
♦ ♦ ♦

Special Fonts
Bogus�law Jackowski

∗
and Krzysztof Leszczyński

†

abstract. We propose the use of a special pseudofont as an enhancement
(in a sense) of the \special instruction. The examples of the implementation show

that the technique applied here would prove to be extremely useful,
especially with METAPOST.

keywords: cmdfont, special commands, MetaPost, fonts, PostScript

Keen users of TEX, METAFONT, or METAPOST might find the instructions
called “special” very mighty helpers. However, METAPOST imposes serious
limit on them: their content is placed at the very beginning of a PostScript

file that METAPOST produces, just after the %%Page comment, before the very first
real PostScript statement. It means that METAPOST, unlike TEX and METAFONT,
is not able to intersperse drawing commands (draw, fill) or typesetting commands
(infont, btex ... etex) with a special user-defined content. This behaviour embit-
ters the life of METAPOST users and leads to neck-breaking solutions. Even worse,
TEX \special instructions are ignored by dvitomp, making oodles of TEX packages
unusable inside a btex ... etex construct.
The solution is to replace each \special instruction with a string typeset with a

special-ly crafted font (pseudofont). We propose a natural name for it: cmdfont,
command font. The text typeset with cmdfont has a special meaning when a TEX-
generated dvi or a METAPOST-generated eps file is processed—it is treated as a
sequence of commands to be interpreted.
The current article is the result of very preliminary thoughts—the idea is still very

fresh. We are far from understanding all the consequences of this approach. Therefore,
instead of developing a “general theory of specials,” we decided to present just a few
examples illustrating various possible applications of special \special instructions.
We have concentrated on using cmdfont with METAPOST. The use of pseudofonts

with TEX, METAFONT, html or even major office editors is another thing. The
reader may wish to evaluate the possibilities of special fonts. We perceive them as
quite promising.

∗B.Jackowski@GUST.org.pl
†Polish Linux Users’ Group, chris@linux.org.pl

96 b. jackowski and k. leszczyński

What is the special font?

Our special font can be defined with a short METAPOST program, cmdfont.mp:
designsize:=10bp/pt - epsilon;
fontdimen 2: designsize; % font normal space
fontmaking:=1;
for i:=0 upto 255:
beginfig(i-256);
charwd:=charht:=chardp:=charic:=0;
endfig;

endfor
end.

The result of interpreting this program by METAPOST is cmdfont.tfm, i.e., a metric
file which should be put somewhere where all tfm files reside. It contains 256 char-
acters with all dimensions equal to zero. Most other font parameters are also set to
zero. It is obvious that the font design size cannot be zero, but it is not obvious why
the width of a space (fontdimen2) should be set to the design size. In fact, the actual
size is not essential, any non-zero will do. Also, the actual design size value is not
important as long as everybody who uses cmdfont takes the same designsize value.
Please note that the beginfig parameter is negative. Negative arguments in-

struct the METAPOST interpreter to output all the eps files under the same name:
cmdfont.ps. If we used a seemingly natural form, beginfig(i), our directory would
be infested by cmdfont.0, cmdfont.1, . . . , cmdfont.255 files. We don’t need those
files and it is easier to throw away one file than 256 files.

Special font in a METAPOST program

Let’s trace how the instructions referring to cmdfont are parsed by METAPOST. Con-
sider the file named, say, infont.mp:

beginfig(100);
draw "META FONT" infont "cmdfont";
draw "META POST" infont "cmdfont" scaled 2;

endfig;
end.

The resulting file, infont.100, reads:
1 %!PS
2 %%BoundingBox: 0 0 0 0
3 %%Creator: MetaPost
4 %%CreationDate: 2001.04.13:1950
5 %%Pages: 1
6 %*Font: cmdfont 10 10 20:80000000460708
7 %*Font: cmdfont 20 10 20:80000000440598
8 %%EndProlog

special fonts 97

9 %%Page: 1 1
10 0 0 moveto
11 (META FONT) cmdfont 10 fshow
12 0 0 moveto
13 (META POST) cmdfont 20 fshow
14 showpage
15 %%EOF

Leaving apart the hairy details of METAPOST-generated PostScript code, let’s note
that the information about the font cmdfont is declared twice in the header of the
file, namely, in the lines 6 and 7. Recall that METAPOST strings drawn by an infont
command are always converted to a single (Postscript string), even if they are
extremely long. The space inside the METAPOST and the PostScript string denotes
the character of code 32. Computer Modern fonts use code 32 for the character
suppress ‘=’ used for the letters ‘=L’ and ‘=l’. Most text fonts use code 32 for a normal
non-stretching space.

Consider now a METAPOST program btexetex.mp that typesets a text using a con-
struction btex ... etex:

verbatimtex \font\f cmdfont etex
beginfig(100);
draw btex \f META FONT etex; draw btex \f META POST etex scaled 2;

endfig;
end.

It should not be a surprise that the resulting eps differs from the previous one:

1 %!PS
2 %%BoundingBox: 0 0 0 0
3 %%Creator: MetaPost
4 %%CreationDate: 2001.04.13:1950
5 %%Pages: 1
6 %*Font: cmdfont 10 10 41:8c0e1
7 %*Font: cmdfont 20 10 41:880b3
8 %%EndProlog
9 %%Page: 1 1

10 0 0 moveto
11 (META) cmdfont 10 fshow
12 9.9999 0 moveto
13 (FONT) cmdfont 10 fshow
14 0 0 moveto
15 (META) cmdfont 20 fshow
16 19.99979 0 moveto
17 (POST) cmdfont 20 fshow
18 showpage
19 %%EOF

98 b. jackowski and k. leszczyński

The difference is that both strings have been split into two pieces (rows 13, 15 and
17, 19). Instead of typesetting a space character (\char32), TEX replaced each space
with positioning instructions. Wizards able to read the magic hexadecimal sequences
occurring in rows 6 and 7 will see that the character of code 32 is missing from the
character set used to typeset texts in this particular PostScript file.
The problem of the space will recur in this article.

The special font and TEX+dvips

The files generated with METAPOST are usually included into TEX documents, cal-
endered by dvips and eventually end up in the resulting PostScript file. The only
font information TEX needs is the respective metric file (tfm). In contrast, dvips
requires for a given font both the tfm file and its glyph shapes. It uses the header
of the eps it processes to learn about the character set it needs. Unless we somehow
monkey the header, dvips will demand that we provide a bitmap (pk) or a Post-
Script Type 1 (pfa or pfb) font file. But we have no glyphs for cmdfont—neither
bitmaps, nor outlines.
We might have used the trick with a virtual font having all characters void, but it

wouldn’t work—dvips is smart enough to ignore all texts typeset with empty charac-
ters.
We have found no other way but to choose a popular font and identify it with

cmdfont by adding an equivalence definition into the psfonts.map file. We have
chosen Courier. The relevant line reads:

cmdfont Courier

That’s all. Now the files typeset with cmdfont can be printed as if cmdfont was a
regular font although the final effect might be weird. However, the cmdfont should
be used in such a way that a PostScript interpreter would never attempt to display
its characters.

How to use cmdfont without external processing

There are two PostScript instructions we have to bridle: cmdfont itself and fshow.
METAPOST typesets the texts using the PostScript instructions with the name
derived from the relevant tfm files. The fshow command is defined in the file
finclude.pro. This file is automatically included when dvips encounters the eps
file generated by METAPOST containing typeset texts. The piece of METAPOST code
quoted below redefines the meaning of both instructions. Our cmdfont command in-
terprets the string as an instruction sequence (cvx exec) and then it neutralizes the
ensuing fshow.

def prep_cmdfont =
special "/fshow where ";
special " {pop} {/fshow {pop} def} ifelse";
special "/cmdfont {cvx exec";

special fonts 99

special " /fshow.tmp /fshow load def";
special " /fshow";
special " {pop /fshow /fshow.tmp load def}";
special " def";
special "} def";

enddef;
extra_endfig:=extra_endfig & ";prep_cmdfont;";

Using the METAPOST special instruction guarantees that the code is moved to the
begin of the PostScript code and that’s what we wanted to achieve. Note that
splitting strings does not bother the ‘cvx exec’ doublet.

Employing this technique yields undoubtedly useful results that are rather hard to
achieve using “classic” methods. Below, we present three examples of feasible cmdfont
applications. In the examples we refer to the file named prepcmdf.mp containing the
definition of prep_cmdfont and extra_endfig assignment, as described above.

Example 1: Colouring fragments of a TEX text
Let’s assume that the METAPOST illustration contains a text with a fragment to be
coloured.

This is not a particularly
ingenious example of
colouring a selected
piece of text within
a btex ... etex clause.

The METAPOST source of this illustration is not particularly complicated:

input prepcmdf.mp;
verbatimtex
\def\incmyk#1#2{%
\leavevmode\rlap{\font\f=cmdfont \f

gsave #1 setcmykcolor}%
#2%
{\font\f=cmdfont \f grestore}}

etex
beginfig(100);
draw btex \vbox{
\hsize 40mm \pretolerance10000 \raggedright \noindent
This is not a particularly ingenious example of colouring
\incmyk{0 0 0 0.3}{{\bf a selected piece of text}}
within a~{\tt b{}tex} {\tt ...} {\tt e{}tex} clause.

} etex scaled 1.2;
endfig;

The chief painter is the two-parameter macro \incmyk defined in the verbatimtex
... etex clause; the \rlap instruction used at the beginning of the macro definition

100 b. jackowski and k. leszczyński

is crucial—we don’t want the text “typeset” with cmdfont to influence the rest of the
typesetting. Recall that the cmdfont space has a non-zero width.
This is the piece of the resulting eps file responsible for the colour changes. The

strings fed to cmdfont instructions are underlined to improve the legibility.

...
(gsave) cmdfont 11.99997 fshow
55.82301 28.69228 moveto
(0) cmdfont 11.99997 fshow
59.8076 28.69228 moveto
(0) cmdfont 11.99997 fshow
63.79219 28.69228 moveto
(0) cmdfont 11.99997 fshow
67.7768 28.69228 moveto
(0.3) cmdfont 11.99997 fshow
71.76138 28.69228 moveto
(setcmykcolor) cmdfont 11.99997 fshow
51.83855 28.69228 moveto
(a) plbx10 11.95514 fshow
62.50629 28.69228 moveto
(selected) plbx10 11.95514 fshow
0 14.3462 moveto
(piece) plbx10 11.95514 fshow
34.15456 14.3462 moveto
(of) plbx10 11.95514 fshow
49.21426 14.3462 moveto
(text) plbx10 11.95514 fshow
73.46477 14.3462 moveto
(grestore) cmdfont 11.99997 fshow
...

Example 2: The implementation of eofill
PostScript is armed with two basic countour-filling operations: fill and eofill
(even-odd fill). The following picture illustrates the difference. “Snails” are construc-
ted from the circles filled with fill (left side) and eofill (right side).

Unfortunately, METAPOST uses only fill. The eofill operator can be implemented
using METAPOST special instructions. In general, however, it is hairy. Another

special fonts 101

solution is the external processing of the resulting eps files but this is even hairier.
The use of cmdfont opens a rather simple way to implement eofill.

1 def eofill(text paths) text modif =
2 begingroup
3 save x_, y_;
4 for p_:=paths:
5 x_:=xpart(llcorner(p_));
6 y_:=ypart(llcorner(p_));
7 exitif true;
8 endfor
9 draw ("/fill.tmp /fill load def " &

10 "/newpath.tmp /newpath load def" &
11 "/fill {/fill{}def /newpath{}def}def")
12 infont "cmdfont" shifted (x_,y_) modif;
13 for p_:=paths: fill p_ modif; endfor
14 draw ("eofill /fill /fill.tmp load def " &
15 "/newpath /newpath.tmp load def")
16 infont "cmdfont" shifted (x_,y_) modif;
17 endgroup
18 enddef;

Just a few words of comment: Lines 9–12 neutralize fill and newpath instructions
appearing in the PostScript code generated by line 13. The code in lines 14–16
invokes eofill and restores the meaning of fill and newpath. cmdfont strings need
to be positioned in a place that will not change the dimensions of the picture. In this
example, strings are put in the lower left corner of the first path from the argument
list (lines 4–8). This point satisfies our assumption: all strings have a total width of 0
because spaces are interpreted as characters of code 32.
The macro eofill can be used as follows:

eofill(
fullcircle scaled 24mm shifted (-8mm,0),
fullcircle scaled 24mm,
fullcircle scaled 24mm shifted (8mm,0))
withcolor 1/2white;

From the user’s point of view, there is a difference between the eofill operation im-
plemented here and the innate METAPOST fill operation—the argument of eofill
is a list of paths rather than a single path. It is not difficult to predict the result of
the code quoted above:

102 b. jackowski and k. leszczyński

We do not present the PostScript code of the latter example just because boring
the reader to death is not exactly our goal. Nevertheless, we recommend to run
METAPOST and study the code, it is very instructive reading.

Example 3: The implementation of eoclip
The pair of clip-eoclip operators used for clipping the pictures is analogous to the
fill-eofill pair we considered in the previous example. In particular, METAPOST

provides only clip. The implementation of \eoclip using the cmdfont technique is
a bit more difficult than that of eofill. Here’s is our proposal:

1 def eoclip(expr pic)(text paths) text modif =
2 begingroup
3 save s_, xmin_, xmax_, ymin, ymax_;
4 xmin_=ymin_:=infinity; xmax_=ymax_:=-infinity;
5 draw ("/clip.tmp /clip load def " &
6 "/newpath.tmp /newpath load def" &
7 "/clip {/clip{}def /newpath{}def}def")
8 infont "cmdfont";
9 picture s_;

10 s_:=image(
11 draw ("eoclip /clip /clip.tmp load def " &
12 "/newpath /newpath.tmp load def")
13 infont "cmdfont"; draw pic);
14 for p_:=paths: clip s_ to p_ modif;
15 if xpart(llcorner(p_ modif)) < xmin_:
16 xmin_:=xpart(llcorner(p_ modif)); fi
17 if xpart(urcorner(p_ modif)) > xmax_:
18 xmax_:=xpart(urcorner(p_ modif)); fi
19 if ypart(llcorner(p_ modif)) < ymin_:
20 ymin_:=ypart(llcorner(p_ modif)); fi
21 if ypart(urcorner(p_ modif)) > ymax_:
22 ymax_:=ypart(urcorner(p_ modif)); fi
23 endfor
24 setbounds s_ to
25 (xmin_,ymin_)--(xmax_,ymin_)--
26 (xmax_,ymax_)--(xmin_,ymax_)--cycle;
27 addto currentpicture also s_;
28 endgroup
29 enddef;

The solution we propose is not obvious and has its drawbacks—we would gladly wel-
come any suggestions how to improve the code. Leaving apart the details, let’s con-
centrate on a few things: (1) Part of the text typeset with cmdfont is added to the
current picture (currentpicture variable, lines 5–8), another part is added to the
local picture s_ (lines 10–13). This is to ensure a proper order of PostScript op-
erations. (2) The text is positioned at the coordinate origin, because eventually the

special fonts 103

picture acquires its bounds explicitly (lines 24–26). (3) It resembles more the eofill
operation defined previously than the original clip. We’ll need to get used to it. . .
The illustration below presents the effect of eoclip.

ABCDEFGHIJKLMNOPQRSTUVW
XYZABCDEFGHIJKLMNOPQRSTU
VWXYZABCDEFGHIJKLMNOPQR
UVWXYZABCDEFGHIJKLMNO
QRSTUVWXYZABCDEFGHIJKLMN
OPQRSTUVWXYZABCDEFGHIJK
MNOPQRSTUVWXYZABCDEFGH
KLMNOPQRSTUVWXYZABCDE
GHIJKLMNOPQRSTUVWXYZAB
EFGHIJKLMNOPQRSTUVWXY

It was generated by the following program, again admittedly trivial:

beginfig(100);
picture p; p:=btex \vbox{
\hsize 45mm \spaceskip-2ptplus1pt \parfillskip0pt
\baselineskip7pt \lineskiplimit-\maxdimen \noindent

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

} etex;
eoclip(p)(
fullcircle scaled 24mm shifted (-8mm,0),
fullcircle scaled 24mm,
fullcircle scaled 24mm shifted (8mm,0))
shifted center p;

endfig;

The presented examples are supposed to convince the Reader that the use of eofill
and eoclip is simple. Obviously, it does not imply that the respective definitions are
simple. Nevertheless, we think that inventing such definitions is within every META-
POST user’s reach. We count on it that METAPOST lovers will develop a heap of
useful operations using the described techniques.

The special font and TEX packages

Processing the TEX fragments of a METAPOST source is one of the applications where
the cmdfont technique proves useful. The basic METAPOST construction, i.e., btex

104 b. jackowski and k. leszczyński

the TEX code etex works correctly if we stick to classic TEX only. Thus the phrase:
verbatimtex \input epsf etex;
picture P; P:=btex \epsfbox{file.eps} etex;

does not produce the desired results. The reason is the presence of TEX \special
commands which (as we mentioned in the introduction) are ignored during the dvi-
to-METAPOST transform. The macro \epsfbox, defined in the file epsf.tex from
the dvips distribution, analyses the PostScript file and generates the appropriate
whatsit node of type special. For instance, the TEX file

\input epsf \epsfbox{tiger.ps} \end

where tiger.ps is a popular on-duty eps file from the Ghostscript distribution,
produces \special{PSfile=tiger.ps llx=22 lly=171 urx=567 ury=738 rwi=5450}.
If the TEX fragment is included in a METAPOST file, we should put \input epsf inside
a verbatimtex ... etex block.
As we can see, we cannot move any further without knowing what to do with

\special instructions. There should be a way to pass the information about them
to METAPOST. One such way is redefining the \special instruction to transform its
content to a string to be typeset with cmdfont. The näıve solution

\def \special #1{\smash{\hbox{\cmdfont TeXspecial #1}}}

does not work properly because the argument of \special usually contains spaces
which have a non-zero width in cmdfont. TEX replaces such spaces by appropriate
glues, thus splitting the argument into several substrings that are put into the final
PostScript file and interwoven with positioning instructions. Moreover, a \special
argument may contain characters with unexpected categories (such as $). Let’s assume
that \special receives its argument as a string of characters of various categories but
free from non-expandable non-character tokens (like \advance). In theory, such tokens
may occur inside \special, but we haven’t observed any single instance of such an
instruction. (It does not mean, however, that they do not exist.) Our task is to
convert a string into another string with all categories being “printable”.
We propose the following trick: embed the argument of \special inside \csname

... \endcsname. This way, we get an “error trap” for free because \csname crashes
when it finds a token that is not a character or a space. The resulting control se-
quence (with the meaning = \relax) can be converted by a \string command into
a sequence of characters. As every TEX user knows, \string expands its arguments
into a sequence of characters of category 12. . . well, not really—spaces get their “tra-
ditional” catcode: 10. Therefore all spaces must be converted into explicit \char32T
characters by forcing TEX to write the character of code 32 into the dvi file. dvips
or dvitomp would convert such a character to an ordinary space. The simplified yet
usable file cmdfont.tex redefining the \special command is given below:

\font \cmdfont=cmdfont
% The box keeps the string of characters used instead of \special
\newbox \mpspecialbox

special fonts 105

% We’ll keep all specials occurring in the main vertical list
% into the special box.
\newbox \MVLspecialbox
\setbox \MVLspecialbox=\null
\def \mpspecial #1{%

\setbox \mpspecialbox=\hbox{%
\cmdfont
% set escapechar, just in case
\escapechar=‘\\%

% Prepare a macro with the name being the content of our special
% including a backslash at the very beginning.

\edef \a {\expandafter \string
\csname TeXspecial: #1\endcsname
\space \relax}%

% \b eats the leading backslash, that resulted from
% \a after it was expanded.
\def \b ##1{\c}
% Change every space into the character coded 32.
\def \c ##1 ##2\relax{##1%

\ifx $##2$%
\else \char32 \c##2\relax
\fi}%

\expandafter \b \a
}%

% If we’re in the main vertical list, put the special into
% a special box, otherwise just typeset it.
\if \ifvmode\ifinner+\else-\fi\else+\fi +%

\box \mpspecialbox
\else

\global \setbox \MVLspecialbox
\hbox{\box \MVLspecialbox

\kern1sp
\box \mpspecialbox}%

\fi
}

\def\special{\mpspecial}

Such a redefinition of \special guarantees that its argument will not be ignored (by
dvitomp) and that METAPOST will receive their string equivalents. More import-
antly, every such \special generates a single string, therefore dvips will also generate
a single string even if it is enormously large.
What should we do with such strings passed to METAPOST? The final PostScript

must be postprocessed with a sed, awk, or Perl script. This processing is easier than

106 b. jackowski and k. leszczyński

it could be, because, as we have mentioned, every special is transformed into a single
(Postscript string).

PostScript file postprocessing

A small example: tiger.mp
verbatimtex
\input cmdfont
\input epsf

etex

beginfig(100)
draw btex \epsfxsize=20pt

\epsfbox{tiger.ps} etex
endfig;
end.

The resulting file tiger.100 contains:
%!PS
%%BoundingBox: 0 0 20 21
%%Creator: MetaPost
%%CreationDate: 2001.04.04:1968
%%Pages: 1
%*Font: cmdfont 10 10 20:800277e4000098805748bdc
%%EndProlog
%%Page: 1 1
9.9626 0 moveto
(TeXspecial: PSfile=tiger.ps llx=22 lly=171 u\
rx=567 ury=738 rwi=199) cmdfont
10 fshow

showpage
%%EOF

The parameters llx, lly, urx, and ury define the bounding box of the figure to be
included; rwi is equal to \epsfxsize× 10/1bp. We have to replace the string with
the code that would be generated by dvips if indeed dvips found the relevant “real”
\special.
We have to watch out for strings that begin with (TeXspecial and process them

up to the final) cmdfont ... fshow.

What dvips understands

Although the popular dvi-to-PostScript translator called dvips understands lots of
\special patterns, it does not accept all imaginable ones. It can tell friend from foe

special fonts 107

by a \special’s prefix. Here is the list of the most frequently used prefixes that dvips
can understand.

� papersize—Defines the page size; METAPOST deals with encapsulated Post-
Script files, thus we can ignore this parameter in most documents as setting page
parameters is not allowed in eps files (according to the Adobe specification of
PostScript).

� landscape—Specifies page orientation; can be ignored, too.
� header—Adds the specified file to the header of the PostScript file made by

dvips. Keeping in mind that METAPOST files are usually included in TEX doc-
uments and processed by dvips, we can clone this instruction by adding it to
an auxiliary TEX file as a normal \special. If dvips felt moved by the standard
PostScript structured comment %%DocumentNeededResources, we could replace
the header \special by the METAPOST special. Actually, dvips would just ig-
nore such a comment stolidly.

� psfile—Adds an eps file. Unfortunately, there’s no other way except adding
such a file by hand or rather by script. Some non-standard elements like %*Font
declarations could be cloned to the auxiliary file TEX file.

� !—Its argument is a piece of a literal PostScript code. Normally, dvips places
it in the header of the final output file. Thus, we should clone it to the auxiliary
TEX file.

� "—Apiece ofPostScript code, embedded in the graphic environment (coordinate
transformation matrix) of an eps file.

� ps: (note the single colon)—A piece of PostScript code embedded in the graphic
environment (coordinate transformation matrix) of the PostScript file generated
by dvips. Before and after the code dvips adds the positioning instructions.

� ps::, ps::[begin], ps::[end]—These constructions are used to concatenate a
sequence of \special instructions; They are omens of serious trouble. Their de-
scription in the dvips manual is rather laconic. One can really PSoil things. We’ll
assume there are no such specials in the processed files.

� em:—This form was introduced by Eberhard Mattes and used to be understood
only by emTEX. Although they were quite useful at the time, now they are mostly
replaced by pure PostScript code. We won’t deal with them.

� html:— . . . well, perhaps some other time :-).

Construction cloning

Assuming that every METAPOST file eventually gets into TEX and dvips, we can save
our labour and many opportunities of making errors if we clone some constructions.
A \special instruction that begins with a header or an exclamation mark prefix can
be written, as was mentioned, to an auxiliary TEX file to be \input again in the final
stage of processing. The structured %*Font comments can be saved to a pseudo-eps

108 b. jackowski and k. leszczyński

file containing only these comments; moreover, an appropriate \special command
(\special{psfile ...}) can be added to the auxiliary TEX file. In this way, the
relevant fonts will be included by dvips.

The best method to gain some insight into the techniques described herein is to ex-
periment. One can process METAPOST files using the program despecials available
from ftp://bop.eps.gda.pl/pub/cmdfont. It is a Perl script that updates the
METAPOST output. It changes \special command equivalents expressed by cmdfont
strings into proper (or sometimes improper) PostScript code. Additionally, it pro-
duces the TEX file mpspec.inc containing selected cloned \special commands.

Header files

Life becomes worse if a TEX file that we add using btex ... etex generates \special
instructions during input. Many macro libraries behave in such a way. As an illus-
tration, let’s take a very simple example of the output produced by the lilypond
program for typesetting music. One of the possible effects of lilypond processing

4
4Z #######Z 4
4 ���#

its score file is a TEX file (gamac.tex in this case) that can
be input into the METAPOST figure. Even such a simple

example contains four \special instructions after conversion to TEX format: two of
them are placed in the header part and two are required for slurs. Typesetting scores
is, no doubt, one of the most intricate tasks TEX can carry out and there is no way to
do it without being special-infested. A one-page minuet from the lilypond manual
contains more than 60 \special commands.
Our METAPOST file would look like:
verbatimtex
\input cmdfont
\input lily-ps-defs

etex
beginfig(100)
picture P;
P=btex \input gamac.tex etex;
draw P;

endfig;
end.

Unfortunately, macros contained in the file lily-ps-defs.tex generate \special
commands themselves. Let’s consider the result of processing such a file by META-
POST: it generates a file mpx$$.tex (the exact name varies from system to system)
with an obvious content:

\input cmdfont
\input lily-ps-defs
%
\shipout\hbox{\smash{\hbox{\hbox{%

special fonts 109

\input gamac.tex}\vrule width1sp}}}
\end{document}

We can see two lines issued by verbatimtex ... etex, and the content of the btex
... etex block embedded in a rather complicated Russian doll of boxes, to be sent to
the dvi file by an explicit \shipout command.
Without additional treatment, the effect of TEX processing is a dvi file containing

two pages. The first one, generated by \shipout, will comprise the content of the
box without the necessary header information. The next page will be generated by
the \end instruction and it will contain the main vertical list (mvl) with the relevant
header information.
There is no unique answer to this problem. It depends on our plans with respect

to the header list. One of possible solutions is collecting all \special instructions
from the main vertical list and adding them to all boxes (or only to the first box) by
appropriately redefining the \shipout instructions.
Let’s assume that the \special instructions defined in the verbatimtex ... etex

block are put into the main vertical list without embedding them in boxes. Under
this assumption, it is easy to distinguish a header -\special from the a box -\special.
The first one is generated in external vertical mode, the latter one in internal vertical
mode or horizontal mode (restricted or paragraph). To tell the difference it suffices to
use a pair of conditionals \ifinner and \ifvmode. The macro \mpspecial defined in
cmdfont.tex catches every \special that plans to visit the mvl and puts it into a
special box, \MVLspecialbox. Note that specials are separated by a thin space (1sp),
otherwise they would be glued together in the case of an \unhbox operation.
If our macros generated \special whatsits that are caught by \mpspecial, the

\pagetotal register would be equal to 0pt. If this is not the case, it usually means
that something went to the mvl, which is probably wrong. This case cannot be dealt
with in a general way but if the total length of the mvl is still less than the page
height we can try to pick it up and save into a box:

\par
\newbox \MVLbox
\begingroup

\ifdim \pagetotal>0pt
\errhelp{I’ll save the MVL into MVLbox}
\errmessage{MVL is not empty}
\output={\global\setbox

\MVLbox=\box255}
\vsize=\pagetotal
\eject

\fi
\endgroup

It is up to the programmer what the \MVLbox is used for, once it is saved.

110 b. jackowski and k. leszczyński

Recapitulation

Augmenting TEX, METAPOST, METAFONT, and some other programs with a specially
treated font looks promising, especially with METAPOST.
Full evaluation of the new possibilities offered by the special font technique requires

more experience than we as yet have. The technical details of the cmdfont structure
need to be worked out. It is not obvious which parameters such a font should have.
For instance, which size the space should have: 0pt, 1sp, 1

3em (a typical value for a
text font), or even 1em. We chose the latter because then it is easier to learn, from
inside the TEX program, which is the value of the designsize parameter. It is also
not obvious whether there should be only one cmdfont or a whole family of such fonts;
and if so, which rules should be applied to avoid a mess.
A mess seems to be a critical threat to the effective application of the techniques

described herein. Early standardization, including the font name, the details of the
font design and the structure of texts typeset with it, is a sine qua non condition
of success. We count on the TEX community—without their help it is unlikely that
we manage to keep the mess away from this emerging technology which is still in its
infancy.

