
114 MAPS

Hans Hagen
Ridderstraat 27, 8061GH
Hasselt
pragma@wxs.nl

metapost
MetaFun
Chapter 3: Embedded graphics

keywords
METAPOST, MetaFun, ConTEXt, graphics

abstract
This article is a nearly 100% copy of chapter 3 of the MetaFun manual. This chapter discusses
a few alternative ways to define and include METAPOST graphics in a document.
This article contains some colors, so if you want to get the real picture, you should fetch the
MetaFun manual from www.pragma-ade.com (beta manual download page). The MetaFun
macros (METAPOST as as well as TEX) are part of the regular ConTEXt distribution.

Introduction

This is chapter 3 of the MetaFun manual and introduces the basic definition and inclu-
sion macros. In the previous chapters, METAPOST was introduced, while the following
chapters discuss how to enhance the layout, how to achieve special effects, and how to
define and debug graphics. The MetaFun manual fully covers METAPOST and the way
it can be used in TEX.

At the time of this writing, the MetaFun manual spans some 260 pages. The manual is
available in two versions: a reduced A4 format, and a version designed for reading from
computer screens. The manual is not yet finished, but can be fetched from the ConTEXt
beta manuals download page at www.pragma-ade.com or one of its mirrors.

Getting started

From now on, we will assume that you have ConTEXt running on your platform. Since
pdf has full graphics support, we also assume that you use pdfTEX, or know how to go
from dvi to pdf. Since this document is not meant as a ConTEXt tutorial, we will limit
this introduction to the basics needed to run the examples.

A simple document looks like:

\starttext
Some text.

\stoptext

You can process this document with the Perl based command line interface to ConTEXt.
If the source code is embedded in the file mytext.tex, you can say:

texexec --pdf mytext

As an alternative to -pdf, you can explicitly set the output driver in your document:

\setupoutput[pdftex]
\starttext

Some text and/or graphics.
\stoptext

Yet another alternative is:

MetaFun: Embedded graphics metapost

Najaar 2000 115

% interface=english output=pdftex
\starttext

Some text and/or graphics.
\stoptext

Here the interface directive tells TEXexec that it should force the english user interface.
We will use color, and since traditionally TEX is rather unaware of color, this feature is

turned off by default, so, if you want to see color, you should type:

\setupcolors[state=start]
\starttext
Some \color[blue]{text} and/or \color[green]{graphics}.

\stoptext

As an alternative, you can run TEXexec like:

texexec --pdf --color mytext

In later chapters we will occasionally see some more ConTEXt commands show up. If
you want to know more about what ConTEXt can do for you, we recommend the begin-
ners manual and the reference manual, as well as the manual that comes with TEXexec.

External graphics

Since TEX has no graphic capabilities built in, a graphic is referred to as an external
figure. A METAPOST graphic often has a number as suffix, so embedding such a graphic
is done by:

\externalfigure[graphic.123][width=4cm]

An alternative method is to separate the definition from the inclusion. An example of a
definition is:

\useexternalfigure[pentastar][star.803][height=4cm]
\useexternalfigure[octostar] [star.804][pentastar]

Here, the second definition inherits the characteristics from the first one. These graphics
can be summoned like:

\placefigure
{A five||point star drawn by \METAPOST.}
{\externalfigure[pentastar]}

Here the stars are defined as stand--alone graphics, in a file called star.mp. Such a file
can look like:

def star (expr size, n, pos) =
for a=0 step 360/n until round(360*(1-1/n)) :

draw (origin -- (size/2,0))
rotatedaround (origin,a) shifted pos ;

endfor ;
enddef ;

beginfig(803) ;
pickup pencircle scaled 2mm ; star(2cm,5,origin) ;

endfig ;

beginfig(804) ;
pickup pencircle scaled 1mm ; star(1cm,8,origin) ;
pickup pencircle scaled 2mm ; star(2cm,7,(3cm,0)) ;

endfig ;

metapost Hans Hagen

116 MAPS

end.

This star macro will produce graphics like:

Integrated graphics

An integrated graphic is defined in the document source or in a style definition file. The
most primitive way of doing this is beginning with the definition of the graphic.

\startMPgraphic
fill fullcircle scaled 200pt withcolor .625white ;

\stopMPgraphic

Next the graphic can be loaded, using:

\loadcurrentMPgraphic{optional setups}

Finally, the graphic is placed in the document with:

\placeMPgraphic

The optional setups are passed on to the figure inclusion macro, which in ConTEXt is
the command \externalfigure.

Since every definition replaces the previous one, this method forces you to embed the
definitions in the running text. In this document we also generate graphic while we finish
a page, so there is a good change that when we have constructed a graphic which will be
called the next page, the wrong graphic is placed.

Therefore you may as well forget these commands, since there are more convenient
ways of defining and using graphics, which have the added advantage that you can pre-
define multiple graphics, thereby separating the definitions from the usage.

The first alternative is a usable graphic. Such a graphic is calculated anew each time it
is used. An example of a usable graphic is:

\startuseMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow ;

\stopuseMPgraphic

When you put this definition in the preamble of your document, you can place this graph-
ic anywhere in the file, saying:

\useMPgraphic{name}

As said, this graphic is calculated each time it is placed, which can be time consuming.
Apart from the time aspect, this also means that the graphic itself is incorporated many
times. Therefore, for graphics that don’ t change, ConTEXt provides reusable graphics:

\startreusableMPgraphic{name}
fill fullcircle scaled 200pt withcolor .625yellow;

\stopreusableMPgraphic

This definition is accompanied by:

\reuseMPgraphic{name}

Imagine that we use a graphic as a background for a button. We can create a unique and
reusable graphic by saying:

MetaFun: Embedded graphics metapost

Najaar 2000 117

\def\MyGraphic%
{\startreusableMPgraphic{name:\overlaywidth:\overlayheight}

path p ; p := unitsquare
xscaled \overlaywidth yscaled \overlayheight ;

fill p withcolor .625yellow ;
draw p withcolor .625red ;

\stopreusableMPgraphic
\reuseMPgraphic{name:\overlaywidth:\overlayheight}}

After this we can say:

\defineoverlay[my graphic][\MyGraphic]
\button[background=my graphic,frame=off]{Go Home}[firstpage]

Say that we have a 30pt by 20pt button, then the identifier will be name:30pt:20pt. Dif-
ferent dimensions will lead to other identifiers, so this sort of makes the graphics unique.

We can bypass the ugly looking \def by using a third class of embedded graphics, the
unique graphics.

\startuniqueMPgraphic{name}
path p ; p := unitsquare

xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .625yellow ;
draw p withcolor .625red ;

\stopuniqueMPgraphic

Now we can say:

\defineoverlay[my graphic][\uniqueMPgraphic{name}]
\button[background=my graphic,frame=off]{Go Home}[firstpage]

You may wonder why unique graphics are needed when a single graphic might be used
multiple times by scaling it to fit the situation. Since a unique graphic is calculated for
each distinctive case, we can be sure that the current circumstances are taken into account.
Also, scaling would result in incomparable graphics. Consider the following definition:

\startMPgraphic
draw unitsquare

xscaled 5cm yscaled 1cm
withpen pencircle scaled 2mm
withcolor .625red ;

\stopMPgraphic

Since we reuse the graphic, the dimensions are sort of fixed, and because the graphic is
calculated once, scaling it will result in incompatible line widths.

These graphics were placed with:

\hbox \bgroup
\loadcurrentMPgraphic{width=5cm,height=1cm}\placeMPgraphic \quad
\loadcurrentMPgraphic{width=8cm,height=1cm}\placeMPgraphic \egroup

Imagine what happens when we add some buttons to an interactive document without
taking care of this side effect. All the frames would look different. Consider the following
example.

metapost Hans Hagen

118 MAPS

\startuniqueMPgraphic{right or wrong}
pickup pencircle scaled .075 ;
fill unitsquare withcolor .8white ;
draw unitsquare withcolor .625red ;
currentpicture := currentpicture

xscaled \overlaywidth yscaled \overlayheight ;
\stopuniqueMPgraphic

Let’s define this graphic as a background to some buttons.

\defineoverlay[button][\uniqueMPgraphic{right or wrong}]
\setupbuttons[background=button,frame=off]

\hbox
{\button {previous} [previouspage]\quad
\button {next} [nextpage]\quad
\button {index} [index]\quad
\button {table of contents} [content]}

The buttons will look like:

previous next index table of contents

Compare these with:

previous next index table of contents

Here the graphic was defined as:

\startuniqueMPgraphic{wrong or right}
pickup pencircle scaled 3pt ;
path p ; p := unitsquare

xscaled \overlaywidth yscaled \overlayheight ;
fill p withcolor .8white ;
draw p withcolor .625red ;

\stopuniqueMPgraphic

The last class of embedded graphics are the runtime graphics. When a company logo is
defined in a separate file mylogos.mp, you can run this file by saying:

\startMPrun
input mylogos ;

\stopMPrun

The source for the logo is stored in a file named mylogos.mp.

beginfig(21) ;
draw fullsquare withcolor .625red ;
draw fullsquare rotated 45 withcolor .625red ;
picture cp ; cp := currentpicture ;
def copy = addto currentpicture also cp enddef ;
copy scaled .9 withcolor .625white ;
copy scaled .7 withcolor .625yellow ;
copy scaled .6 withcolor .625white ;
copy scaled .4 withcolor .625red ;
copy scaled .3 withcolor .625white ;
fill fullcircle scaled .2 withcolor .625yellow ;
currentpicture := currentpicture scaled 50 ;

MetaFun: Embedded graphics metapost

Najaar 2000 119

endfig ;
end .

In this example the result is available in the file mprun.21. This file can be included in
the normal way, using:

\externalfile[mprun.21][width=5cm]

Figuur 1 The logo is defined in the file mylogos.mp
as figure 21 and processed by means of the mprun
method.

Graphic buffers

In addition to the macros defined in the previous section, you can use ConTEXt’s buffers
to handle graphics. This can be handy when making documentation, so it makes sense to
spend a few words on them.

A buffer is a container for content that is to be (re)used later on. The main reason
for their existence is that they were needed for typesetting manuals and articles on TEX.
By putting the code snippets in buffers, we don’ t have to key in the code twice, since
we can either show the code of buffers verbatim, or process the code as part of the text
flow. This means that the risk of mismatch between the code shown and the typeset text
is minimized.

\startbuffer
You are reading the \METAFUN\ manual.
\stopbuffer

This buffer can be typeset verbatim using \typebuffer and processed using
\haalbuffer, as we will do now:

An other advantage of using buffers, is that they help you keeping the document source
clean. In a many places in this manual we put table or figure definitions in a buffer and
pass the buffer to another command, like:

\placefigure{A very big table}{\haalbuffer}

Sometimes it makes sense to collect buffers in separate files. In that case we give them
names.

This time we should say \typebuffer[mfun] to typeset the code verbatim. Instead of
TEX code, we can put METAPOST definitions in buffers.

Buffers can be used to stepwise build graphic. By putting code in multiple buffers, you
can selectively process this code.

metapost Hans Hagen

120 MAPS

\startbuffer[red]
drawoptions(withcolor .625red) ;
\stopbuffer

\startbuffer[yellow]
drawoptions(withcolor .625yellow) ;
\stopbuffer

We can now include the same graphic in two colors by simply using different buffers.
This time we use the special command \processMPbuffer, since \haalbuffer will type-
set the code fragment, which is not what we want.

\startregelcorrectie[blanko]
\processMPbuffer[red,graphic]
\stopregelcorrectie

The line correction macros take care of proper spacing around the graphic. The [blanko]
directive tells ConTEXt to add more space before and after the graphic.

\startregelcorrectie[blanko]
\processMPbuffer[yellow,graphic]
\stopregelcorrectie

Which mechanism you use, (multiple) buffers or (re)usable graphics, depends on your
preferences. Buffers are slower but don’ t take memory, while (re)usable graphics are
stored in memory which means that they are accessed faster.

Communicating color

Now that color has moved to the desktop, even simple documents have become more
colorful, so we need a way to consistently apply color to text as well as graphics. In
ConTEXt, colors are called by name.

The next definitions demonstrate that we can define a color using different color mod-
els, rgb or cmyk. Depending on the configuration, ConTEXt will convert one color
system to the other, rgb to cmyk, or vice versa. The full repertoire of color components
that can be set is as follows.

\definecolor[color one] [r=.1, g=.2, b=.3]
\definecolor[color two] [c=.4, m=.5, y=.6, k=.7]
\definecolor[color three][s=.8]

The numbers are limited to the range 0..1 and represent percentages. Black is represented
by:

\definecolor[black 1] [r=0, g=0, b=0]
\definecolor[black 2] [c=0, m=0, y=0, k=1]
\definecolor[black 3] [s=0]

Predefined colors are passed to METAPOST graphics via the \MPcolor. First we define
some colors.

\definecolor[darkyellow][y=.625] % a CMYK color
\definecolor[darkred] [r=.625] % a RGB color
\definecolor[darkgray] [s=.625] % a gray scale

These are the colors we used in this document. The next example uses two of them.

MetaFun: Embedded graphics metapost

Najaar 2000 121

\startuseMPgraphic{color demo}
pickup pencircle scaled 1mm ;
path p ; p := fullcircle xscaled 10cm yscaled 1cm ;
fill p withcolor \MPcolor{darkgray} ;
draw p withcolor \MPcolor{darkred} ;

\stopuseMPgraphic

\useMPgraphic{color demo}

The previous example uses a pure rgb red shade, combined with a gray fill.

Since METAPOST does not support the cmyk color space and native gray scales —
although gray colors are reduced to the more efficient PostScript setgray operators
in the output— the macro \MPcolor takes care of the translation from cmyk to rgb as
well as gray to rgb. However, there is a fundamental difference between a yellow as
defined in ConTEXt using cmyk and an rgb yellow in METAPOST.

\definecolor[cmyyellow] [y=1]
\definecolor[rgbyellow] [r=1,g=1]

\definecolor[cmydarkyellow][y=.625]
\definecolor[rgbdarkyellow][r=.625,g=.625]

Figure 2 demonstrates what happens when we multiply colors by a factor. Since we are
not dealing with real cmyk colors, multiplication gives different results for cmyk colors
passed as \MPcolor.

yellow (1,1,0) (.5,.5,0)

\MPcolor{rgbyellow} \MPcolor{rgbdarkyellow} .5\MPcolor{rgbyellow}

\MPcolor{cmyyellow} \MPcolor{cmydarkyellow} .5\MPcolor{cmyyellow}
Figuur 2 All kinds of yellow.

So, .625red is the same as [r=.5], but .625yellow is not the same as [y=.5], but matches
[r=.5,g=.5]. Figure 3 shows the pure and half reds.

red (1,0,0) (.625,0,0)

\MPcolor{red} \MPcolor{darkred} .625\MPcolor{red}
Figuur 3 Some kinds of red.

metapost Hans Hagen

122 MAPS

In order to prevent problems, we advise you to stick to rgb color specifications when
possible. That way you prevent not only conversion problems, but the also (often obscure)
ways printing and viewing devices handle cmyk.

Common definitions

When using many graphics, there is a chance that they share common definitions. Such
shared components can be defined by:

\startMPinclusions
color mycolor ; mycolor := .625red ;

\stopMPinclusions

All METAPOST graphics defined in the document end up in the files mpgraph.mp and
mprun.mp. When processed, they produce (sometimes many) graphic files. When using
TEXexec to process documents, these two files are processed automatically after a run so
that in a next run, the right graphics are available.

When you are using the web2c distribution, ConTEXt can call METAPOST at runtime
and thereby use the right graphics instantaneously. In order to use this feature, you have
to enable \write18 in the file texmf.cnf. Also, in the file cont-sys.tex, that holds local
preferences, or in the document source, you should say:

\runMPgraphicstrue

This enables runtime generation of graphics using the low level TEX command \write18.
First make sure that your local brand of TEX supports this feature. A simple test is making
a TEX file with the following line:

\immediate\write18{echo It works}

If this fails, you should consult the manual that comes with your system, locate an expert
or ask around on the ConTEXt mailing list. Of course you can also decide to let TEXexec
take care of processing the graphics afterwards. This has the advantage of being faster
but has the disadvantage that you need additional TEX runs.

If you generate the graphics at run time, you should consider to turn on graphic slot
recycling, which means that you often end up with fewer intermediate files:

\recycleMPslotstrue

There are a few more low level switches and features, but these go beyond the purpose
of this manual. Some of these features, like the option to add tokens to \everyMPgraphic
are for experts only, and fooling around with them can interfere with existing features.

One page graphics

Although all of what is demonstrated in this document is done in ConTEXt, some of the
features discussed here can also be done in plain TEX. In the MetaFun distribution there
is a file called plainfun.tex, which loads the appropriate ConTEXt modules.

Many low level macros are rather generic, and can be used in plain TEX without prob-
lems. However, the big advantage of using ConTEXt is, that graphics can be part of the
text flow and that you can put them on layers. If you don’ t want this, and only want to
make stand alone graphics, you may still consider using ConTEXt for that purpose.

Another advantage is that when using ConTEXt you don’ t have to bother about spe-
cials, font inclusion and all those nasty things that can spoil a good day. An example of
such a graphic is the file mfun-888 that resides on the computer of the author.

[file mfun-888 bestaat niet]

MetaFun: Embedded graphics metapost

Najaar 2000 123

Given that the ConTEXt english interface format is present on your system, you can
process this file with TEXexec, for instance using pdfTEX. The -once directive saves
some runtime.

texexec --once --pdf mfun-888

You can define many graphics in one file. The TEXexec manual describes how to se-
lectively process pages. If you use pdfTEX, you can include individual pages from pdf
files:

\placefigure
{A silly figure, demonstrating that stand||alone||graphics
can be made.}

{\externalfigure[mfun-888][page=1]}

In this case the page=1 specification is not really needed. You can scale and manipulate
the figure in any way supported by the macro package that you use.

Figuur 4 A silly figure, demonstrating that stand--
alone--graphics can be made.

Managing resources

A graphic consists of curves, either or not filled with a given color. A graphic can also
include text, which means that fonts are used. Finally a graphic can have special effects,
like a shaded fill. Colors, fonts and special effects go under the name resources, since
they may demand special care or support from the viewing or printing device.

When fonts are used, a METAPOST file is not self contained. This means that the
postprocessing program has to deal with the fonts. In ConTEXt, the special driver —and
pdfTEX support is considered as such— takes care of this. We will discuss text related
issues in chapter ??.

Special effects, like shading, are supported by dedicated METAPOST modules. These
are included in the ConTEXt distribution and will be discussed later in chapter ??.

Since METAPOST supports color, an embedded graphic can be rather colorful. How-
ever, when color support is disabled or set up to convert colors to gray scales, ConTEXt
will convert the colors in the graphic to gray scales.

You may wonder what the advantage is of weighted gray conversion. Figure 5 shows
the difference between natural colors, weighted gray scaled and straightforward, non--
weighted, gray scales.

metapost Hans Hagen

124 MAPS

full color weighted gray linear gray
Figuur 5 The advantage of weighted gray over linear gray.

When we convert color to gray, we use the following formula. This kind of conversion
also takes place in black and white televisions.

G = .30r + .59g + .11b

Kluwer Academic Publishers (KAP) is an internationally operating
company, publishing 700 journals and 800 books per year. For our
rapidly developing electronic publishing activities we have a
vacancy for a

(La)TeX Developer
In this technically challenging position you will be responsible for
various (La)TeX−related development and production activities, and
for the development and implementation of software solutions at the
front and back end of the production process of scientific
information. The (La)TeX developer will be responsible for bridging
the gap between SGML/XML content and (La)TeX−based material.
KAP is looking for a team player with, besides (La)TeX expertise, a
broad technical knowledge. You should be able to demonstrate
knowledge in SGML/XML/HTML, databases and programming
languages such as Java, Perl, OmniMark, etc. Experience in
working on different computing platforms and operating systems
would be an advantage. You should be able to communicate your
ideas to other members of the team and support both internal and
external users, and be a champion in the production department for
new technology.
Kluwer Academic Publishers, with offices also in the USA (Boston
and New York) is part of the Wolters Kluwer organisation, and offers
a challenging position with good conditions and career opportunities
in an excellent working environment.
Send your CV and a covering letter explaining why you are the right
person for this position, in English, to

 Mr. Rob Doornebal
Kluwer Academic Publishers

 Achterom 119
 3311 KB Dordrecht

For more information on this function you can contact Mr. Rob de
Jeu at (0)78 6392524 (phone) or Rob.deJeu@wkap.nl (email).

