ways of performing computations

and to produce large diagrams by juxtaposition of small line and arrow segments. There-

fore, a complex diagram may take up lots of computations, line segments, words of TEX

memory, and time to typeset. Appendix IV compares resource requirements for the dif-

ferent macro packages, showing the main �le size together with statistics of both total

time and marginal time. The statistics are based on sample runs to typeset the sample

diagrams presented in Appendix I with the di�erent macro packages.

3.9 Availability

All the macro packages reviewed in this paper can be found in the CTAN archives, and

either are in the public domain or are free software, subject to the terms of the GNU

General Public License as published by the Free Software Foundation. They are listed in

Appendix V.

3.10 Compatibility

Converting a commutative diagram among di�erent macro packages is no straight-

forward task, not only because of the di�erent approaches to constructing a diagram

mentioned in the previous section, but also because of di�erences in naming conven-

tions and in the available arrow styles and slopes. Converting the sample diagram in

Appendix I has taken the author many hours of careful work, and in some cases building

the diagram again from scratch for another macro package has proven to be the most

e�cient solution.

The macro packages are therefore highly incompatible. Nevertheless, the macro

package by Paul Taylor provides some initial facilities for emulating other macro pack-

ages. Maybe a common, agreed-upon syntax for commutative diagrams (see the last

section below) would provide a suitable framework for solving these incompatibilities.

Moreover, although it may seem rather natural that the macro packages are not com-

patible with each other, because the idioms are under development and none of the

authors is, in principle, under any obligation to the users of the other macro packages,

the adoption of a common standard would have the advantage to the whole user com-

munity that the diagrams which have already been drawn with one macro package could

be pasted into a document using another macro package.

3.11 TEX format requirements

While it would be desirable to be able to typeset a commutative diagram under any

derivative of TEX, some macro packages can only run on LATEX because they borrow the

picture environment and one or more of the special fonts line10, linew10, circle10,

398 Gabriel Valiente Feruglio

and circlew10. Other macro packages require AMS-TEX or the amstex package in

LATEX. The other way round, some macro packages run on TEX but do not run when

used in a LATEX document.

3.12 Output quality

This is perhaps the most subjective aspect in these guidelines, and therefore it is left

for the reader to evaluate. See the sample diagrams in Appendix I, and make a guess at

which of the macro packages has been used in Valiente (1994).

4 Macro packages

The di�erent macro packages are listed in turn in the following, under the name of the

respective author, and they are analyzed according to the evaluation guidelines presented

in the previous section. No attempt has been made to put them in chronological order

of development, and the list is sorted by author name.

4.1 American Mathematical Society

AMS-TEX includes some commands for typesetting commutative diagrams, which are

also available in AMS-LATEX as a separate option. Only horizontal and vertical arrows

are supported, and therefore AMS-TEX can only handle `rectangular' commutative dia-

grams. Moreover, only `plain' arrows can be used within commutative diagrams, although

AMS-TEX provides about 30 di�erent arrow shapes, and arrows do not automatically

stretch to their source and target vertices. Commutative diagrams are speci�ed as an

array of cells, with either one object or one or more morphisms in each non-empty cell,

although unlike matrices, no column separator is needed (a special delimiter has to be

used, however, in place of missing arrows). Arrow coordinates are implicit in the name

of the arrow and only the four basic directions are available, where arrows can only

extend to the adjacent row and/or column in the array. The only �ne-tuning facilities

provided are a stretching command to force arrows in the same column to be set to

the same length (actually, to the width of the longest label in that column), which does

not su�ce in order to achieve appropriate arrow stretch when the vertices have di�erent

width (this manual stretching facility requires the whole amstex package to be loaded

in AMS-LATEX), and a command to change the minimum arrow width in a diagram,

for instance to get it to �t on a page. Documentation is as scarce as the facilities the

package provides, only four pages in [11] and one page in [9].

4.2 Barr

Instead of using a matrix notation, commutative diagrams are speci�ed in the macro

package developed by Michael Barr by composing more elementary diagrams, using

primitive shapes such as squares and triangles. Arrow coordinates are implicit within

Typesetting commutative diagrams 399

these shape macros. Additional arrows can be speci�ed by giving the absolute address,

within an implicit picture environment, of their source node, together with the relative

address of their target node as a slope and a length, but stretching is not automatic in

these cases. It supports diagonal arrows only in the usual LATEX slopes, and only a few

di�erent arrow shapes are available. There are no facilities for diagram �ne-tuning. It

only runs on LATEX. Documentation consists of a 10-page document [1] which explains

the principles and gives detailed examples.

4.3 Borceux

In the macro package developed by Francis Borceux, commutative diagrams are speci�ed

as an array of cells, with one object and all departing morphisms in each non-empty

cell. There are facilities for introducing one object and one morphism, or two crossing

morphisms, in each non-empty cell, but at most two items may belong to the same cell.

The delimiter for columns is, unlike the & character used in all the other macro packages,

the special character � that is not even available in many keyboard layouts. It supports

diagonal arrows of di�erent shapes and in many di�erent, although not arbitrary, slopes,

and it also supports parallel and adjoint (counter-parallel) arrows, some curved arrows,

and automatic stretching. Arrow coordinates are implicit in the name of the arrow for

the 32 principal directions. Di�erent facilities for diagram �ne-tuning are provided. It

only runs on LATEX. Documentation consists of a detailed 12-page document [2]. Two

restricted macro �les are distributed for small TEX implementations, one that only allows

for plain arrows and another one that also provides parallel and adjoint (counter-parallel)

plain arrows. A further macro �le is distributed with the package that provides additional

triple, quadruple, and quintuple arrows, parallel and disjoint.

4.4 Gurari

Unlike the case of most of the other macro packages, Eitan Gurari has developed a

general drawing package on top of TEX. It supports diagonal arrows of di�erent shapes

and arbitrary slopes, curved arrows and loops, automatic stretching, and symbolic ad-

dressing. Arrow coordinates can be symbolic, because of the possibility of naming any

location within a drawing, but they are relative in the sample diagrams presented in the

appendices because the macros used are the ones given in page 160 of [3]. It runs on

both TEX and LATEX. The macros are well documented in the book, with several basic

chapters and one chapter devoted to general grid diagrams, but there is only one page

describing commutative diagrams and there is only one sample diagram in the whole

book.

4.5 Reynolds

John Reynolds has developed a macro package consisting of a collection of general

macros for producing a wide variety of diagrams and another collection of macros,

which depend on the general macros, for producing commutative diagrams. It supports

400 Gabriel Valiente Feruglio

diagonal arrows only in the usual LATEX shapes and slopes, because the macros depend

on the LATEX picture facilities to draw lines, arrows, and circles, although it also supports

parallel and adjoint (counter-parallel) arrows, loops, and it provides automatic stretch-

ing. Commutative diagrams as speci�ed by giving the absolute coordinates for each node

and for the source and target node of each arrow, an approach close to symbolic ad-

dressing. Excellent facilities for diagram �ne-tuning are provided. It only runs on LATEX.

Documentation consists of a rather cryptic 12-page ASCII �le [5] describing the macro

package, together with a LATEX input �le that produces a 7-page document of sample

diagrams.

4.6 Rose

A macro package has been developed by Kristo�er Rose on top of a more general drawing

language, called the XY-pic kernel. It supports diagonal arrows of di�erent shapes and in

many di�erent, although not arbitrary, slopes, and it also supports parallel and adjoint

(counter-parallel) arrows, curved arrows, and loops. Arrows stretch automatically, and

there are ample facilities for de�ning additional arrow styles. Commutative diagrams

are speci�ed as an array of cells, with one object and all departing morphisms in each

non-empty cell. Arrow coordinates for the target node are implicit in the name of the

arrow for the 16 principal directions, and they can be absolute or relative for all other

directions. Di�erent facilities for diagram �ne-tuning are provided. It runs on both TEX

and LATEX. Documentation is excellent, both a comprehensive guide [6] and a more

technical document [7] are provided with the package. The latter also describes the

XY-pic kernel.

4.7 Smith

The Expanded Plain TEX macro package includes macros for typesetting commutative

diagrams, written by Steven Smith, in a �le named arrow.tex. It supports diagonal

arrows only in the usual LATEX slopes, because the macros depend on the LATEX font

line10, and only a `plain' arrow shape is available, besides pairs of parallel and adjoint

(counter-parallel) arrows. Commutative diagrams are speci�ed as an array of cells, with

either one object or one or more morphisms in each non-empty cell. There is not any

automatic stretching of arrows. Arrow coordinates are implicit in the name of the arrow

for the four basic directions, and they are relative addresses for all other directions. De-

signing a complex diagram using this macro package is as di�cult as �ne-tuning a simple

diagram, even requiring manual computations of horizontal and vertical dimensions to

get a desired arrow size and slope. It runs on both TEX and LATEX. Documentation is

enough to cover the facilities provided by the macros, seven pages in [8] and a two-page

source document named commdiags.tex, reproducing eleven textbook commutative

diagrams.

Typesetting commutative diagrams 401

4.8 Spivak

LAMS-TEX includes an environment for producing commutative diagrams that supports

diagonal arrows of di�erent shapes and in many di�erent, although not arbitrary, slopes.

Arrows stretch automatically, and there are ample facilities for de�ning additional arrow

styles. Commutative diagrams are speci�ed as an array of cells, with one object and all

departing morphisms in each non-empty cell. Arrow coordinates are relative addresses,

and mnemonics can be easily de�ned for the most common arrow coordinates. Superb

facilities for diagram �ne-tuning are provided. It only runs on TEX. Documentation is

excellent, two chapters in [10] describing every detail from diagram design to coding

and �ne-tuning.

4.9 Svensson

The most recent addition to the commutative diagrams family is the macro package

kuvio.tex, developed by Anders Svensson. It supports diagonal arrows of di�erent

shapes and in many di�erent, although not arbitrary, slopes (implemented by rotating

horizontal arrows through PostScript \special commands). Arrows stretch automat-

ically, and there are ample facilities for de�ning additional arrow styles. Commutative

diagrams are speci�ed as an array of cells, with either one object or one or more mor-

phisms in each non-empty cell. Arrow coordinates are implicit in the name of the arrow,

and they are complemented with explicit slope and length parameters. Di�erent facilities

for diagram �ne-tuning are provided. It runs on both TEX and LATEX. The macros are

well documentated in a 54-page guide and reference manual [12].

4.10 Taylor

A macro package has been developed by Paul Taylor that supports diagonal arrows of

di�erent shapes and slopes, and even at arbitrary slopes (implemented by rotating hori-

zontal arrows through PostScript \special commands). Arrows stretch automatically,

and there are ample facilities for de�ning additional arrow styles. Commutative diagrams

are speci�ed as an array of cells, with either one object or one or more morphisms in

each non-empty cell. Arrow coordinates are implicit in the name of the arrow, and they

are complemented with explicit slope and length parameters. There are plenty of options

for diagram �ne-tuning, either global to the whole document or local to a single dia-

gram. It runs on both TEX and LATEX. Documentation is excellent, a quite comprehensive

document [13] that is even provided typeset in booklet format.

4.11 Van Zandt

As in the case of the macro packages by Eitan Gurari, PSTricks is a general drawing

package built on top of TEX. Instead of extending TEX by de�ning graphics primitives,

however, it is a collection of PostScript-based TEX macros, and it can be seen in fact as

a high-level TEX-like interface to the PostScript language. It supports diagonal arrows of

di�erent shapes and arbitrary slopes, curved arrows and loops, automatic stretching, and

402 Gabriel Valiente Feruglio

symbolic addressing for both node and arrow coordinates. It runs on both TEX and LATEX.

The macros are well documented in [15], although there are only two pages describing

commutative diagrams and there are only two sample diagrams in the whole document.

5 Discussion

5.1 Syntactic issues

Syntactic issues are so fundamental to user acceptance of a macro package for type-

setting commutative diagrams, that a volunteer task within the LATEX3 project has

been founded in October 1992 under the name Research on Syntax for Commutative

Diagrams, with Paul Taylor as co-ordinator and Michael Barr and Kristo�er Rose as

members.

After an initiative by Michael Barr, who started a discussion within the categorical

community about the best syntax to adopt for commutative diagrams in LATEX3, a rather

heated debate has taken place in the CATEGORIES discussion list. There have been many

contributions between June and August 1993, although the discussion list has been silent

in these matters ever since.

5.2 Curved arrows

The need for curved arrows arises when `parallel' morphisms have to be distinguished

from each other, for instance when it is not known if the morphism h : A! C is equal

to the composition of the morphisms g : B ! C and f : A! B,

A
@A BC

h

OO
//

f

B //
g

C

because otherwise the composite morphism would not need to be made explicit.

The need for curved arrows also arises when there are loops in a diagram. For

instance, consider the de�nition of an isomorphism.

A morphism f : A ! B in a given category is an isomorphism if there exist a

morphism g : B ! A in that category such that g � f = idA and f � g = idB. That is,

if the diagram

A

@AGFidA ED�� //f

Boo
g EDBC idB@AOO

commutes. One possible trick to eliminate the need for such curved arrows is to

`straighten up' the diagram by appropriately duplicating some nodes. For the previ-

ous example, a morphism f : A ! B is an isomorphism if the following two diagrams

commute:

Typesetting commutative diagrams 403

A
//

idA

//

f

B
//

g

A B
//

idB

//

g

A
//

f

B

These diagrams, however, look much better with a curved arrow,

A
@A BC

idA

OO
//

f

B
//

g

A B
@A BC

idB

OO
//

g

A //
f

B

and therefore the need for curved arrows cannot always be eliminated without sacri�cing

diagram clarity and, perhaps arguably, esthetics. While some authors of category theory

textbooks seem to prefer to duplicate nodes, others make a thorough use of curved

arrows.

5.3 Design issues

Diagrams are essentially a communication medium, and therefore good design means

a design for readability. Although readability issues can be as subjective as esthetics

issues, however, some basic principles may help in the design of readable diagrams. The

�rst principle is to follow the natural order of writing, which at least within occidental

writing conventions means left to right, top to bottom, and foreground to background.

A second principle is to appropriately give depth to three-dimensional diagrams, in such

a way that the foreground lies a little below the background. This principle �nds no easy

justi�cation, because it may seem to contradict the top-to-bottom order of writing by

imposing a bottom-to-top order from foreground to background, but it is true of all

kinds of pictorial representations.

5.4 User interface

Most of the macro packages provide a simple user interface, consisting of a certain matrix

notation. While it adheres to the LATEX principle of emphasizing structural descriptions,

such a speci�cation may become much too obscure for a complex diagram. Some authors

have argued against the use of alternative technologies (if you want WYSIWYG, use a pen

and paper) but maybe the time has arrived to have a state-of-the-art drawing program

with speci�c facilities for designing commutative diagrams. One possible scenario would

be to sketch the arrangement of nodes and arcs on the computer screen using a mouse,

and to let the drawing program translate the design into the language of (any of) the

macro packages, taking care of all the time-consuming details of computing coordinates,

choosing appropriate slops for the arrows, placing arrow labels, �ne-tuning, etc. Further

facilities could include, for instance, trying di�erent layouts based both on the structural

description of the diagram as a graph and on knowledge of the kind of graphs that

commutative diagrams are, and performing speci�c operations on descriptions such as,

for instance, obtaining the dual of a commutative diagram.

404 Gabriel Valiente Feruglio

5.5 Open issues

Although the conceptual framework used for evaluating the di�erent macro packages

resulted from the experience of the author using them and converting diagrams between

them, it is precisely because of the evaluation having been carried out by only one

person that the resulting data may be somewhat biased. A more general investigation

would involve mathematicians and computer scientists writing their own diagrams, as

well as (LA)TEX-competent secretaries typing their work, and would produce quantitative

measures of learning times for the di�erent macro packages and, once they are
uent in

each macro package, measures of the time it takes them to transcribe a diagram drawn

on paper.

Further additional investigations include evaluating the degree of help given by each

macro package towards improving the quality of the output diagrams, for instance by

means of informative messages; quantifying the degree of �ne-tuning needed with each

macro package in order to produce a complex diagram; evaluating the robustness of the

di�erent macro packages when the user makes common errors, such as omitting brackets

or mistyping command names; and, last but not least, designing a standard library of

common diagrams against which the di�erent macro packages could be evaluated and

compared.

6 Acknowledgement

In order to avoid name clashes among the control sequences de�ned in the di�erent

macro packages, all the diagrams have been typeset separately and included in the �nal

document as encapsulated PostScript �les. Thanks to Michel Goossens and Sebastian

Rahtz for their advice. Ricardo Alberich Mart�� provided guidance during the design of

the experiment to obtain time statistics.

References

[1] Michael Barr. The diagram macros. Electronic document distributed with the

package.

[2] Francis Borceux. User's guide for diagram 3. Electronic document distributed with

the package.

[3] Eitan M. Gurari. TEX & LATEX { Drawing and Literate Programming. McGraw-Hill,

New York, 1994.

[4] Donald E. Knuth. The TEXbook. Addison-Wesley, 15 edition, 1989.

[5] John Reynolds. User's manual for diagram macros. Electronic document distributed

with the package, December 1987.

[6] Kristo�er H. Rose. XY-pic user's guide. Electronic document distributed with the

package, October 1994.

Typesetting commutative diagrams 405

[7] Kristo�er H. Rose and Ross Moore. XY-pic reference manual. Electronic document

distributed with the package, October 1994.

[8] Steven Smith. Arrow-theoretic diagrams. Electronic document distributed with the

package, May 1994. Chapter 5 in Karl Berry and Steven Smith, Expanded Plain

TEX.

[9] American Mathematical Society. AMS-LATEX version 1.2 user's guide. Electronic

document distributed with the package, January 1995.

[10] Michael D. Spivak. LAMS-TEX { The Synthesis. The TEXplorators Corporation,

Houston, Texas, 1989.

[11] Michael D. Spivak. The Joy of TEX { A Gourmet Guide to Typesetting with the

AMS-TEX Macro Package. American Mathematical Society, 2 edition, 1990.

[12] Anders G. S. Svensson. Typesetting diagrams with kuvio.tex. Electronic docu-

ment distributed with the package, January 1995.

[13] Paul Taylor. Commutative diagrams in TEX (version 4). Electronic document

distributed with the package, July 1994.

[14] Gabriel Valiente Feruglio. Knowledge Base Veri�cation using Algebraic Graph

Transformations. PhD thesis, University of the Balearic Islands, December 1994.

[15] Timothy Van Zandt. PSTricks user's guide. Electronic document distributed with

the package, March 1993.

406 Gabriel Valiente Feruglio

Appendix I: Sample diagrams

The following diagrams reproduce a fairly complex commutative diagram, taken from

[14], using all the macro packages reviewed in this paper. The diagram consists of a

pushout construction of partial closed morphisms of total unary algebras in the fore-

ground, together with a corresponding pushout construction of total morphisms of total

signature algebras in the background.

6.1 American Mathematical Society

L
i1

 ���� Lr
r

����! R

i2

x
?
?

x
?
?i4

x
?
?i6

Lm
i3

 ���� Kr;m

r

����! Rm�

m

?
?
y

?
?
ym

?
?
ym

�

G ����

i5

Gr� ����!

r�
H

6.2 Michael Barr

Lm Kr;m
� �

L Lr� �i1

6

6

i2

6

6

i4

Rm�
-

R-r

6

6

i6

G Gr�� �
i5

i3

?

m

?

m

H-
r�

r

?

m�

�
G

�
H-

'r
�

�
L

�
R-'r

?

'm

?

'm
�

�L

��� �R���

�G

��� �H���

Typesetting commutative diagrams 407

6.3 Francis Borceux

�
L

'r
qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq �
R

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�L
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�R

L
i1

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

Lr
r

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq R

i2

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

'm

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

i4

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

qqqqqqqqqqqqqqqqqq

i6

qq
qqq
qqq
qqq
qq
qqq
qq

qq
qqq
qqq
qqq
qq
qqq
qq

'm
�

Lm
i3

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq

qq
qqq
qqq
qqq
qq
qqq
qq

Kr;m
r

qq
qqq
qqq
qqq
qq
qqq
qq

qqqqqqqqqqqqqqqqqq Rm�

m

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

�
G

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

m

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq'r
�

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

m�

�
H

�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�G
�
�

qqqqqqqqqqqqqqqqqq qqqqqqqqqqqqqqqqqq

�H

G
qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqqq
qqq
qq

qqqqqqqqqqqqqqqqqq

qqq
qqq
qqq
qqqq
qqq
qq

i5
Gr�

qqq
qqq
qqq
qqqq
qqq
qq

qqqqqqqqqqqqqqqqqqr�
H

6.4 Eitan Gurari

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

'
m

'
r

'
m�

�
L

i1 r
�
R

m

i2 i4

m

i3 r

m
�

i6

'
r��

G

i5 r
�

�
H

408 Gabriel Valiente Feruglio

6.5 John Reynolds

G Gr� H

Lm Kr;m Rm�

L Lr R

6

i2

6

i4

6

i6

?

m

?

m

?

m�

�
i1

�
i3

�

i5

-r

-r

-

r�

�
G

�
H

�
L

�
R

�
�
�1

�G

. . . .
1

�H

�
�
�1

�L

�
�
�1

�R

?

'm

?

'm
�

-
'r

-

'r
�

6.6 Kristo�er Rose

�
L

'm

��

//'r

�
R

��

'm
�

L

<<�L y
y
y
y
y

Lr
oo i1 //r

R

;;

�R

w
w
w
w
w

Lm

OO

i2

��

m

Kr;m
oo i3

OO

i4

��

m

//r
Rm�

OO

i6

��

m�

�
G

'r
�

//
�
H

G

<<�G y
y
y
y
y

Gr�
oo

i5

//
r�

H

;;

�H

Typesetting commutative diagrams 409

6.7 Steven Smith

�
L 'r - �

R

���
�L

����R

L
i1� Lr

r - R

i2

6
'm

?

6
i4

6
i6

?

'm
�

Lm
i3� Kr;m

r -Rm�

m

?

�
G

?

m -
'r

�

?

m
�

�
H

���
�G

����H

G �
i5

Gr�
-

r�
H

6.8 Michael Spivak

�
L

u

'm

w

'r
�
R

u

'm
�

L
�
�
���L

Lru x

i1
w

r R
�
�
��

�R

Lm

u

v

i2

u

m

Kr;mu x

i3
w

r

u

v

i4

u

m

Rm�

u

v

i6

u

m�

�
G

w

'r
�

�
H

G
�
�
���G

Gr�u x

i5
w

r�
H
�
�
��

�H

410 Gabriel Valiente Feruglio

6.9 Anders Svensson

�����������������

'r

�

�

�

�

��L

�

�

�

�

�

�R

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'm

�������� i1
��������

r

�
�

�

�

�

�

�

�

i2

�
�

�

�

�

�

�

�

i4

�
�

�

�

�

�

�

�

i6

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

'm
�

������ i3
������

r

�

�

�

�

�

�

�

�

m �����������������

'r
�

�

�

�

�

�

�

�

�

m

�

�

�

�

�

�

�

�

m�

�

�

�

�

��G

�
�
�
�
�

�H
�������

i5
�������

r�

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

6.10 Paul Taylor

�
L 'r

I �
R

L J
i1

J

�
L I

Lr
r

I R
�
R

I

Lm

i2

N

N

J
i3
J

'm

Kr;m

N

N

i4

r
I Rm�

N

N

i6

�
G

H

'r
�

I �
H

H

'm
�

G

m

H

J

i5
J

�
G I

Gr�
H

m

r�
I H
H

m�

. .
. .
. .
. .

�
H

I

Typesetting commutative diagrams 411

6.11 Paul Taylor emulating F. Borceux

�
L 'r - �

R

��
�L
� ��

�R
�

L �
i1
+ Lr

r - R

Lm

i2

+

6

� i3
+

'm

?

Kr;m

+

6

i4

r - Rm�

+

6

i6

�
G

'r
�

- �
H

?

'm
�

��
�G
� ��

�H
�

G

m

?
�

i5
+ Gr�
?

m

r�
- H
?

m�

6.12 Timothy Van Zandt

�
L

�
R

L Lr R

Lm Kr;m Rm�

�
G

�
H

G Gr� H

r

r

�

i1

i3

i

'

'r
�

'm
�

'm

m

m m�

2 i4 i6

�L

�R

�G

�H

Appendix II: Source code for the sample diagrams

\newcommand{\up}[1]{\raisebox{1em}{$#1$}}

\newcommand{\down}[1]{\raisebox{-1em}{$#1$}}

\newcommand{\Left}[1]{\makebox[5pt][r]{$#1$}}

\newcommand{\Right}[1]{\makebox[5pt][l]{$#1$}}

6.13 American Mathematical Society

$$\begin{CD}

412 Gabriel Valiente Feruglio

L @<i_1<< L_r @>r>> R \\

@Ai_2AA @AAi_4A @AAi_6A \\

L_m @<i_3<< K_{r,m} @>r>> R_{m^*} \\

@VmVV @VVmV @VVm^*V \\

G @<<i_5< G_{r^*} @>>r^*> H

\end{CD}$$

6.14 Michael Barr

$$\bfig

\putsquare<-2`-2`-2`-2;500`500>(0,500)[L`L_r`L_m`K_{r,m};%

\qquad i_1`i_2`i_4`]

\putsquare<1`0`-2`1;500`500>(500,500)%

[`R`\phantom{K_{r,m}}`R_{m^*};r``i_6`]

\putsquare<0`1`1`-2;500`500>(0,0)%

[`\phantom{K_{r,m}}`G`G_{r^*};%

\qquad i_3`m`\up m`i_5]

\putsquare<0`0`1`1;500`500>(500,0)%

[\phantom{K_{r,m}}`\phantom{R_{m^*}}`\phantom{G_{r^*}}`H;%

r``\up{m^*}`r^*]

\putsquare<1`1`1`1;1000`1000>(250,250)%

[\Sigma^L`\Sigma^R`\Sigma^G`\Sigma^H;%

\varphi^r`\varphi^m`\varphi^{m^*}`\varphi^{r^*}]

\putmorphism(125,1125)(1,1)%

[\phantom L``{\up{\Right{\lambda^L}}}]%

{0}{1}{l}

\putmorphism(1125,1125)(1,1)%

[\phantom R``{\down{\Left{\lambda^R}}}]%

{0}{1}{r}

\putmorphism(125,125)(1,1)

[\phantom G``{\up{\Right{\lambda^G}}}]%

{0}{1}{l}

\putmorphism(1125,125)(1,1)%

[\phantom H``{\down{\Left{\lambda^H}}}]%

{0}{1}{r}

\efig$$

6.15 Francis Borceux

\setdefaultscale{40}

\begin{diagram}

? ? \Sigma^L ? ? ? ? \Ear[280] {\varphi^r} ? ? ? ? \Sigma^R ??

? \Near[50] {\lambda^L} ? ? ? ? ? ? ? ? \neaR[50] {\lambda^R} ??

L ? ? \Wmono[130] {\qquad i_1} ? ? L_r ? ? \Ear[130] r ? ? R ?? ??

\Nmono[130] {i_2} ? ? \Sar[280] {\varphi^m} ? ? \nmonO[130] {i_4}%

? ? ? ? \nmonO[130] {i_6} ? ?

\saR[280] {\varphi^{m^*}} ?? ??

Typesetting commutative diagrams 413

L_m ? ? \Wmono[100] {\qquad i_3} ? ? K_{r,m} ? ? \Ear[100] r ? ?%

R_{m^*} ?? ??

\Sar[130] m ? ? \Sigma^G ? ? \saR[130] {\up{m}} ? ? \eaR[280]%

{\varphi^{r^*}} ? ?

\saR[130] {\up{m^*}} ? ? \Sigma^H ??

? \Near[50] {\lambda^G} ? ? ? ? ? ? ? ? \neaR[50] {\lambda^H} ??

G ? ? \wmonO[130] {i_5} ? ? G_{r^*} ? ? \eaR[130] {r^*} ? ? H ??

\end{diagram}

6.16 Eitan Gurari

\Draw

\PenSize(0.25pt)

\ArrowSpec(V,5,3,2)

\ArrowHeads(1)

\GridSpace(10,10)

\GridDiagramSpec()(\MyEdge)

\Define\L(4){,+#1..+#2\,L\,#3\,#4}

\Define\D(4){,+#1..+#2\,D\,#3\,#4}

\Define\MyEdge(5){

\IF \EqText(#3,D) \THEN

\EdgeSpec(D)

\ELSE

\EdgeSpec(L)

\FI

\IF \EqText(#1,#2) \THEN

\RotateTo(#4)

\CycleEdge(#1)

\EdgeLabel(--$#5$--)

\ELSE

\Edge(#1,#2)

\IF \EqText(,#4) \THEN

\EdgeLabel(--$#5$--)

\ELSE

\EdgeLabel[#4](--$#5$--)

\FI

\FI}

\GridDiagram(8,8)()()({

& Σ^L \L(6,0,+,\mbox{φ^m}) \L(0,6,,%

\mbox{φ^r}) & & & & & & Σ^R

\L(6,0,,\mbox{φ^{m^*}}) //

L \L(-1,1,,\mbox{λ^L}) & & & L_r \L(0,-3,+,%

\mbox{i_1}) \L(0,3,,\mbox{r}) & & &

R \L(-1,1,+,\mbox{λ^R}) & //

& & & & & & & //

& & & & & & & //

L_m \L(3,0,+,\mbox{m}) \L(-3,0,,\mbox{i_2}) & & &%

414 Gabriel Valiente Feruglio

$K_{r,m}$ \L(-3,0,+,\mbox{i_4})

\L(3,0,,\mbox{m}) \L(0,-3,+,\mbox{i_3}) \L(0,3,,%

\mbox{r}) & & & R_{m^*}

\L(3,0,,\mbox{m^*}) \L(-3,0,+,\mbox{i_6}) & //

& & & & & & & //

& Σ^G \L(0,6,+,\mbox{φ^{r^*}}) & & & & & &%

Σ^H //

G \L(-1,1,,\mbox{λ^G}) & & & G_{r^*} \L(0,-3,,%

\mbox{i_5}) \L(0,3,+,\mbox{r^*})

& & & H \D(-1,1,+,\mbox{λ^H}) & //})

\EndDraw

6.17 John Reynolds

\def\diagramunit{0.6pt}

$$\ctdiagram{

\ctv 0,0:{G}

\ctv 100,0:{G_{r^*}}

\ctv 200,0:{H}

\ctv 0,100:{L_m}

\ctv 100,100:{K_{r,m}}

\ctv 200,100:{R_{m^*}}

\ctv 0,200:{L}

\ctv 100,200:{L_r}

\ctv 200,200:{R}

\ctel 0,100,0,200:{i_2}

\cter 100,100,100,200:{i_4}

\cter 200,100,200,200:{i_6}

\ctel 0,100,0,0:{m}

\cter 100,100,100,0:{m}

\cter 200,100,200,0:{m^*}

\ctetg 100,200,0,200;60:{i_1}

\ctetg 100,100,0,100;60:{i_3}

\cteb 100,0,0,0:{i_5}

\ctet 100,200,200,200:{r}

\ctet 100,100,200,100:{r}

\cteb 100,0,200,0:{r^*}

\ctv 75,25:{\Sigma^G}

\ctv 275,25:{\Sigma^H}

\ctv 75,225:{\Sigma^L}

\ctv 275,225:{\Sigma^R}

\ctet 0,0,75,25:{\lambda^G}

\ctdot

\cteb 200,0,275,25:{\lambda^H}

\ctsolid

\ctet 0,200,75,225:{\lambda^L}

\cteb 200,200,275,225:{\lambda^R}

Typesetting commutative diagrams 415

\ctelg 75,225,75,25;150:{\varphi^m}

\cterg 275,225,275,25;150:{\varphi^{m^*}}

\ctet 75,225,275,225:{\varphi^r}

\cteb 75,25,275,25:{\varphi^{r^*}}

}$$

6.18 Kristo�er Rose

\definemorphism{unique}\dotted\tip\notip

\spreaddiagramrows{-1pc}

\spreaddiagramcolumns{-1pc}

\diagram

& \Sigma^L \xto'[1,0]'[3,0]_{\varphi^m}[4,0]%

\xto[rrrr]^{\varphi^r}

& & & & \Sigma^R \xto[dddd]^{\varphi^{m^*}} \\

L \urto^{\lambda^L} & & \llto_<<<<{i_1} L_r \rrto^r &%

& R \urto_{\lambda^R} \\ \\

L_m \uuto^{i_2} \ddto_m & & \llto_<<<<{i_3}%

\uuto_{i_4} K_{r,m} \ddto^<<<<m \rrto^r

& & \uuto_{i_6} R_{m^*} \ddto^<<<<{m^*} \\

& \Sigma^G \xto'[0,1]'[0,3]_{\varphi^{r^*}}[0,4] & & & &%

\Sigma^H \\

G \urto^{\lambda^G} & & \llto^{i_5} G_{r^*} \rrto_{r^*} &%

& H \urunique_{\lambda^H}

\enddiagram

6.19 Steven Smith

\harrowlength=45pt

\sarrowlength=.30\harrowlength

$$\gridcommdiag{

& & \Sigma^L & & & & {\harrowlength=100pt\mapright^{\varphi^r}}

& & & & \Sigma^R \cr

& \arrow(1,1)\lft{\lambda^L} & & & & & & & & \arrow(1,1)\rt{\lambda^R} \cr

L & & \mapleft^{\qquad i_1} & & L_r & & \mapright^r & & R \cr \cr

\mapup^{i_2} & & {\varrowlength=100pt\mapdown^{\varphi^m}}

& & \mapup_{i_4} & & & & \mapup_{i_6} & &

{\varrowlength=100pt\mapdown_{\varphi^{m^*}}}

\cr \cr

L_m & & \mapleft^{\qquad i_3} & & K_{r,m} & & \mapright^r & & R_{m^*} \cr \cr

\mapdown^m & & \Sigma^G & & \mapdown_{\up{m}}

& & {\harrowlength=100pt\mapright_{\varphi^{r^*}}}

& & \mapdown_{\up{m^*}} & & \Sigma^H \cr

& \arrow(1,1)\lft{\lambda^G} & & & & & & & & \arrow(1,1)\rt{\lambda^H} \cr

G & & \mapleft_{i_5} & & G_{r^*} & & \mapright_{r^*} & & H

}$$

416 Gabriel Valiente Feruglio

6.20 Michael Spivak

$$\Cgaps{0.5}

\Rgaps{0.5}

\cgaps{1.3;0.7;1;1;1.3}

\rgaps{0.7;1;1;1.3;0.7}

\CD

& \Sigma^L @() \L{\varphi^m} @(0,-4) @() \L{\varphi^r} @(4,0)

& & &

& \Sigma^R @() \l{\varphi^{m^*}} @(0,-4)

\\

L @() \L{\lambda^L} @(1,1)

& &

L_r @() \L{i_1} \0t @(-2,0) @() \L{r} @(2,0)

& & R @() \l{\lambda^R} @(1,1)

&

\\

\\

L_m @() \L{i_2} \0t @(0,2) @() \L{m} @(0,-2)

& & K_{r,m} @() \L{i_3} \0t @(-2,0) @() \L{r} @(2,0) @()%

\l{i_4} \0t @(0,2) @() \l{m} @(0,-2)

& & R_{m^*} @() \l{i_6} \0t @(0,2) @() \l{m^*} @(0,-2)

&

\\

& \Sigma^G @() \l{\varphi^{r^*}} @(4,0)

& & & & \Sigma^H

\\

G @() \L{\lambda^G} @(1,1)

& & G_{r^*} @() \l{i_5} \0t @(-2,0) @() \l{r^*} @(2,0)

& & H @() \l{\lambda^H} \a- @(1,1)

& \\

\endCD$$

6.21 Anders Svensson

\scale=.5

\Diagram

& & \Sigma^L & & & & \rTo^{\varphi^r} & & & & \Sigma^R \\

& \ruTo^{\lambda^L} & & & & & & & & \ruTo_{\lambda^R} & \\

L & & \dTo_{\varphi^m} \lMono^{i_1}:{.25} \br & & L_r & &%

\rTo^r & & R & & \\

& & & & & & & & & & \\

\uMono^{i_2} & & & & \uMono_{i_4} & & & & \uMono_{i_6} & &%

\dTo^{\varphi^{m^*}} \\

& & & & & & & & & & \\

L_m & & & \lMono^{i_3}:{.25} \br & K_{r,m} & & \rTo^r & &%

R_{m^*} & & \\

Typesetting commutative diagrams 417

& & & & & & & & & & \\

\dTo_m & & \Sigma^G & & \rTo_{\varphi^{r^*}} \dTo^m:{.25}%

\br & & & & \dTo^{m^*}:{.25} \br & & \Sigma^H \\

& \ruTo^{\lambda^G} & & & & & & & & \ruDashto_{\lambda^H} & \\

G & & \lMono_{i_5} & & G_{r^*} & & \rTo_{r^*} & & H & & \\

\endDiagram

6.22 Paul Taylor

\diagramstyle[heads=littleblack,size=1.5em,PS]

\begin{diagram}

& & \Sigma^L & & & & \rTo^{\varphi^r} & & & & \Sigma^R \\

& \ruTo^{\lambda^L} & \vLine & & & & & & & \ruTo_{\lambda^R} & \\

L & & \HonV & \lEmbed^{i_1} & L_r & & \rTo^r & & R & & \\

& & & & & & & & & & \\

\uEmbed^{i_2} & & \vLine^{\varphi^m} & & \uEmbed_{i_4} & & & &%

\uEmbed_{i_6} & &

\dTo_{\varphi^{m^*}} \\

& & & & & & & & & & \\

L_m & & \HonV & \lEmbed^{i_3} & K_{r,m} & & \rTo^r & & R_{m^*} & & \\

& & \dTo & & \dTo_m & & & & \dTo_{m^*} & & \\

\dTo^m & & \Sigma^G & \hLine & \VonH & & \hLine_{\varphi^{r^*}} & &%

\VonH & \rTo & \Sigma^H \\

& \ruTo^{\lambda^G} & & & & & & & & \ruDotsto_{\lambda^H} & \\

G & & \lEmbed_{i_5} & & G_{r^*} & & \rTo_{r^*} & & H & & \\

\end{diagram}

6.23 Paul Taylor emulating Francis Borceux

\diagramstyle[size=1.5em]

\begin{diagram}

& & \Sigma^L & & & & \Ear {\varphi^r} & & & & \Sigma^R \\

& \Near {\lambda^L} & & & & & & & & \neaR {\lambda^R} \\

L & & \Wmono {\qquad i_1} & & L_r & & \Ear r & & R \\ \\

\Nmono {i_2} & & \Sar {\varphi^m} & & \nmonO {i_4} & & & &%

\nmonO {i_6} & & \saR {\varphi^{m^*}} \\ \\

L_m & & \Wmono {\qquad i_3} & & K_{r,m} & & \Ear r &%

& R_{m^*} \\ \\

\Sar m & & \Sigma^G & & \saR {\up{m}} & &%

\eaR {\varphi^{r^*}} & & \saR {\up{m^*}} & & \Sigma^H \\

& \Near {\lambda^G} & & & & & & & & \neaR {\lambda^H} \\

G & & \wmonO {i_5} & & G_{r^*} & & \eaR {r^*} & & H \\

\end{diagram}

6.24 Timothy Van Zandt

$$\setlength{\arraycolsep}{0.1in}

\begin{array}{cccccc}

418 Gabriel Valiente Feruglio

& \Rnode{SL}{\Sigma^L} & & & & \Rnode{SR}{\Sigma^R} \\ [0.15in]

\Rnode{L}{L} & & \Rnode{Lr}{L_r} & & \Rnode{R}{R} & \\ [0.15in]%

\\ [0.15in]

\Rnode{Lm}{L_m} & & \Rnode{Krm}{K_{r,m}} & & \Rnode{Rm}{R_{m^*}}%

& \\ [0.15in]

& \Rnode{SG}{\Sigma^G} & & & & \Rnode{SH}{\Sigma^H} \\ [0.15in]

\Rnode{G}{G} & & \Rnode{Gr}{G_{r^*}} & & \Rnode{H}{H} & \\ [0.15in]

\end{array}

\psset{nodesep=5pt,arrows=->}

\everypsbox{\scriptstyle}

\ncLine{Lr}{R} \Aput{r}

\ncLine{Krm}{Rm} \Aput{r}

\ncLine{Gr}{H} \Bput{r^*}

\ncLine{Lr}{L} \bput{0}(0.3){i_1}

\ncLine{Krm}{Lm} \bput{0}(0.3){i_3}

\ncLine{Gr}{G} \Aput{i_5}

\ncLine{SL}{SR} \Aput{\varphi^r}

\ncLine{SG}{SH} \Bput{\varphi^{r^*}}

\ncLine{SR}{SH} \Aput{\varphi^{m^*}}

\ncLine{SL}{SG} \Bput{\varphi^m}

\ncLine{Lm}{G} \Bput{m}

\ncLine{Krm}{Gr} \aput{0}(0.3){m}

\ncLine{Rm}{H} \aput{0}(0.3){m^*}

\ncLine{Lm}{L} \Aput{i_2}

\ncLine{Krm}{Lr} \Bput{i_4}

\ncLine{Rm}{R} \Bput{i_6}

\ncLine{L}{SL} \Aput[1pt]{\lambda^L}

\ncLine{R}{SR} \Bput[1pt]{\lambda^R}

\ncLine{G}{SG} \Aput[1pt]{\lambda^G}

\ncLine[linestyle=dashed]{H}{SH} \Bput[1pt]{\lambda^H}$$

Appendix III: Automatic stretching

The following diagrams illustrate the degree of automatic stretching of arrows provided

by each of the macro packages. A simple square diagram is typeset with a long label for

the top-leftmost node in order to determine if the bottom horizontal arrow stretches to

meet its source node, and it is also typeset with a long label for the top horizontal arrow

in order to determine if it stretches long enough to �t the label.

6.25 American Mathematical Society

Arrows do not stretch to meet their source and target nodes, but they stretch to �t their

labels, although only the arrow carrying the long label stretches. Manual �ne-tuning is

needed in order to get the same stretch in all the other arrows lying in the same column

of the array.

Typesetting commutative diagrams 419

A
f

����! B

g

?
?
y

?
?
yg0

C ����!
f 0

D

A�A�A�A
f

����! B

g

?
?
y

?
?
yg0

C ����!

f 0

D

A
f?f?f?f?f?f
��������! B

g

?
?
y

?
?
yg0

C ����!

f 0

D

6.26 Michael Barr

Arrows within the shape macros stretch to meet their source and target arrows, but

individual arrows obtained with \putmorphism do not. In both cases, arrows do not

stretch to �t their labels and the required dimensions have to be given explicitly.

C D-
f 0

A B-
f

?

g

?

g0

C D-
f 0

A�A�A�A B-
f

?

g

?

g0

C D-
f 0

A B-
f ? f ? f ? f ? f ? f

?

g

?

g0

6.27 Francis Borceux

Arrows stretch to meet their source and target nodes, but they do not stretch to �t

their labels.

A
f

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B

g

qqq
qqq
qqq
qqq
qqq
qqq

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qqq
qqq
qqq
qqq

qq
qqq
qqq
qqq
qqq
qqq
q

g0

C
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqqf 0
D

A�A�A�A
f

qq
qqq
qqq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqq B

g

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qqq
qqq
qqq
qqq

qq
qqq
qqq
qqq
qqq
qqq
q

qqq
qqq
qqq
qqq
qqq
qqq

g0

C
qqq
qqq
qq
qqq
qqq
qqq
q

qqqqqqqqqqqqqqqqqqf 0
D

A
f ? f ? f ? f ? f ? f

qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqq B

g

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

qqq
qqq
qqq
qqq
qqq
qqq

g0

C
qqq
qqq
qqq
qqq
qqq
qqq

qqqqqqqqqqqqqqqqqqf 0
D

6.28 Eitan Gurari

Arrows stretch to meet their source and target nodes, but they do not stretch to �t

their labels.

420 Gabriel Valiente Feruglio

A B

C D

f

g g0

f 0

A�A�A�A B

C D

f

g g0

f 0

A B

C D

f ? f ? f ? f ? f ? f

g g0

f 0

6.29 John Reynolds

Arrows stretch to meet their source and target nodes, although the labels do not get

centered on the stretched arrows. They do not stretch to �t their labels.

A B

C D

-

f

?

g

?

g0

-

f 0

A�A�A�A B

C D

-

f

?

g

?

g0

-

f 0

A B

C D

-

f ? f ? f ? f ? f ? f

?

g

?

g0

-

f 0

6.30 Kristo�er Rose

Arrows stretch to meet their source and target nodes, although the labels do not get

centered on the stretched arrows. They do not stretch to �t their labels.

A //

f

��

g

B

��

g0

C //

f 0
D

A�A�A�A //

f

��

g

B

��

g0

C //

f 0
D

A //

f?f?f?f?f?f

��

g

B

��

g0

C //

f 0
D

6.31 Steven Smith

Arrows do not stretch to meet their source and target nodes, but they stretch to �t

their labels.

Typesetting commutative diagrams 421

A
f

- B

g

? ?

g0

C -

f 0
D

A�A�A�A
f

- B

g

? ?

g0

C -

f 0
D

A
f?f?f?f?f?f

- B

g

? ?

g0

C -

f 0
D

6.32 Michael Spivak

Arrows stretch to meet their source and target nodes, but they do not stretch to �t

their labels, even producing overfull \hboxes.

A w

f

u

g

B

u

g0

C w

f 0
D

A�A�A�A w

f

u

g

B

u

g0

C w

f 0
D

A w

f ? f ? f ? f ? f ? f

u

g

B

u

g0

C w

f 0
D

6.33 Anders Svensson

Arrows stretch to meet their source and target nodes, but they do not stretch to �t

their labels.

�������!

f

�
�

�

�

�

�

�
!

g

�
�

�

�

�

�

�
!

g0

�������!

f 0

A B

C D

��!

f

�
�
�
�
�
�
�
!

g

�
�
�
�
�
�
�
!

g0

�������!

f 0

A�A�A�A B

C D

�������!

f?f?f?f?f?f

�
�

�

�

�

�

�
!

g

�
�

�

�

�

�

�
!

g0

�������!

f 0

A B

C D

6.34 Paul Taylor

Arrows stretch to meet their source and target nodes, and they also stretch to �t their

labels.

422 Gabriel Valiente Feruglio

A
f
- B

C

g

?

f 0

- D
?

g0 A�A�A�A
f
- B

C

g

?

f 0

- D
?

g0

A
f ? f ? f ? f ? f ? f

- B

C

g

?

f 0

- D
?

g0

6.35 Timothy Van Zandt

Arrows stretch to meet their source and target nodes, although the labels do not get

centered on the stretched arrows. They do not stretch to �t their labels, and the required

dimensions have to be given explicitly.

A B

C D

f

g g0

f 0

A�A�A�A B

C D

f

g g0

f 0

A B

C D

f ? f ? f ? f ? f ? f

g g0

f 0

Appendix IV: Resource requirements

6.36 Package size

The following table lists the size (in kilobytes) of the main macro �les that have to be

loaded into TEX or LATEX in order to use the respective packages.

Typesetting commutative diagrams 423

package main �les size

AMS-LATEX amscd.sty 10

Barr diagram.tex 40

Borceux Diagram 270

Gurari dratex.sty and aldratex.sty 136

Reynolds diagmac.sty 42

Rose xypic.tex and xy.tex 68

Smith arrow.tex 24

Spivak1 amstexl.tex and lamstex.tex 200

Svensson kuvio.tex and arrsy.tex 86

Taylor diagrams.tex 86

Van Zandt pstricks.tex, pst-node.tex and pstricks.con 84

6.37 Time statistics

The following table lists statistics for the time (in seconds) needed to typeset the sample

diagrams presented in Appendix I, using TEX and LATEX2" on a Mackintosh SE/30,

with the di�erent macro packages. The mean time and the con�dence interval at a

signi�cance level of 95% is given for the total time needed to typeset a diagram and for

the marginal time, computed as the di�erence between the time needed to typeset two

copies of the sample diagram using a macro package and the time needed to typeset

one copy of the same diagram using the same macro package, where these two random

variables are assumed to have a normal distribution and to be independent, and where the

mean and the con�dence interval have been estimated from a sample of 30 observations.

package total time marginal time

mean 95% con�dence interval mean 95% con�dence interval

AMS-LATEX 18.1367 18.0317 18.2416 1.6600 1.5544 1.7660

Barr 48.8033 48.7731 48.8335 29.9334 29.8800 29.9870

Borceux 127.5630 127.5060 127.6210 28.3170 28.1730 28.4600

Gurari 388.4630 388.4320 388.4950 638.8270 638.5000 639.1490

Reynolds 46.7000 46.6357 46.7643 26.8200 26.7520 26.8880

Rose 242.7400 242.3810 243.0990 210.0730 209.2900 210.8500

Smith 22.9600 22.9031 23.0169 5.2400 5.1817 5.2980

Spivak 37.3000 37.2445 37.3555 11.9833 11.9263 12.0400

Svensson 81.3867 81.2902 81.4831 44.5733 44.4668 44.6799

Taylor 66.8400 66.7553 66.9247 14.3133 14.1420 14.4850

Taylor emul. Borceux 67.3533 67.3243 67.3823 11.4767 11.4360 11.5170

Van Zandt 37.8233 37.7809 37.8657 14.2100 14.1520 14.2680

1. Although LAMS-TEX o�ers much more than the macros for commutative diagrams, it has to be loaded

as a whole in order to use the macros. Most such macros can be removed from TEX's memory by loading the

�le cd.tox (4 kilobytes), freeing up about 5800 words of memory, and can be later added again by loading

the �le cd.tex (36 kilobytes), but the whole LAMS-TEX has to be loaded before.

424 Gabriel Valiente Feruglio

Appendix V: Availability

6.38 Availability

The following table lists the CTAN directories where the di�erent macro packages are

stored, together with the authoritative FTP addresses they are mirrored from.

package CTAN directory mirrored from

AMS-LATEX macros/latex/packages/amslatex/ e-math.ams.org

/ams/

Barr macros/generic/diagrams/barr/ not

mirrored

Borceux macros/generic/diagrams/borceux/ theory.doc.ic.ac.uk

/tex/contrib/borceux/diagram-3/

Gurari macros/generic/dratex/ ftp.cis.ohio-state.edu

/pub/tex/osu/gurari/

Reynolds macros/latex209/contrib/misc/ not

diagmac.sty mirrored

Rose macros/generic/diagrams/xypic/ ftp.diku.dk

/diku/users/kris/tex/

Smith macros/eplain/ ftp.cs.umb.edu

arrow.tex /pub/tex/eplain/

Spivak macros/lamstex/ not

mirrored

Svensson macros/generic/diagrams/kuvio/ math.ubc.ca

/pub/svensson/

Taylor macros/generic/diagrams/taylor/ theory.doc.ic.ac.uk

/tex/contrib/taylor/tex/

Van Zandt graphics/pstricks/ princeton.edu

/pub/tvz/pstricks/

Conversion of the Euler Metafonts into the PostScript

Type1 font language

Erik-Jan Vens

erikjan@lunatix.icce.rug.nl

1 History of the Euler Metafonts

Hermann Zapf designed the Euler family for the American Mathematical Society for

mathematical use, not as a text face, in 1980{1981. This calligraphic family consists of

Fraktur, Script, Upright Italic and Math extension. Several people have contributed to

the Metafont programming, among them Don Knuth, John Hobby, David Siegel, Dan

Mills and Carol Twombly. There is a description of Euler in TUGboat 10.1.

For this article I will concentrate on Euler Roman Medium. The chosen example is

the capital A from this font. Figure 1 shows what the character looks like.

A
METAFONT output 1995.06.30:1201 Page 28 Character 65 \rmua"

�

�

�

�
��

��
� � �

�

�

�

�

� � �
�
��

�

�

��

��

� �

A

1

2

3

4

5

6

7B 1

4

5

6

7
8 9

10

11

12

13

14

15
16

C1

2 3

aaallllllxzzzzzzzzzzzzzzztp
����������������������xyzzzzzzzzwsn

moprtvxvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvtp
moqsuwyzzaN?����Flxzzzzzzztp

moqsuwyzzlWF�� ��Wxzzzzzzztp
nprtuwxyzzaF��� �Fazzzzzzzuqm

mnprtvzzzaN?�� ��Nlxyzzzzzzurn
moqsuwzzzlWF�� �?Wxyzzzzzzvro

nprtvyzzzWF��� ��Flyzzzzzzwsp
moqsuwyzzzaN?�� ��Wxyzzzzzztqm

moprtvxyzzzlWF�� �Fayzzzzzzvrn
nprsuwzzzzz9uu9zzzzzzzwsomoprrrrrrrrrrrrrrrrrrrrrrrrrrrxrrxrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrn

nprtuwxzzzzaN?�� ��Nxyzzzzzzwsp
npqsuwyzzzzlWF�� �Faxyzzzzzzuro

noqsuvxyzzzzlWF��� ��Nzzzzzzzuro
noqstvxzzzzzaN?�� �Fazzzzzzzuspm

moqstvyzzzzzlW?�� ��Nxzzzzzzzwurpn
noqstvxyzzzzzlWF��� �Faxyzzzzzzzvtrqon

noqstvxzzzzzzaN?�� ��Nlyzzzzzzzzwwvuuttsssrrrrrqqqqqqqqqqqqqrrrrrrrr
pqsuvyzllllaaaaaWWWWWNNNNNFFF?�� ��?NWlxyzzzzzzzzlllaaaaWWWNNNNFFF????��������
������ ������������������������������

Figure 1: Left: The character capital A in PK format; Right: The same character in MF

format

425

426 Erik-Jan Vens

2 Di�erent approaches to computerized curve description

There are several approaches possible to describe a curve. From the days of the Re-

naissance onwards people have tried to do so without good results. The �rst one to

really succeed in doing so was Pierre Etienne B�ezier. He applied the theories of Serge��

Bernshte��n to his speci�c area, computer-aided design.

2.1 The richness of the Metafont language

METAFONT uses a method whereby curves can be drawn either by �lling speci�ed out-

lines or by simulating the movement of a pen. We can pick up a pen with a speci�ed

form of the head and start drawing, and we can use an eraser and remove ink from the

paper. We can clip a form or rotate it. We can scale it or clip it out and paste it one or

more times.

I will not go into further detail of METAFONT. It is su�cient to say that METAFONT

is a very rich and powerful language.

2.2 The limitations of the Type1 language

The Postscript Type1 language is an enhanced subset of the Postscript language. It can

be used to specify a path and �ll it. This is also a part of the METAFONT language, so

one can easily convert from Type1 to METAFONT, but the other way around provides

us with a lot of di�culties. Again, I will not go into further detail of a language. Those

persons who are interested in what comprises Type1 are encouraged to buy the so-called

`Black Book', the Adobe Type1 Font Speci�cation.

3 Transformation of Metafont into Type1

One can discuss the necessity for the TEX community to use Postscript fonts. I feel

that there are far too little good-quality fonts around in the METAFONT format, so

one almost must use Postscript fonts. This doesn't mean the technical capabilities of

METAFONT are under discussion.

The Postscript world is far larger than the TEX world. It would be nice to be able to

donate what `we' have to this Postscript world. This has to be done in Postscript form,

hence the necessity for transformation.

There are several routes one can take to convert from METAFONT into Type1. I

have outlined three of them. None of them is perfect in the sense that it can be fully

automated. All of them need handtuning. This makes it a very tedious job, almost like

starting from scratch. The �rst steps for all of them can be measured in minutes. The

�ne-tuning will take days, if not weeks or months per font.

I have used commercial tools in almost all of the stages. I don't know of any public

domain or shareware programs that can do all of the tricks needed to bring a font up.

Conversion of the Euler Metafonts into The PostScript Type1 font language 427

3.1 Using the GNU fontutils

Karl Berry and Kathy Hargreaves have written a suite of utilities to manipulate bitmapped

fonts and trace them into outline fonts. All of their data is created by scanning fontbooks.

But one can also use METAFONT to render a bitmap font in the form of a GF �le and

use this as starting point for tracing.

I created a very huge GF �le by using

mf "\mode:=proof; mag:=3.171875; input eurm10"

I have not tried out whether smaller input �les also create good results. This

magni�cation was simply the largest before METAFONT issued a value too large

error-message. Since I could create such large �le, I didn't bother experimenting with

the size. Then I used their program limn to create a bzr �le:

limn -verbose -corner-surround=24 -filter-surround=24 \

-filter-alternative-surround=12 -subdivide-surround=24 \

-tangent-surround=24 -reparameterize-threshold=30 \

eurm10.8252gf

A bzr �le is binary representation of curve information. It can be converted to several

formats, amongst them METAFONT. But I converted it to Type1 with:

bzrto -pstype1 eurm10

This does not create a `real' Type1 font, but a Ghostscript version of the same,

which will only run under a Ghostscript version of the Postscript interpreter. I therefore

had to convert this to a normal Type1 font with two little programs which I hacked

together from two utilities I already had:

gsf2ps < eurm.gsf > eurm.chr

chr2ps eurm.chr eurm.aapje

Now I could import the Charstrings section from the eurm.aapje �le into a

template �le which I had created from a valid Type1 font.

I imported the thus created font into Fontmonger and edited all the characters. The

amount of editing depends on the parameters as chosen for limn. It is very important

to chose these as good as possible. The parameters I have shown in this example might

not be the best around, but these can only be found by �ddling with them.

To show how much editing has to be done, look at Figure 2, which shows the

character capital A before and after editing.

3.2 Using a commercial program

Fontographer or Fontmonger

In this case I used METAFONT to render the bitmaps which I converted to a picture

format with Ghostscript. I made a small TEX �le which consisted of a loop which put

428 Erik-Jan Vens

Figure 2: Left: The character before editing; Right: The character after some editing

a large character on each page, and then used dvips to create a Postscript �le, and

Ghostscript to render a picture for each page of the input �le.

Then I started up Fontographer and for each character I imported a background

which I then traced using the Fontographer trace function. This is a very fast process

which gives fairly good results.

The real problem lies with the hinting. Contrary to the approach of METAFONT

where each instance of a font at a speci�c pointsize can be rendered at it's best ras-

terizing for every conceivable outputdevice, Type1 uses a system called hints to specify

how the rasterizer should decide which pixels to turn on or o�.

One can let Fontographer try to decide which hints are general hints and then see

for oneself whether it has chosen right hints.

The result of the capital A is shown in Figure 3.

CorelTrace

Figure 4 shows what the output with CorelTrace looks like.

This is de�nitely not good. There are a lot of parameters one can adjust, but I

haven't found any better settings. So, using CorelTrace is not a real option.

3.3 Using MetaPost

When one has a METAFONT source, it might be a good idea to directly convert it to

Postscript using MetaPost. This program is METAFONT with some changes, and it can

read almost all of the standard METAFONT �les. There are a few exceptions, notably

the cuto� function is not implemented. But the overall results are good and very fast.

Conversion of the Euler Metafonts into The PostScript Type1 font language 429

Figure 3: Capital A as traced by Fontographer

Just as with the other options, the main problem lies with the hinting. One has still

to do the hinting after the conversion is done. I have used a commercial program to

import the Postscript �les for each character. The general result is shown in Figure 5.

4 Conclusions and general remarks

To quote from Don Knuth's METAFONT book: `We should realize before we begin that

it would be a mistake to set our hopes too high. Mechanically generated letters that

are untouched by human hands and unseen by human eyes can never be expected to

compete with alphabets that are carefully crafted to look best on a particular device.

There's no substitute for actually looking at the letters and changing their pixels until

the result looks right. Therefore our goal should not be to make hand-tuning obsolete;

it should rather be to make hand-tuning tolerable. Let us try to create meta-designs

so that we would never want to change more than a few pixels per character, say half

a dozen, regardless of the resolution. At low resolutions, six pixels will of course be a

signi�cant percentage of the whole, and at higher resolutions six well-considered pixel

changes can still lead to worthwhile improvements. The point is that of our design comes

close enough, a person with a good bitmap-editing program will be able to optimize an

entire font in less than an hour. This is an obtainable goal, if rounding is done judiciously.'

The other realization one has to make is whether it is worthwhile to spend so much

time into converting a font which is only relevant for mathematicians, who are usually

already using TEX, and hence do not need a Postscript font. On the other hand, the

work of a genius such as Mr. Zapf should never be underestimated, and therefore the

more widespread it's use, the better.

430 Erik-Jan Vens

Figure 4: Capital A as traced by CorelTrace

A

1

2

3
45

67
B 12

3

4

5

6

7 8 9
10
1112

13

14

1516

C1

2 3

Figure 5: Capital A as created by MetaPost

When METAFONT does it alone

Ji�r�� Zlatu�ska

Faculty of Informatics

Masaryk University

Bure�sova 20

602 00 Brno

Bohemia

zlatuska@informatics.muni.cz

Abstract

Combining METAFONT and TEX when typesetting text and graphics together has been

shown on several occasions to bring very impressive results. A. Hoenig presented a method

for communication between TEX and METAFONT in order to solve two problems otherwise

di�cult to handle within TEX or METAFONT alone: label placement for diagrams gener-

ated by METAFONT, and curvilinear typesetting. We show that the method for curvilinear

typesetting (involving three passes in Hoenig's approach) can be considerably simpli�ed by

using the extended ligature mechanism of TEX 3, and that a single METAFONT pass is ac-

tually su�cient, with quite a simple interface on TEX's side. Institutional seal text placement

can be realized as a simple METAFONT application using this method. While PostScript

o�ers ready-to-use easy solutions to this class of problems, METAFONT solutions can still

be preferable to PostScript because of the ability of adding META-ness, e.g., by introduc-

ing second-order magnitude corrections/distortions to the letters and/or logos in order to

enhance legibility when used in smaller sizes.

1 Introduction

There are several methods available for including graphical information into TEX docu-

ments. Some of them rely on the \special primitive of TEX and consists in combining

pictures created by tools independent of TEX on the level of dvi drivers. Within the TEX

world, the METAFONT program can be used for de�ning graphic objects by using its

capabilities as in the case of de�ning letterforms, resulting in a `font' containing graphic

images as `letters' which can be typeset within a TEX-composed document.

There are interesting possibilities arising from combination of METAFONT and TEX

especially when it comes to typesetting text material along curved baselines and/or

431

432 Ji�r�� Zlatu�ska

combined with other pieces of graphical information. E�ects of this kind can also be

prepared using PostScript transformations as prepared by, e.g., the pstricks collection by

Timothy van Zandt. Nonetheless, reasons can be found for preferring a solution using

just the combination of METAFONT and TEX, excluding e�ects caused by combination

of the dvi driver and the underlying printing language. One of them can be the necessity

of using either a printer or a previewer which does not understand PostScript. Another

may be the need to use non-linear e�ects within the generated pictures, e.g., scaling the

proportions of letters used within them similarly as they change when changing design

sizes for METAFONT-generated fonts.

One of the problems of using METAFONT easily for creating pictures involving also

text parts, is the lack of `typesetting' capabilities (solved in John Hobby's metapost gen-

erating PostScript output from an input formulated in a language extending METAFONT)

which would allow e�cient incorporation of typeset text into METAFONT-generated �g-

ures. Alan Hoenig [1, 2] de�ned a scheme for bidirectional communication between TEX

and METAFONT allowing TEX to submit requirements for special e�ects under which

METAFONT would generate particular instances of the letters (e.g., rotated and/or

scaled) and TEX would place these letters onto the appropriate place within the type-

set material. One particular application of this TEX and METAFONT `working together'

was curvilinear typesetting when typesetting centred text around the circumference of a

circular area as used for institutional seals or logos. In this paper we show an approach

for tackling this problem within a simpler scheme than the three-step method described

by Hoenig. We use the capabilities of the ligature programs of METAFONT to create

composite pictures which can be then invoked from within TEX documents with a cer-

tain level of `intelligence' built into them. This can be simpler to use than the three-step

method and the composition steps embedded into the font de�nition corresponding to

the particular piece of graphics.

2 Typesetting along curved baselines with Metafont

When typesetting parts of a text using METAFONT in non-standard ways such as placing

the text along a curve and/or combined with other graphic objects, it is often necessary

to break the picture into separate parts stored as individual characters within a font

which METAFONT generates as its output. There are several reasons for doing this.

The resulting METAFONT picture comprising the picture as a whole may be too large

for METAFONT's memory limitations. We may also want to be able to use parts of the

picture independently of the others, or to select just a few of them in particular cases.

On the level of typesetting the pictures in TEX, it is necessary to be able to typeset the

fragments of the picture (characters from the font representing it) at the proper places

in the typeset material.

We can illustrate some of the requirements which should be handled by a META-

FONT-based de�nition of an institutional logo for the author's home institution { a logo

When METAFONT does it alone 433

of the Faculty of Informatics of Masaryk University consisting of an Escher-like graphic

based on a design by Petr Sojka, encircled by a pair of Latin inscriptions typeset around

the circumference with di�erent orientation each. The logo as such looks as follows:

} w��������
��
������������� !"#$%&'()+,-./012345<vIxBvIyA|
The basic variations we may have in mind may be typesetting just the graphics

drawing inside the seal, typesetting just the inscription alone, skipping out the shaded

parts { hence obtaining variants of the picture looking as follows:

� yAvIxBvIyA| } w��������
��
������������� !"#$%&'()+,-./012345<z } w��������
��
������������� !"#$%&'()+,-./012345<yA|

2.1 Hoenig's method

A. Hoenig proposed a method for combining METAFONT and TEX in such a way that a

sequence of three steps of communication takes place between METAFONT and TEX.

First, TEX makes basic measurements of the text parts to be typeset. Second, META-

FONT reads this information, generates the pictures and/or transformed letterforms

and passes this back to TEX as a font together with numeric information (e.g., positions

onto which the characters should be typeset) encoded as kerns between pairs of special

structure. Third, TEX reads the metric information associated with the font, extracts

any encoded data which are needed and then typesets the generated characters onto

speci�ed positions.

Although the communication between METAFONT and TEX is solvable in this way,

the resulting process is rather complicated. It is hard to imagine the technique becoming

so easy to use that the resulting graphics could regularly be invoked in non-expert users'

documents.

2.2 Leaving the placement to Metafont

The �nal composition of the picture is left to TEX in Hoenig's `METAFONT cooperates

with TEX' method, and this is also the reason that communication between METAFONT

and TEX is introduced.

There is a simpler possibility of leaving the whole job of placing the parts of the �nal

picture to METAFONT alone. METAFONT can generate characters which are placed

correctly with respect to the resulting picture and use a common point of the resulting

graphic composition as the reference point of each of the characters generated as parts

of it. METAFONT knows this information in any case, so it can just use it for changing

434 Ji�r�� Zlatu�ska

the currenttransform transformation in order to move the character to the desired

place. (Note that METAFONT will not exceed its memory limits if it just moves the

picture within the coordinate system without actually setting on pixels far away of it.)

The resulting font METAFONT generates consists of characters which should be

superposed one on top of another. The point where this should occur from TEX's point of

view is the common reference point of the generated characters. A TEX loop independent

of the structure of the picture can be used for this { just reserving space for the picture

within the typeset document and overprinting all the characters from the font within

the loop. In order for this to work, the widths of the individual characters in such a font

are set to zero so that sequencing the characters on TEX's input actually means printing

them on top of each other.

First four characters needed to typeset the upper part of the curved inscription

above are (the dot indicating the reference point):

.� .� .� .�
Overprinting them on top of each other yields:

.����
2.3 Character de�nitions

In order to generate these characters, we have to modify the METAFONT program �les

so that the letterforms are properly transformed and to add the code for computing

their parameters.

The basic change in the METAFONT programs for characters can be done following

the way A. Hoenig used, with just a few extra parameters added because the placement

of the calculations should be based on them.

The code de�ning letters of the form

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

will be replaced by METAFONT macros of the form:

width.F:=11.5u-width_adj;

def F_(expr n, rotation_angle,

position_shift) =

When METAFONT does it alone 435

currenttransform:=identity

rotated rotation_angle

shifted position_shift;

def t_=transformed currenttransform enddef;

cmchar "The letter F";

beginchar

(n,11.5u#-width_adj#,cap_height#,0);

...

endchar;

In this transformation we extracted the width information concerning the character

(which will be needed for proper character placement) and de�ned a macro gener-

ating an instance of the letter as slot number n in the generated font consisting of

the letter rotated by angle rotation_angle and moved to position given by vector

position_shift.

Note that currenttransform in this de�nition may be further modi�ed by other

transformations needed. When typesetting texts in circular logos, it is for example good

to stretch the letters a bit when the size of the logo becomes smaller. This can be

achieved by introducing a global parameter taller_letters (e.g., to depend on the

second order of logo size change), and modifying the currenttransform setting to

currenttransform:=identity

yscaled taller_letters

rotated rotation_angle

shifted position_shift;

2.4 Computing character positions

For character position calculations it is enough to incrementally move the reference point

of the text characters along the circle and to compute the positions and angular shifts

of the letters to be typeset. These calculations can be carried out analytically, and use

of the solve macro is not needed (in contrast with Hoenig's method).

For the upper arch of the circular text, the character position calculations are based

on the widths of the characters only, and for the lower arch also on the height of the

caps height (because the characters should be shifted out of the basic circle by this

distance).

The essential piece of information are the widths of the characters (including any

kerning which follows them { as Hoenig notes in [2], it is better not to rely on the default

kerning used for linear text). We de�ne an array for this,

numeric c[];

and �ll in the width information including kerning for the circular text such as

c[1]:=width.F+kkk;

c[2]:=width.A+kk;

436 Ji�r�� Zlatu�ska

c[3]:=width.C;

c[4]:=width.U;

c[5]:=width.L+kk;

c[6]:=width.T+kk;

c[7]:=width.A;

c[8]:=width.S;

...

c[chars_placed_up]:=width.AE;

c[first_down]:=width.U;

...

c[last_down]:=width.A;

Now three arrays will be de�ned,

numeric centering[],

rot_angle[];

pair pos_shift[];

for recording the information concerning rortation angle and position shift of each of

the individual instances of the letter, and an auxiliary array used for centering the texts

along the vertical axis.

Now based on the character widths in the c array we are ready to calculate the

co-ordinates of each of the characters c[1] up to c[chars_placed_up] placed on the

upper arch. Note that two passes are done here. The �rst one starts typesetting at 180

degrees, calculates the overall angle length, and sets centering[0] to the actual angle

where centered text should start from. The second pass then recalculates the positions

and angles starting from this corrected initial setting.

centering[0]:= 180;

for j:=1,2:

pos_shift[1]:= radius*dir(centering[0]);

for i=1 upto chars_placed_up:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i-1]

- 2 * angle (halfdist, half);

pos_shift[i+1]:=radius*dir centering[i];

rot_angle[i] := angle (pos_shift[i+1]

- pos_shift[i]);

endfor;

centering[0]:= 180 - 1/2 centering

[chars_placed_up];

endfor;

When METAFONT does it alone 437

Parameters of the characters placed into the lower arch are calculated in the opposite

direction using the same approach. We just need to align the upper parts of each of the

characters and to move the reference point out of the base circle { hence the di�erence

in calculating pos_shift[i]:

centering[last_down+1]:= 0;

for j:=1,2:

pos_shift[last_down+1]:=

(radius + cap_height

* taller_letters)

* dir(centering[last_down+1]);

for i=last_down downto first_down:

half:=1/2 c[i];

halfdist:= radius +-+ half;

centering[i] := centering[i+1]

- 2 * angle (halfdist, half);

pos_shift[i]:= radius*dir(centering[i])

+ (radius + cap_height

* taller_letters)

* (dir(centering[i+1]

- angle (halfdist, half)))

- radius * (dir(centering[i+1]

-angle (halfdist, half)));

rot_angle[i] := angle (pos_shift[i]

- pos_shift[i+1]) + 180;

endfor;

centering[last_down+1]:=

centering[last_down+1] - 1/2

* (180 + centering[first_down]);

endfor;

2.5 Generating the characters

Now we are ready to generate the actual instances of the characters according to arrays

rot_angle[] and pos_shift[].We just need to pass the information to the appropriate

procedures:

F_(1,rot_angle[1],pos_shift[1]);

A_(2,rot_angle[2],pos_shift[2]);

C_(3,rot_angle[3],pos_shift[3]);

U_(4,rot_angle[4],pos_shift[4]);

L_(5,rot_angle[5],pos_shift[5]);

T_(6,rot_angle[6],pos_shift[6]);

438 Ji�r�� Zlatu�ska

A_(7,rot_angle[7],pos_shift[7]);

S_(8,rot_angle[8],pos_shift[8]);

...

This font can now be used from within TEX by saying, e.g.,

\char1\char2\char3\char4

\char5\char6\char7\char8

in order to generate the following fragment:

��������

2.6 Mounting the pieces together using Metafont

It would still be clumsy to use METAFONT in order to generate the pieces of the picture,

but still to have to compound them together manually within TEX as the example above

suggests. Fortunately we can do better, using the ligature mechanism of TEX fonts. A

similar trick is used within F. Sowa's bm2font or K. Hor�ak's [3] method for decomposition

of big METAFONT pictures.

Combinations of at least two letters from a font occurring adjacent to each other in

the TEX source su�ce for invoking METAFONT's ligature program. Unlike the common

ligatures used in ordinary Latin alphabet fonts, ligatures employed for this purpose make

use of the fact that ligature handling is de�ned as simple rewriting system rewriting pairs

of codes into results consisting of inserting a new character and either leaving the source

characters in, or removing them. Moreover, TEX inserts a special `boundary' character

before and after each word, including points where the font changes. Hence a simple

way to de�ne the full picture composed of the individual pieces is to de�ne a ligature

program combining the boundary character with a single letter triggering generation of

the full picture. There can be several such triggers de�ning several parts of the picture.

Suppose for example that we want to be able to print three parts of the logo

separately { the inscription, the Escher-like drawing inside of the logo, and the color

areas inside of the drawing. Let us select three identi�ers for this purpose { `S' standing

for `seal', `L' standing for `logo', and `C' standing for `color'. In order the ligature

mechanism to work, we add them as empty characters with zero dimensions:

beginchar("S",0,0,0); endchar;

beginchar("L",0,0,0); endchar;

beginchar("C",0,0,0); endchar;

Before designing the ligature program, let's consider one more feature of the re-

sulting picture. So far all the characters generated had zero width so that composing

them did not change the position of the reference point within TEX. This works for every

character inside of the composition of the picture except for the �rst and the last-half

of the `bounding box' of the resulting picture should be inserted there. Using slot 254

When METAFONT does it alone 439

for the half of the bounding box we can de�ne one additional character with non-trivial

dimensions:

beginchar(254,radius#+cap_height#,

radius#+cap_height#,

radius#+cap_height#);

endchar;

Now the ligature program capable of starting everything o� would have the form of:

boundarychar:=255;

ligtable

||: "S" =:| 254,

"L" =:| 254,

"C" =:| 254,

254: "S" |=:|> "S",

254: "L" |=:|> "L",

254: "C" |=:|> "L",

"S": "S" =:| 1,

1: "S" |=:| 2,

2: "S" |=:| 3,

3: "S" |=:| 4,

4: "S" |=:| 5,

5: "S" |=:| 6,

6: "S" |=:| 7,

7: "S" |=:| 8,

8: "S" |=:| 10,

10: "S" |=:| 11,

11: "S" |=:| 12,

12: "S" |=:| 13,

13: "S" |=:| 14,

14: "S" |=:| 16,

...

chars_placed_up: "S" |=:| first_down,

...

last_down-1: "S" |=: last_down,

last_down: "L" |=:|> "L",

"C" |=:|> "C",

255 |=:> 254,

"L": "L" =:| 254,

254: "L" |=: "A", %logo char

"A": "S" |=:|> "S",

"C" |=:|> "C",

255 |=:> 254,

440 Ji�r�� Zlatu�ska

"C": "C" =:| 254,

254: "C" |=: "B", %color char

"B": "S" |=:|> "S",

"L" |=:|> "L",

255 |=:> 254,

The font is intelligent enough to be used in such a way that after saying

\font\L=our-logo at 2cm

we can use the following input in order to de�ne pictures of the form:

{\L S} } w��������
��
������������� !"#$%&'()+,-./012345<z

{\L L} � yA|

{\L C} ~ LxB{

{\L SL} } w��������
��
������������� !"#$%&'()+,-./012345<yA|

{\L LS} � yAw��������
��
������������� !"#$%&'()+,-./012345<z

{\L SC} } w��������
��
������������� !"#$%&'()+,-./012345<vIxB{

{\L SLC} } w��������
��
������������� !"#$%&'()+,-./012345<vIxBvIyA|

When METAFONT does it alone 441

2.7 Driver problems

The scheme outlined above works �ne except for a minor problem with certain dvi drivers

which may slightly distort the resulting appearance of the complete picture. As a general

rule, resetting max_drift to zero may be a good idea with most drivers, or else the �rst

component may be slightly mis-aligned (alternatively one can add an empty character

with zero dimensions to the beginning of every ligature chain in order to compensate for

the drift with a harmless character �rst).

With dvips there's one more problem: it rejects empty characters with non-trivial

dimensions. Before this gets �xed, the remedy may be including one pixel into the 254

character so that it's no longer empty. The pixel should be placed in a position that is

set in any case. In our case there is no pixel shared by all the possible variants, hence

the 254 character had to be split into some six other ones which are used depending on

the context within the activated ligature chain.

Output drivers within the emTEX family exhibit even more peculiar behavior: The

characters to-be-overprinted are o�-paleced by positive horizontal skips so that the re-

sulting picture gets completely distorted. Note this is not a problem with the emTEX

implementation which does generate a correct dvi �le in this case, but purely a problem

with driver handling the somewhat unusual font rather unfaithfully.

3 Conclusion

We have described a method for composing images containing typesetting circular texts

and pictures with su�ciently rich functionality using just the possibilities o�ered by

de�nitions in METAFONT alone. The ideas used mostly derive from A. Hoenig's ideas

from [2], yet are enough to locate all the necessary mechanism into a single META-

FONT pass instead of invoking iterative processes involving communication between

METAFONT and TEX.

3.1 Acknowledgement

This work has been supported by GA �CR grant 201/93/1269.

References

[1] A. Hoenig. When TEX and METAFONT talk: typesetting on curvilinear paths and

other special e�ects. TUGboat, 12:554{557, 1991.

[2] A. Hoenig. When TEX and METAFONT work together. Proceedings EuroTEX 92,

Prague, 1992.

[3] K. Hor�ak. Fighting with big METAFONT pictures when printing them reversely or

landscape. Proceedings EuroTEX 94, Gda�nsk, 1994.

