
22 MAPS 38 Taco Hoekwater

Math in LuaTEX 0.40

Abstract
The math machinery in luaTEX has been completely
overhauled in version 0.40. The handling of mathematics
in luaTEX has been extended quite a bit compared to
how TEX82 (and therefore pdfTEX) handles math. First,
luaTEX adds primitives and extends some others so that
Unicode input can be used easily. Second, all of TEX82's
internal special values (for example for operator spacing)
have been made accessible and changeable via control
sequences. Third, there are extensions that make it
easier to use OpenType math fonts. And finally, there
are some extensions that have been proposed in the past
that are now added to the engine.

Introduction
We (the luaTEX team) started thinking about OpenType
Math support almost immediately after Cambria Math
was released, but it took us more than a year to get
around to actually writing the implementation. The
extensions to the math engine are not complete yet,
but there is now enough stuff worthy of publication.
This article tries to give a complete overview of all
work done so far, but that also means that it is sketchy
on details in some places. For the de󰀂nitive reference,
you should read the Math chapter in the luaTEX refer-
ence manual.

Pre-existing math primitives
TEX82
Besides the math primitives found in TEX82, luaTEX
has support for the extended math primitives that were
added by Aleph and X ETEX.

The TEX82 primitives have been left untouched,
except for the fact that when there is a character num-
ber needed on the left side of the equation sign (for
\mathcode and \delcode), this number can make use
of the full Unicode range.

Typical example code of TEX82 primitives:

\mathcode`\+="202B
\delcode`\(="028300
\mathchardef\alpha="010B
\mathchar"1270
\mathaccent"017E

\delimiter"3222378
\radical"270370

Aleph
The Aleph math primitives use a syntax that is a fairly
straightforward extension of the TEX82 primitives. The
difference is that everything has been extended to
allow for 16-bit character codes and 256 families.
For \odelcode, \odelimiter, and \oradical, this
forced the syntax into using two integers for the value
to be assigned (because more than 31 bits are needed)
but other than that every extension is quite straight-
forward.

Once again, luaTEX extends the character code on
the left side of the equals sign for \omathcode and
\odelcode to the full Unicode range.

Typical example code of Aleph primitives:

\omathcode`\+="200002B
\odelcode`\(="000028 "030000
\omathchardef\alpha="001000B
\omathchar"1020070
\omathaccent"001007E
\odelimiter"3020022 "030078
\oradical"020070 "030070

XƎTEX
The X ETEX primitives need to pack even more infor-
mation: like Aleph, X ETEX has 256 math families, but
each of those is encoded using the full Unicode range.
This makes it hard to come up with a nice hexadecimal
notation, so instead the values are split up into their
class, family, slot segments, for example:

\def\overbrace {\Umathaccent 0 1 "23DE }

When a math class is required, this is given by the 󰀂rst
integer, which ranges from 0 to 7. The next integer is
the family number and ranges from 0 to 255. The last
integer is the Unicode code point, which ranges from
0 to hexadecimal 0x10FFFF (1,114,111 in decimal).

There are always just two or three integers needed,
because X ETEX never bothers to list ‘small’ and ‘large’
versions of delimiters. The use of large vs. small items
is controlled via OpenType font parameters.

LuaTEX includes primitives that are fully compatible

Math in LuaTEX 0.40 VOORJAAR 2009 23

with their X ETEX counterparts except for their names.
Where X ETEX uses the \XeTeX pre󰀂x, luaTEX uses \U.

Typical example code of X ETEX-compatible primitives:

\Umathcode`\+="2 "0 "2B
\Udelcode`\(= "0 "28
\Umathchardef\alpha="0 "1 "B
\Umathchar "1 "2 "70
\Umathaccent "0 "1 "7E
\Udelimiter "3 "2 "22
\Uradical "2 "70

For the sake of completeness, the ‘packed’ X ETEX primi-
tives \Umathcharnum, \Umathcodenum and \Udelco-
denum are also provided, but their use is discouraged.

General new math extensions
Cramped math styles
TEX's math engine has four main math styles: display
style, text style, script style, and scriptscript style. Each
of those four main styles can also appear in a ‘cramped’
form that is suitable for use in situations where some-
thing lives on top of the current sub-formula (like in
the denominator part of a fraction). This makes for a
total of eight styles. In TEX82, it is possible to force
a particular main math style by using one of these
primitives:

\displaystyle
\textstyle
\scriptstyle
\scriptscriptstyle

However, until now it was not possible to explicitly
switch to one of the cramped modes. For this, luaTEX
adds the following four new primitives:

\crampeddisplaystyle
\crampedtextstyle
\crampedscriptstyle
\crampedscriptscriptstyle

Math characters in text mode
LuaTEX allows \mathchar, \omathchar, and \Umath-
char and control sequences that are the result of
\mathchardef, \omathchardef, or \Umathchardef
outside math mode.

When luaTEX sees an object like this, it uses the
\textfont from the requested math family to produce
a normal glyph node.

For example, assume that \alpha is de󰀂ned as
before and that \omega is de󰀂ned as a \mathchardef
with value "121. Further assume that \textfont1

is \teni (as it is in the plain macros). Under these
conditions,

From \alpha\ to \omega.

and

From {\teni\char"B} to {\teni \char"21}.

are equivalent. Both will produce:

From 𝛼 to 𝜔.

Querying the math style
The new expandable primitive \mathstyle returns a
value between 0 and 7 (in math mode), or −1 (all
other modes). The returned number represents the
current math style value.

Higher numbers represent smaller styles: 0 stands
for \displaystyle, 1 for \crampeddisplaystyle,
and 7 for \crampedscriptscriptstyle.

Using these new primitives, you can write code like
this:

\def\uncramped#1{{\ifcase\mathstyle
\or \displaystyle \or
\or \textstyle \or
\or \scriptstyle \or
\or \scriptscriptstyle \fi #1}}

or even create a fully expandable version of \math-
choice:

\def\mathchoice#1#2#3#4{{\ifcase\mathstyle
#1\or #1\or
#2\or #2\or
#3\or #3\or
#4\or #4\fi}}

To make it easier to test the return value of \math-
style, the four old and the four new math style
commands have been altered so that they can be used
as numeric values for testing. This allows constructs
like this:

\ifnum\mathstyle=\textstyle
\message{normal text style}

\fi

But there is a small catch: there are a few primitives
(\over, \atop, \overwithdelims, \atopwithde-
lims) in TEX82 where the style that will be used is
not known at the start, and these commands would
therefore return wrong values for \mathstyle.

24 MAPS 38 Taco Hoekwater

To make it possible to get the correct math style
in all cases, luaTEX introduces the new primitive
\Ustack, that can (should) be used as a pre󰀂x for the
commands given above.

$\Ustack { ... a ... \over ... b ... }$

The \Ustack command will make sure that \math-
style is returning the correct values, even inside the
... a ... branch. A \Ustack can be nested inside
another, if needed.

Bottom accents
Besides the normal top accents, luaTEX also supports
bottom accents in math mode. For bottom accents,
there is the new primitive \Umathbotaccent. For
combined top and bottom accents, there is \Umath-
accents. The latter takes two math accent speci󰀂ca-
tions. Like all the new primitives that actively scan
for mathchars or delimititers, these use the X ETEX-style
syntax:

$$
\Umathbotaccent"0"0"323 A
\Umathaccents "0"0"20D7 "0"0"323 A
$$

𝐴̣ ⃗⃗𝐴̣

Horizontal extenders
On top of the normal vertical extensibles, luaTEX also
has support for horizontal extensibles. This is particu-
larly useful for wide accents, as the following example
shows:

\def\overarrow{\Umathaccent"0"0"20D7}
$$
\overarrow{a+b+c+d+e}
$$

⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗𝑎 + 𝑏 + 𝑐 + 𝑑 + 𝑒

Note that this feature depends on support from the
math font that is being used. This article is typeset
using MicroSoft's Cambria Math font and that actually
has this support built in, but so far none of the standard
TEX fonts provide the needed information.

Math parameters
In luaTEX, the font dimension parameters that TEX82
uses in math typesetting are now accessible via prim-
itive commands. These parameters are initialized
from the math fonts, or can be set by the user via
explicit commands. Each math parameter exists in

eight versions that match the math styles. Re-factoring
of the math engine has resulted in more parameters
than were accessible before, even when taking the font
dimensions of the math fonts into account.

Math parameter commands
Each of the math parameters (the full list is given
in table 1 at the end of this article) can be set by an
explicit command, like this:

\Umathquad\displaystyle=1em

Such settings obey grouping, but only one value can
be in effect for a single formula, and that is decided
upon when the closing dollar sign is read in. Here is
an example:

\centerline{
$
\Ustack{a \over b} × b
$ \kern 50pt $
\Umathfractiondenomvgap \textstyle = 8pt
\Ustack{a \over b} × b
$}

𝑎

𝑏
× 𝑏

𝑎

𝑏

× 𝑏

You can use \the\Umathquad\displaystyle if the
current value is needed (for example inside a space
󰀂ne-tuning macro).

Font-based Math Parameters
While it is nice to have these math parameters avail-
able for tweaking, it would be tedious to have to
set each of them by hand. For this reason, luaTEX
initializes (almost) all these parameters whenever you
assign a font identi󰀂er to a math family. This is
based either on the traditional math font dimensions
in the font (for assignments to math family 2 and 3
using TFM-based fonts like cmsy and cmex), or on
the named values in a ‘MathConstants’ table (when an
OpenType math font is loaded via Lua). If there is a
‘MathConstants’ table, this takes precedence over font
dimensions, and in that case no attention is paid to
which family is being assigned to: the ‘MathConstants’
tables in the last assigned family sets all parameters.

The eight math parameters are typically set by using
the \textfont value for the display and text styles
(cramped and normal), \scriptfont for the script
styles, and \scriptscriptfont for the scripscript
styles. In table 2 these automatic mappings are shown.
Besides the parameters listed in that table, luaTEX also
looks at the ‘space’ font dimension parameter. For
math fonts, this should be set to zero.

Math in LuaTEX 0.40 VOORJAAR 2009 25

Math spacing parameters
Inter-element math spacing in TEX82 is controlled by
the 8 × 8 table of spacing values that is given in
Chapter 18 of the TEXbook. In luaTEX, this table
has been converted into 64 primitives of the form
\Umath...spacing, for all the paired combinations
of bin, rel, ord, open, close, punct, inner, and op.
Here is an example:

\centerline{$
a × b
$ \kern 50pt $
\Umathordbinspacing \textstyle = 18mu
\Umathbinordspacing \textstyle = \thickmuskip
\thickmuskip = 10mu
a × b
$}

𝑎 × 𝑏 𝑎 × 𝑏

Normally, one would assign explicit mu dimensions
to these parameters, but a special case arises when
the prede󰀂ned muskip registers are used. When
the assignment uses \thinmuskip, \medmuskip, or
\thickmuskip, late binding is used, so that later
(re)assignments to one of these registers is taken into
account.

Verbose versions of character commands
luaTEX de󰀂nes six new primitives that have the same
function as ^, _, $, and $$.

primitive explanation
\Usuperscript for the functionality of ^
\Usubscript for the functionality of _
\Ustartmath for $, outside math.
\Ustopmath for $, inside inline math.
\Ustartdisplaymath for $$, outside math.
\Ustopdisplaymath for $$, inside display math.

The \Ustopmath and \Ustopdisplaymath primitives
check if the current math mode is the correct one
(inline vs. displayed), but you can freely intermix the
four mathon/mathoff commands with explicit dollar
sign(s).

Lua math extensions
Setting and getting math parameters
The lua functions tex.setmath() and tex.get-
math() can be used to get or set the internal math
parameters.

To set a math parameter, use tex.setmath():

tex.setmath(<string> n, <string> t, <number> n)

or

tex.setmath('global',
<string> n, <string> t, <number> n)

In an attempt to cut down the verbosity level, the
󰀂rst string is the parameter name minus the leading
‘Umath’, and the second string is the style name minus
the trailing ‘style’, for example:

tex.setmath('fractiondenomvgap','text',8*65536)

An optional 󰀂rst parameter can be given with the
explicit string 'global', which indicates a global
assignment. For now, you cannot use Lua for the math
object spacing parameters (because there is no read
interface for ‘mu’ lengths de󰀂ned yet).

Querying a math parameter uses the inverse func-
tion tex.getmath():

<number> n = tex.getmath(<string> n, <string> t)

which should not need further explanation.

Attributes in math mode
Starting with luaTEX 0.40, node attributes are now
remembered in math mode even after the conversion
from math back to the horizontal list that is eventually
added to the typeset paragraph. New nodes that are
created in this process (like the horizontal rule in a
fraction) inherit their attributes from the most logical
parent node.

The ‘mlist_to_hlist’ callback
A simple callback is offered that can be used to alter
last-minute things in the math node list. When you
use this callback, you have to run the math to hlist
conversion process yourself. To make this easier, there
is a builtin function that does exactly what luaTEX
would have done if there was no callback set.

First, here is the syntax diagram for the callback:

function(<node> head,
<string> displaytype,
<boolean> need_penalties)

return <node> newhead
end

The returned node has to be the head of the list
that will be added to the vertical or horizontal list,
the string displaytype argument is either ‘text’ or
‘display’ depending on the current math mode, the
boolean need_penalties argument is true if penal-
ties have to be inserted into the generated hlist, false
otherwise.

26 MAPS 38 Taco Hoekwater

If all you want to do is alter a few small things, than
the easiest approach is to make those alterations 󰀂rst,
and then call the following helper function:

<node> h = node.mlist_to_hlist(
<node> n,
<string> displaytype,
<boolean> penalties)

This runs the internal mlist to hlist conversion, con-
verting the math list in n into the horizontal list h.
The interface is exactly the same as for the callback
mlist_to_hlist, so that a simple working callback is
this one:

callback.register ('mlist_to_hlist',
function (h,d,n)

return node.mlist_to_hlist(h,d,n)
end)

OpenType Math features
As explained by Ulrik Vieth's articles on the subject,
there is much more to ‘OpenType Math’ than just being
able to handle Unicode input characters. A number of
extensions have been made to luaTEX to handle speci󰀂c
features of OpenType Math.

OpenType font metrics
First, lets talk about OpenType font metrics. OpenType
fonts in luaTEX are always loaded via lua code in the
define_font callback, and OpenType Math fonts are
no exception.

The lua function fontloader.to_table() outputs
the OpenType Math information in two parts: there is
a global part where the Math Constants are listed, and
a per-glyph local part with data like italic correction
and extensible recipe structures.

The global part looks like this:

["math"]={
["AxisHeight"]=585,
...
["FractionDenominatorDisplayStyleGapMin"]=260,
["FractionDenominatorGapMin"]=133,
["FractionDenominatorShiftDown"]=1030,
["FractionNumeratorDisplayStyleGapMin"]=260,
["FractionNumeratorDisplayStyleShiftUp"]=1550,
["FractionNumeratorGapMin"]=133,
...
["ScriptPercentScaleDown"]=73,
["ScriptScriptPercentScaleDown"]=60,
...

The full list is longer than this of course; all the math
constants are listed in that table. Except for a few
cases with the word ‘Percent’ in the name, values
are expressed in design units, and these have to be
converted by Lua code into scaled points before being
passed back to luaTEX (as is the case for all font
dimensions).

The example above is taken from Cambria Math
which is a Truetype format font with 2048 design units
per em, so the actual value of ‘AxisHeight’ if the font is
loaded at 10pt would be

585/2048 * 10pt = 187200sp

The local part is easier to explain in two steps, because
not all glyphs have the same set of extended infor-
mation. The 󰀂rst example shows the relevant part of
the data for the Unicode character ‘MATHEMATICAL
ITALIC SMALL F’, 𝑓:

{
["name"]="u1D453",
["italic_correction"]=60,
["mathkern"]={
["bottom_right"]={
{

["height"]=420,
["kern"]=-400,

},
{

["height"]=720,
["kern"]=-320,

},
{

["height"]=1020,
["kern"]=0,

},
},
["bottom_left"]={ ... }
["top_right"]={ ... }

},
["top_accent"]=840,
...

},

As you can see, it has an italic correction of 60 design
units, it has an entry top_accent that is used for the
placement of math accents on top of the glyph, and
it has a mathkern subtable. The mathkern table is
used for super- and subscript placement: it can de󰀂ne
kerning corrections for each of the four corners of the
glyph. Any of those can be missing, in which case no
correction is needed (this is the case for the top_left
side of this glyph).

Math in LuaTEX 0.40 VOORJAAR 2009 27

The next example shows part of the metric data for
SQUARE ROOT, the extensible character that represents

the root sign, √:

{
["name"]="radical",
["vert_variants"]={
["italic_correction"]=0,
["parts"]={
{

["component"]="uni23B7",
["advance"]=2743,
["end"]=2500,

},
{

["component"]="uni20D3",
["advance"]=1211,
["end"]=1150,
["extender"]=1,
["start"]=1150,

},
{

["component"]="radical.top",
["advance"]=1211,
["start"]=600,

}
},

["variants"]="radical radical.vsize1 \
radical.vsize2 radical.vsize3\
radical.vsize4 radical.vsize5"

}
...

},

This glyph does not have either of the mathkern and
top_accent extended information items that were
present in the previous example, but it does have a
vert_variants subtable. This table contains infor-
mation for extensible recipes, split into three parts:

the variants string gives a sequence of versions
of this glyph with ever increasing size,
the parts table lists the extensible parts,
the italic_correction gives the italic correction
that is needed for a glyph constructed from such
parts.

The actual metric details will be explained later.

OpenType Math family sizes and ssty
When using OpenType Math fonts, it is important to
load the \scriptfont and \scriptscriptfont at
the sizes that are requested by the font designer (via
ScriptPercentScaleDown and ScriptScriptPer-
centScaleDown).

If the font provides an ssty feature, then it is
advisable to enable that feature (with values ssty=1
for script size and ssty=2 for script script size). The
difference between doing so and simply loading the
Cambria Math font at the ‘normal’ values of 70% and
50% can be seen in this example:

𝑥𝑥
𝑥

𝑥𝑥
𝑥

cambria cambria
7pt/5pt 73%/60%+ssty

Extra Math Parameters
OpenType Math fonts have a few extra parameters
compared to traditional TFM-based math fonts, and
the effects of those extra parameters can be quite no-
ticeable. The example below shows the difference be-
tween using the actual \Umathfractiondenomvgap
and \Umathfractionnumvgap from Cambria Math
versus the hardwired TEX82 value of three times de-
fault_rule_thickness:

𝑝𝑝

𝑏𝑏

𝑝𝑝

𝑏𝑏

TEX82, 3*rule thickness luaTEX, from font

Math accent placements
When a math (top) accent has to be placed and the ac-
centee is a character that has a non-zero top_accent
value, then this value will be used to place the accent
instead of the \skewchar kern used by TEX82.

The top_accent value represents a vertical line
somewhere in the accentee. The accent will be shifted
horizontally such that its own top_accent line coin-
cides with the one from the accentee. If the top_ac-
cent value of the accent is zero, then half the width
of the accent followed by its italic correction is used
instead.

In a picture, it looks like this:

𝑓
top_accent

840

̂
top_accent

-288

→ 𝑓
top_accent

840

̂
top_accent

-288

The vertical placement of a top accent depends on the
x_height of the font of the accentee (as explained

28 MAPS 38 Taco Hoekwater

in the TEXbook), but if that value turns out to be
zero and the font has a ‘MathConstants’ table, then
AccentBaseHeight is used instead.

If a math bottom accent has to be placed, the
bot_accent value is checked instead of top_accent.
Because bottom accents do not exist in TEX82, the
\skewchar kern is ignored.

The vertical placement of a bottom accent is straight
below the accentee, no correction takes place.

Also, remember that luaTEX has horizontal extensi-
bles, and when present, these will be used by the ac-
cent placement primitives to build up longer versions
when that is needed.

Overlapping extensibles
In TFM based fonts, extensible bits of glyphs are placed
butt to butt, which normally works 󰀂ne when printing,
but often creates problems with PDF previewers. If
you are looking at this article in PDF format, you will
likely see small gaps appearing in the left side of the
following example:

√√√√√
 ⎧

⎨
⎩

√
⎞

⎠

… but not on the right side, because the right side uses
OpenType extensible recipes where a certain amount
of overlap is built in.

Recall the vert_variants metrics representation
that was listed earlier. Each of the parts had an
advance key, but also type start and/or end. These
latter two are combined with the ‘MathConstants’
value MinConnectorOverlap to de󰀂ne overlap zones.
Once again here is an image to demonstrate the effect
(the actual algorithm is documented in the OpenType
Math speci󰀂cation, which is followed by luaTEX).

⎷ ⃓ √ → ⎷

⃓
√

Extensible big operators
In OpenType Math (and therefore also in luaTEX), big
operators can come in more than just the two sizes
provided by TEX82. Big operators can even be build
up from extensible parts.

Normally, the OpenType font designer decides the
size that is used in display mode via the ‘MathCon-

stants’ table, but it can be fun to change the used value
manually. For example:

\Umathoperatorsize\displaystyle = 15pt
$$\sum_{k=2}^4 k^2 = 2^2 + 3^2 + 4^2 = 29$$
\Umathoperatorsize\displaystyle = 55pt
$$\sum_{k=2}^4 k^2 = 2^2 + 3^2 + 4^2 = 29$$

4

∑

𝑘=2

𝑘2 = 22 + 32 + 42 = 29

4

∑

𝑘=2

𝑘2 = 22 + 32 + 42 = 29

Script placements
As seen earlier, the character entries in an OpenType
Math font can have a ‘mathkern’ table.

The ‘mathkern value’ at a speci󰀂c height is the kern
value that is speci󰀂ed by the next higher height and
kern pair, or the highest one in the character (if there
is no value high enough in the character), or simply
zero (if the character has no mathkern pairs at all).

𝑓
bottom_left

(100,0)

(0,100)

top_right

(0,620)

(65,720)

bottom_right

(-400,420)

(-320,720)

(0,1020)

italic 60

top_accent

840

𝑎top_right

(0,0)

bottom_right

(0,0)

italic 50

top_accent

672

When a super- or subscript has to be placed next to
a math item, luaTEX checks whether the super- or sub-
script and the nucleus are both simple character items.
If they are, and if the fonts of both character items
are OpenType fonts (as opposed to legacy TEX fonts),
then luaTEX will use the OpenTypeMath algorithm for
deciding on the horizontal placement of the super- or
subscript. This works as follows:

The vertical position of the script is calculated.
The default horizontal position is 󰀄at next to the
base character.
For superscripts, the italic correction of the base
character is added.
For a superscript, two vertical values are calcu-
lated: the bottom of the script (after shifting up),

Math in LuaTEX 0.40 VOORJAAR 2009 29

and the top of the base. For a subscript, the two
values are the top of the (shifted down) script, and
the bottom of the base.
For each of these two locations, luaTEX:
− 󰀂nds out the ‘mathkern value’ at this height for

the base (for a subscript placement, this is the
bottom_right corner, for a superscript place-
ment the top_right corner)

− 󰀂nds out the ‘mathkern value’ at this height for
the script (for a subscript placement, this is the
top_left corner, for a superscript placement
the bottom_left corner)

The horizontal kern to be applied is the smallest of
the two results from previous step.

A picture should help make this clearer:

𝑓𝑎 → 𝑓bottom_right

(-400,420)

(-320,720)

(0,1020)

𝑎
Legends on extensible items
The new \Uunderdelimiter and \Uoverdelimiter
primitives allow the placement of a subscript or
superscript on an extensible item and the comple-
mentary \Udelimiterunder and \Udelimiterover
primitives allow the placement of an extensible item
as a subscript or superscript on a nucleus.

In all four primitives, the vertical placements are
controlled by \...bgap and \...vgap parameters
using a similar method as for limit placements on large
operators. The superscript in \Uoverdelimiter is
typeset in a suitable scripted style, the subscript in
\Uunderdelimiter is cramped as well.

$$
A \mathrel{\Uoverdelimiter 0 "2192 {a+b}}
B \mathrel{\Uunderdelimiter 0 "2192 {a+b}} C
$$

𝐴
𝑎+𝑏
→⎯→ 𝐵 →⎯→

𝑎+𝑏
𝐶

$$\Udelimiterover 0 "23DE {a+b}
+ \Udelimiterunder 0 "23DF {a+b} = C $$

⏜⎴⏞⎴⏜
𝑎 + 𝑏 + 𝑎 + 𝑏

⏝⎵⏟⎵⏝
= 𝐶

Here it is the delimiter that is typeset in a script style.

Radicals with degrees
The new primitive \Uroot allows the direct construc-
tion of a radicals including a degree. Its syntax is a
straightforward extension of \Uradical:

\Uradical <fam> <char> <radicand>
\Uroot <fam> <char> <degree> <radicand>

The placement of the degree is controlled by the
math parameters \Umathradicaldegree..., and the
degree is typeset in \scriptscriptstyle.

$$
\Uroot 0 "221A {3}{x^3+y^3}
$$

3
√𝑥3 + 𝑦3

This bit of the OpenType Math speci󰀂cation is a
literal conversion of the plain TEX macro \root \of,
with the important difference being that it shifts the
adhoc values in the plain macro to the font, so that the
font designer can come up with nice looking values.

In luaTEX, this functionality could have been imple-
mented by a macro. However, doing so felt clumsy
because of the need to take care of the different sizes.

Open OpenType issues
There are a few remaining problems that have not been
dealt with at the time of the writing of this article:

It is not clear how \atopwithdelims and \over-
withdelims should be implemented with Open-
Type Math fonts. For the moment, it is best to
avoid using these primitives.
It is unclear whether stretch stacks (the four primi-
tives explained in the ‘Legends on extensible items’
section) should be centered on the math axis or
not.
Some confusion remains on what the Math con-
stant ‘DelimitedSubFormulaMinHeight’ is meant to
represent.

Two features of OpenType Math have not been imple-
mented yet:

Skewed (text-style) fractions.
Flattened accents for high characters.

These, as well as some other math extensions, are
planned for the luaTEX 0.50 release.

Taco Hoekwater

30 MAPS 38 Taco Hoekwater

Primitive name Description

\Umathquad the width of 18mu's
\Umathaxis height of the vertical center axis of the math formula above the baseline
\Umathoperatorsize minimum size of large operators in display mode
\Umathoverbarkern vertical clearance above the rule
\Umathoverbarrule the width of the rule
\Umathoverbarvgap vertical clearance below the rule
\Umathunderbarkern vertical clearance below the rule
\Umathunderbarrule the width of the rule
\Umathunderbarvgap vertical clearance above the rule
\Umathradicalkern vertical clearance above the rule
\Umathradicalrule the width of the rule
\Umathradicalvgap vertical clearance below the rule
\Umathradicaldegreebefore the forward kern that takes place before placement of the radical degree
\Umathradicaldegreeafter the backward kern that takes place after placement of the radical degree
\Umathradicaldegreeraise this is the percentage of the total height and depth of the radical sign that

the degree is raised by. It is expressed in percents, so 60% is expressed
as the integer 60.

\Umathstackvgap vertical clearance between the two elements in a \atop stack
\Umathstacknumup numerator shift upward in \atop stack
\Umathstackdenomdown denominator shift downward in \atop stack
\Umathfractionrule the width of the rule in a \over
\Umathfractionnumvgap vertical clearance between the numerator and the rule
\Umathfractionnumup numerator shift upward in \over
\Umathfractiondenomvgap vertical clearance between the denominator and the rule
\Umathfractiondenomdown denominator shift downward in \over
\Umathfractiondelsize minimum delimiter size for \...withdelims
\Umathlimitabovevgap vertical clearance for limits above operators
\Umathlimitabovebgap vertical baseline clearance for limits above operators
\Umathlimitabovekern space reserved at the top of the limit
\Umathlimitbelowvgap vertical clearance for limits below operators
\Umathlimitbelowbgap vertical baseline clearance for limits below operators
\Umathlimitbelowkern space reserved at the bottom of the limit
\Umathoverdelimitervgap vertical clearance for limits above delimiters
\Umathoverdelimiterbgap vertical baseline clearance for limits above delimiters
\Umathunderdelimitervgap vertical clearance for limits below delimiters
\Umathunderdelimiterbgap vertical baseline clearance for limits below delimiters
\Umathsubshiftdrop subscript drop for boxes and sub-formulas
\Umathsubshiftdown subscript drop for characters
\Umathsupshiftdrop superscript drop (raise, actually) for boxes and sub-formulas
\Umathsupshiftup superscript raise for characters
\Umathsubsupshiftdown subscript drop in the presence of a superscript
\Umathsubtopmax the top of standalone subscripts cannot be higher than this above the

baseline

\Umathsupbottommin the bottom of standalone superscripts cannot be less than this above the
baseline

\Umathsupsubbottommax the bottom of the superscript of a combined super- and subscript be at
least as high as this above the baseline

\Umathsubsupvgap vertical clearance between super- and subscript
\Umathspaceafterscript additional space added after a super- or subscript
\Umathconnectoroverlapmin minimum overlap between parts in an extensible recipe

Table 1 Named math parameters.

Math in LuaTEX 0.40 VOORJAAR 2009 31

Variable Default value (OpenType) Default value (TFM)
\Umathaxis AxisHeight axis_height
\Umathoperatorsize MinimumDisplayOperatorHeight <not set>
\Umathfractiondelsize 0 delim1, delim2
\Umathfractiondenomdown FractionDenominator[DisplayStyle]ShiftDown denom1, denom2
\Umathfractiondenomvgap FractionDenominator[DisplayStyle]GapMin 3*rule, rule
\Umathfractionnumup FractionNumerator[DisplayStyle]ShiftUp num1, num2
\Umathfractionnumvgap FractionNumerator[DisplayStyle]GapMin 3*rule, rule
\Umathfractionrule FractionRuleThickness rule
\Umathlimitabovebgap UpperLimitBaselineRiseMin big_op_spacing3
\Umathlimitabovekern 0 big_op_spacing5
\Umathlimitabovevgap UpperLimitGapMin big_op_spacing1
\Umathlimitbelowbgap LowerLimitBaselineDropMin big_op_spacing4
\Umathlimitbelowkern 0 big_op_spacing5
\Umathlimitbelowvgap LowerLimitGapMin big_op_spacing2
\Umathoverdelimitervgap StretchStackGapBelowMin big_op_spacing1
\Umathoverdelimiterbgap StretchStackTopShiftUp big_op_spacing3
\Umathunderdelimitervgap StretchStackGapAboveMin big_op_spacing2
\Umathunderdelimiterbgap StretchStackBottomShiftDown big_op_spacing4
\Umathoverbarkern OverbarExtraAscender rule
\Umathoverbarrule OverbarRuleThickness rule
\Umathoverbarvgap OverbarVerticalGap 3*rule
\Umathquad <font_size(f)> math_quad
\Umathradicalkern RadicalExtraAscender rule
\Umathradicalrule RadicalRuleThickness <not set>
\Umathradicalvgap Radical[DisplayStyle]VerticalGap (rule+(abs(math_x)/4)),

(rule+(abs(rule)/4))
\Umathradicaldegreebefore RadicalKernBeforeDegree <not set>
\Umathradicaldegreeafter RadicalKernAfterDegree <not set>
\Umathradicaldegreeraise RadicalDegreeBottomRaisePercent <not set>
\Umathspaceafterscript SpaceAfterScript script_space
\Umathstackdenomdown StackBottom[DisplayStyle]ShiftDown denom1, denom2
\Umathstacknumup StackTop[DisplayStyle]ShiftUp num1, num3
\Umathstackvgap Stack[DisplayStyle]GapMin 7*rule, 3*rule
\Umathsubshiftdown SubscriptShiftDown sub1
\Umathsubshiftdrop SubscriptBaselineDropMin sub_drop
\Umathsubsupshiftdown SubscriptShiftDown[WithSuperscript] sub2
\Umathsubtopmax SubscriptTopMax (abs(math_x*4)/5)
\Umathsubsupvgap SubSuperscriptGapMin 4*rule
\Umathsupbottommin SuperscriptBottomMin (abs(math_x)/4)
\Umathsupshiftdrop SuperscriptBaselineDropMax sup_drop
\Umathsupshiftup SuperscriptShiftUp[Cramped] sup1, sup2, sup3
\Umathsupsubbottommax SuperscriptBottomMaxWithSubscript (abs(math_x*4)/5)
\Umathunderbarkern UnderbarExtraDescender rule
\Umathunderbarrule UnderbarRuleThickness rule
\Umathunderbarvgap UnderbarVerticalGap 3*rule
\Umathconnectoroverlapmin MinConnectorOverlap 0

Table 2 Initialization of math parameters from font information. In the last column, ‘rule’ stands for de-
fault_rule_thickness, and ‘math_x’ stands in for math_x_height. Where multiple values or square brackets are
present some of the eight parameter instances are based on some values and others on other values. See the
luaTEX reference manual for more detailed information.

