Classical Math Fractals in PostScript

Fractal Geometry I

Abstract
Classical mathematical fractals in BASIC are explained and converted into mean-and-lean EPSF defs, of which the .eps pictures are delivered in .pdf format and cropped to the prescribed BoundingBox when processed by Acrobat Pro, to be included easily in pdf(La)TeX, Word, ... documents. The EPSF fractals are transcriptions of the Turtle Graphics BASIC codes or programmed anew, recursively, based on the production rules of oriented objects. The Lindenmayer production rules are enriched by PostScript concepts. Experience gained in converting a TeX script into WYSIWYG Word is communicated.

Keywords
Acrobat Pro, Adobe, art, attractor, backtracking, BASIC, Cantor Dust, C curve, dragon curve, EPSF, FIFO, fractal, fractal dimension, fractal geometry, Game of Life, Hilbert curve, IDE (Integrated development Environment), IFS (Iterated Function System), infinity, kronkel (twist), Lauwerier, Lévy, LIFO, Lindenmayer, minimal encapsulated PostScript, minimal plain TeX, Minkowski, Monte Carlo, Photoshop, production rule, PSlib, self-similarity, Sierpiński (island, carpet), Star fractals, TACP, TeXworks, Turtle Graphics, (adaptable) user space, von Koch (island), Word

Contents
- Introduction
- Lévy (Properties, PostScript program, Run the program, Turtle Graphics)
- Lindenmayer enriched by PostScript concepts for the Lévy fractal
- von Koch (Properties, PostScript def, Turtle Graphics, von Koch island)
- Lindenmayer enriched by PostScript concepts for the von Koch fractal
- Kronkel
- Minkowski
- Dragon figures
- Stars
- Game of Life
- Annotated References
- Conclusions (TeX mark up, Conversion into Word)
- Acknowledgements (IDE)
- Appendix: Fractal Dimension
- Appendix: Cantor Dust
- Appendix: Hilbert Curve
- Appendix: Sierpiński islands

Introduction
My late professor Hans Lauwerier published nice, inspiring booklets about fractals with programs in BASIC. However, I don’t know how to include elegantly the pictures, obtained by running the BASIC codes, in my documents. Moreover, I consider PostScript (PS, for short) more portable in place and time, can include EPSF results in my TeX documents easily, and ... do realize that PS is the de-facto standard industrial printer language.
This note is about conversion of some of Lauwerier’s BASIC Turtle Graphics codes for the simplest fractals into EPSF, and about the programming of new recursive EPSF def's biased by Lindenmayer production rules for oriented objects, enriched with PS concepts.

Now and then I have explained Lauwerier’s algorithms, especially when he associates binary and quaternary number representations with fractals.

Fractals have widened the dimension concept into fractal-valued dimensions. Although the fractal dimension concept is not necessary in order to understand the codes, I have added the appendix Fractal Dimension, because fractal dimensions contribute to characterizing fractals. Moreover, fractal dimension gives meaning to the 19th century ‘monstruous’ plane-filling curves.

Fractals were invented in the 20th century, and became the geometry of this century due to the development of computers, because computers are the tools for viewing and researching fractals.

The ancestor of fractals is the 1D Cantor Dust. 2D predecessors of fractals are the plane-filling curves named after Peano, Hilbert, Sierpiński, …, which captivated mathematicians in the late 19th and the early 20th century.

Sierpiński curves have found their niche in the solution of the travelling salesman problem.

In the sequel Lévy, von Koch, Kronkel (Dutch, means twist), Minkowski, Dragon curve, star fractals, and a variant of the Game of Life are discussed. There are 4 appendices: the first about Fractal Dimension, the second about the historical Cantor Dust, the third about the classical Hilbert curve, and the last about Sierpiński islands.

In the footsteps of Lauwerier, the reader is invited to experiment with the PS programs, of which def's are supplied in my PSlib.eps library, which I’ll send on request. MetaPost aficionados may translate the included Metafont codes into MetaPost, I presume.

Lévy fractal

An approximation of the Lévy fractal is also called a C (broken) line of a certain order. The constructive definition of various orders of C lines starts with a straight line, let us call this line C₀. An isosceles triangle with angles 45°, 90° and 45° is built on this line as hypotenuse. The original line is then replaced by the other two sides of this triangle to obtain C₁. Next, the two new lines each form the base for another right-angled isosceles triangle, and are replaced by the other two sides of their respective triangle, to obtain C₂. After two steps, the broken line has taken the appearance of three sides of a rectangle of twice the length of the original line. At each subsequent stage, each segment in the C figure is replaced by the other two sides of a right-angled isosceles triangle built on it. Such a rewriting relates to a Lindenmayer system. After n stages the C line has length \(2^{n/2} \times C_0\): 2ⁿ segments each of size \(2^{-n/2} \times C_0\).

Fractals have various infinite lengths. The question arose: Can these blends of ∞ be used to characterize fractals? Below C₀ ... C₆ and C₁₀ have been constructed from the definition.
Properties

1a. The above sequence of curves loosely obey

\[C_i = C_{i-1}^{45} \oplus C_{i-1}^{-45}, \quad i = 1, 2, \ldots \]

\[C_0 = \text{segment} \]

\(\oplus \) means spliced \(C_{i-1}^{45} \) means rotated over 45°.

In fractal terminology such a recursion, or production rule, characterizes what is called the self-similarity of fractals, because \(C_i \) consists of 2 spliced copies of \(C_{i-1} \), which are not scalars but 2D, oriented objects. (Positive rotation is counter-clockwise à la PS). Lindenmayer (Dutch theoretical biologist) invented production rules in order to describe plants; production rules are also used in program development.

1b. The \(C \) curves at right have a different orientation.

The formula, which reflects the self-similarity in this orientation, reads

\[C_i = C_{i-1} \oplus C_{i-1}^{-90}, \quad i = 1, 2, \ldots \]

\(\oplus \) means spliced \(C_{i-1}^{-90} \) means rotated over −90°.

Self-similarity as construction method can be suitably programmed in MetaPost/-font, with their path data structure, as follows. Create the row of paths \(p_0, p_1, p_2, \ldots \)

\[p_0 = C_0, \quad p_i^{45} \oplus p_i^{-45} \rightarrow p_{i+1}, \quad \text{for } i = 0, 1, 2, \ldots \]

with \(\oplus \) the splice operator.

2. In the pen-plotter days the natural question arose: What is the direction of a segment? Lauwerier(1987) gives the intriguing relationship between the angle \(\phi_k \) of a segment and its index \(k \) (according to the orientation as given under 1b).

\[\phi_k = \left(s_k \bmod 4 \right) \frac{\pi}{2} \]

with \(s_k = \sum_{j=0}^{p-1} b_j \) sum of bimals of \(k \)

and \(k = \sum_{j=0}^{p-1} b_j 2^j \) binary representation of \(k \).

3. The Leévy fractal has fractal dimension 2, a local plane-filling curve, Lauwerier(1990). The \(C \) curves intersects themselves from order 4 onward.

The PostScript program

One might create an efficient recursive backtracking program based on property 1a, as a \texttt{levyC def} with the \texttt{def} given below. Scaling is commented out; just remove the two \% signs if scaling is wanted.

\begin{verbatim}
%!PS-Adobe-3.0 EPSF-3.0
%!Author: Kees van der Laan
%!Date: april 2011
%!Affiliation: kisa1@xs4all.nl
%!BoundingBox: -1 -1 346 61
%!BeginSetup %crops to BoundingBox
%!EndSetup %by Acrobat Pro
%!BeginProlog%collection of defs
/levyC{%on stack: the order ==> C line

\end{verbatim}
%s = size of line segment (global)
dup @0 eq
(@0 moveto @0 lineto currentpoint stroke translate)%draw line
(1 sub %s s 1.4142 div def %lower order on stack; s scaled variant
45 rotate levyC -45 rotate%combine -45 twice into -90
-90 rotate levyC 45 rotate
1 add %s s 1.4142 div def %adjust order on stack, and s(cale)
)ifelse }def
%%EndProlog
%
% Program --- the script ---
%
/newC 20 def 0 levyC pop
s 2 div 0 translate 1 levyC pop
s 0 translate 2 levyC pop
1.5 s mul 0 translate 3 levyC pop
2.5 s mul 0 translate 4 levyC pop
showpage
%%EOF

The above mean-and-lean PS def is the result of programming in the spirit of The
Art of Computer Programming, TACP for short. I’ll come back on a more systematic
approach of programming based on production rules, a little further on.

If the levyC def is included in the PSlib.eps library, then the above def can be
replaced by

(C:\PSlib\PSlib.pts) run

This feature of the run command is not generally known, so it seems.

Because programming in PostScript is subtle, I have included below the PS def
based on the production rule as stated under property 1b, which is highly similar to
the above backtracking process, but the result differs in orientation. This levyCvar
def is also included in PSlib.pts.

/levyCvar(%order on stack ==> C line
%)s = size of segment (global))
dup @0 eq
(@0 moveto @0 lineto
currentpoint stroke translate)%draw line
(1 sub @0 levyC @0 rotate@0 %lower order on stack
levyC @0 rotate@0 %C line
-90 rotate levyC 90 rotate @0 rotate@0 %rotated C line
1 add @0 levyC @0 rotate@0 %adjust order on stack
)ifelse }def

To run the program store the file with extension .eps (or .ps), right-mouse click
the thumbnail of the file and choose the option convert to Adobe PDF in the pop-up
menu. That is all when you have installed Acrobat Pro 7. (Other versions of Creative
Suite ask for open in Acrobat.) I also used Adobe Illustrator and PSView. The latter
just by double-clicking the filename upon which the command window opened and
a little later PSView.

The Turtle Graphics algorithm is based on property 2. In order to understand the
formula mentioned, a table for the direction (with orientation as mentioned under
property 1b) of each segment is included. Such a table forms the basis for discovering
the regularity.
Below I have included Lauwerier’s program and my conversion in PS, which is interesting because of the transformation of the user space by ϕ_k, $k = 0, 1, 2, \ldots$.

Subtle stack programming with only 1 rotate for each segment instead of a rotate and a back rotate. The length l of each segment is a global parameter.

Below at left $C_0 \ldots C_5$, and C_{10}; at right C_{10} spliced with its -1×1 scaled copy, a Lévy carpet.

In my PWT guide of 1995, I did program the above Lévy fractal in TeX (orientation 1b) by the Turtle graphics method, in the footsteps of Knuth. Nowadays, I much prefer the much more powerful and useful PostScript for programming my graphics. Sorry to say so, but Knuth put me on the wrong track by his graphics in the TeXbook.

Lindenmayer enriched by PostScript concepts for the Lévy fractal

What we miss in the 1a property specification is the scaling to smaller size of the segments when the order increases, as well as a more precise meaning of what spliced entails. A more accurate and improved production rule à la 1a, can be obtained when we use PS concepts in the production rule at the expense of simplicity.
\[C_n = [R_{45}S_{(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})}C_{n-1}] \oplus T_{\frac{\sqrt{5}}{2}, \frac{\sqrt{5}}{2}} [R_{-45}S_{(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})}C_{n-1}] \]

with \(C_0 \) = initial line, and
\(C_n \) the Lévy C curve of order \(n \),
\(\oplus \) splice operator, meaning add properly, i.e. \(T_{(\frac{1}{\sqrt{5}}, \frac{1}{\sqrt{5}})} \),
[means store graphics state on the GS stack and open a new one,
] means remove current graphics state off the GS stack and recall previous,
\(R_{45} \) means rotate US 45° in the PS sense,
\(S_{a,b} \) means scale US by \(a \) and \(b \), in \(x \)- and \(y \)-direction
\(T_{a,b} \) means translate US by \(a \) and \(b \), in \(x \)- and \(y \)-direction.

The above PS production rule transcribes systematically into the following PS def, which has become more verbose.

%/C(%on stack: the order => C line
% = size of initial segment C_0 (global)
dup 0 eq
(0 0 moveto s 0 lineto currentpoint stroke translate)
1 sub
gsave .45 rotate .7071 dup scale leavyC grestore
.5 s mul dup translate
gsave -.45 rotate .7071 dup scale leavyC grestore
1 addxreset order
)ifelse
)def

Systematic programming versus TACP at the expense of verbosity.

Lévy fractal as Iterated Function System

Lauwerier(1994) in one of his exercises created a Lévy fractal by the IFS (Iterated Function Systems) method, which consists of 2 contracted, affine transformations, \(L \) and \(R \), (both rotations characterize Lévy) applied with equal chance.

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} \left(\begin{array}{c}
 a & -b \\
 b & a
\end{array} \right) \begin{bmatrix}
 x \\
 y
\end{bmatrix} + \begin{bmatrix}
 a - 1 \\
 b
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} \left(\begin{array}{c}
 c & -d \\
 d & c
\end{array} \right) \begin{bmatrix}
 x \\
 y
\end{bmatrix} + \begin{bmatrix}
 1 - c \\
 -d
\end{bmatrix},
\]

\(a = .5, b = a = c = -d \).

or after substituting the parameters

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} \left(\begin{array}{c}
 1 & -1 \\
 1 & 1
\end{array} \right) \begin{bmatrix}
 x \\
 y
\end{bmatrix} + .5 \begin{bmatrix}
 -1 \\
 1
\end{bmatrix}
\]

and

\[
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} \left(\begin{array}{c}
 1 & 1 \\
 -1 & 1
\end{array} \right) \begin{bmatrix}
 x \\
 y
\end{bmatrix} + .5 \begin{bmatrix}
 1 \\
 1
\end{bmatrix}.
\]

Associated with the Lévy fractal are 2 rotations with rotation centres for \(L \): (-1,0) and for \(R \): (1,0) and contraction \(\sqrt{5} \approx .7 \). Amazing, isn’t it! Laurier’s BASIC program FRACMC2 and my conversion are given below.
Helge von Koch

A von Koch broken line and a Lévy C line are related to a Lindenmayer system, also called a rewrite system. For the von Koch broken line the rewrite is: divide a line in 3 pieces and replace the middle piece by an equilateral triangle, with the base omitted. Repeat the process on the 4 line pieces to the required order. It is similar to the defining construction process of the Lévy fractal; the result conveys a different impression, however. Below $K_0 ... K_4$, scaled with increasing order (line thickness is scaled as well).

Properties

1. Each von Koch curve contains 4 copies of the von Koch curve of an order lower, meaning self-similarity, which entails the production rule

 $$K_i = K_{i-1} \oplus K_{i-1} \oplus K_{i-1} \oplus K_{i-1},$$

 with $K_0 = \text{initial segment}$, \oplus means spliced, $K_{60} \oplus$ rotated over 60°.

2. The von Koch fractal is a historical example of a curve without a tangent. The curve never intersects itself.

3. The length of the broken line for order n is $(4/3)^n \times K_0$, which with increasing order n goes to ∞. The von Koch curves gave rise to the awareness that the length of the coast of England is infinite. Imagine that the yardstick has length K_0, then all the lines above of the scaled von Koch curves have length 1! So, the length of a fractal depends on the size of your yardstick! Awareness of grades of infinity stirred up the concept of the fractal dimension D, a jolt to the minds of those with an iron cast idea about the 1-2-3-dimensional geometrical world. The fractal dimension is: $D = \log 4 / \log 3 \approx 1.26$.

4. Lauwerier(1987) mentions the intriguing relationship between the angle ϕ_k of a segment and its index k.
\[\phi_k = \left((s_k + 1) \mod 3 - p \right) \frac{\pi}{3} \quad \text{with} \quad s_k = \sum_{j=0}^{p-1} q_j \quad \text{sum of quatermals of k} \]
and
\[k = \sum_{j=0}^{p-1} q_j 4^j \quad \text{quaternary representation of k}. \]

5. The von Koch island remains within the circumscribed circle of the initial triangle (see later).

The PostScript `def` is an efficient and concise implementation of the above specified rewrite under property 1, neglecting scaling.

\[
\text{/vonKoch{%on stack order >=0; ==\to von Koch}
\%s = size of the line segment (global)
dup 0 eq
\{0 0 moveto s 0 lineto currentpoint stroke translate\}
\{1 sub vonKoch %lower the order on the stack and do von Koch
60 rotate vonKoch
-120 rotate vonKoch
60 rotate vonKoch
1 add %reset order\}ifelse\}def
\]

Turtle Graphics algorithm is based on the knowledge of each angle \(\phi_k \). In order to understand, or get a feeling for, the formula mentioned, I have included a small table for the orders 0 and 1. Order 2 yields a too long table, and has been suppressed.

<table>
<thead>
<tr>
<th>order</th>
<th>(k)</th>
<th>(s_k)</th>
<th>((s_k + 1) \mod 3 - p)</th>
<th>(\phi_k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>1</td>
<td>(\pi/3)</td>
<td>(-\pi/3)</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Lauwerier coded a BASIC program based on the knowledge of the direction of each segment via the Turtle Graphics method. Below I have included Lauwerier’s tiny program next to my conversion in PS.

```basic
10 REM ***Fractal of Helge von Koch***
10 P=4 : DIM T(P) : PI= 3.141593 : REM***order***
20 H=3^(-P) : PSET (0,0)
30 FOR N=0 TO 4^P-1
40 M=N : FOR L=0 TO P-1
50 T(L)=M MOD 4 : M=M\4 : NEXT L
60 S=0 : FOR K=0 TO P-1
70 S=S+(T(K)+1) MOD 3 - 1: NEXT K
80 X=X+H*COS(S*PI/3)
90 Y=Y+H*SIN(S*PI/3)
100 LINE -(X, Y)
110 NEXT N
120 END
```

Length of line-piece wired-in.

Note that in PS we have to convert the subscript expression for the index of an array explicitly into integer. Another difference is that the arguments of the trigonometric functions are in degrees in PS and in radians in BASIC.
A von Koch island is a closed splicing of von Koch fractals; at right a von Koch tile (van der Laan(1997)).

\begin{verbatim}
%!PS-Adobe-3.0 EPSF-3.0
%%Title: von Koch triangular island
%%...
/s 100 def
gsave .5 s mul dup neg exch translate 3 vonKochfractal pop
grestore
gsave .5 s mul dup translate
-120 rotate 3 vonKochfractal pop grestore
gsave 0 -.366 s mul translate
-240 rotate 3 vonKochfractal pop grestore
.001 setlinewidth 0 21 57.8 0 360 arc stroke
showpage
%%EOF
\end{verbatim}

Lindemayer system enriched with PostScript concepts for the von Koch fractal

What we miss in the program is the scaling to smaller size of the segments when the order increases, as well as a more precise meaning of what spliced entails. A more precise production rule enriched with PS concepts reads

\begin{equation}
K_n = [S_{1\frac{1}{3}}K_{n-1}] \oplus T_{\frac{s}{6}}[S_{1\frac{1}{3}}R_{60}K_{n-1}] \oplus T_{\frac{s}{6}}[S_{1\frac{1}{3}}R_{-60}K_{n-1}] \oplus T_{\frac{s}{6}}[S_{1\frac{1}{3}}K_{n-1}]
\end{equation}

with

- K_0 the initial line,
- K_n the von Koch curve of order n,
- \oplus splice operator, meaning add properly, i.e. translate,
- open a new GS on the GS stack,
- remove current graphics state from the GS stack and recall previous,
- R_{60} means rotate US 60° in the PS sense,
- $S_{a,b}$ means scale US by a and b, in x- and y-direction
- $T_{a,b}$ means translate US by a and b, in x- and y-direction.

The above PS production rule transcribes systematically into the following PS def.

\begin{verbatim}
%!PS-Adobe-3.0 EPSF-3.0
%%Author: Kees van der Laan
%%Date: feb 2012
...
/vonKoch{on stack: the order => von Koch curve
 %s = size of initial line segment C_0 (global)
dup 0 eq
{0 0 moveto s 0 lineto currentpoint stroke translate)
{1 sub %adjust order on the stack
 gssave .3333 dup scale vonKoch grestore
 .3333 s mul 0 translate
gsave 60 rotate .3333 dup scale vonKoch grestore
 .1666 s mul .285 s mul translate
gsave -60 rotate .3333 dup scale vonKoch grestore
 .1666 s mul -.285 s mul translate
gsave .3333 dup scale vonKoch grestore
1 add %reset order on the stack
}ifelse
}def
\end{verbatim}
Von Koch-like fractal as Iterated Function System

Lauwerier (1994) in one of his exercises created a von Koch-like fractal by (linear) IFS (Iterated Function Systems), which consists of 2 contracted, affine transformations, L and R, which both for the von Koch fractal do contraction and mirroring. For the picture at right I just took 1000 points in order to expose the dot structure, in contrast with the line structure of the earlier approximations of the fractal.

M.F. Barnsley (1988) Fractals Everywhere, exploited contracted IFS.

Most important property: with each contracted IFS is associated a limit figure, the fractal attractor.

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 a & b \\
 b & -a
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 a-1 \\
 b
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 c & d \\
 d & -c
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 1-c \\
 -d
\end{pmatrix}, \quad a = .5, \quad b = .289, \quad c = a, \quad d = -b.
\]

or, after substitution of the parameters

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 .5 & .289 \\
 .289 & -5
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 -.5 \\
 .289
\end{pmatrix}
\]

and

\[
\begin{pmatrix}
 x' \\
 y'
\end{pmatrix} = \begin{pmatrix}
 .5 & -.289 \\
 -.289 & -5
\end{pmatrix}
\begin{pmatrix}
 x \\
 y
\end{pmatrix} + \begin{pmatrix}
 .5 \\
 .289
\end{pmatrix}
\]

Associated with the von Koch fractal are 2 rotations with mirroring with centres for L: (-1,0) and for R: (1,0) and contraction \(\sqrt{.5^2 + .289^2} \approx .58\). Amazing, isn’t it! Laurier’s BASIC program FRACMC4 and my transcription are given below. (MC is abbreviation for Monte Carlo, meaning alternate L and R by gambling.)

```basic
REM ***iteratief systeem, 2 spiegelen, FRACMC4***
REM ***coefficienten***
A=.5 : B=-.289 : C=A : D=-B
DETi=A*A+B*B : DET2=C*C+D*D : Q=DETi/(DETi+DET2)
X=1 : Y=0 : K=0 : KMAX=1000
DO WHILE K<KMAX AND INKEY$="
  R=RND
  IF R<Q THEN
    X1=A*X+B*Y+1+A : Y1=B*X-A+Y+B 'spiegeling L
  ELSE
    X1=C*X+D*Y+1-C : Y1=D*X-C+Y-D 'spiegeling R
  END IF
  X=X1 : Y=Y1
  PSET (X,Y),10
  K=K+1
LOOP : BEEP
END
```

Other values of the parameters

- a=.5 b=.5 c=.6667 d=0 %bebladerde tak
- a=.5 b=.289 c=.5 d=-.289 %von Koch
- a=.5 b=.5 c=.5 d=0 %kale tak
- a=.5 b=.5 c=.2 d=-.2
- a=0 b=.64 c=0 d=-.64 %tegelpatroon
Deterministic von Koch and randomness

Peitgen c.s.(2004) mentions the deterministic von Koch fractal combined with randomness, and states that a better model for coastlines is obtained.
KRONKEL is Lauwerier’s universal program to construct fractal islands based on similarity transformations.

```
10 REM ***KRONKEL: Fractal polygonal Island and model***
10 DIM x(4096), y(4096)
20 U=4 : DIM A(U), B(U) : REM ***Number of sides of Island***
30 V=4 : DIM C(V), D(V) : REM ***Number of pieces of model***
40 DATA 1,-1,-1,1,-1,-1,1,1,1,1,1,1 : REM ***Corners island***
50 DATA .3333,0,.5,.2887,.667,0 : REM ***Data model***
60 INPUT P : REM ***Choice order***
70 FOR I=0 TO U : READ A(I), B(I) : NEXT I
80 FOR I=1 TO V-1 : READ C(I), D(I) : NEXT I
90 REM ***Calculation coordinates Kronkel line***
100 C(0)=0 : D(0)=0 : x(0)=0 : y(0)=0 : X(V^P)=1 : Y(V^P)=0
110 FOR I=0 TO P-1
120 FOR J=0 TO V^P-1 STEP V^(P-I)
130 M1=J+V^(P-I) : DX=x(M1)-X(J) : DY=y(M1)-Y(J)
140 FOR K=1 TO V-1
150 M2=J+K*V^(P-I-1)
160 x(M2)=DX*C(K)-DY*D(K)+X(J)
170 y(M2)=DY*C(K)+DX*D(K)+Y(J)
180 NEXT K
190 NEXT J
200 NEXT I
210 REM ***DRAW ISLAND***
220 PSET(A(0),B(0))
230 FOR M=0 TO U-1
240 DA=A(M+1)-A(M)
250 DB=B(M+1)-B(M)
260 FOR N=0 TO V^P
270 LINE -(DA*X(N)+DB*Y(N)+A(M), DB*X(N)+DA*Y(N)+B(M))
280 NEXT N
290 NEXT M
300 END
```

Length of size of line-piece is wired-in.

In PS

s scaling
u a b size and corners of island
v c d size and corners of model line
have been used as globals, and could have been initialized within the dictionary
No fixed bounds on x and y

His islands are based on similarity transformations, not on the calculation of the direction of the next line piece as in the line fractals. The Kronkel program can also be used for degenerated islands, i.e. for line fractals, such as Lévy, von Koch, Minkowski, ...

The order of specifying the corners of the island determines whether the fractal is drawn inside (anti-clockwise specification) or outside (clockwise specification)
A triangular island (0, 0), (1, 0) (.5, .866) (0, 0) can equally-well be specified, with the broken model line (0, 0), (.5, 0), (.375, .2165), (.5, 0), (.625, .2165), (.5, 0).

The degenerate Lévy island can be specified by the line (-1, 0), (1, 0), with the (broken) model line (0, 0), (.5, 0).

An interesting program to experiment with. The PS transcription is also included in my PSlib. Lauwerier provides moreover variants: KRONKEL, biased by the number system (Dutch talstelsel) approach and KRONKELB, where backtracking has been used.

Minkowski fractal

Much similar to the von Koch fractal is the Minkowski fractal, called sausage by Mandelbrot. The replacement scheme can be distilled from the illustration below, especially $M_0 \rightarrow M_1$.

```
10 REM ***Sausage of Minkowski***
10 DIM A(7) : A(0)=0 : A(1)=1 : A(2)=0 : A(3)=3
20 A(4)=3 : A(5)=0 : A(6)=1 : A(7)=0
30 P=3 : DIM T(P) : REM***order***
40 H=4*(~P) : X=0 : y=0 : PSET (0,0)
40 P=0 : FOR N=0 TO 8*P-1
50 T(L)=M MOD 8 : M=M\8 : NEXT L
```
Length of line-piece is wired-in.

The fractal dimension of the Minkowski fractal $D = \frac{\log 8}{\log(1/4^{-1})} = 1.5$. The array a contains the direction numbers: 0, 1, 3, meaning direction 0°, 90°, -90°, respectively.

Minkowski island The essentials of the island program in PS are given below.

Dragon figures

Folding a strip of paper repeatedly and after unfolding one may ask: How to draw the meander?

The curve with rounded 90° corners is named Dragon curve by Heighway. The curve does not intersect itself. A nice example for developing the mathematical problem solving attitude in discovering the intriguing pattern. (Be aware of folding consistently in the right direction.)
Let us set up a table, where for each line piece the continuation angle is given: \(r \) means rotate \(-90^\circ\), and \(l \) means rotate \(90^\circ\), and unearth the regularity in the directions \(d(n) \), for \(n = 1, 2, 3, \ldots \)

\[
\begin{array}{cccccccccccccccc}
\text{r} & \text{r} & \text{l} & \text{r} & \text{r} & \text{l} & \text{l} & \text{r} & \text{r} & \text{r} & \text{l} & \text{l} & \text{l} & \text{r} & \text{r} & \text{l} & \text{l} & \text{r} & \text{l} & \text{l} & \text{l} \\
\end{array}
\]

d\((n) = r(\text{ight}) \) for \(n = 1, 5, 9, \ldots \)

d\((n) = l(\text{eft}) \) for \(n = 3, 7, 11, \ldots \)

d\((n) = d(n/2) \) for \(n \) is even.

Express \(n \) in the form \(k \times 2^m \) where \(k \) is an odd number. The direction of the \(n^{\text{th}} \) turn:

- If \(k \mod 4 = 1 \) then the \(n^{\text{th}} \) turn is \(r \);
- If \(k \mod 4 = 3 \) then the \(n^{\text{th}} \) turn is \(l \).

The direction of turn 76376: \(76376 = 9547 \times 8 \) & \(9547 \mod 4 = 3 \rightarrow d(76376) = l \).

For the order \(p = 14 \) and angle \(90^\circ \) I reproduced Lauwerier’s result in PS, see below at left.

![Dragon curve](image)

The number of line pieces is \(2^p \). The curve of order 10 with rounded corners is at right. The curves don’t intersect themselves, which is seen in the figure with rounded corners. (In Lauwerier’s program the direction \(D \) is not in agreement with the folded paper and the dragon figure. This is adapted in the PS code.)

Knuth in the \TeX{}book Appendix D p390 also mentions the dragon curve in relation to Turtle Graphics, and draws dragon figures in \TeX{}. When I tried the order 12 in \TeX{}, in 1995, \TeX{} gave the error message ‘\TeX{} capacity exceeded.’
Dimensions The bounding box obeys the proportion $3 : 2$. The fractal dimension of the curve equals 2, a local plane filling curve (Courtesy http://en.wikipedia.org/wiki/Dragon_curve, which mentions more properties of the Dragon curve, such as its self-similarity and the spiral shape.)

At right a filled dragon-like Julia set.(More on Julia fractals: JULIA fractals in PostScript, submitted for MAPS.)

The Dragon curve can be generated similarly to the rewriting scheme of the Lévy fractal, with parts rewritten mirrored.

Star fractals

As introduction a generalization of the program star of the Blue Book p51. The program is more general because it allows to draw the pentagram or the 5-star depending on the value of the angle parameter. Moreover, the number of vertices can be varied, to obtain for example a heptagon casu quo 7-star (heptagram).

```plaintext
/gonstar@ (order) v ==> star
{gonstardict begin /v exch def /angle exch def
  0 0 moveto
  v(rotate 1 0 rlineto)repeat closepath
end} bind def
/gonstardict 2 dict def
%EndProlong
%
%Program -----the script-----
%
/1 100 def 144 5 gonstar stroke
gsave 75 -25 translate
/1 50 def 1.415 setmiterlimit
72 5 gonstar stroke grestore
gsave 0 -110 translate
/1 100 def 1080 7 div 7 gonstar stroke
grestore
gsave 65 -130 translate
/1 35 def 1.415 setmiterlimit
360 7 div 7 gonstar stroke
showpage
```

Lauwerier’s ingenious, concisely programmed star fractal illustrations, left and right below, consist also of 1 (broken) line.
10 REM ***Star***
10 P=5 : REM***order***
20 V=4: A=.8*3.141593 : R=.35
30 PSET (0,0) : X=0 : Y=0
40 FOR N=0 TO (V+1)+V^(P-1)-1
50 M=N : B= N*A : F=0
60 IF M MOD V <> 0 OR F>=P-1 THEN GOTO 80
70 F=F+1 : M=M/V : GOTO 60
80 X=X+R^(P-F-1)*COS(B)
90 Y=Y+R^(P-F-1)*SIN(B)
100 LINE -(X,Y)
110 NEXT N
120 END

Remarks
scaling factor has been added in PS
user space is rotated by the angle after each line
parameter driven

The algorithm is based on that consecutive
line pieces make a constant angle, only the
line size varies. For the order 5 we have 5
different lengths of the line pieces
1 n=0, 256, 512, 768, 1024, ...
r n=64, 128, 192, 320, 384, 448, ...
r^2 n=16, 32, 48, 80, 96, 112, ...
r^3 n=4, 8, 12, 20, 24, 28, 36, 40, 44, 52, ...
r^4 n=1, 2, 3, 5, 6, 7, 9, 10, 11, 13, ...

In order to follow the way the drawing has
been made sequential numbers have been
added in the accompanying illustration.

Another 5-star composition has been published in my Tiling in PS and Metafont
in MAPS 97.2. I copied the program from the article, adapted it to EPSF, et voilà.
In the middle a composition borrowed from Helmstedt created by a Lindenmayer
production rule in Mathematica. At right a nice illustration from Lauwerier(1990),
which reminds me of Escher’s limit cycles.
Game of Life

Lauwerier (1990) mentions a fractal which he obtained from the Pickover variant of the Game of Life, made popular by Martin Gardner in a Scientific American in 1970. The game is played on a grid. Each node can be alive or dead. Once alive it stays alive. If dead it comes to life if only one neighbour, N, E, S or W is alive. On each heartbeat the whole grid is inspected in parallel. Lauwerier’s BASIC program is given below.

```basic
***naam: PICK1***
40 DEFINT I, J, K, N, T, X, Y
70 IF SCR=9 THEN XM=320 : YM=175
80 IF SCR=12 THEN XM=320 : YM=240
100 INPUT "NUMBER OF ROWS=", N
120 DIM X(N,N), Y(N,N)
130 X(0,0)=1
140 FOR K=1 TO N-1
150 FOR I=0 TO K : FOR J=0 TO K-I
160 IF X(I,J)=0 THEN GOSUB 220 ELSE GOSUB 270
170 NEXT J : NEXT I
180 FOR I=0 TO K : FOR J=0 TO K-I
190 X(I,J)=Y(I,J)
200 NEXT J : NEXT I : NEXT K
210 A$=INPUT$(1) :END
220 IF I>=1 AND J>=1 THEN T=X(I+1,J)+X(I-1,J)+
230 IF I=0 AND J>=1 THEN T=2*X(1,J)+
240 IF I>=1 AND J=0 THEN T=2*X(I,1)+
250 IF T=1 THEN Y(I,J)=1
260 RETURN
290 RETURN : END
```

If we start with 1 alive node then the generations 1, 2, 3, 4 look as follows:

```
...
...
...
```

Lauwerier’s program is computational intensive. My translated version could not reproduce Lauwerier’s result in reasonable time. I simplified the program by inspecting on each heartbeat only the new contra diagonals \((i+j)\) constant) in the first quadrant.

The 1 ...6 generations look

```
...
```
The point Lauwerier wanted to make — the game yields fractal patterns — is also obtained by this simplified game.

Annotated References

- Adobe Red, Green and Blue Books. The musts for PS programmers.
- Helmsdett, J(2011): A New Method of Constructing Fractals and Other Graphics. The Mathematica Journal. (Nice examples of Lindenmayer systems, for which Lauwerier’s KRONKEL can be used.)
- Knuth, D.E (1990, 10th printing): The \TeXbook. Addison-Wesley. ISBN 0-201-13447-0. (A must for \TeX\'ies.)
- Peitgen, H.O, H. Jürgens, D. Saupe (2004, sec. ed.): Chaos and Fractals. New frontiers of Science. (Images of the fourteen chapters of this book cover the central ideas and concepts of chaos and fractals as well as many related topics including: the Mandelbrot set, Julia sets, cellular automata, L-systems, percolation and strange attractors. This new edition has been thoroughly revised throughout. The appendices of the original edition were taken out since more recent publications cover this material in more depth. Instead of the focused computer programs in BASIC, the authors provide 10 interactive JAVA-applets for this second edition via http://www.cevis.uni-bremen.de/fractals. An encyclopedic work. Audience: Accessible without mathematical sophistication and portrays the new fields: Chaos and fractals, in an authentic manner.)
- Szabó, P (2009): PDF output size of \TeX documents. Proceedings Euro\TeX2009/Con\TeX Xt, p57–74. (Various tools have been compared for the purpose.)
- Van der Laan, C.G (1995): Publishing with \TeX. Public Domain. (See \TeX archives. \BLUE\ tex comes with \pic\ dat the database of my pictures in \TeX-alone.)
- Van der Laan, C.G (unpublished, Bacho\TeX workshop): \TeX\Xing Paradigms. (A plea is made for standardized macro writing in \TeX to enhance readability and correctness.)
- Veith, U (2009): Experiences typesetting mathematical physics. Proceedings Euro\TeX2009/Con\TeX Xt, p31–43. (Practical examples where we need to adjust \TeX’s automatic typesetting.)
Conclusions

It was pleasure, educative and inspiring to read Lauwerier’s booklets. Some of his algorithms have found a wider audience by converting his BASIC codes into PostScript, hopefully.

I don’t know how to include the results of the BASIC programs elegantly in publications. The results of the PS programs can be easily included in pdf(La)TeX, Word, … documents.

PS’ variable user space and recursion alleviated programming, with concise def s and programs as readable as literature, but … be aware of its subtleness. PostScript’s variable user space was the key to my adaptation of production rules. Because of PS’ subtleness not many people program in PS, I presume, or … do they consider it of too low-level?

In programming self-similarity the awareness of orientation is paramount. I did not find classical Math fractals in PS on the WWW, only one Sierpiński curve in Java.

Lauwerier’s analysis — associating binary, ternary, … tree structures with binary, ternary, … numbers, is an eye-opener. In his, and my, programs all the self-similar sub-curves are draw anew. In Metafont/-Post we could just build the paths and splice them suitably into paths of higher order, as I did in the past with the Pythagoras Tree in Metafont.

‘Het Wiskunde boek’ states that fractals have renewed and raised interest in Mathematics.

Before publishing consult the Wikipedia on aspects of the subject as well as Wolfram’s knowledge base http://www.wolframalpha.com.

\TeX mark up For the symbols of the number systems I, N, Q, R, C, which curiously are not provided for in plain \TeX, I use the the AMS (blackboard) font msbm10.

The L and R composed relational operators are marked up by \texttt{\textbackslash mathrel \textbackslash mathop \^\textbackslash \textbackslash rm L}) and not by \texttt{$$\textbackslash buildrel \textbackslash \textbackslash rm L \textbackslash \textbackslash over \texttt{$$, \TeXbook p437; the latter is OK for the stacked composed symbol as such.

For typesetting tables \texttt{\halign} and the tabbing mechanism have been used (\TeXbook ch22). The 11-element of one of the tables needs an oblique line. I provided for this in PS, which is simpler and not restricted by obliqueness. In 1995, in my PWT guide, I used the GKP macros for this, which suffer from the same inconvenience as \LaTeX’s picture environment: restricted obliqueness.

A blank line before display math yields too much white space! This blank line is important, though, in order to avoid widows.

Locally I have used for parallel listings of program texts \texttt{vbox-s} next to each other, which inhibits proper page breaks. I don’t know how to provide macros for local elegantly marked up multi-column texts, which allow page breaks. (I also tried \texttt{\valign}, alas in vain.) My inserted pictures suffer from the same inconvenience as in Word: changing the text might disturb the layout, such that the pictures will become ill-placed.

As known, I could not use footnotes from within a \texttt{vbox}; kludged around.

In \TeXworks I used the Terminal font in the edit window with the pleasing effect that comments remain vertically aligned in the \texttt{.pdf} window.

Conversion of my \TeX script into Word made me (hands-on) aware of the differences between \TeX and Word. If you are after utmost accurate, user-controlled typeset Mathematics then \TeX is to be preferred. For bread and butter Mathematics Word can do, especially with Cambria, I presume. I did not find in Word (MS equation 3.0) the possibility to discern between displayed Math and in-line Math. Tables in Word are tricky, the WYSIWYG approach does not always yield the table layout you are after. As in \TeX I can’t make an appropriate 11-element. I could not handle the inclusion of a PS made 11-element in Word. Program texts, as columns in a table,
don’t suffer from difficulties in allowing page breaks. A pre-index, as is usual with hyper-geometric functions, I could not nicely typeset with MS equation 3.0.

Inclusion of the .jpg figures and .pdf objects went smoothly; I had to convert .png objects. The inclusion of EPSF object option did not work on my PC, though the option is available. It invoked Adobe Illustrator CS2 12.0.0 and fell silent. The same EPSF invoked by AI directly worked. Maybe incompatible versions? Neglecting superfluous spaces, which \TeX does automatically, has been lost in the conversion. A local change in Word might change the document more than local, beyond user control. I don’t know how to switch off, or change, pre-settings, such as: don’t underline automatically WWW addresses, maybe by de-activating the option WWW addresses as hyperlinks?

Conversion also entailed splitting up the original (concept) paper and rewriting the parts into 2 new papers. Converting back into \TeX, after changes were made, was more difficult than converting into Word.

After I had finished I became aware of Acrobat Pro X which also converts .pdf into a Word document.

Acknowledgements

Thank you Adobe for your maintained, adapted to LanguageLevel 3 since 1997, good old, industrial standard PS and Acrobat Pro (actually DISTILLER) to view it. Don Knuth for your stable plain \TeX, Jonathan Kew for the \TeXworks IDE, Hân Thé Thành for pdflatex, Hans Lauwerier for your nice notebooks with so many inspiring examples of fractals.

Thank you Jos Willink for proofing, Wim Wilhelm for drawing my attention to cellulaire automata, and the \LaTeX graphics environment asymptote which he integrated in \TeXnicCenter; I don’t have experience with them, but they may be of interest for \LaTeX users. MAPS editors for improving my use of English and Taco Hoekwater for procrusting my plain \TeX note into MAPS format.

Thank you Zinadia Nikolaevna Gulka for inviting me to submit a paper or two for the ‘Informatsionnie Texnologii i Matematicheskoe Modelirovanie’ journal’, and her co-worker for stimulating me to convert the \TeX marked up ASCII source of an early version of this note into the required Word. The invitation stimulated me to adapt and revise the material. Thank you GUST for publishing a previous version of this note in the Bacho\TeX2012 proceedings. Thank you Svetlana Morozova for prompting me in the use of Word.

IDE

My PC runs 32 bits Vista, with Intel Quad CPU Q8300 2.5GHz assisted by 8GB RAM. I visualize PS with Acrobat Pro 7. My PS editor is just Windows ‘kladblok (notepad).’ I use the EPSF-feature to crop pictures to their BoundingBox, ready for inclusion in documents. For document production I use \TeXworks IDE with the plain \TeX engine, pdflatex, with as few as possible structuring macros taken from my Blue.tex — adhering minimal \TeX markup. I use the Terminal font in the edit window with the pleasing effect that comments remain vertically aligned in the .pdf window.

For checking the spelling I use the public domain en_GB dictionary and hyphenation patterns en_GB.aff in \TeXworks.

Prior to sending my PDF’s by email the files are optimized towards size by Acrobat Pro.

The bad news with respect to .eps into .pdf conversion is that the newest Acrobat 10 Pro X does not allow for the \run command for library inclusion.
Notes

1. Alas, the `\psfig` has been lost in pdfTeX. Happily, ConTeXt and LuaTeX allow direct EPSF inclusion.
2. Lauwerier (1989) narrates what mathematicians thought about the ∞-concept through the ages from the ancient Greeks onward.
3. Acrobat Pro X does not allow for the library inclusion via `run`, alas :-(. BASIC is interactive, PS is batch-oriented.
4. Barnsley is famous for his fern fractal. In his later works he is more ambitious and constructs fractals given a picture, on demand.
5. The ‘fixed-point’ of the production rule is the fractal. At right my old TeX code is displayed with its result.
6. The ‘fixed-point’ of the production rule is the real fractal.

My case rests, have fun and all the best.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Gr, NL
kisa1@xs4all.nl
Appendix: Fractal Dimension

The need arose to associate various fractal curves with numbers, to characterize them. Mathematicians came up with definitions which were generalizations and compatible extensions of the classical, topological dimension notion. The fractal dimension à la Kolmogorov (1958) is based upon covering the fractal with a grid and counting the cells of the grid which contain points of the fractal, the so-called box-counting dimension.

The definition reads

\[D = \lim_{s \to 0} \frac{\log N}{\log(1/s)}, \]

with \(N \) the number of cells which contain points of the fractal and \(s \) the size of the side of a cell. Let us calculate the (fractal) dimension of a square in order to verify the compatibility of the definition with the classical fact. Cover the (unit) square with a grid which has \(s \) as side of a cell, then we have \(1/s^2 \) cells which cover the unit square, and therefore \(D = \frac{\log(1/s^2)}{\log(1/s)} = 2 \), QED.

All plane-filling fractal curves have fractal dimension \(D = 2 \).

For the calculation of the fractal dimension of fractals defined by contracted mappings, with contraction factors \(f_1, f_2, f_3, \ldots \) Lauwerier (1990) mentions the Hausdorff formula

\[\sum f_i^D = 1. \]

For the Lévy fractal, which can be defined by 2 contractions each with contraction factor \(1/\sqrt{2} \), we arrive at

\[2 \cdot (1/\sqrt{2})^D = 1 \rightarrow D = 2. \]

For the von Koch fractal, which can be defined by 4 contractions each with contraction factor \(1/3 \), we arrive at

\[4 \cdot (1/3)^D = 1 \rightarrow D = \frac{\log 4}{\log 3} \approx 1.26. \]

For the Sierpiski sieve, which can be defined by 3 contractions with contraction factors \(1/2 \), we arrive at

\[3 \cdot (1/2)^D = 1 \rightarrow D = \frac{\log 3}{\log 2} \approx 1.58. \]

For the Menger sponge, which can be defined by 8 contractions each with contraction factor \(1/3 \), we arrive at

\[8 \cdot (1/3)^D = 1 \rightarrow D = \frac{\log 8}{\log 3} \approx 1.89. \]

The details of the definition of the fractal dimension \(D \) by Hausdorff (1919) are cumbersome, and serve a theoretical need. The calculation of other fractal dimensions: self-similarity dimension, and compass dimension (for coast lines) goes beyond the scope of this paper, see Peitgen c.s. (2004). My purpose is that one knows about the concept as a grey box with nodding knowledge, that one knows some fractal dimensions for simple cases, and ... that one does not become frightened or confused on encounter.

For a survey of various fractals and their dimensions see Peitgen c.s. (2004) and/or http://en.wikipedia.org/wiki/List_of_fractals_by_Hausdorff_dimension.

Finally, do you know that the path of Brownian movement is a fractal with fractal dimension 2, and ... do you know that the Cantor Dust has Hausdorff dimension \(D_H = \log 2/\log 3 \approx 0.63 \), which differs from the fractal dimension \(D \approx 0.69 \)?

Appendix: Cantor Dusts

The Cantor Dust has been shown at the beginning of this note. The idea is that each line is replaced by its left and right third parts. This pattern can be repeated yielding what is called a fractal nowadays. (It is included in pic.dat, the library of (T Ex-alone) pictures which come with BLuE.tex.)

In Publishing with T Ex (1995) the Cantor Dust example by T Ex alone was included.
The PS code for Cantor Dust of order n has a similar production rule as for the von Koch fractal:

$$CD_n = \left[S_{\frac{1}{3} \cdot CD_{n-1}} \right] \oplus \left[S_{\frac{1}{3} \cdot T_{a,b} \cdot CD_{n-1}} \right]$$

with

- CD_0 the initial line,
- CD_n the Cantor Dust of order n,
- \oplus splice operator, meaning add properly the second piece to the set,
- $S_{a,b}$ means scale US by a and b, in x- and y-direction
- $T_{a,b}$ means translate US by a and b, in x- and y-direction.

The above PS production rule transcribes systematically into the following PS def.5

```latex
%!PS-Adobe-3.0 EPSF-3.0
/cd%integer n>=0 ==> Cantor Dust of order n
{1 sub dup -1 eq
 {0 0 moveto s 0 lineto stroke}
 {gsave .3333 1 scale dup cd grestore
gsave .3333 1 scale 2 s mul 0 translate dup cd grestore}
}ifelse 1 add
def
%EndProlog
%
% Program
%
%...
/s 300 def 4 cd pop
305 -2 moveto TR10 setfont (Cantor) show
0 -3 rmoveto TR7 setfont (4) show 0 -10 translate
%...
showpage
%%EOF
```

The 'fixed point' of the production rule is the Cantor Dust fractal. For just showing a few approximations of the Cantor Dust the T\(e\)X code will do. Lauwerier(1987) provides a tiny BASIC program KAM. He also associates the Cantor dust with the trinary number system because the interval is divided in 3 pieces, repeatedly. The Cantor dust of $[0, 1]$ consists of the trinary fractions where only the digits 0 and 2 occur, Lauwerier(1987, p26). An eye-opener!

Cantor Dust as IFS Lauwerier(1989, ch8) constructs the Cantor Dust of high order by the IFS.
\[x_{n+1}^{L} = \frac{x_n}{3} \quad \text{and} \quad x_{n+1}^{R} = \frac{x_n}{3} + \frac{2}{3} \quad n = 0, 1, 2, \ldots \quad x_0 = 1/3. \]

Again an eye-opener! His tiny program and my conversion read:

```plaintext
X=.3 'start
FOR K=1 TO 100
  IF RND<.5 THEN X=X/3 ELSE X=(X+2)/3
  PSET(X, 0) 'scale X if wanted
NEXT K
END
```

If you, kind reader, shrug shoulders about paying so much attention to such a tiny problem, I can only say that if you don’t analyse tiny problems deeply, your solutions of bigger problems will lack ingenuity.

Generalization to 2D yield the so-called Sierpiński carpets.

The algorithm reads: divide a square in \(3^2\) equal sub-squares and delete the middle, or the middle cross, and do this repeatedly for the remaining 8 squares.

At the Euro\TeX95 Boguслав Jackowski showed his variant, probably in connection with his \texttt{mftoeps} program, which transforms Metafont code into PS. (I did not use \texttt{mftoeps}, because it was PC-biased, and I had a Mac Powerbook 150.) This was at the time that MetaPost, the preprocessor for PS with Metafont-biased user-language, was not yet released in the public domain.

In my opinion he was on the right track: PS is mandatory for graphics to be included in documents. It is just a pity he did not pursue that PS alone, or better EPSF, is suitable for constructing graphics to be included in documents. His collaborators, Pjotr and Pjotr, pursued PS in PSview.

I programmed the Sierpiński carpet, it is not the gasket, in \TeX and in Metafont after the conference. For historical reasons I have included the programs below. The black-and-white figure is created by \TeX-alone on-the-fly. (I just copied it from the revised 1996 FIFO-article, and see,... it still works. The MF program also still works on my museum Mac Powerbook 150 of 1995!)

The picture at right has been borrowed from the WWW. It illustrates a generalization of the good old Cantor Dust into 2.5D, also called Menger sponge. Both pictures are more interesting and more beautiful than the original 1D Cantor Dust.
tracingstats:=1;proofing:=1;screenstrokes; %
pickup pencircle scaled 1;
def sierpinskisquare (expr s, p)=
if s>5:
 unfill unitsquare scaled .333s
 shifted ((.333s, p));
sierpinskisquare(.333s, p);
sierpinskisquare(.333s, pr(.333s,0));
sierpinskisquare(.333s, pr(0, .333s));
sierpinskisquare(.333s, pr(0,.6673s));
sierpinskisquare(.333s, pr(.667s,.333s));
sierpinskisquare(.333s, pr(.667s,.667s));
sierpinskisquare(.333s, pr(.333s,.667s));
fi enddef;
%
s=100; fill unitsquare scaled s;
sierpinskisquare(s,origin);
showit;
end

A PS program for a 2.5D Cantor Dust is cumbersome, because it has to deal with projection and has to handle hidden lines.

Appendix: Hilbert Curve

Hilbert curves H_1 ... H_6 have been shown in the introduction. Wirth(1975) I consider a starting point for programming a Hilbert curve. Wirth could not know about the rotation of US facility, nor did PS exist. The self-similarity property of the H-curve, i.e. a curve is composed of (rotated) curves of one order lower, he programmed by four rotated instances in (recursive) procedures A, B, C and D, which entailed a more complex recursion scheme. For those who don’t own the 1975 book I have included the program and the procedure A. (Procedures B, C and D are similar.)
The left PS-program below is based on the production rule
\[H_i = m H_{i-1}^{90} \uparrow \uplus H_{i-1} \downarrow \uplus m H_{i-1}^{90}, \quad \text{for } i = 1, 2, \ldots \]
where \(\uplus \) means spliced, the superscript denotes the rotation angle, the arrows \(\uparrow \rightarrow \downarrow \) mean draw a segment in the direction North, East, and South. In order to splice correctly, the rotated copies have also to be mirrored, which is indicated by the pre-index \(m \).

The US facility of PS facilitates programming of these kinds of curves. Moreover, we don’t need a plotfile in PS. After executing the PASCAL code we still have to create a .pdf file suitable for inclusion in documents.

Lauwerier (1990) provides a BASIC program, Peanol, for the Hilbert curves, restricted to orders \(\leq 5 \), via the Turtle Graphics method, i.e. drawing forward, meaning the broken line is obtained by drawing the segments in increasing order 1, 2, 3, … The above program draws also forward by backtracking, a short of LIFO, Last-In-First-Out. In Peanol the direction numbers are stored in an array of size 3411. Large enough for practical purposes. (The program above does not need the explicit direction numbers.)

The Peano curve, as shown at the beginning of this note, can be programmed along the same lines as for the Hilbert broken line above or via the Turtle Graphics casu quo Lindenmayer approach à la Lauwerier, which I leave as an exercise to the reader.

Application of plane-filling curves occurs in discretization of images where instead of a Cartesian grid the plane filling curve is used.
Hilbert curve in Metafont and Joseph Romanovski’s (1995) PS code

... %cgl, 1995
tracingstats:=1; proofing:=1;screenstrokes;autorounding:=0;
pickup pencircle scaled 0.2pt;
def openit = openwindow currentwindow
from origin to (screen_rows,screen_cols) at (-40s,15s)enddef;
path p; s=10;
sz=0; p:=origin; %H_0 size and path
n=5; %Order of H-curve
for k=1 upto n: %H_1,...,H_n consecutively
 p:= p transformed (identity rotated 90
 reflectedabout (origin,up))--
 p shifted ((-sz-1)*s,0) --
 p shifted ((-sz-1)*s,(-sz-1)*s) --
 p transformed (identity rotated -90
 reflectedabout (origin,up) shifted (-sz*s,(-2sz-1)*s));
sz:=2sz+1;
endfor

Joseph’s code is a bit cryptic (but is similar to mine). He uses short names, which does not make sense, makes the code difficult to read, which is considered a bad practice. But, ... he was on the right track, also with the use of colours via PS.

Conclusion. Such a simple(?) problem yielded already a few variants, of which most suffer from bad readability, because they are not biased by a production rule, IMHO.

Appendix: Sierpiński islands

Sierpiński islands S_1... S_3 have been shown in the introduction, in overlay.

Wirth(1975), I consider a starting point for programming a Sierpiński island. Wirth did not have the rotation of US facility, nor did PS exist.

Algorithm: The curve is closed and is composed of 4 (90° rotated) broken lines connected by lines in the direction SE, SW, NW and NE. The program consists of 2 parts: first the generation of a side and second the appropriate splicing of rotated copies.

The PS program is based on the following production rule for a side
S_i = S_{i-1} ⊕ SE ⊕ S^{-90}_{i-1} ⊕ E ⊕ S_{i-1}^{90} ⊕ NE ⊕ S_{i-1}^{-90},
for i = 1, 2, ...
where ⊕ means spliced, the superscript denotes the rotation angle. and SE, E, NE mean draw a line in the direction South-East, East, and North-East.

%!PS-Adobe-3.0 EPSF-3.0
%!Title: Sierpinski island Side, March2012
%!Author: Kees van der Laan
%!Affiliation: kisa1@xs4all.nl
%!BoundingBox:-1 -82 287 2
%!BeginSetup
%!EndSetup
%!BeginProlog
/s' s 1.4142 div def
/SE(0 0 moveto s' dup lineto currentpoint stroke translate)def
/SE(0 0 moveto s' dup neg lineto currentpoint stroke translate)def
/E(0 0 moveto s 0 lineto currentpoint stroke translate)def
/SideS%on stack order >=1 ==> Sierpinski side
% size of line segment (global)
1 sub dup 0 ge
{ dup SideS
 SE
 dup 90 rotate SideS 90 rotate
 E
}
Wirth programmed the four rotated instances in (recursive) procedures A, B, C and D, which entailed a more complex recursion scheme.

For those who don’t own the 1975 book I have included Wirth’s program, translated into Metafont in 1995.

%Translation of Wirth's code into Metafont
tracingstats:=1;proofing:=1;screenstrokes;
pickup pencircle scaled 0.01pt;
s=10; path p;
def openit = openwindow currentwindow from origin to (screen_rows,screen_cols) at (-5s,5s)enddef;
def A expr k=if k>0:
 A(k-1);draw z--hide(x:=x+h;y:=y-h)z;
 B(k-1);draw z--hide(x:=x+2h)z;
 D(k-1);draw z--hide(x:=x+h;y:=y+h)z;
 A(k-1); fi enddef;
def B expr k=if k>0:
 B(k-1);draw z--hide(x:=x-h;y:=y-h)z;
 C(k-1);draw z--hide(y:=y-2h)z;
 A(k-1);draw z--hide(x:=x+h;y:=y-h)z;
 B(k-1); fi enddef;
def C expr k=if k>0:
 C(k-1);draw z--hide(x:=x-h;y:=y+h)z;
 D(k-1);draw z--hide(x:=x-2h)z;
 B(k-1);draw z--hide(x:=x-h;y:=y-h)z;
 C(k-1); fi enddef;
def D expr k=if k>0:
 D(k-1);draw z--hide(x:=x+h;y:=y+h)z;
 A(k-1);draw z--hide(y:=y+2h)z;
 C(k-1);draw z--hide(x:=x-h;y:=y+h)z;
 D(k-1); fi enddef;
def sierpinski expr k=if k is order of curve:
 if k>0: A(k);draw z--hide(x:=x+h;y:=y-h)z;
 B(k);draw z--hide(x:=x-h;y:=y-h)z;
 C(k);draw z--hide(x:=x-2h)z;
 D(k);draw z--hide(x:=x+h;y:=y+h)z;
 fi enddef;
zh=origin; h=16;
sierpinski2; showit; end