
12 MAPS 38 Ulrik Vieth

OpenType Math Illuminated

Abstract
In recent years, we have seen the development of new
TEX engines, X ETEX and LuaTEX, adopting OpenType
font technology for providing Unicode typesetting
support. While there are already plenty of OpenType
text fonts available for use, both from the TEX
community and from commercial font suppliers, there
is little support for OpenType math fonts so far.
Ironically, it was left to Microsoft to develop a de facto
standard for OpenType math font information and to
provide the first reference implementation of a
full-featured OpenType math font.

In order to develop the much-needed math support for
Latin Modern and TEX Gyre fonts, it will be crucially
important to develop a good understanding of the
internals of OpenType math tables, much as it is
necessary to develop a good understanding of
Appendix G and TEX’s \fontdimen parameters to
develop math support for traditional TEX fonts. In this
paper, we try to help improve the understanding of
OpenType math internals, summarizing the parameters
of OpenType math fonts as well as illustrating the
similarities and differences between traditional TEX
math fonts and OpenType math fonts.

Background on OpenType math
In recent years, the TEX community has been go-
ing through a phase of very significant developments.
Among the most important achievements, we have
seen the development of new TEX engines, X ETEX and
LuaTEX, providing support for Unicode and OpenType
font technology. At about the same time we have
also seen the development of new font distributions,
Latin Modern and TEX Gyre, provided simultaneously
in Type 1 format as a set of 8-bit font encodings as well
as in OpenType format.

Together these developments have enabled TEX
users to keep up with current trends in the publish-
ing industry, providing users of the new TEX engines
with a comprehensive set of free OpenType fonts and
enabling them to take advantage of the many offerings
by commercial font suppliers.

As far as text typesetting is concerned, support for
OpenType font technology in the new TEX engines is al-
ready very advanced, supporting not only traditional
typographic features of Latin alphabets, but also ad-

dressing the very complex and challenging require-
ments of Arabic typography.

However, when it comes to math typesetting, one
of the traditional strongholds of TEX, support for Uni-
code and OpenType math is only just beginning to take
shape.

Ironically, it was left to Microsoft to develop the first
system to offer support for Unicode math. When Mi-
crosoft introduced support for math typesetting in Of-
fice 2007 [1, 2], they extended the OpenType font for-
mat and commissioned the design of Cambria Math [3]
as a reference implementation of a full-featured Open-
Type math font.

Fortunately for us, Microsoft was smart enough to
borrow from the best examples of math typesetting
technology, thus many concepts of OpenType math are
not only derived from the model of TEX, but also go be-
yond TEX and introduce extensions or generalizations
of familiar concepts.

While OpenType math is officially still considered
experimental, it is quickly becoming a de facto stan-
dard, as it has already been widely deployed to mil-
lions of installations of Microsoft Office 2007 and it is
also being been adopted by other projects such as the
FontForge [4] font editor or independent font designs
such as Asana Math [5].

Most importantly, support for OpenType math has
already been implemented or is currently being imple-
mented in the new TEX engines, thus adopting Open-
Type math for the development of the much-needed
Unicode math support for Latin Modern and TEX Gyre
obviously seems to be most promising choice of tech-
nology.

Design and quality of math fonts
When it comes to developing math fonts, designing
the glyph shapes is only part of the job. Another part,
which is equally important, is to adjust the glyph met-
rics of individual glyphs and to set up the global pa-
rameters affecting various aspects of glyph positioning
in math typesetting.

As we have discussed at previous conferences, the
quality of math typesetting crucially depends on the
fine-tuning of these parameters. Developing a good
understanding of these parameters will therefore be-

OpenType Math Illuminated VOORJAAR 2009 13

come an important prerequisite to support the devel-
opment of new math fonts.

In the case of traditional TEX math fonts, we have
to deal with the many \fontdimen parameters which
have been analyzed in Bogusław Jackowski’s paper
Appendix G Illuminated and a follow-up paper by the
present author [6, 7].

In the case of OpenType math fonts, we need to de-
velop a similar understanding of the various tables and
parameters and how the concepts of OpenType math
relate to the concepts of TEX.

Overview of the OpenType font format
The OpenType font format [8] was developed jointly
by Adobe and Microsoft, based on elements of the ear-
lier PostScript and TrueType font formats by the same
vendors. The overall structure of OpenType fonts con-
sists of a number of tables, some of which are required
while others are optional [9].

In the case of OpenType math, the extension of the
font format essentially consists of adding another op-
tional table, the so-called MATH table, containing all
the information related to math typesetting. Since it
is an optional table, it would be interpreted only by
software which knows about it (such as the new TEX
engines or Microsoft Office 2007), while it would be
ignored by other software.

Unlike a database table, which has a very rigid for-
mat, an OpenType font table can have a fairly com-
plex structure, combining a variety of different kinds
of information in the same table. In the case of the
OpenType MATH table, we have the following kinds of
information:

2 a number of global parameters specific to math
typesetting (similar to TEX’s many \fontdimen
parameters of Appendix G)

2 instructions for vertical and horizontal variants
and/or constructions (similar to TEX’s charlists and
extensible recipes)

2 additional glyph metric information specific to
math mode (such as italic corrections, accent
placement, or kerning)

In the following sections, we will discuss some of
these parameters in more detail, illustrating the simi-
larities and differences between traditional TEX math
fonts and OpenType math fonts.

Parameters of OpenType math fonts
The parameters of the OpenType MATH table play a
similar role as TEX’s \fontdimen parameters, control-
ling various aspects of math typesetting, such as the

placement of limits on big operators, the placement
of numerators and denominators in fractions, or the
placement of superscripts and subscripts.

While a number of parameters are specified in TEX
through the \fontdimen parameters of math fonts,
there are other parameters which are defined by built-
in rules of TEX’s math typesetting engine. In many such
cases, additional parameters have been introduced in
the OpenType MATH table, making it possible to specify
all the relevant parameters in the math font without
relying on built-in rules of any particular typesetting
engine.

In view of the conference motto, it is interesting
to note that the two new TEX engines, X ETEX and
LuaTEX, have taken a very different approach how to
support the additional parameters of OpenType math
fonts: While X ETEX has retained TEX’s original math
typesetting engine and uses an internal mapping to
set up \fontdimen parameters from OpenType para-
meters [10], LuaTEX has introduced an extension of
TEX’s math typesetting engine [11], which will allow
to take full advantage of most of the additional Open-
Type parameters. (More precisely, while X ETEX only
provides access to the OpenType parameters as ad-
ditional \fontdimens, LuaTEX uses an internal data
structure based on the combined set of OpenType and
TEX parameters, making it possible to supply missing
values which are not supported in either OpenType
math fonts or traditional TEX math fonts.)

For font designers developing OpenType math fonts,
it may be best to supply all of the additional OpenType
parameters in order to make their fonts as widely us-
able as possible with any typesetting engine, not nec-
essarily limited to any specific one of the new TEX en-
gines.

In the following sections, we will take a closer look
at the various groups of OpenType parameters, orga-
nized in a similar way as they are presented to font
designers in the FontForge font editor, but not neces-
sarily in the same order.

We will use the figures from [6, 7] as a visual clue
to illustrate how the various parameters are defined
in TEX, while summarizing the similarities and differ-
ences between OpenType parameters and TEX parame-
ters in tabular form.

Limits on big operators
In TEX math fonts, there are five parameters controlling
the placement of limits on big operators (see figure 1),
which are denoted as ξ9 to ξ13 using the notation of
Appendix G.

Two of them control the default position of the limits
(ξ10 and ξ12), two of them control the inside gap (ξ9
and ξ11), while the final one controls the outside gap
above and below the limits (ξ13).

14 MAPS 38 Ulrik Vieth

Q∫
M=1

δ/2

δ/2

ξ13

≥ξ9
ξ11

≥ξ10

ξ12

ξ13

Figure 1. TEX font metric parameters affecting the
placement of limits above or below big operators.

In OpenType math fonts, the MATH table contains
only four parameters controlling the placement of lim-
its on big operators. Those four parameters have a
direct correspondence to TEX’s parameters (as shown
in table 1), while the remaining one has no corre-
spondence and is effectively set to zero. (Consider-
ing the approach taken in other circumstances, it is
very likely that if there were any such correspondence,
there might actually be two parameters in OpenType
instead of only one, such as UpperLimitExtraAscender and
LowerLimitExtraDescender. In LuaTEX’s internal data struc-
tures, there are actually two parameters for this pur-
pose, which are either initialized from TEX’s parameter
ξ13 when using TEX math fonts or set to zero when us-
ing OpenType math fonts.)

OpenType parameter TEX parameter

UpperLimitBaselineRiseMin ξ11

UpperLimitGapMin ξ9

LowerLimitGapMin ξ10

LowerLimitBaselineDropMin ξ12

(no correspondence) ξ13

Table 1. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
limits above or below big operators.

OpenType parameter TEX parameter

StretchStackTopShiftUp ξ11

StretchStackGapAboveMin ξ9

StretchStackGapBelowMin ξ10

StretchStackBottomShiftDown ξ12

Table 2. Correspondence of font metric parameters
between OpenType and TEX related to stretch stacks.

Stretch Stacks
Stretch stacks are a new feature in OpenType math
fonts, which do not have a direct correspondence in
TEX. They can be understood in terms of material
stacked above or below stretchable elements such as
overbraces, underbraces or long arrows.

In TEX, such elements were typically handled at the
macro level and effectively treated in the same way as
limits on big operators.

In LuaTEX, such elements will be implemented by
new primitives using either the new OpenType para-
meters for stretch stacks (as shown in table 2) or the
parameters for limits on big operators when using tra-
ditional TEX math fonts.

Overbars and Underbars
In TEX math fonts, there are no specific parameters re-
lated to the placement of overlines and underlines. In-
stead, there is only one parameter controlling the de-
fault rule thickness (ξ8), which is used in a number
of different situations where other parameters are ex-
pressed in multiples of the rule thickness.

In OpenType math fonts, a different approach was
taken, introducing extra parameters for each purpose,
even supporting different sets of parameters for over-
lines and underlines. Thus the MATH table contains the
following parameters related to overlines and under-
lines (as shown in table 3), which only have an indirect
correspondence in TEX.

OpenType parameter TEX parameter

OverbarExtraAscender (= ξ8)
OverbarRuleThickness (= ξ8)
OverbarVerticalGap (= 3 ξ8)
UnderbarVerticalGap (= 3 ξ8)
UnderbarRuleThickness (= ξ8)
UnderbarExtraDescender (= ξ8)

Table 3. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
overlines and underlines.

OpenType Math Illuminated VOORJAAR 2009 15

σ8 styles D,D′

σ9 other styles

σ11 styles D,D′

σ12 other styles

σ8 styles D,D′

σ10 other styles

σ11 styles D,D′

σ12 other styles

Figure 2. TEX font metric parameters affecting the
placement of numerators and denominators in regular and
generalized fractions.

It is interesting to note that the introduction of ad-
ditional parameters in OpenType math fonts provides
for greater flexibility of the font designer to adjust the
values for best results.

While TEX’s built-in rules always use a fixed multi-
plier of the rule thickness regardless of its size, Open-
Type math fonts can compensate for a larger rule thick-
ness by using a smaller multiplier.

An example can be found when inspecting the pa-
rameter values of Cambria Math: In relative terms the
inside gap is only about 2.5 times rather than 3 times
the rule thickness, while the latter (at about 0.65 pt
compared to 0.4 pt) is quite a bit larger than in typical
TEX fonts.

Obviously, making use of the individual OpenType
parameters (as in LuaTEX) instead of relying on TEX’s
built-in rules (as in X ETEX) would more closely reflect
the intention of the font designer.

Fractions and Stacks
In TEX math fonts, there are five parameters controlling
the placement of numerators and denominators (see
figure 2), which are denoted as σ8 to σ12 using the
notation of Appendix G.

Four of them apply to regular fractions, either in dis-
play style (σ8 and σ11) or in text style and below (σ9
and σ12), while the remaining one applies to the spe-
cial case of generalized fractions when the fraction bar
is absent (σ10).

Besides those specific parameters, there are also
a number of parameters which are based on built-in
rules of TEX’s math typesetting engine, expressed in
multiples of the rule thickness (ξ8), such as the thick-
ness of the fraction rule or the inside gap above and
below the fraction rule (see figure 3).

In OpenType math fonts, a different approach was
once again taken, introducing a considerable number
of additional parameters for each purpose. Thus the
MATH table contains 9 parameters related to regular
fractions and 6 more parameters related to generalized
fractions (also known as stacks).

ϕ

ϕ
3ξ8 styles D,D′

ξ8 other styles
ϕ 7ξ8 styles D,D′

3ξ8 other styles

Figure 3. TEX’s boundary conditions affecting the
placement of numerators and denominators in regular and
generalized fractions.

As shown in table 4, there is a correspondence for
all TEX parameters, but this correspondence isn’t neces-
sarily unique when the same TEX parameter is used for
multiple purposes in fractions and stacks. Obviously,
font designers of OpenType math fonts should be care-
ful about choosing the values of OpenType parameters
in a consistent way.

Analyzing the font parameters of Cambria Math
once again shows how the introduction of additional
parameters increases the flexibility of the designer
to adjust the parameters for best results: In relative
terms, FractionDisplayStyleGapMin is only about 2 times
rather than 3 times the rule thickness. Similarly,
StackDisplayStyleGapMin is only about 4.5 times rather than
7 times the rule thickness. In absolute terms, however,
both parameters are about the same order of magni-
tude as in typical TEX fonts.

OpenType parameter TEX parameter

FractionNumeratorDisplayStyleShiftUp σ8

FractionNumeratorShiftUp σ9

FractionNumeratorDisplayStyleGapMin (= 3 ξ8)
FractionNumeratorGapMin (= ξ8)
FractionRuleThickness (= ξ8)
FractionDenominatorDisplayStyleGapMin (= 3 ξ8)
FractionDenominatorGapMin (= ξ8)
FractionDenominatorDisplayStyleShiftDown σ11

FractionDenominatorShiftDown σ12

StackTopDisplayStyleShiftUp σ8

StackTopShiftUp σ10

StackDisplayStyleGapMin (= 7 ξ8)
StackGapMin (= 3 ξ8)
StackBottomDisplayStyleShiftDown σ11

StackBottomShiftDown σ12

Table 4. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
numerators and denominators.

16 MAPS 38 Ulrik Vieth

σ13
σ14
σ15

σ16σ17

σ↑18

σ↓19

Figure 4. TEX font metric parameters affecting the
placement of superscripts and subscripts on a simple
character or a boxed subformula.

Superscripts and Subscripts
In TEX math fonts, there are seven parameters control-
ling the placement of superscripts and subscripts (see
figure 4), which are denoted as σ13 to σ19 using the
notation of Appendix G.

Three of them apply to superscripts, either in dis-
play style (σ13), in text style and below (σ14), or in
cramped style (σ15), while the other two apply to the
placement of subscripts, either with or without a su-
perscript (σ16 and σ17).

Finally, there are two more parameters which apply
to superscripts and subscripts on a boxed subformula
(σ18 and σ19), which also apply to limits attached to
big operators with \nolimits.

Besides those specific parameters, there are also a
number of parameters which are based on TEX’s built-
in rules, expressed in multiples of the x-height (σ5) or
the rule thickness (ξ8), most of them related to resolv-
ing collisions between superscripts and subscripts or
adjusting the position when a superscript or subscript
becomes too big (see figure 5).

In OpenType math fonts, we once again find a num-
ber of additional parameters for each specific purpose,
as shown in table 5.

It is interesting to note that some of the usual dis-
tinctions made in TEX were apparently omitted in the
OpenType MATH table, as there is no specific value for
the superscript position in display style, nor are there
any differences in subscript position in the presence or
absence of superscripts.

While it is not clear why there is no correspondence
for these parameters, it is quite possible that there was
a conscious design decision to omit them, perhaps to
avoid inconsistencies in alignment.

1
4σ5

4
5σ5

4ξ8 4ξ84
5σ5

Figure 5. TEX font metric parameters affecting the
placement of superscripts and subscripts in cases of
resolving collisions.

OpenType parameter TEX parameter

SuperscriptShiftUp σ13, σ14

SuperscriptShiftUpCramped σ15

SubscriptShiftDown σ16, σ17

SuperscriptBaselineDropMax σ18

SubscriptBaselineDropMin σ19

SuperscriptBottomMin (= 1
4σ5)

SubscriptTopMax (= 4
5σ5)

SubSuperscriptGapMin (= 4 ξ8)
SuperscriptBottomMaxWithSubscript (= 4

5σ5)
SpaceAfterScript \scriptspace

Table 5. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
superscripts and subscripts.

Radicals
In TEX math fonts, there are no specific parameters
related to typesetting radicals. Instead, the relevant
parameters are based on built-in rules of TEX’s math
typesetting engine, expressed in multiples of the rule
thickness (ξ8) or the x-height (σ5).

To be precise, there are even more complications in-
volved [6], as the height of the fraction rule is actually
taken from the height of the fraction glyph rather than
the default rule thickness to account for effects of pixel
rounding in bitmap fonts.

OpenType Math Illuminated VOORJAAR 2009 17

OpenType parameter TEX parameter

RadicalExtraAscender (= ξ8)
RadicalRuleThickness (= ξ8)
RadicalDisplayStyleVerticalGap (= ξ8 +

1
4σ5)

RadicalVerticalGap (= ξ8 +
1
4ξ8)

RadicalKernBeforeDegree e. g. 5
18 em

RadicalKernAfterDegree e. g. 10
18 em

RadicalDegreeBottomRaisePercent e. g. 60 %

Table 6. Correspondence of font metric parameters
between OpenType and TEX affecting the placement of
radicals.

In OpenType math fonts, we once again find a
number of additional parameters for each purpose, as
shown in table 6.

While there is a correspondence for all of the pa-
rameters built into TEX’s typesetting algorithms, it is
interesting to note that OpenType math has also intro-
duced some additional parameters related to the place-
ment of the degree of an n th root (n

√
x), which is

usually handled at the macro level in TEX’s format files
plain.tex or latex.ltx:

\newbox\rootbox
\def\root#1\of{%

\setbox\rootbox
\hbox{$\m@th\scriptscriptstyle{#1}$}%
\mathpalette\r@@t}

\def\r@@t#1#2{%
\setbox\z@\hbox{$\m@th#1\sqrtsign{#2}$}%
\dimen@=\ht\z@ \advance\dimen@-\dp\z@
\mkern5mu\raise.6\dimen@\copy\rootbox
\mkern-10mu\box\z@}

As shown in the listing, the definition of the \root
macro contains a number of hard-coded parameters,
such as a positive kern before the box containing the
degree and negative kern thereafter, expressed in mul-
tiples of the font-specific math unit. In addition, there
is also a raise factor expressed relative to the size of
the box containing the radical sign.

Obviously, the extra OpenType parameters related
to the degree of radicals correspond directly to the pa-
rameters used internally in the \root macro, making it
possible to supply a set of font-specific values instead
of using hard-coded values expressed in multiples of
font-specific units.

In LuaTEX, this approach has been taken one step
further, introducing a new \Uroot primitive as an ex-
tension of the \Uradical primitive, making it possible
to replace the processing at the macro level by process-
ing at the algorithmic level in LuaTEX’s extended math
typesetting engine [11].

OpenType parameter TEX parameter

ScriptPercentScaleDown e. g. 70–80 %
ScriptScriptPercentScaleDown e. g. 50–60 %

DisplayOperatorMinHeight ?? (e. g. 12–15 pt)
(no correspondence) σ20 (e. g. 20–24 pt)
DelimitedSubFormulaMinHeight σ21 (e. g. 10–12 pt)

AxisHeight σ22 (axis height)
AccentBaseHeight σ5 (x-height)
FlattenedAccentBaseHeight ?? (capital height)

Table 7. Correspondence of font metric parameters
between OpenType and TEX affecting some general
aspects of math typesetting.

General parameters
The final group of OpenType parameters combines a
mixed bag of parameters for various purposes. Some
of them have a straight-forward correspondence in TEX
(such as the math axis position), while others do not
have any correspondence at all. As shown in table 7,
there are some very noteworthy parameters in this
group, which deserve some further explanations in the
following paragraphs.

(Script)ScriptPercentScaleDown.
These OpenType parameters represent the font sizes
of the first and second level script fonts relative to the
base font. In TEX math fonts, these parameters do not
have a correspondence in the font metrics. Instead
they are usually specified at the macro level when a
family of math fonts is loaded.

If a font family provides multiple design sizes (as in
Computer Modern), font loading of math fonts in TEX
might look like the following, using different design
sizes, each at their natural size:

\newfam\symbols
\textfont\symbols=cmsy10
\scriptfont\symbols=cmsy7
\scriptscriptfont\symbols=cmsy5

If a font family does not provide multiple design
sizes (as in MathTime), font loading of math fonts will
use scaled-down versions of the base font:

\newfam\symbols
\textfont\symbols=mtsy10 at 10pt
\scriptfont\symbols=mtsy10 at 7.6pt
\scriptscriptfont\symbols=mtsy10 at 6pt

The appropriate scaling factors depend on the font
design, but are usually defined in macro packages
or in format files using higher-level macros such as
\DeclareMathSizes in LaTEX.

18 MAPS 38 Ulrik Vieth

In OpenType math fonts, it will be possible to pack-
age optical design variants for script sizes into a single
font by using OpenType feature selectors to address the
design variants and using scaling factors as specified in
the MATH table. (As discussed in [12], there are many
issues to consider regarding the development of Open-
Type math fonts besides setting up the font parameters.
One such issue is the question of font organization re-
garding the inclusion of optical design variants into the
base font.)

The corresponding code for font loading of full-
featured OpenType math fonts in new TEX engines
might look like the following:

\newfam\symbols
\textfont\symbols="CambriaMath"
\scriptfont\symbols="CambriaMath:+ssty0"

scaled <ScriptPercentScaleDown>
\scriptscriptfont\symbols="CambriaMath:+ssty1"

scaled <ScriptScriptPercentScaleDown>

If the font provides optical design variants for some
letters and symbols, they will be substituted using the
+ssty0 or +ssty1 feature selectors, but the scaling
factor of (Script)ScriptPercentScaleDown will be applied in
any case regardless of substitutions.

DisplayOperatorMinHeight.
This OpenType parameter represents the minimum
size of big operators in display style. While TEX only
supports two sizes of operators, which are used in text
style and display style, OpenType can support multiple
sizes of big operators and it needs an additional para-
meter to determine the smallest size to use in display
style.

For font designers, it should be easy to set this pa-
rameter based on the design size of big operators, e. g.
using 14 pt for display style operators combined with
10 pt for text style operators.

DelimitedSubFormulaMinHeight.
This OpenType parameter represents the minimum
size of delimited subformulas and it might also be ap-
plied to the special case of delimited fractions.

To illustrate the significance, some explanations
may be necessary to point out the difference between
the usual case of fractions with delimiters and the spe-
cial case of delimited fractions.

If a generalized fraction with delimiters is coded like
the following

$ \left({n \atop k} \right) $

the contents will be treated as a standard case of a
generalized fraction, and the size of delimiters will
be determined by taking into account the effects of
\delimiterfactor and \delimitershortfall as

set up in the format file.
As a result, we will typically get 10 pt or 12 pt de-

limiters in text style and 18 pt or 24 pt delimiters in
display style. For typical settings, the delimiters only
have to cover 90 % of the required size and they may
fall short by at most 5 pt.

If a generalized fraction with delimiters is coded like
the following

$ {n \atopwithdelims() k} $

the contents will be treated as a delimited fraction, and
in this case the size of delimiters will depend on the
\fontdimen parameters σ20 and σ21 applicable in ei-
ther display style or text style.

As a result, regardless of the contents, we will al-
ways get 10 pt delimiters in text style and 24 pt delim-
iters in display style, even if 18 pt delimiters would be
big enough in the standard case.

While DelimitedSubFormulaMinHeight may be the best
choice of OpenType parameters to supply a value
for TEX’s \fontdimen parameters related to delimited
fractions, it will be insufficient by itself to represent a
distinction between display style and text style values
needed in TEX. (Unless we simply assume a factor, such
as σ20 = 2σ21.)

In the absence of a better solution, it may be best to
simply avoid using \atopwithdelims with OpenType
math fonts in the new TEX engines and to redefine user-
level macros (such as \choose) in terms of \left and
\right delimiters.

(Flattened)AccentBaseHeight.
These OpenType parameters affect the placement of
math accents and are closely related to design para-
meters of the font design.

While TEX assumes that accents are designed to fit
on top of base glyphs which do not exceed the x-height
(σ5) and adjusts the vertical position of accents accord-
ingly, OpenType provides a separate parameter for this
purpose, which doesn’t have to match the x-height of
the font, but plays a similar role with respect to accent
placement.

In addition to that, OpenType has introduced an-
other mechanism to replace accents by flattened ac-
cents if the size of the base glyph exceeds a certain
size, which is most likely related to the height of cap-
ital letters. At the time of writing, support for flat-
tened accents has not yet been implemented in the new
TEX engines, but it is being considered for LuaTEX ver-
sion 0.40 [11].

In view of these developments, font designers are
well advised to supply a complete set of values for all
the OpenType math parameters since new TEX engines
working on implementing full support for OpenType
math may start using them sooner rather than later.

OpenType Math Illuminated VOORJAAR 2009 19

So far, we have discussed only one aspect of the in-
formation contained in the OpenType MATH table, fo-
cusing on the global parameters which correspond to
TEX’s \fontdimen parameters or to built-in rules of
TEX’s math typesetting algorithms.

Besides those global parameters, there are other
data structures in the OpenType MATH table, which are
also important to consider, as we will discuss in the fol-
lowing sections.

Instructions for vertical and horizontal
variants and constructions
The concepts of vertical and horizontal variants and
constructions in OpenType math are obviously very
similar to TEX’s concepts of charlists and extensible
recipes. However, there are some subtle differences
regarding when and how these concepts are applied
in the math typesetting algorithms.

In TEX, charlists and extensible recipes are only used
in certain situations when typesetting elements such
as big operators, big delimiters, big radicals or wide
accents. In OpenType math fonts, these concepts have
been extended and generalized, allowing them to be
used also for other stretchable elements such as long
arrows or over- and underbraces.

Vertical variants and constructions
Big delimiters. When typesetting big delimiters or
radicals TEX uses charlists to switch to the next-larger
vertical variants, optionally followed by extensible
recipes for vertical constructions. In OpenType math,
these concepts apply in the same way.

It is customary to provide at least four fixed-size
variants, using a progression of sizes such as 12 pt,
18 pt, 24 pt, 30 pt, before switching to an extensible
version, but there is no requirement for that other than
compatibility and user expectations. (At the macro
level these sizes can be accessed by using \big (12 pt),
\Big (18 pt), \bigg (24 pt), \Bigg (30 pt).)

Font designers are free to provide any number of ad-
ditional or intermediate sizes, but in TEX they used to
be limited by constraints such as 256 glyphs per 8-bit
font table and no more than 16 different heights and
depths in TFM files. In OpenType math fonts, they are
no longer subject to such restrictions, and in the ex-
ample of Cambria Math big delimiters are indeed pro-
vided in seven sizes.

Big operators. When typesetting big operators TEX
uses the charlist mechanism to switch from text style
to display style operators, but only once. There is no
support for multiple sizes of display operators, nor are
there extensible versions.

In OpenType math, these concepts have been ex-
tended, so it would be possible to have multiple sizes
of display style operators as well as extensible versions
of operators, if desired.

While LuaTEX has already implemented most of the
new features of OpenType math, it has not yet ad-
dressed additional sizes of big operators, and it is not
clear how that would be done.

Most likely, this would require some changes to the
semantics of math markup at the user level, so that op-
erators would be defined to apply to a scope of a sub-
formula, which could then be measured to determine
the required size of operators.

In addition, such a change might also require
adding new parameters to decide when an opera-
tor is big enough, similar to the role of the parame-
ters \delimiterfactor and \delimitershortfall
in the case of big delimiters.

Horizontal variants and constructions
Wide accents. When typesetting wide math accents
TEX uses charlists to switch to the next-larger horizon-
tal variants, but it doesn’t support extensible recipes
for horizontal constructions.

As a result, math accents in traditional TEX fonts
cannot grow beyond a certain maximum size, and
stretchable horizontal elements of arbitrary size have
to be implemented using other mechanisms, such as
alignments at the macro level.

In OpenType math, these concepts have been ex-
tended, making it possible to introduce extensible ver-
sions of wide math accents (or similar elements), if
desired. In addition, new mechanisms for bottom ac-
cents have also been added, complementing the exist-
ing mechanisms for top accents.

Over- and underbraces. When typesetting some
stretchable elements such as over- and underbraces,
TEX uses an alignment construction at the macro level
to get an extensible brace of the required size, which
is then typeset as a math operator with upper or lower
limits attached.

While it would be possible to define extensible over-
and underbraces in OpenType math fonts as extensible
versions of math accents, the semantics of math ac-
cents aren’t well suited to handle upper or lower limits
attached to those elements.

In LuaTEX, new primitives \Uoverdelimiter and
\Uunderdelimiter have been added as a new con-
cept to represent stretchable horizontal elements
which may have upper or lower limits attached. The
placement of these limits is handled similar to limits
on big operators in terms of so-called ‘stretch stacks’
as discussed earlier in section .

20 MAPS 38 Ulrik Vieth

Long arrows. In TEX math fonts, long horizontal ar-
rows are constructed at the macro level by overlapping
the glyphs of short arrows and suitable extension mod-
ules (such as − or =). Similarly, arrows with hooks or
tails are constructed by overlapping the glyphs of reg-
ular arrows and suitable glyphs for the hooks or tails.

In OpenType math fonts, all such constructions can
be defined at the font level in terms of horizontal con-
structions rather than relying on the macro level. How-
ever, in most cases such constructions will also contain
an extensible part, making the resulting long arrows
strechable as well.

In LuaTEX, stretchable long arrows can also be de-
fined using the new primitives \Uoverdelimiter as
discussed in the case of over- and underbraces. The
placement of limits on such elements more or less cor-
responds to using macros such as \stackrel to stack
text on top of a relation symbol.

Encoding of variants and constructions
In traditional TEX math fonts, glyphs are addressed by
a slot number in a font-specific output encoding. Each
variant glyph in a charlist and each building block in
an extensible recipe needs to have a slot of its own in
the font table. However, only the entry points to the
charlists need to be encoded at the macro level and
these entry points in a font-specific input encoding do
not even have to coincide with the slot numbers in the
output encoding.

In OpenType math fonts, the situation is somewhat
different. The underlying input encoding is assumed to
consist of Unicode characters. However these Unicode
codes are internally mapped to font programs using
glyph names, which can be either symbolic (such as
summation or integral) or purely technical (such as
uni2345 or glyph3456).

With few exceptions, most of the variant glyphs and
building blocks cannot be allocated in standard Uni-
code slots, so these glyphs have to be mapped to the
private use area with font-specific glyph names. In
Cambria Math, variant glyphs use suffix names (such
as glyph.vsize<n> or glyph.hsize<n>), while other
fonts such as Asana Math use different names (such
as glyphbig<n> or glyphwide<n>).

For font designers developing OpenType math fonts,
setting up vertical or horizontal variants is pretty
straight-forward, such as
summation: summation.vsize1 summation.vsize2 ...
integral : integral.vsize1 integral.vsize2 ...

or
tildecomb: tildecomb.hsize1 tildecomb.hsize2

provided that the variant glyphs use suffix names.
Setting up vertical or horizontal constructions is

slightly more complicated, as it also requires some ad-
ditional information which pieces are of fixed size and
which are extensible, such as
integral : integralbt:0 uni23AE:1 integraltp:0

or
arrowboth :

arrowleft.left:0 uni23AF:1 arrowright.right:0

It is interesting to note that some of the building
blocks (such as uni23AE or uni23AF) have Unicode
slots by themselves, while others have to placed in the
private use area, using private glyph names such as
glyph.left, glyph.mid, or glyph.right.

Moreover, vertical or horizontal constructions may
also contain multiple extensible parts, such as in the
example of over- and underbraces, where the left, mid-
dle, and right parts are of fixed size while the extensi-
ble part appears twice on either side.

Additional glyph metric information
Besides the global parameters and the instructions
for vertical and horizontal variants and constructions,
there is yet another kind of information stored in the
OpenType MATH table, containing additions to the font
metrics of individual glyphs.

In traditional TEX math fonts, the file format of TFM
fonts only provides a limited number of fields to store
font metric information. As a workaround, certain
fields which are needed in math mode only are stored
in rather non-intuitive way by overloading fields for
other purposes [13].

For example, the nominal width of a glyph is used to
store the subscript position, while the italic correction
is used to indicate the horizontal offset between the
subscript and superscript position.

As a result, the nominal width doesn’t represent the
actual width of the glyph and the accent position may
turn out incorrect. As a secondary correction, fake
kern pairs with a so-called skewchar are used to store
an offset to the accent position.

In OpenType math fonts, all such non-intuitive ways
of storing information can be avoided by using addi-
tional data fields for glyph-specific font metric infor-
mation in the MATH table.

For example, the horizontal offset of the optical cen-
ter of a glyph is stored in a top_accent table, so any
adjustments to the placement of math accents can be
expressed in a straight-forward way instead of relying
on kern pairs with a skewchar.

Similarly, the italic correction is no longer used for
the offset between superscripts and subscripts. In-
stead, the position of indices can be expressed more
specifically in a math_kern array, representing cut-ins
at each corner of the glyphs.

OpenType Math Illuminated VOORJAAR 2009 21

Summary and conclusions
In this paper, we have tried to help improve the un-
derstanding of the internals of OpenType math fonts.
We have done this in order to contribute to the much-
needed development of math support for Latin Modern
and TEX Gyre fonts.

In the previous sections, we have discussed the pa-
rameters of the OpenType MATH table in great detail,
illustrating the similarities and differences between
traditional TEX math fonts and OpenType math fonts.
However, we have covered other aspects of OpenType
math fonts only superficially, as it is impossible to cover
everything in one paper.

For a more extensive overview of the features and
functionality of OpenType math fonts as well as a dis-
cussion of the resulting challenges to font developers,
readers are also referred to [12].

In view of the conference motto, it is interesting
to note that recent versions of LuaTEX have started to
provide a full-featured implementation of OpenType
math support in LuaTEX and Context [14, 15], which
differs significantly from the implementation of Open-
Type math support in X ETEX [10]. In this paper, we
have pointed out some of these differences, but fur-
ther discussions of this topic are beyond of the scope
of this paper.

Acknowledgments
The author once again wishes to thank Bogusław Jack-
owski for permission to reproduce and adapt the fig-
ures from his paper Appendix G Illuminated [6]. In
addition, the author also wishes to acknowledge feed-
back and suggestions from Taco Hoekwater and Hans
Hagen regarding the state of OpenType math support
in LuaTEX.

References
[1] Murray Sargent III: Math in Office Blog.

http://blogs.msdn.com/murrays/default.
aspx

[2] Murray Sargent III: High-quality editing and
display of mathematical text in Office 2007.
http://blogs.msdn.com/murrays/archive/
2006/09/13/752206.aspx

[3] John Hudson, Ross Mills: Mathematical Type-
setting: Mathematical and scientific typesetting
solutions from Microsoft. Promotional Booklet,
Microsoft, 2006.
http://www.tiro.com/projects/

[4] George Williams: FontForge. Math typesetting
information.

http://fontforge.sourceforge.net/math.
html

[5] Apostolos Syropoulos: Asana Math.
www.ctan.org/tex-archive/fonts/
Asana-Math/

[6] Bogusław Jackowski: Appendix G Illuminated.
Proceedings of the 16th EuroTEX Conference
2006, Debrecen, Hungary.
http://www.gust.org.pl/projects/
e-foundry/math-support/tb87jackowski.pdf

[7] Ulrik Vieth: Understanding the æsthetics of
math typesetting. Biuletyn GUST, 5–12, 2008.
Proceedings of the 16th BachoTEX Conference
2008, Bachotek, Poland.
http://www.gust.org.pl/projects/
e-foundry/math-support/vieth2008.pdf

[8] Microsoft Typography: OpenType specification.
Version 1.5, May 2008.
http://www.microsoft.com/typography/
otspec/

[9] Yannis Haralambous: Fonts and Encodings.
O’Reilly Media, 2007. ISBN 0-596-10242-9
http://oreilly.com/catalog/9780596102425/

[10] Will Robertson: The unicode-math package.
Version 0.3b, August 2008.
http://github.com/wspr/unicode-math/tree/
master

[11] Taco Hoekwater: LuaTEX Reference Manual.
Version 0.37, 31 March 2009.
http://www.luatex.org/svn/trunk/manual/
luatexref-t.pdf

[12] Ulrik Vieth: Do we need a ‘Cork’ math font
encoding? TUGboat, 29(3), 426–434, 2008.
Proceedings of the TUG 2008 Annual Meeting,
Cork, Ireland. Reprinted in this MAPS,
3–11.
https://www.tug.org/members/TUGboat/
tb29-3/tb93vieth.pdf

[13] Ulrik Vieth: Math Typesetting: The Good, The
Bad, The Ugly. MAPS, 26, 207–216, 2001.
Proceedings of the 12th EuroTEX Conference
2001, Kerkrade, Netherlands.
http://www.ntg.nl/maps/26/27.pdf

[14] Taco Hoekwater: Math extensions in LuaTEX.
Published elsewhere in this MAPS issue.

[15] Hans Hagen: Unicode math in Context Mk IV.
Published elsewhere in this MAPS issue.

Ulrik Vieth
Vaihinger Straße 69
70567 Stuttgart
Germany
ulrik dot vieth (at) arcor dot de

