
♦ ♦ ♦

MetaType1: a METAPOST-based engine for

generating Type 1 fonts
Bogus�law Jackowski

∗
, Janusz M. Nowacki

†
, and Piotr Strzelczyk

‡

abstract.

A package for preparing parameterized outline fonts in PostScript [6] Type 1 [8]
format is described. The package makes use of METAPOST [3], awk [4], and

T1utils [5], therefore is supposed to be easily portable to various computer platforms.
Its beta version along with a sample font (Knuth’s logo font)

is available from: ftp://bop.eps.gda.pl/pub/metatype1

keywords: outline fonts, scalable fonts, parameterized fonts,
PostScript Type 1 fonts, MetaFont, MetaPost

The situation of font collections available for the TEX [1] system can certainly
be classified as bad if not ugly. METAFONT [2], with its bitmap fonts, nowadays
seems more and more obsolete. The near future appears to belong to scalable

outline fonts. But it would be a pity if METAFONT, with its marvellous engine for
creating character shapes, were to remain unused.
Already relatively long ago it was recognized that the design of METAFONT is un-

sufficiently extensible. In 1989, at the tug meeting, Hobby announced the beginning
of work on METAPOST, a program for the generation of a set of eps (encapsulated
PostScript) files instead of a bitmap font; in 1990, the first version of METAPOST

was running. In the same year, Yanai and Berry [23] considered modifyingMETAFONT

in order to output PostScript Type 3 [7] fonts.
Type 3 fonts can be legitimately used with TEX. Actually, bitmap fonts are always

implemented as Type 3 fonts by dvi-to-PostScript drivers. Recently, Bzyl [15] has
put a lot of effort into the revival of Type 3 fonts in the TEX world. Nevertheless,
Type 3 fonts have never become as popular as Type 1 fonts, and probably they
never will. One cannot install Type 3 fonts under Windows, MacOS, or X Window,
although there are no serious reasons for that—it would suffice to include a Post-
Script interpreter into an operating system, which is not an unthinkable enterprise.
But the commercial world is ruled by its own iffy rights. . . Anyway, in order to

∗B.Jackowski@GUST.org.pl
†J.Nowacki@GUST.org.pl
‡P.Strzelczyk@GUST.org.pl



112 b. jackowski, j. m. nowacki, and p. strzelczyk

preserve the compatibility with the surrounding world, one should rather think about
Type 1 than Type 3 fonts.
Alas! The issue of converting automatically METAFONT sources to Type 1 format

turned out to be more difficult than one could expect (cf. [18, 19, 20, 21, 22]) and after
nearly twenty years since the birth of TEX no programming tool for generatingType 1
fonts has appeared. As a consequence there is a glaring scarcity of fonts created by
the TEX community.
The MetaType1 package was developed as a response to that bitter situation.

Whether it can be classified as good—the future will reveal. So far, MetaType1

helped us to prepare a replica of a Polish font designed in the second decade of the
twentieth century, Antykwa Pó>ltawskiego [16]. It also proved useful in improving some
freely available families of fonts [17].

Which font format?

Among a plethora of currently attainable font formats (see [7] for formats devised by
Adobe alone), two are predominant: Type 1 [8] and TrueType [9]. The Type 1

format was Adobe’s top secret for six years. In 1990, Adobe decided to disclose the
specification after Microsoft and Apple had published the TrueType format. True-
Type fonts, despite their very obscure documentation, have become the “mother
fonts” of interactive (window) systems. Type 1 fonts can also be used with these
systems; however, an additional commercial program, atm (Adobe Type Manager), is
needed.
From the point of view of TEX users, Type 1 fonts are certainly more suitable,

because they are an intrinsic part of the PostScript language. Although a one-to-
one conversion between TrueType and Type 1 formats is, in general, impossible,
there exist converters that can be used (with care) for this purpose. There are free
TrueType-to-Type 1 converters (e.g., [11]), but Type 1-to-TrueType converters
seem to be available only as commercial products. Somewhere in between can be
located a built-in Windows NT 3.5 converter from Type 1 to TrueType.
Incidentally, contemporary PostScript interpreters accept Type 42 fonts [7],

which are essentially TrueType fonts “wrapped” in a PostScript structure. The
conversion (one-to-one) between TrueType and Type 42 is pretty simple and free
converters are easily available (e.g., [12]).
A few years ago, Microsoft and Adobe announced a joint initiative: they proclaimed

that a new font format, OpenType, is to replace both TrueType and Type 1.
Microsoft in their documentation on TrueType say, perhaps a bit prematurely, that
the TrueType font file specification is “of historical interest only.” At present, Adobe
offers a cost-free (although licensed) converter from Type 1 to OpenType for the
Macintosh and Windows NT platforms. We can expect that more such converters will
emerge.
The future is always hidden; we believe, however, that today we can safely invest

our efforts in the creation of Type 1 fonts.



MetaType1 113

Interactive or programming tool?

There are several interactive programs for creating outline fonts. We doubt whether
a satisfactorily uniform font can be produced using an interactive tool alone. Fonts
are complex monsters and one cannot expect that creating them will ever be an easy
task. They are governed by a multitude of parameters such as a stem thickness, serif
size and shape, italic angle, the height of majuscules and minuscules, the position of
ascenders and descenders, the width of a particular group of characters (e.g., digits
should have identical width if we want to use the font in numerical tables), etc. It
is particularly difficult to preserve the similarity of shapes appearing repeatedly in a
group of characters, e.g., ovals in the letters ‘b’, ‘d’, ‘o’, ‘p’, and ‘q’.
In general, the more irregular the font, the more adequate is an interactive tool.

Fonts used for book typesetting, however, are exceptionally uniform. Therefore, some
interactive programs provide a programming interface that facilitates controlling uni-
formness; for example, the commercial FontLab program offers a Python interface
in addition. Kinch’s approach [18] can be considered as a step further. HisMetaFog

package is meant for the (semi)manual tuning of glyphs programmed in METAPOST.
Despite many advantages, such a “hybrid” approach has a principal drawback: a
slight modification of a font may lead to a lot of laborious manual intervention. In
particular, parameterization, the boon of the programming approach, is lost.
Only an entirely programmable tool overcomes all these hindrances, but it brings

with it its own disadvantages, as programming is apparently difficult for most present-
day computer users. This means that the number ofMetaType1 users will be limited.
Since we are very fond of programming, we can make the prognosis that the number
of users will not be less than three.

METAFONT, METAPOST, or . . . ?

From the very beginning, we abandoned the idea of writing one more stand-alone
program (by, e.g., modifying METAFONT or METAPOST) as we didn’t want to be
involved in technical implementation details. We wanted to make use of existent
reliable programs and to focus our attention on the problem of generating Type 1

fonts. Therefore, we had to choose: METAFONT or METAPOST?
The problem with METAFONT is that it writes only gf, tfm, and log files, hence

transforming the output from METAFONT to a completely different format, such as
PostScript Type 1, is somewhat inconvenient. Its successor, METAPOST, is capable
of writing several (text) files, although pictures generated by METAPOST do not form
any structure. Fortunately, METAPOST inherited from METAFONT the ability of
writing tfm files, which significantly eases the process of generating fonts for TEX,
since no extra font installation programs are needed. An argument that can be raised
against using METAPOST is that it does not belong to Knuth’s canonical distribution;
but one cannot avoid using non-canonical software anyway if one wants to produce
Type 1 fonts. All in all, we decided to use METAPOST as the bedrock of our package.



114 b. jackowski, j. m. nowacki, and p. strzelczyk

Transforming METAPOST output appropriately and imposing a font structure on it
has to be done by means of an external program. Our presumption was that it should
be a freely available, popular, and portable program.
We believe that awk (actually, gawk [13]) meets these requirements. The main

drawback of awk is that it handles only text files. MetaType1 output files are mostly
text files, e.g., afm (Adobe font metric) files, with one pivotal exception, however:
many Type 1 applications, notably atm, require a binary form of Type 1, pfb
(PostScript font binary). We have considered writing our own assembler in the
PostScript language (to be used with Ghostscript [14]), but finally we gave up
and employed a Type 1 assembler from the T1utils package.
For reasons that are hard to explain, another binary file, pfm (printer font metric),

is required in order to install Type 1 on a Windows system. We decided to prepare
our own perl script for generating pfms out of afms, because the task was relatively
simple in spite of the somewhat obscure pfm documentation (sigh) and, moreover, it
is easier to manage home-grown software. The script can be used independently of
the rest of the engine and, actually, it is not part of the MetaType1 package.

MetaType1: an overview

Having answered the fundamental question, i.e., why we are reinventing the wheel,
we can start to survey the MetaType1 engine. Figure 1 shows the structure of the
MetaType1 engine. The boxes drawn with bold lines denote final results, the boxes
drawn with dashed lines denote temporary results.

Step 1: METAPOST processing
The METAPOST font base contains quite a few macros which are useful in preparing a
font. They are similar to Knuth’s cmbase macros. For example, the base contains the
macros beginglyph and endglyph, analogous to beginchar and endchar. Obviously,
the differences are more profound than a simple renaming of some macros, e.g., a lion’s
share of the code is related to the rules with which Type 1 should comply.
From the point of view of a font creator the main difference is that pens are not

allowed in MetaType1 programs. A user is responsible for constructing a proper
outline of a glyph: paths should not cross each other (in particular, no self-intersections
should occur) and should be properly oriented, i.e., outer paths run anti-clockwise,
inner paths run clockwise. There are some macros that facilitate finding the contour
of a stroke drawn with a pen (“expanding stroke”) or finding the common part of
two areas (“removing overlaps”), but, in general, such operations cannot be reliably
programmed in METAFONT/METAPOST and therefore users are expected to know
what they are doing.

METAPOST works in two passes:

� During the first pass, character glyph files (eps) and a few auxiliary files (e.g.,
containing the kerning information) are being generated. The files from the first
pass are subsequently processed by awk.



MetaType1 115

figure 1: The general scheme of the MetaType1 engine.

� During the second pass, only tfm files are being generated. All drawing operations
are switched off. Writing eps files, however, cannot be switched off. One can live
with it, but it is a somewhat vexing situation—why generate lots of useless files
which are only removed later on? The following trick is exploited during the tfm-
generating pass: usually, METAPOST appends a numeric extension to the file name;
however, if the character code is negative, the extension is simply ps; thanks to
this, one has to remove only a single dummy file instead of hundreds of them.

Additionally—similar to cmbase—a user may on demand generate a proof version
of character glyphs, e.g., for documentation purposes. Appreciating Knuth’s idea of
literate programming, we tried to implement it in MetaType1. We wanted META-
POST sources to be simultaneously the ultimate documentation. The mft utility from
the canonical TEX package fits here very well. We slightly enhanced the TEX macros
that accompany the program (mftmac.tex) in order to facilitate self-documentation.
The altered version allows one to include easily a proof version of the glyphs into the
formatted source. Figure 2 shows what such a documentation looks like. The displayed
sample page is taken from the source of Knuth’s logo font adapted to MetaType1.

We tried to keep the font base as independent of the Type 1 specification as possible,
although, as was mentioned, some peculiarities of Type 1 cannot be ignored. Anyway,
we hope that in the (far) future, when Type 1 fonts are finally superseded by a



116 b. jackowski, j. m. nowacki, and p. strzelczyk

figure 2: An example of a self-documenting MetaType1 source.

“Brave New Format,” appropriate modification of the base will not be an exceedingly
difficult task.

Step 2: awk processing
The main duty of the awk module is to convert glyphs (eps) from plain PostScript
to a form required by the Type 1 specification (and accepted by T1utils). The
Type 1 format accepts only integer numbers, therefore rounding is necessary (a user
should control the process of rounding at crucial points in METAPOST programs).
The only exception is the width of a character. A non-integer width is replaced not
by a single number but by a division operation which is allowed in Type 1. For
example, the width of the character ‘T ’ from the logo10 font is 5.77776pt, i.e.,
577.776 in Type 1 grid units; this quantity is represented in the resulting pfb file by
‘17911 31 div’ which yields ≈ 577.7742. Appropriate numerators and denominators
are computed by means of continued fractions.
In Type 1, all dimensions have to be given in relative units, while plain Post-

Script (as output by METAPOST) uses absolute coordinates. Conversion to relative
coordinates is also done by awk.



MetaType1 117

Perhaps the most complex part of the awk job is arranging the data properly for
hinting. Hints are Type 1 commands that control the discretization of outlines. In
a METAPOST source, a user specifies relevant paths and stem values; METAPOST

finds acceptable coordinates for the stems and writes this information (embedded as
structured comments) into the eps files. This, however, is not the end of the story.
The Adobe Type 1 specification requires that no hints of the same kind (horizontal
or vertical) can overlap. If such a situation occurs, a special routine, called hint
replacement, should be launched ([8], pp. 69–71). The awk script does its best to
prepare the data properly for the hint replacement process. But it uses some heuristics,
therefore the applied algorithm may fail (rather unlikely under normal circumstances).
The result of the awk run is a disassembled (“raw”) pfb file and an afm file;

moreover, enc and map files, to be used with a dvips driver, are generated. Option-
ally, prior to assembling the“raw” pfb file can be processed again by awk. During this
pass, another awk script is used to search for repeated fragments of code; subroutine
definitions are added for such fragments and all their occurrences are replaced by the
respective subroutine calls. Usually, this process shortens the pfb file by some 10%.
Besides optimization, it also provides an audit of the font, e.g., accented letters should
afterwards contain only subroutine calls and no explicit drawing commands.
The awk stage of font generation is entirely PostScript-oriented. For a different

output font format the awk scripts would have to be rewritten nearly from scratch.

Step 3: Assembling the pfb file
This is the simplest step of all: a one-to-one conversion from the disassembled to the
final (binary) version of the pfb file is done by a stand-alone freeware utility, T1asm.

Step 4 (optional): generating the pfm file
As was mentioned, pfm files are required if the Type 1 fonts are to be installed on a
Windows system. A pfm file contains similar information to that contained in the afm
file, character dimensions, kerning, etc. The main difference is that a pfm file does not
contain glyph names, therefore the encoding must be specified in addition. There is a
secret byte in a pfm file (85th counting from 0) that contains the relevant information;
e.g., the value 238 denotes East European encoding, 206 Central European. Can you
guess why? It’s simple: 23810 = EE16, 20610 = CE16. In order to generate a pfm file
conforming to a particular Windows installation, one has to know which number is
appropriate. It cannot be excluded that more bombshells of that kind await Windows
users. Fortunately, the perl script is fairly legible and can easily be adjusted if needed.

End or start?

Although we have been working on MetaType1 for a few years, only recently has it
stabilized sufficiently to make it available publicly. We must warn potential fearless
MetaType1 users, however, that our experience with the package is limited to one
complete font (Antykwa Pó>ltawskiego), a few geometric symbol fonts, several improved
fonts and one experiment: while preparing this paper we tested MetaType1 against



118 b. jackowski, j. m. nowacki, and p. strzelczyk

Knuth’s logo font. Within three working days we were able to modify the METAFONT

sources and adjust them to the requirements ofMetaType1. The modified logo font
is enclosed with the MetaType1 distribution package. It should be emphasized that
the resulting tfm files are 100% compatible with the original ones.
Needless to say, the experiment also unveiled the existence of a few bugs in Meta-

Type1, both in the METAPOST and awk parts. Therefore, we consider the public
release of MetaType1 as the start of a new phase rather than the completion of the
design process.
Users’ feedback cannot be underestimated in this respect. We count upon users’

contributions, although we cannot promise a royal road to creating fonts; instead,
we can promise satisfaction once a font is ready. We can also assert that program-
ming a font is not reserved for Donald E. Knuth—so, let us go forth now and create
masterpieces of digital typography in Type 1 format.

references

[1] Knuth, D. E., The TEXbook. Addison-Wesley, eleventh printing, 1990.
[2] Knuth, D. E., The METAFONTbook. Addison-Wesley, seventh printing, 1992.
[3] Hobby, J. D., The METAPOST Page.

http://cm.bell-labs.com/who/hobby/MetaPost.html

[4] Aho A. V., Kernighan B. W., Weinberger P. J., The awk Programming Lan-
guage. Addison-Wesley, 1988.

[5] Type tools. http://www.lcdf.org/~eddietwo/type/#t1utils
[6] PostScript Language Reference Manual, 3rd Edition.

http://partners.adobe.com/asn/developer/PDFS/TN/PLRM.pdf

[7] Adobe Font Formats and File Types.
http://partners.adobe.com/asn/developer/typeforum/ftypes.html

[8] Adobe Type 1 Font Format. Addison-Wesley, 1990.
http://partners.adobe.com/asn/developer/pdfs/tn/T1_SPEC.PDF

[9] TrueType Specification, ver. 1.3.
http://www.microsoft.com/typography/tt/ttf_spec/ttspec.zip

[10] OpenType specification, ver. 1.3 (last update: April 2001).
http://www.microsoft.com/typography/otspec/otsp13p.zip

[11] TrueType to PS Type 1 Font Converter.
http://sourceforge.net/projects/ttf2pt1/

[12] Baron, D., A TrueType to Type 42 Converter.
http://ftp.giga.or.at/pub/nih/ttftot42

[13] Gnu awk User’s Guide. http://www.gnu.org/manual/gawk/index.html
[14] Ghostscript, Ghostview and GSview. http://www.cs.wisc.edu/~ghost/
[15] Bzyl, W., Reitroducing Type 3 fonts to the TEX world. Proc. of EuroTEX 2001,

24th–27th September, 2001, Kerkrade, The Netherlands.



MetaType1 119

[16] Jackowski, B., Nowacki, J. M., Strzelczyk, P., Antykwa Pó3ltawskiego: A Para-
meterized Outline Font. Proc. of EuroTEX’99, 20th–24th September, 1999,
Heidelberg, Germany, pp. 109–141.

[17] Jackowski, B., Nowacki, J. M., Strzelczyk, P., Localizing Type 1 Fonts from
Ghostscript Distribution. BachoTEX’2001, 9th GUST Conference, 29th April–
2nd May, 2001, Bachotek, Poland,
http://www.gust.org.pl/BachoTeX/2001/GSFONTS.PDF

[18] Kinch, R. J., MetaFog: Converting METAFONT Shapes to Contours. TUG-
boat 16 (3), pp. 233–243, 1995.

[19] Kinch, R. J., Belleek: A Call for METAFONT revival. Proc. of 19th Annual TUG
Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 131–136.

[20] Hoekwater, T., Generating Type 1 Fonts from METAFONT Sources. Proc. of 19th
Annual TUG Meeting, AuGUST 17–20, 1998, Toruń, Poland, pp. 137–147.

[21] Haralambous, Y., Parametrization of PostScript Fonts Through META-
FONT—an Alternative to Adobe Multiple Master Fonts. Electronic Publishing,
6 (3), pp. 145–157, 1993.

[22] Malyshev, B. K., Problems of the Conversion of METAFONT Fonts to Post-
Script Type 1. TUGboat, 16 (1), pp. 60–68, 1995.

[23] Yanai, S., Berry D. M., Environment for Translating METAFONT to Post-
Script. TUGboat 11 (4), pp. 525–541, 1990.


