
44 MAPS

Hans Hagen
pragma@wxs.nl metapost

Making stand alone METAPOST

graphics

keywords
METAPOST , pdf , pdfTEX

abstract
When a METAPOST graphic uses fonts, the PostScript file is not self contained and hard-
ly usable outside TEX. One can however use TEX itself, or actually pdfTEX , to create such a
graphic. Although this method uses an ConTEXt module, the solution provided here is inde-
pendant of this macro package. The macros responsible for the process are collected in the file
mptopdf.tex.

The file mptopdf provides a quick way to convert METAPOST files to PDF using a slightly
stripped down plain TEX, PDFTEX, and a few CONTEXT modules.

First generate a format, which in WEB2C looks like:

pdftex --ini mptopdf

Since this conversion only works with PDFTEX or PDF-ε-TEX, the session is aborted
when another TEX is used. When finished, the resulting fmt file should be moved to the
right location.

The conversion itself is accomplished by:

pdftex &mptopdf \relax filename.number

The \relax is needed since we don’t want to process the file directly. Instead we pick
up the filename using \everypar. Since this file is still the first one we load, although
delayed, the jobname is as we expect. So, at least in WEB2C, the result of the conversion
comes available in the file filename.pdf. This conversion process is roughly compatible
with:

texexec --pdf --fig=c --result=filename.pdf filename.number

This uses CONTEXT, and is therefore slower.
The implementation is rather simple, since we use some generic CONTEXT modules.

Because we need a few register allocation macros, we preload plain TEX. We don’t load
fonts yet.

1 \input syst-tex

We check for the usage of PDFTEX, and quit if another TEX is used.

2 \ifx\pdfoutput\undefined
\message{Sorry, you should use pdf(e)TeX instead.}
\expandafter \endinput

\fi

The conversion to PDF is carried out by macros, that are collected in the file:

3 \input supp-pdf

We use no output routine.



Making stand alone METAPOST graphics metapost

Voorjaar 2000 45

4 \output{}

Since we need to calculate and set the bounding box, we definitely don’t want to indent
paragraphs.

5 \parindent=0pt

We use \everypar to pick up the filename and process the METAPOST graphic.

6 \everypar{\processMPfile}

The main macro shows a few PDFTEX primitives. The main work is done by the macro
\convertMPtoPDF which is defined in upp-pdf}. Thi macro interprets the METAPOST

file. Close reading of this macro will probably learn a few (PDF) tricks. Apart from some
path transformations, which are needed since PDF has a different vision on paths, the
graphic is positioned in such a way that accuracy in PDF xforms is guaranteed.

7 \def\processMPfile#1 %
{\pdfoutput=1
\setbox0=\vbox{\convertMPtoPDF{#1}{1}{1}}%
\ifdim\wd0<1in \message{[warning: width<1in]}\fi
\ifdim\ht0<1in \message{[warning: height<1in]}\fi
\pdfpageheight=\ht0
\pdfpagewidth=\wd0
\voffset=-1in
\hoffset=\voffset
\box0
\bye}

Since acrobat has troubles with figures smaller than 1 inch, we issue a warning. When
embedding graphics in documents, a size less that 1 inch does not harm.

The resulting PDF file is about as efficient as such a self contained file can be. However,
if needed, this PDF file can be converted to EPS using for instance the pdftops program
(in WEB2C) or GHOSTSCRIPT.

8 \dump


