Kees van der Laan VOORJAAR 2013

Classical Math Fractals in PostScript

Fractal Geometry I

Abstract

Classical mathematical fractals in BASIC are explained and converted into mean-and-lean EPSF
defs, of which the .eps pictures are delivered in .pdf format and cropped to the prescribed
BoundingBox when processed by Acrobat Pro, to be included easily in pdf(La)TgX, Word, ...
documents. The EPSF fractals are transcriptions of the Turtle Graphics BASIC codes or pro-
grammed anew, recursively, based on the production rules of oriented objects. The Linden-
mayer production rules are enriched by PostScript concepts. Experience gained in converting
a TEX script into WYSIWYG Word is communicated.

Keywords

Acrobat Pro, Adobe, art, attractor, backtracking, BASIC, Cantor Dust, C curve, dragon curve,
EPSF, FIFO, fractal, fractal dimension, fractal geometry, Game of Life, Hilbert curve, IDE (In-
tegrated development Environment), IFS (Iterated Function System), infinity, kronkel (twist),
Lauwerier, Lévy, LIFO, Lindenmayer, minimal encapsulated PostScript, minimal plain TeX,
Minkowski, Monte Carlo, Photoshop, production rule, PSlib, self-similarity, Sierpiniski (island,
carpet), Star fractals, TACP, TEXworks, Turtle Graphics, (adaptable) user space, von Koch
(island), Word

Contents

O Introduction
O Lévy (Properties, PostScript program, Run the program, Turtle Graphics) Cantor
O Lindenmayer enriched by PostScript concepts for the Lévy fractal 0

O von Koch (Properties, PostScript def, Turtle Graphics, von Koch island) e D — Cantorl
O Lindenmayer enriched by PostScript concepts for the von Koch fractal —_ — —_ = Cantor2
O Kronkel L ____ Cantor
O Minkowski 3
O Dragon figures

O Stars

O Game of Life

O Annotated References

0O Conclusions (TEX mark up, Conversion into Word)
0 Acknowledgements (IDE)

O Appendix: Fractal Dimension

O Appendix: Cantor Dust

O Appendix: Hilbert Curve

O Appendix: Sierpinski islands

Peano curves: order 1, 2, 3

Introduction

My late professor Hans Lauwerier published nice, inspiring booklets about fractals
with programs in BASIC. However, I don’t know how to include elegantly the pic-
tures, obtained by running the BASIC codes, in my documents. Moreover, I consider
PostScript (PS, for short) more portable in place and time, can include EPSF results in
my TgX documents! easily, and ... do realize that PS is the de-facto standard industrial
printer language.

49

50 MAPS 44 Kees van der Laan

This note is about conversion of some of Lauwerier’s BASIC Turtle Graphics codes
for the simplest fractals into EPSF, and about the programming of new recursive EPSF
defs biased by Lindenmayer production rules for oriented objects, enriched with PS

concepts.
% « Hilbert curves

o eeaooia Sierpinski —
iﬁ:ﬁ islands 1, 2, 3

Now and then I have explained Lauwerier’s algorithms, especially when he asso-
ciates binary and quaternary number representations with fractals.

Fractals have widened the dimension concept into fractal-valued dimensions. Al-
though the fractal dimension concept is not necessary in order to understand the
codes, I have added the appendix Fractal Dimension, because fractal dimensions con-
tribute to characterizing fractals. Moreover, fractal dimension gives meaning to the
19th century ‘monstruous’ plane-filling curves.

Fractals were invented in the 20 century, and became the geometry of this cen-
tury due to the development of computers, because computers are the tools for view-
ing and researching fractals.

The ancestor of fractals is the 1D Cantor Dust. 2D predecessors of fractals are
the plane-filling curves named after Peano, Hilbert, Sierpinski, ... , which captivated
mathematicians in the late 19 and the early 20th century.

Sierpinski curves have found their niche in the solution of the travelling salesman
problem.

In the sequel Lévy, von Koch, Kronkel (Dutch, means twist), Minkowski, Dragon
curve, star fractals, and a variant of the Game of Life are discussed. There are 4 ap-
pendices: the first about Fractal Dimension, the second about the historical Cantor
Dust, the third about the classical Hilbert curve, and the last about Sierpinski islands.

In the footsteps of Lauwerier, the reader is invited to experiment with the PS
programs, of which defs are supplied in my PSlib.eps library, which I'll send on
request. MetaPost aficionados may translate the included Metafont codes into Meta-
Post, I presume.

Lévy fractal

An approximation of the Lévy fractal is also called a C (broken) line of a certain
order. The constructive definition of various orders of C lines starts with a straight
line, let us call this line Cy. An isosceles triangle with angles 45°, 90° and 45° is
built on this line as hypotenuse. The original line is then replaced by the other two
sides of this triangle to obtain C;. Next, the two new lines each form the base for
another right-angled isosceles triangle, and are replaced by the other two sides of
their respective triangle, to obtain C,. After two steps, the broken line has taken the
appearance of three sides of a rectangle of twice the length of the original line. At
each subsequent stage, each segment in the C figure is replaced by the other two
sides of a right-angled isosceles triangle built on it. Such a rewriting relates to a
Lindenmayer system. After n stages the C line has length 2"/2x Cy: 2™ segments
each of size 27™/2x C,.

Fractals have various infinite lengths. The question arose: Can these blends of co
be used to characterize fractals?? Below C, ... C¢ and C;, have been constructed
from the definition.

Classical Math Fractals in PostScript

AN TS0

VOORJAAR 2013 51

order 0 order 1 order 2 order 3 order 4 order 5 order 6
Properties
la. The above sequence of curves loosely obey
C; = C‘E] D C:‘?, i=1,2,.. Cp= segment
@ means spliced C{°, means rotated over 45°.
In fractal terminology such a recursion, or production rule, characterizes what
is called the self-similarity of fractals, because C; consists of 2 spliced copies
of C;_1, which are not scalars but 2D, oriented objects. (Positive rotation is
counter-clockwise a la PS). Lindenmayer (Dutch theoretical biologist) invented
production rules in order to describe plants; production rules are also used in
program development.
1b. The C curves at right have a different orientation. l :l
The formula, which reflects the self-similarity in this orientation, | |

reads

Ci=Ci18C% i=1,2..

i—-1

@ means spliced C;°Y means rotated over — 90°.

Self-similarity as construction method can be suitably programmed in Meta-
Post/-font, with their path data structure, as follows. Create the row of paths

Pos P1> P25 -
po = Co, pfS@p;“S — pigyq, fori=0,1,2,.. with & the splice operator.

In the pen-plotter days the natural question arose: What is the direction of a
segment? Lauwerier(1987) gives the intriguing relationship between the an-
gle ¢y of a segment and its index k (according to the orientation as given un-

der 1b).

¢y = (symod4)= with s, = Z}:O] b; sum of bimals of k

T
2])
and k = Z;P;o b;2) binary representation of k.

The Lévy fractal has fractal dimension 2, a local plane-filling curve, Lauw-
erier(1990). The C curves intersects themselves from order 4 onward.

The PostScript program
One might create an efficient recursive backtracking program based on property 1a,
as a levyC def with the def given below. Scaling is commented out; just remove the

two % signs if scaling is wanted.

%!PS-Adobe-3.0 EPSF-3.0

%%Author: Kees van der Laan

%%Date: april 2011

%%Affiliation: kisal@xs4all.nl
%%BoundingBox: -1 -1 346 61
%%BeginSetup %crops to BoundingBox
%%EndSetup %by Acrobat Pro
%%BeginPrologkcollection of defs
/levyC{%on stack: the order ==> C line

52 MAPS 44

Kees van der Laan

%s = size of line segment (global)
dup 0 eq
{0 @ moveto s @ lineto currentpoint stroke translate}%draw line
{1 sub %/s s 1.4142 div def %lower order on stack; s scaled variant
45 rotate levyC%-45 rotate%combine -45 twice into -90
-90 rotate levyC 45 rotate
1 add %/s s 1.4142 div def %adjust order on stack, and s(cale)

}Yifelse

}def

%%EndProlog

%

% Program --- the script ---

%

/s 20 def @ levyC pop
s 2 div @ translate 1 levyC pop
s @ translate 2 levyC pop

1.5 s mul @ translate 3 levyC pop

2.5 s mul @ translate 4 levyC pop
showpage M
%%EOF /\ I_I

0 1

order 2 order 3 order 4

The above mean-and-lean PS def is the result of programming in the spirit of The
Art of Computer Programming, TACP for short. I'll come back on a more systematic
approach of programming based on production rules, a little further on.

If the levyC def is included in the PSlib.eps library, then the above def can be
replaced by

(C:\\PS1ib\\PSlib.eps) run

This feature of the run command is not generally known, so it seems.

Because programming in PostScript is subtle, I have included below the PS def
based on the production rule as stated under property 1b, which is highly similar to
the above backtracking process, but the result differs in orientation. This levyCvar
def is also included in PSlib.eps.

/levyCvar{%order on stack ==> C line

%s = size of segment (global))
dup 0 eq
{0 0 moveto s @ lineto

currentpoint stroke translate}%draw line —l :|
{1 sub %lower order on stack

levyCvar %C line
-90 rotate levyCvar 90 rotate %rotated C line
1 add %adjust order on stack

}ifelse }def

To run the program store the file with extension .eps (or .ps), right-mouse click
the thumbnail of the file and choose the option convert to Adobe PDF in the pop-up
menu. That is all when you have installed Acrobat Pro 7. (Other versions of Creative
Suite ask for open in Acrobat.) I also used Adobe Illustrator and PSView. The latter
just by double-clicking the filename upon which the command window opened and
a little later PSview.

The Turtle Graphics algorithm is based on property 2. In order to understand the
formula mentioned, a table for the direction (with orientation as mentioned under
property 1b) of each segment is included. Such a table forms the basis for discovering
the regularity.

Classical Math Fractals in PostScript VOORJAAR 2013

aae

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

W N RO
L1l1l1l|e
—
—

TTT

L« «
l « «

(=]

1 1

[\

sy mod4 1 2 2 3 1 2 2 3 2 3 3 0

Below I have included Lauwerier’s program and my conversion in PS, which is in-
teresting because of the transformation of the user space by ¢y, k =0,1,2,....

10 REM *xxLevy fractalxx* %!PS-Adobe-3.0 EPSF-3.0

10 P=12 : REMx*xorder**x %%Title: Levy fractal a la Lauwerier

20 H=2"(-(P/2)) : A=H*COS(P*PI/4) : B=H*SIN(P*PI/4) %%Transcriptor: Kees van der Laan, April 2011, kisal@xs4all.nl
30 LINE (0,0)-(A,-B) : LINE -(A+B,A-B) /LevyLauwerier{/p exch def%order =>C curve (1 is global)

40 X=1 : Y=1 0 @ moveto 1 @ lineto %order @

50 FOR N=2 TO 2*P-1 p 1 eq {0 1 neg rlineto} %order 1, segments 0, 1

60 M=N : S=1 {0 %previous phi on stack

70 IF M MOD 2 = 1 THEN S=S=1 112 pexp 1 sub {%for%n, the number of the segments 1,2,...
80 M\2 0 exch %s n :s sum of bimals and n the segment number on stack
90 IF M>1 THEN GOTO 70 p{dup 2 mod 3 -1 roll add exch 2 idiv}repeat pop%discard n
100 IF S MOD 4 = @ THEN X=X+1 4 mod 9@ mul dup 3 1 roll sub rotate 1 @ rlineto

110 IF S MOD 4 = 1 THEN Y=Y+1 }forun

120 IF S MOD 4 = 2 THEN X=X-1 pop%discard phi

130 IF S MOD 4 = 3 THEN Y=Y-1 }ifelse strokel}def

140 LINE -(A*X+B*Y, AxY-B*X) /1 5 def 10 LevylLauwerier stroke showpage

150 NEXT N %%EOF

160 END
Size of line-piece is wired-in (In PS parametrized)

Subtle stack programming with only 1 rotate for each segment instead of a rotate
and a back rotate. The length 1 of each segment is a global parameter.

Below at left Cy ...Cs, and C;; at right Cy spliced with its -1 1 scaled copy, a
Lévy carpet.

In my PWT guide of 1995, 1did program the above Lévy fractal in TgX (orientation
1b) by the Turtle graphics method, in the footsteps of Knuth. Nowadays, I much
prefer the much more powerful and useful PostScript for programming my graphics.
Sorry to say so, but Knuth put me on the wrong track by his graphics in the TgXbook.

Lindenmayer enriched by PostScript concepts for the Lévy fractal
What we miss in the 1a property specification is the scaling to smaller size of the
segments when the order increases, as well as a more precise meaning of what spliced
entails. A more accurate and improved production rule a la 1a, can be obtained when
we use PS concepts in the production rule at the expense of simplicity.

53

54 MAPS 44 Kees van der Laan

Cn.:[R455pl“:%)Cn71]@ T

N
N

with C, = initial line, and
C,, the Lévy C curve of order n,
@ splice operator, meaning add properly, i.e. Ts s,
[means store graphics state on the GS stack and open a new one,
] means remove current graphics state off the GS stack and recall previous,
R45 means rotate US 45° in the PS sense,
Sq,p means scale US by a and b, in x- and y-direction
Tq,» means translate US by a and b, in x- and y-direction.

The above PS production rule transcribes systematically into the following PS def,
which has become more verbose.

IPS-Adobe-3.0 EPSF-3.0
%%Author: Kees van der Laan
%%Date: feb 2012

/levyC{%on stack: the order => C line
%s = size of initial segment C_0 (global)
dup 0 eq
{0 @ moveto s @ lineto currentpoint stroke translate}
{1 sub
gsave 45 rotate .7071 dup scale levyC grestore
.5 s mul dup translate
gsave -45 rotate .7071 dup scale levyC grestore
1 add%reset order
}ifelse
Ydef

Systematic programming versus TACP at the expense of verbosity.

Lévy fractal as Iterated Function System
Lauwerier(1994) in one of his exercises created a
Lévy fractal by the IFS (Iterated Function Systems)
method, which consists of 2 contracted, affine
transformations, L and R, (both rotations charac-
terize Lévy) applied with equal chance.

X\ [fa —b X a—1
= + and
Yy’ b a y b
X\ g fc —d\ [x 1—c
= + ,a=5b=a=c=-d.
Yy’ d ¢ y —d
or after substituting the parameters
X\ 1 -1 x —1
=.5 +.5 and
y’ 11 y 1
! 1 1 1
“\R5 s .
y’ -1 1 y 1

Associated with the Lévy fractal are 2 rotations with rotation centres for L: (-1,0)
and for R: (1,0) and contraction V.5 ~ .7. Amazing, isn’t it! Laurier’s BASIC program
FRACMC2 and my conversion are given below.

Classical Math Fractals in PostScript VOORJAAR 2013

REM #**naam: FRACMC2%#*% %!PS-Adobe-3.0 EPSF-3.0
KMAX=60000 %%Title: fracmc2
REM x*xCoefficienten*xx %%Author: H.A. Lauwerier(1994): Spelen met Graphics en Fractals
A=.5: B=A: C=A : D=-A %%Transcriptor: Kees van der Laan, febr 2012
DET1=AxA+B*B : DET2=C*C+D*D %%BoundingBox: -203 -54 205 206
Q=DET1/(DET1+DET2) %%BeginSetup
X=1 : Y=0 : K=0 : KMAX=10000 %%ENdSetup
DO WHILE K<KMAX AND INKEYS$="" %%BeginProlog
R=RND /Courier 7 selectfont
IF R<Q THEN /x @ def /y @ def /halfmaxint 2 30 exp def
U=A*X-BxY-1+A : V=B*X+A*Y+B 'rotatie L /a .5 def /b a def /c a def /d a neg def
ELSE /det1 a dup mul b dup mul add def /det2 c dup mul d dup mul add def
U=CxX-DxY-1-C : V=DxX+CxY-D 'rotatie R /q det1 detl det2 add div def
ENDIF /printxy{x s y s moveto (.) show}def
X=U : Y=V %%EndProlog
PSET (X,Y) /s {100 mul}def 10 srand%10 is seed
LOOP : BEEP 10000{rand halfmaxint 1t
END {/xnew a x mul b y mul sub 1 sub a add def
/y b x mul ay mul add b add def /x xnew def%rot L
I /xnew ¢ x mul d y mul sub 1 add c sub def
/y d x mul ¢ y mul add d sub def /x xnew def%rot R
}ifelse
printxy}repeat
showpage

%HIEQF

Helge von Koch

A von Koch broken line and a Lévy C line are related to a Lindenmayer system, also
called a rewrite system. For the von Koch broken line the rewrite is: divide a line
in 3 pieces and replace the middle piece by an equilateral triangle, with the base
omitted. Repeat the process on the 4 line pieces to the required order. It is similar to
the defining construction process of the Lévy fractal; the result conveys a different
impression, however. Below K ... K4, scaled with increasing order (line thickness is

scaled as well).

1. Each von Koch curve contains 4 copies of the von Koch curve of an order lower,
meaning self-similarity, which entails the production rule

Properties

Ki=Kiq @ K% @ K% @ Ky,
with Ko = initial segment, @ means spliced, K®° rotated over 60°.

2. The von Koch fractal is a historical example of a curve without a tangent. The
curve never intersects itself.

3. The length of the broken line for order n is (4/3)™ x K, which with increas-
ing order n goes to co. The von Koch curves gave rise to the awareness that the
length of the coast of England is infinite. Imagine that the yardstick has length
Ky, then all the lines above of the scaled von Koch curves have length 1! So, the
length of a fractal depends on the size of your yardstick! Awareness of grades of
infinity stirred up the concept of the fractal dimension D, a jolt to the minds of
those with an iron cast idea about the 1-2-3-dimensional geometrical world. The
fractal dimension is: D = log4 /log3 ~ 1.26.

4. Lauwerier(1987) mentions the intriguing relationship between the angle ¢ of a
segment and its index k

55

56 MAPS 44

Kees van der Laan

)z

¢y = ((syc + 1)mod3 —p 3 with s = Z}Dio] q; sum of quatermals of k

and k= Z}:1 qj4j quaternary representation of k.

5. The von Koch island remains within the circumscribed circle of the initial trian-
gle (see later).

The PostScript def is an efficient and concise implementation of the above specified
rewrite under property 1, neglecting scaling.

/vonKoch{%on stack order >=0; ==> von Koch
%s = size of the line segment (global)
dup 0 eq
{0 0 moveto s @ lineto currentpoint stroke translate}
{1 sub vonKoch %lower the order on the stack and do von Koch
60 rotate vonKoch
-120 rotate vonKoch
60 rotate vonKoch
1 add %reset order

}ifelsel}def JJA(A§JAL5A;ﬁJL
PN A N

Turtle Graphics algorithm is based on the knowledge of each angle ¢;. In order to
understand, or get a feeling for, the formula mentioned, I have included a small table
for the orders 0 and 1. Order 2 yields a too long table, and has been suppressed.

order p k sy ((sx+1)mod3)—p ¢y
0 1 0 0 0 0
1 1 0 0 0 0
1 1 1 /3
2 2 -1 —7/3
3 3 0 0

Lauwerier coded a BASIC program based on the knowledge of the direction of
each segment via the Turtle Graphics method. Below I have included Lauwerier’s
tiny program next to my conversion in PS.

10 REM **xFractal of Helge von Kochxx* %!PS-Adobe-3.0 EPSF-3.0
10 P=4 : DIM T(P) : PI= 3.141593 : REMx*xorderxxx* %%Title: von Koch fractal a la Lauwerier

20 H=3%(-P) : PSET (,0)
30 FOR N=0 TO 4P-1
40 M=N : FOR L=0 TO P-1

%%Transcriptor: Kees van der Laan, April 2011, kisal@xs4all.nl
/vonKochLauwerier{/p exch def %order => von Koch fractal (1 is global)
/t p array def /h 1 3 p exp div def @ @ moveto

50 T(L)=M MOD 4 : M=M\4 : NEXT L Q1 4 p exp 1 sub{%for%n
60 S=0 : FOR K=0 TO P-1 /m exch def
70 S=S+(T(K)+1) MOD 3 - 1: NEXT K @ 1 p 1 sub{t exch m cvi 4 mod put

80 X=X+H*COS(S*PI/3)
90 Y=Y+H*SIN(S*PI/3)
100 LINE -(X, Y)

/mm cvi 4 idiv def
}for
/s @ def

110 NEXT N @1 p 1 sub{t exch get 1 add cvi 3 mod s add /s exch def}for
120 END /s s p sub def

60 s mul cos h mul 60 s mul sin h mul rlineto
Length of line-piece wired-in. }for }def

%

/1 100 def 4 vonKochLauwerier stroke
showpage

%HEOF

Note that in PS we have to convert the subscript expression for the index of an array
explicitly into integer. Another difference is that the arguments of the trigonometric
functions are in degrees in PS and in radians in BASIC.

Classical Math Fractals in PostScript

A von Koch island is a closed splicing of von Koch fractals; at right a von Koch tile
(van der Laan(1997)).

%!PS-Adobe-3.0 EPSF-3.0
%%Title: von Koch triangular island
%%. . .
/s 100 def
gsave .5 s mul dup neg exch translate 3 vonKochfractal pop
grestore
gsave .5 s mul dup translate

-120 rotate 3 vonKochfractal pop grestore
gsave @ -.366 s mul translate

-240 rotate 3 vonKochfractal pop grestore
.001 setlinewidth @ 21 57.8 @ 360 arc stroke
showpage
%%EOF

Lindemayer system enriched with PostScript concepts for the von Koch
fractal

What we miss in the program is the scaling to smaller size of the segments when the
order increases, as well as a more precise meaning of what spliced entails. A more
precise production rule enriched with PS concepts reads

Kn = [S 1Kn71] (&%) T%()[S1 1R60Kn71} (&%) Tiﬂ
6 6

11 11
33 33

[S]1R460Kn,1}@9T£41v§[s‘1Kn7”
6 6

3 33

Wl

with
K, the initial line,
K,, the von Koch curve of order n,
@ splice operator, meaning add properly, i.e. translate,
[open a new GS on the GS stack,
] remove current graphics state from the GS stack and recall previous,
Rgo means rotate US 60° in the PS sense,
Sa,p means scale US by a and b, in x- and y-direction
Tq,p means translate US by a and b, in x- and y-direction.

The above PS production rule transcribes systematically into the following PS def.

VOORJAAR 2013 57

PAdobes3.0 EPSF3 .0 _ /N _/ﬁ_/_ mﬁfm{m Nm%
%%Author: _—

Kees van der Laan
%%Date: feb 2012 order=0 order=1 order=2

/vonKoch{%on stack: the order => von Koch curve
%s = size of initial line segment C_0 (global)
dup 0 eq
{0 0 moveto s @ lineto currentpoint stroke translate}
{1 sub %adjust order on the stack
gsave .3333 dup scale vonKoch grestore
.3333 s mul 0 translate
gsave 60 rotate .3333 dup scale vonKoch grestore
.1666 s mul .285 s mul translate
gsave -60 rotate .3333 dup scale vonKoch grestore
.1666 s mul -.285 s mul translate

gsave .3333 dup scale vonKoch grestore
1 add %reset order on the stack
}ifelse

Ydef

order=4

58 MAPS 44

Kees van der Laan

Von Koch-like fractal as Iterated Function System
Lauwerier(1994) in one of his exercises
created a von Koch-like fractal by (linear)
IFS (Iterated Function Systems), which
consists of 2 contracted, affine transfor-
mations, L and R, which both for the von

Koch fractal do contraction and mirroring. PR

For the picture at right I just took 1000 g 4

points in order to expose the dot structure, P 5 sy £y

in contrast with the line structure of the i el

earlier approximations of the fractal.

M.F. Barnsley(1988) Fractals Everywhere, exploited contracted IFS.*

Most important property: with each contracted IFS is associated a limit figure, the
fractal attractor.

)G)G
C)E(S D)) (1) em o amemnans

or, after substitution of the parameters
X\ [5 28\ [x -5
= + and
y’ 289 -5 y .289
X'\ g S5 =289 [x 5
= +
v ~289 -5) \y 289

Associated with the von Koch fractal are 2 rotations with mirroring with centres

for L: (-1,0) and for R: (1,0) and contraction /.52 +.2892 ~ .58. Amazing, isn’t it!
Laurier’s BASIC program FRACMC4 and my transcription are given below. (MC is ab-
breviation for Monte Carlo, meaning alternate L and R by gambling.)

REM ***xiteratief systeem, 2 spiegelingen, FRACMC4xx%*
REM #*xcoefficientenxxx
A=.5 : B=..289 : C=A : D=-B
DET1=A*A+B*B : DET2=C*C+D*D : Q=DET1/(DET1+DET2)
X=1 : Y=0 : K=0 : KMAX=1000
DO WHILE K<KMAX AND INKEY$=" "
R=RND
IF R<Q THEN
XT=A*xX+BxY-1+A : Y1=B*X-A*Y+B 'spiegeling L
ELSE
X1=CxX+DxY+1-C : Y1=D*X-CxY-D 'spiegeling R
END IF
X=X1 : Y=Y1
PSET (X,Y),10
K=K+1
LOOP : BEEP
END

Other values of the parameters

a=.5 b=.5 ¢=.6667 d=0 %bebladerde tak
a=.5 b=.289 c=.5 d=-.289 %von Koch

a=.5 b=.5 «c¢=.5 d=0 %kale tak

a=.5 b=.5 c=.6 d=-.2

a=0 b=.64 c=0 d=-.64 %tegelpatroon

Classical Math Fractals in PostScript

%!PS-Adobe-3.0 EPSF-3.0
%%Title: fracmc4
%%Author: H.A. Lauwerier(1994): Spelen met Graphics en Fractals
%%Transcriptor: Kees van der Laan, febr 2012
%%BoundingBox: -100 -1 103 60
%%BeginSetup
%%ENdSetup
%%BeginProlog
/Courier 7 selectfont
/x 1 def /y @ def /halfmaxint 2 30 exp def/maxint 2 31 exp 1 sub
def
/a .5 def /b .289 def /c a def /d b neg def
/det1 a dup mul b dup mul add def /det2 c dup mul d dup mul add
def
/q det1 detl det2 add div def
/printxy {x s y s moveto (.) show}def
%%EndProlog
10 srand%10 is seed
/s {100 mul }def%scaling
1000{rand maxint div q 1t
{/xnew a x mul b y mul add 1 sub a add def
/y b x mul a y mul sub b add def /x xnew def%mirror L
3
{/xnew ¢ x mul d y mul add 1 add c sub def
/y d x mul ¢ y mul sub d sub def /x xnew def%mirror R
}ifelse
printxy
}repeat
showpage
%HEOF

Deterministic von Koch and randomness
Peitgen c.s.(2004) mentions the deterministic von Koch fractal combined with ran-
domness, and states that a better model for coastlines is obtained.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: von Koch Random fractal, 2012
%%Author: Kees van der Laan, kisal@xs4all.nl
%%BoundingBox: -5 -125 650 15
%%BeginSetup
%%ENdSetup
%%BeginProlog
/vonKoch{dup @ eq
{0 @ moveto s @ lineto currentpoint stroke translate}
{1 sub vonKoch
pm{ 60 rotate vonKoch
-120 rotate vonKoch
60 rotate vonKoch}

{ -60 rotate vonKoch 0
120 rotate vonKoch ~
-60 rotate vonKoch}ifelse
1 add
Yifelse
Ydef
22121943 srand

/pm{rand 1073741823 gt{true}{false}ifelse}def

%%EndProlog

%

%Program ---the script---

/s 5 def % s = initial size of line piece

1 vonKoch pop % order 1
2 s mul @ translate 2 vonKoch pop
3 s mul @ translate 3 vonKoch pop
showpage

VOORJAAR 2013 59

60

10
mod
10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300

MAPS 44

Kees van der Laan

KRONKEL is Lauwerier’s universal program to construct fractal islands based on
similarity transformations.

REM x*xKRONKEL: Fractal polygonal Island and
elxxx
DIM x(4096), Y(4096)
U=4 : DIM A(U), B(U) : REM x*xNumber of sides of Islandxxx
V=4 : DIM C(V), D(V) : REM x*xNumber of pieces of modelxxx
DATA 1,1,-1,1,-1,1,-1,-1,1,-1,1,1 : REM **xCorners islandx
DATA .3333,0,.5,.2887,.667,0 : REM *x*Data modelx*x
INPUT P : REM *x*Choice order*xx
FOR I=0 TO U : READ A(I), B(I) : NEXT I
FOR I=1 TO V-1 : READ C(I), D(I) : NEXT I
REM x*xCalculation coordinates Kronkel line*xx
C(0)=0 : D(@)=0 : x(0)=0 : Y(@)=0 : X(v*P)=1 : Y(V*P)=0
FOR I=0 TO P-1
FOR J=0 TO VAP-1 STEP V*(P-I)
MI=J+VA(P-I) : DX=x(M1)-X(J) : DY=Y(M1)-Y(J)
FOR K=1 TO V-1
M2=J+K*V* (P-I-1)
X (M2)=DX*C(K)-DY*D (K)+X (J)
Y (M2)=DY*C (K)+DX*D (K)+Y (J)
NEXT K
NEXT J
NEXT I
REM #*xDRAW ISLAND***
PSET(A(0),B(0))
FOR M=0 TO U-1
DA=A(M+1)-A(M)
DB=B(M+1)-B(M)

FOR N=0 TO VP
LINE - (DA*X(N)-DBxY(N)+A(M), DB#*X(N)+DAxY(N)+B(M))
NEXT N
NEXT M

END

Length of size of line-piece is wired-in.

In PS

SS

caling

u a b size and corners of island

v ¢ d size and corners of model line

have been used as globals, and could have been
initialized within the dictionary

No fixed bounds on x and y

%!PS-Adobe-3.0 EPSF-3.0
%%Titel: Kronkel ---Koch Island--- H.A. Lauwerier
%%Transcriptor: Kees van der Laan, kisal@xs4all.nl, April 2011
/kronkel%order p ==> fractal island (globals s, u, a, b, v, c, d)
{kronkeldict begin%push kronkeldict on the d-stack
/p exch def
/x uv pexp mul cvi array def /y u v p exp mul cvi array
def%auxiliaries
%calculate coordinates corners ‘kronkel’
X 0 0 put y @ 0 put
X VvV pexpcvii put y v p exp cvi @ put
Q1 p 1 sub{/i exch def %for i
@ vopisubexp vpexpl sub{/j exch def %for j
/ml j v pisubexp add def
/dx x ml cvi get x j cvi get sub def
/dy y ml cvi get y j cvi get sub def
11 v 1 sub{/k exch def %for k
/m2 j kvpisub1 sub exp mul add def
x m2 cvi dx ¢ k get mul dy d k get mul sub x j cvi get add puty m2
cvi dy ¢ k get mul dx d k
get mul add y j cvi get add put }for%k
}for%j
}or%ki
%create path for each side m of base line
a 0 get b 0 get moveto
© 1 u 1 sub{/m exch def%for m
/da am1 add cvi get a m cvi get sub def
/db b m 1 add cvi get b m cvi get sub def
0 1 v p exp{/n exch def%for n
da x n cvi get mul db y n cvi get mul sub a m cvi get add
db x n cvi get mul da y n cvi get mul add b m cvi get add lineto
}forun
}for%m
end}def %end pops kronkeldict off the d-stack
/kronkeldict 8 dict def
%
/s {50 mul} def %scale
/u 4 def %number of corners of the island
/a[1s-1s-1s1s1s] def %x coordinates of corner points
/b[1s1s-1s-1s1s] def %y coordinates of corner points
/v 4 def %number of line pieces of the model line
/c [@0 .3333 .5 .6667] def%x coordinates of corners

/d [00 .2887 @] def%y coordinates of corners
2 kronkel stroke showpage
%HEOF

At

order=0 order=1 order=2 order=3 order=4

inward islands

His islands are based on similarity transformations, not on the calculation of the
direction of the next line piece as in the line fractals. The Kronkel program can
also be used for degenerated islands, i.e. for line fractals, such as Lévy, von Koch,

MinkowsKi, ...

The order of specifying the corners of the island determines whether the fractal is
drawn inside (anti-clockwise specification) or outside (clockwise specification)

Classical Math Fractals in PostScript VOORJAAR 2013

L@

order=0 order=1 order=2 order=3 order=4

outward islands

(C:\\PS1ib\\PSlib.eps) run

%globals s, u, a, b, v, c, d

/s {30 mul} def %scale

/u 4 def

/a [-1 s -1s1s1s -1s] def %abcissae corners island (clockwise=>inside, scaled)
/b [-1s1s1s-1s -1s] def %ordinates corners island (clockwise=>inside, scaled)

/v 4 def
/c [0 .3333 .5 .6667] def %abcissae corners broken model line
/d [0 @ .2887 0 1] def %ordinates corners broken model line

@ kronkel stroke gsave
110 @ translate 1 kronkel stroke grestore
showpage

A triangular island (0, 0), (1, 0) (.5, .866) (0, 0) can equally-well be specified, with the
broken model line (0, 0), (.5, 0), (.375, .2165), (.5, 0), (.625, .2165), (.5, 0).

L &b K

order=0 order=1 order=2 order=3 order=4

The degenerate Lévy island can be specified by the line (-1, 0), (1, 0), with the
(broken) model line (0, 0), (.5, 0)

%. .. <i/A\//\?>
(C:\\PSLib\\PSlib.eps) run /\ E j

order=0 order=1 order=2 order=3 order=4

%globals s, u, a, b, v, c, d

/s {30 mul} def

/u 1 def /a [-1 s 1 s] def%abcissae corners line (scaled)
/b [@ @ 1] def%ordinates corners line (scaled)

/v 2 def /c [@ .5] def %abcissae corners broken model line
/d [@ 01 def %ordinates corners broken model line

@ kronkel stroke

110 @ translate 1 kronkel stroke

%. ..

showpage

%%EOF

An interesting program to experiment with. The PS transcription is also included in
my PSlib. Lauwerier provides moreover variants: KRONKELT, biased by the number
system (Dutch talstelsel) approach and KRONKELB, where backtracking has been used.

Minkowski fractal

Much similar to the von Koch fractal is the Minkowski fractal, called sausage by
Mandelbrot. The replacement scheme can be distilled from the illustration below,
especially My — M;.

10 REM *x*Sausage of Minkowskixx*

10 DIM A(7) : A(0)=0 : A(1)=1 : A(2)=0 : A(3)=3
20 A(4)=3 : A(5)=0 : A(6)=1 : A(7)=0
30 P=3 : DIM T(P) : REMkxkordersxx

20 H=4"(-P) : X=0 : y=0: PSET (9,0)

30 FOR N=0 TO 8*P-1

40 M=N : FOR L=0 TO P-1

50 T(L)=M MOD 8 : M=M\8 : NEXT L

61

62 MAPS 44

Kees van der Laan

60 S=0 : FOR K=0 TO P-1

70 S=(S+A(T(K))) MOD 4: NEXT K
80 IF S=0 THEN X=X+H

81 IF S=1 THEN Y=Y+H

82 IF S=2 THEN X=X-H

83 IF S=3 THEN y=y-H

90 LINE —(X, Y)

91 NEXT N

92 END

Length of line-piece is wired-in.

%!PS-Adobe-3.0 EPSF-3.0
%%Title: Minkowski sausage by H.A Lauwerier
%%Transcriptor: Kees van der Laan, kisal@xs4all.nl,m April 2011
/mink{/p exch def%order, global 1 length of initial line
/a[@1033010] defimodel specification by direction numbers
/t p array def @ @ moveto
/h'1 4 p exp div def
01 8 p exp 1 sub{/m exch def
© 1 p 1 sub{t exch m cvi 8 mod put /m m cvi 8 idiv def}for

/s @ def

@1 p 1 sub{/s at4-1roll get get s add cvi 4 mod def}for
s@eqg{h Q rlineto}if

sleqg{0 h rlineto}if

s2eq{ hnego rlineto}if

s3eq{©0 h neg rlineto}if

}for stroke} def
%
/1 100 def 3 mink showpage

%%EQF
—ﬂrﬁﬁ%

0 1 order=2 order=3 order=4
The fractal dimension of the Minkowski fractal D = 1107987] = 1.5. The array a
og(1/4—T)

contains the direction numbers: 0, 1, 3, meaning direction 0°, 90°, -90°, respectively.
Minkowski island The essentials of the island program in PS are given below.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Minkowski island

%%. . .

/1 200 def 4 mink

gsave 1 0 translate -90 rotate 4 mink grestore

gsave 1 1 neg translate -180 rotate 4 mink grestore
@ 1 neg translate -270 rotate 4 mink

showpage

%%EOF

Dragon figures

R ‘i 1
Folding a strip of paper repeatedly and after un-
folding one may ask: How to draw the meander?

The curve with rounded 90° corners is named Dragon curve by Heighway. The
curve does not intersect itself. A nice example for developing the mathematical prob-
lem solving attitude in discovering the intriguing pattern. (Be aware of folding con-
sistently in the right direction.)

Classical Math Fractals in PostScript VOORJAAR 2013

Let us set up a table, where for each line piece the continuation angle is given: r
means rotate —90°, and 1 means rotate 90°, and unearth the regularity in the direc-
tions d(n), forn =1,2,3, ...

1234567 89 1011121314151617181920212223242526272829303132
rrlrrllrrrllrllrrrlrrlllrrllcrlldr

d(n) = r(ight) forn = 1,5,9,... d(n) = l(eft) forn =3,7,11,... d(n) = d(n/2)
for n is even.

Express n in the form k x 2m where k is an odd number. The direction of the nth
turn:

if kmod4 = 1 then the n'" turn is I;

if kmod4 = 3 then the n'™ turn is L.

The direction of turn 76376: 76376 = 9547 x 8 & 9547 mod 4 = 3 — d(76376) = 1.

10 REM **xDraak**x* %!PS-Adobe-3.0 EPSF-3.0
10 P=3 : REM*xxorder**x %%Title: Draak by H.A Lauwerier
20 H=2"(-P/2) : A=1.7453 : REM **xxCorner*xx %%Transcriptor: Kees van der Laan, kisal@xs4all.nl, April 2011
30 B=PI-A : X=H : Y=0 : LINE (0,0)-(H,0) : S=0 /draak{%draak curve with angle A and order p, global scaling s
40 FOR N=1 TO 2*P-1 : M=N %angle p ==> dragon curve
50 IF M MOD 2 = @ THEN M=M/2: GOTO 5@ {/p exch def /b 180 3 -1 roll sub def%order p and angle b
60 IF M MOD 4 =1 THEN D=1 ELSE D=-1 /h 2 p -2 div exp s def %size piece scaled
70 S=S+D @ 0 moveto h @ lineto
80 X=X+H*COS(S*B) 11 2pexp 1 sub{%for n
90 Y=Y+H*SIN(S*B) : LINE -(X,Y) /m exch def
91 NEXT N {mcvi 2 mod @ eq {/m m 2 div def}{exit}ifelse}loop
92 END mcvi 4 mod 1 eq {/d b neg def}{/d b def}ifelse
d rotate h @ rlineto%no currentpoint translate necessary
}for %n

}bind def %in library for local variables with draakdict
%

/s {30 mul} def 100 3 draak stroke showpage

%HEOF

For the order p =14 and angle 90° I reproduced Lauwerier’s result in PS, see below
at left.

_a%/\)

S

[

Sauawas)
S

Qq

C

C
Qoncc

The number of line pieces is 2P. The curve of order 10 with rounded corners is at
right. The curves don’t intersect themselves, which is seen in the figure with rounded
corners. (In Lauwerier’s program the direction D is not in agreement with the folded
paper and the dragon figure. This is adapted in the PS code.)

Knuth in the TgXbook Appendix D p390 also mentions the dragon curve in rela-
tion to Turtle Graphics, and draws dragon figures in TgX. When I tried the order 12
in TgX, in 1995, TgX gave the error message “TgX capacity exceeded.’

63

64 MAPS 44 Kees van der Laan

Dimensions The bounding box obeys the pro-
portion 3 : 2. The fractal dimension of the
curve equals 2, a local plane filling curve
(Courtesy http://en.wikipedia.org/wiki
/Dragon_curve, which mentions more proper-
ties of the Dragon curve, such as its self-simi-
larity and the spiral shape.)

At right a filled dragon-like Julia set.(More on
Julia fractals: JULIA fractals in PostScript, sub-
mitted for MAPS.)

The Dragon curve can be generated similarly to the rewriting scheme of the Lévy
fractal, with parts rewritten mirrored.

NSRS R S

Star fractals

As introduction a generalization of the program star of the Blue Book p51. The pro-
gram is more general because it allows to draw the pentagram or the 5-star depend-
ing on the value of the angle parameter. Moreover, the number of vertices can be
varied, to obtain for example a heptagon casu quo 7-star (heptagram).

/gonstar%p (order) v ==> star

{gonstardict begin /v exch def /angle exch def
@ @ moveto

v{angle rotate 1 @ rlineto}repeat closepath

end} bind def

/gonstardict 2 dict def
%%EndProlog

%

%Program ---the script---

%

/1 100 def 144 5 gonstar stroke
gsave 75 -25 translate

/1 50 def 1.415 setmiterlimit

72 5 gonstar stroke grestore

gsave @ -110 translate

/1 100 def 1080 7 div 7 gonstar stroke

grestore

gsave 65 -130 translate

/1 35 def 1.415 setmiterlimit
360 7 div 7 gonstar stroke
showpage

Lauwerier’s ingenious, concisely programmed star fractal illustrations, left and right
below, consist also of 1 (broken) line.

EPTRERTE CRTREEE ERTRERTE EMREET
;=]]] ;=]]
= B Lt
[27e] Rz [ire] [R7s]
[aEE] £
;=]]
il] il]
EaEh [2rsTRne;
il G
;=]] ;=]]
= Lt
255 [R%E]
[iet] iza e £
;=]]]
ERl_lempnl ee sl |ememl e
CRTh CadTh Ledfmy CBfas

Classical Math Fractals in PostScript VOORJAAR 2013 65

10 REM #*xStar**x %!PS-Adobe-3.0 EPSF-3.0
10 P=5 : REM*x*orderxx* %%Title: Starfractal by H.A Lauwerier
20 V=4: A=.8%3.141593 : R=.35 %%Transcriptor: Kees van der Laan, kisal@xs4all.nl, May 2011
30 PSET (0,0) : X=0 : Y=0 /starfractal%reduction angle p (order) v ==> starfractal
40 FOR N=0 TO (V+1)+VA(P-1)-1 {starfractaldict begin
50 M=N : B= N*A : F=0 /v exch cvi def /p exch def /a exch def /r exch def
60 IF M MOD V <> @ OR F>=P-1 THEN GOTO 8@ 9 0 moveto
70 F=F+1 : M=M\V : GOTO 60 @1 v1add v p 1 sub exp mul 1 sub
80 X=X+R* (P-F-1)*C0S(B) {/n exch cvi def
90 Y=Y+R* (P-F-1)*SIN(B) /m n def /f @ def
100 LINE -(X,Y) {mvmod @ne f p1subge or
110 NEXT N {exit}
120 END {/f f 1 add def /m m v idiv def}
ifelse

}loop

rpf sub 1 sub exp s @ rlineto

a rotate

}for %n

end} bind def
/starfractaldict 8 dict def
%
starfractaldict begin /s {300 mul} def end % scaling
.3 144 3 4 starfractal fill % r=.3 a=144 order=3 vertiges-1=4
showpage
%HEOF

Remarks

scaling factor has been added in PS
user space is rotated by the angle after each line
parameter driven

The algorithm is based on that consecutive
line pieces make a constant angle, only the
line size varies. For the order 5 we have 5
different lengths of the line pieces

n=0, 256, 512, 768, 1024, ...

n=64, 128, 192, 320, 384, 448, ...
2 n=16, 32, 48, 80, 96, 112, ...
3 n=4, 8, 12, 20, 24, 28, 36, 40, 44, 52, ...
4 n=1,2,3,5,6,7,9, 10, 11, 13, ...
In order to follow the way the drawing has
been made sequential numbers have been
added in the accompanying illustration.

N T

in MAPS 97.2. I copied the program from the article, adapted it to EPSF, et voila.
In the middle a composition borrowed from Helmstedt created by a Lindenmayer
production rule in Mathematica. At right a nice illustration from Lauwerier(1990),
which reminds me of Escher’s limit cycles.

66 MAPS 44

Kees van der Laan

Game of Life

Lauwerier(1990) mentions a fractal which he obtained from the Pickover variant of
the Game of Life, made popular by Martin Gardner in a Scientific American in 1970.
The game is played on a grid. Each node can be alive or dead. Once alive it stays alive.
If dead it comes to life if only one neighbour, N, E, S or W is alive. On each heartbeat
the whole grid is inspected in parallel. Lauwerier’s BASIC program is given below.

%x%naam: PICK1x*x%

40 DEFINT I, J, K, N, T, X, Y

70 IF SCR=9 THEN XM=320 : YM=175

80 IF SCR=12 THEN XM=320 : YM=240

100 INPUT "NUMBER OF ROWS=", N

120 DIM X(N,N), Y(N,N)

130 X(0,0)=1

140 FOR K=1 TO N-1

150 FOR I=0 TO K : FOR J=0 TO K-I

160 IF X(I,J)=0 THEN GOSUB 220 ELSE GOSUB 270

170 NEXT J : NEXT I

180 FOR I=0 TO K : FOR J=0 TO K-I

190 X(I,J)=Y(I,JT)

200 NEXT J : NEXT I : NEXT K

210 A$=INPUT$(1) :END

220 IF I>=1 AND J>=1 THEN T=X(I+1,J)+X(I-1,J)+
X(I,J+1)+X(I,J-1)

230 IF I=0 AND J>=1 THEN T=2xX(1,J)+
X(0,J+1)+X(0,J-1)

240 IF I>=1 AND J=@ THEN T=2xX(I,1)+
X(X+1,0)+X(I-1,0)

250 IF T=1 THEN Y(I,J)=1

260 RETURN

270 PSET (XM+2xI, YTM-2%J),14 : PSET (XM-2xI, YM-2xJ),14

280 PSET (XM+2*I, YTM+2%xJ),14 : PSET (XM-2%I, YM+-2%J),14

290 RETURN : END

If we start with 1 alive node then the generations 1, 2, 3, 4 look as follows

Lauwerier’s program is computational intensive.

My translated version could not reproduce Lauwerier’s result in reasonable time.

I simplified the program by inspecting on each heartbeat only the new contra
diagonals (i 4+ j =constant) in the first quadrant.

The 1 ...6 generations look

Classical Math Fractals in PostScript VOORJAAR 2013 67

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Growth Cell model a la Pickover, simplified
%%Author: Kees van der Laan

%%Date: March 2012

%%BoundingBox: -195 -195 195 195

%%BeginSetup

%%EndSetup

%%BeginPrologue

%%DocumentFonts: Times-Roman

/Times-Roman 20 selectfont

mul moveto

show

/printdot{3 i mul

-3 3

31 mul
-3 1 mul
-3 i mul
Ydef
/alive?{%check whether
i1gej1 geand
{ax i 1 sub n mul j

+3 3
_3J
+3 3

show
show
show

mul moveto
mul moveto
mul moveto

N~~~
(NN

cell has become alive

add get

ax i nmul j 1 sub add get add}if
i®eqj1 geand
{2ax n j add get mul
ax j 1 sub get add}if

i1 gejoeqand{ax i 1 sub n mul get}if

1 egqfax i n mul j add 1 put printdot}if
Ydef%alive?
/pickover{% stack integer>=0 the order==> cell pattern
/n exch def
/ax n 1 add dup mul array def %array
1 1 n n mul{/k exch def ax k @ put}for ax @ 1 put%initialize
/i @ def /j @ def printdot
11 n 1 sub {/k exch def

@ 1 k{/i exch def /j k i sub def%contradiagonal

alive?
}for%i

Yforkk
}def
%%EndProlog
%
% Program
%
64 pickover showpage
%HEOF

The point Lauwerier wanted to make — the game yields fractal patterns — is also
obtained by this simplified game.

Annotated References

An introductory survey: http://en.wikipedia.org/wiki/Dragon_curve.

Adobe Red, Green and Blue Books. The musts for PS programmers.

Biography of H.A. Lauwerier: http://bwnw.cwi-incubator.nl/cgi-bin/uncgi/alf.
Gleisk, J(1987): CHAOS — making a new science. Penguin.

(An introduction to and survey of the world of non-linearity, strange attractors
and fractals.)

Goossens, M(2007, sec ed) et. al.: XTEX Graphics Companion. ISBN 978 0 321
50892 8.

Helmstedt, J(2011): A New Method of Constructing Fractals and Other Graphics.
The Mathematica Journal. (Nice examples of Lindenmayer systems, for which
Lauwerier’'s KRONKEL can be used.)

68 MAPS 44

Kees van der Laan

Jackowski, B, P. Strelczyk, P. Pianowski(1995-2008): PSView5.12. WWW.
bop@bop. com. pl. (Extremely fast previewer for .eps among others, which allows
PSlib(rary) inclusion via the run command).

Knuth, D.E, T. Larrabee, P.M. Roberts(1989): Mathematical Writing. MAA notes
14. The Mathematical Association of America.

Knuth, D.E(1990, 10th printing): The TgXbook. Addison-Wesley. ISBN
0-201-13447-0. (A must for plain TgXies.)

Lauwerier, H.A(1987): FRACTALS — meetkundige figuren in eindeloze her-
haling. Aramith. (Contains programs in BASIC. Lauwerier, H.A (1991): Frac-
tals: Endlessly Repeated Geometrical Figures, Translated by Sophia Gill-Hoff-
stadt, Princeton University Press, Princeton NJ1. ISBN 0-691-08551-X, cloth.
ISBN 0-691-02445-6 paperback. "This book has been written for a wide audi-
ence ... " Includes sample BASIC programs in an appendix. Audience: Instruc-
tors, (high-school) students, and the educated layman.)

Lauwerier, H.A(1988): The Pythagoras Tree as Julia Set. CWI-Newsletter.
Lauwerier, H.A(1989): Oneindigheid — een onbereikbaar ideaal. Aramith. ISBN
90 6834 055 7. (Audience: Instructors, (high-school) students, and the educated
layman.)

Lauwerier, H.A(1990): Een wereld van FRACTALS. Aramith. ISBN 90 6834

076 X. (Sequel and updated version of Lauwerier(1987). Audience: Instructors,
(high-school) students, and the educated layman.)

Lauwerier, H.A(1994): Spelen met Graphics and Fractals. Academic Service.
ISBN 90 395 0092 4. (An inspiring book with Math at the high school level for

a wide audience; the BASIC programs I consider outdated for direct use. Audi-
ence: Instructors, (high-school) students, and the educated layman.)

Peitgen, H.O, H.Jurgens, D. Saupe(2004 sec. ed.): Chaos and Fractals. New fron-
tiers of Science. (Images of the fourteen chapters of this book cover the central
ideas and concepts of chaos and fractals as well as many related topics includ-
ing: the Mandelbrot set, Julia sets, cellular automata, L-systems, percolation and
strange attractors. This new edition has been thoroughly revised throughout.
The appendices of the original edition were taken out since more recent publi-
cations cover this material in more depth. Instead of the focused computer pro-
grams in BASIC, the authors provide 10 interactive JAVA-applets for this second
edition via http://www.cevis.uni-bremen.de/fractals. An encyclopedic work.
Audience: Accessible without mathematical sophistication and portrays the new
fields: Chaos and fractals, in an authentic manner.)

Swanson, E(1986, revised ed): Mathematics into Type. American Mathematical
Society.

Szabd, P(2009): PDF output size of TgX documents. Proceedings Eu-
roTEX2009/ConTgXt, p57-74. (Various tools have been compared for the pur-
pose.)

Van der Laan, C.G(1992): LIFO and FIFO sing the Blues. MAPS 92.2.

Van der Laan, C.G(1995): Publishing with TgX. Public Domain. (See TgX
archives. BLUe. tex comes with pic.dat the database of my pictures in
TgX-alone.)

Van der Laan, C.G(1997): Tiling in PostScript and MetaFont — Escher’s wink.
MAPS 97.2.

Van der Laan, C.G(unpublished, BachoTEX workshop): TgXing Paradigms. (A
plea is made for standardized macro writing in TgX to enhance readability and
correctness.)

Van der Laan, C.G(submitted EuroTgX2012): Julia fractals in PostScript.

Veith, U(2009): Experiences typesetting mathematical physics. Proceedings Eu-
roTEX2009/ConTeXt, p31-43. (Practical examples where we need to adjust TgX’s
automatic typesetting.)

Classical Math Fractals in PostScript

Conclusions

It was pleasure, educative and inspiring to read Lauwerier’s booklets. Some of his
algorithms have found a wider audience by converting his BASIC codes into Post-
Script, hopefully.

I don’t know how to include the results of the BASIC programs elegantly in pub-
lications. The results of the PS programs can be easily included in pdf(La)TeX, Word,
... documents.

PS’ variable user space and recursion alleviated programming, with concise defs
and programs as readable as literature, but ... be aware of its subtleness. PostScript’s
variable user space was the key to my adaptation of production rules. Because of PS’
subtleness not many people program in PS, I presume, or ... do they consider it of
too low-level?

In programming self-similarity the awareness of orientation is paramount. I did
not find classical Math fractals in PS on the WWW, only one Sierpiniski curve in Java.

Lauwerier’s analysis — associating binary, ternary, ... tree structures with binary,
ternary, ... numbers, is an eye-opener. In his, and my, programs all the self-similar
sub-curves are draw anew. In Metafont/-Post we could just build the paths and splice
them suitably into paths of higher order, as I did in the past with the Pythagoras Tree
in Metafont.

‘Het Wiskunde boek’ states that fractals have renewed and raised interest in Math-
ematics.

Before publishing consult the Wikipedia on aspects of the subject as well as Wol-
fram’s knowledge base http://www.wolframalpha.com.

TgX mark up For the symbols of the number systems I, N, Q, R, C, which curiously
are not provided for in plain TgX, I use the the AMS (blackboard) font msbm1e.

The £ and & composed relational operators are marked up by \mathrel {\mathop
=*{\rm L}} and not by $\buildrel\rmL \over=$, TgXbook p437; the latter is OK for
the stacked composed symbol as such.

For typesetting tables \halign and the tabbing mechanism have been used
(TgXbook ch22). The 11-element of one of the tables needs an oblique line. I provided
for this in PS, which is simpler and not restricted by obliqueness. In 1995, in my PWT
guide, I used the GKP macros for this, which suffer from the same inconvenience as
ETEX’s picture environment: restricted obliqueness.

A blank line before display math yields too much white space! This blank line is
important, though, in order to avoid widows.

Locally I have used for parallel listings of program texts vbox-s next to each other,
which inhibits proper page breaks. I don’t know how to provide macros for lo-
cal elegantly marked up multi-column texts, which allow page breaks. (I also tried
\valign, alas in vain.) My inserted pictures suffer from the same inconvenience as in
Word: changing the text might disturb the layout, such that the pictures will become
ill-placed.

As known, I could not use footnotes from within a vbox; kludged around.

In TeXworks I used the Terminal font in the edit window with the pleasing effect
that comments remain vertically aligned in the . pdf window.

Conversion of my TgX script into Word made me (hands-on) aware of the differences
between TgX and Word. If you are after utmost accurate, user-controlled typeset
Mathematics then TgX is to be preferred. For bread and butter Mathematics Word
can do, especially with Cambria, I presume. I did not find in Word (MS equation
3.0) the possibility to discern between displayed Math and in-line Math. Tables in
Word are tricky, the WYSIWYG approach does not always yield the table layout you
are after. As in TgX I can’t make an appropriate 11-element. I could not handle the
inclusion of a PS made 11-element in Word. Program texts, as columns in a table,

VOORJAAR 2013 69

70 MAPS 44

Kees van der Laan

don’t suffer from difficulties in allowing page breaks. A pre-index, as is usual with
hyper-geometric functions, I could not nicely typeset with MS equation 3.0.

Inclusion of the . jpg figures and . pdf objects went smoothly. I had to convert . png
objects. The inclusion of EPSF object option did not work on my PC, though the
option is available. It invoked Adobe Illustrator CS2 12.0.0 and fell silent. The same
EPSF invoked by Al directly worked. Maybe incompatible versions? Neglecting su-
perfluous spaces, which TgX does automatically, has been lost in the conversion. A
local change in Word might change the document more than local, beyond user con-
trol. I don’t know how to switch off, or change, pre-settings, such as: don’t underline
automatically WWW addresses, maybe by de-activating the option WWW addresses
as hyperlinks?

Conversion also entailed splitting up the original (concept) paper and rewriting
the parts into 2 new papers. Converting back into TgX, after changes were made, was
more difficult than converting into Word.

After I had finished I became aware of Acrobat Pro X which also converts .pdf
into a Word document.

Acknowledgements

Thank you Adobe for your maintained, adapted to LanguageLevel 3 since 1997, good
old, industrial standard PS and Acrobat Pro (actually DISTILLER) to view it, Don
Knuth for your stable plain TgX, Jonathan Kew for the TeXworks IDE, Han Thé Thanh
for pdf(La)TEX, Hans Lauwerier for your nice booklets with so many inspiring ex-
amples of fractals.

Thank you Jos Willink for proofing, Wim Wilhelm for drawing my attention to
cellulaire automata, and the I&TgX graphics environment asymptote which he in-
tegrated in TgXnicCenter; I don’t have experience with them, but they may be of
interest for IXTEX users. MAPS editors for improving my use of English and Taco
Hoekwater for procrusting my plain TgX note into MAPS format.

Thank you Zinadia Nikolaevna Gulka for inviting me to submit a paper or two for
the ‘Informatsionnie Texnologii i Matematicheskoe Modelirovanie’ journal’, and her
co-worker for stimulating me to convert the TeEX marked up ASCII source of an early
version of this note into the required Word. The invitation stimulated me to adapt
and revise the material. Thank you GUST for publishing a previous version of this
note in the BachoTEX2012 proceedings. Thank you Svetlana Morozova for prompting
me in the use of Word.

IDE My PC runs 32 bits Vista, with Intel Quad CPU Q8300 2.5GHz assisted by
8GB RAM. I visualize PS with Acrobat Pro 7. My PS editor is just Windows ‘klad-
blok (notepad).” I use the EPSF-feature to crop pictures to their BoundingBox, ready
for inclusion in documents. For document production I use TgXworks IDE with the
plain TgX engine, pdf TgX, with as few as possible structuring macros taken from
my BLUe. tex — adhering minimal TgX markup. I use the Terminal font in the edit
window with the pleasing effect that comments remain vertically aligned in the . pdf
window.

For checking the spelling I use the public domain en_GB dictionary and hyphen-
ation patterns en_GB. aff in TgXworks.

Prior to sending my PDF’s by email the files are optimized towards size by Acrobat
Pro.

The bad news with respect to . eps into . pdf conversion is that the newest Acrobat
10 Pro X does not allow for the run command for library inclusion.

Classical Math Fractals in PostScript VOORJAAR 2013

Notes

1.

2.

Alas, the \psfig has been lost in pdf TgX. Happily, ConTgXt and LuaTgX allow
direct EPSF inclusion.

Lauwerier(1989) narrates what mathematicians thought about the co-concept
through the ages from the ancient Greeks onward.

. Acrobat Pro X does not allow for the library inclusion via run, alas :-(. BASIC is

interactive, PS is batch-oriented.

. Barnsley is famous for his fern fractal. In his later works he is more ambitious

and constructs fractals given a picture, on demand.

. The ‘fixed-point’ of the production rule is the fractal. At right my old TgX code is

displayed with its result.

. The “fixed-point’ of the production rule is the real fractal.

My case rests, have fun and all the best.

Kees van der Laan
Hunzeweg 57, 9893PB Garnwerd, Gr, NL
kisal©xs4all.nl

71

72 MAPS 44

Kees van der Laan

Appendix: Fractal Dimension

The need arose to associate various fractal curves with numbers, to characterize them.
Mathematicians came up with definitions which were generalizations and compatible
extensions of the classical, topological dimension notion. The fractal dimension a la
Kolmogorov(1958) is based upon covering the fractal with a grid and counting the cells
of the grid which contain points of the fractal, the so-called box-counting dimension.
The definition reads
D= liné logN/log(1/s),
S

with N the number of cells which co?tain points of the fractal and s the size of the
side of a cell. Let us calculate the (fractal) dimension of a square in order to verify
the compatibility of the definition with the classical fact. Cover the (unit)square with a
grid which has s as side of a cell, then we have 1/s2 cells which cover the unit square,
and therefore D = log(1/s2)/log(1/s) = 2, QED.

All plane-filling fractal curves have fractal dimension D = 2.

For the calculation of the fractal dimension of fractals defined by contracted map-
pings, with contraction factors fq,f,,f3, ... Lauwerier(1990) mentions the Hausdorff

formula
Y =1

For the Lévy fractal, which can be delfined by 2 contractions each with contraction
factor 1/+/2, we arrive at
2%(1/V2)P =15 D=2.

For the von Koch fractal, which can be defined by 4 contractions each with contraction
factor 1/3, we arrive at

4%(1/3)P =1 —= D = log4/log3 ~ 1.26.
For the Sierpiski sieve, which can be defined by 3 contractions with contraction factors
1/2, we arrive at

3%(1/2)P =1 — D =log3/log2 ~ 1.58.
For the Menger sponge, which can be defined by 8 contractions each with contraction
factor 1/3, we arrive at

8x(1/3)P =1 — D =log8/log3 ~ 1.89.

The details of the definition of the fractal dimension D by Hausdorff (1919) are
cumbersome, and serve a theoretical need. The calculation of other fractal dimensions:
self-similarity dimension, and compass dimension (for coast lines) goes beyond the
scope of this paper, see Peitgen c.s.(2004). My purpose is that one knows about the
concept as a grey box with nodding knowledge, that one knows some fractal dimensions
for simple cases, and ... that one does not become frightened or confused on encounter.

For a survey of various fractals and their dimensions see Peitgen c.s.(2004) and/or

http://en.wikipedia.org/wiki/List_of_fractals_by_Haussdorf_dimension.

Finally, do you know that the path of Brownian movement is a fractal with fractal
dimension 2, and ... do you know that the Cantor Dust has Hausdorf dimension Dy =
log2/log3 ~ .63, which differs from the fractal dimension D ~ .697?

Appendix: Cantor Dusts

The Cantor Dust has been shown at the beginning of this note. The idea is that each
line is replaced by its left and right third parts. This pattern can be repeated yielding
what is called a fractal nowadays. (It is included in pic.dat, the library of (TEX-alone)
pictures which come with BLUe. tex.)

In Publishing with TEX(1995) the Cantor Dust example by TEX alone was included.

Classical Math Fractals in PostScript VOORJAAR 2013 73

The PS code for Cantor Dust of order n has a similar production rule as for the von

Koch fractal:
CD, =S

CD, the initial line,
CD,, the Cantor Dust of order n,
@ splice operator, meaning add properly the second piece to the set,
[open a new GS on the GS stack,
] remove current graphics state from the GS stack and recall previous,
Sa,b means scale US by a and b, in x- and y-direction
Tq,p means translate US by a and b, in x- and y-direction.
The above PS production rule transcribes systematically into the following PS def.’

CDp_q] ® [S11 Tae yCDy_4] with
3

11 11
33 33

%!PS-Adobe-3.0 EPSF-3.0
/cd%integer n>=0 ==> Cantor Dust of order n
{1 sub dup -1 eq
{0 @ moveto s @ lineto stroke}
{gsave .3333 1 scale dup cd grestore
gsave .3333 1 scale 2 s mul @ translate dup cd grestore
}Yifelse 1 add
}def
%%EndProlog
%
% Program
%
%. ..
/s 300 def 4 cd pop
305 -2 moveto TR10 setfont (Cantor) show
@ -3 rmoveto TR7 setfont (4) show @ -10 translate
%. ..
showpage
%HEOF

%Borrowed from BLUe's pic.dat
\newcount\x\newcount\y\newcount\width
\newdimen\unitlength
\def\E#1{\hbox to @pt{\kern\x\unitlength
\vbox to @pt{\vss\hrule width#1\unitlength
\kern\y\unitlength
}\hss
F\advance\x#1 }
\def\cf{\ifnum@=\width \fc\fi
{\E{\the\width}}\divide\width3
\advance\y-3
{\cf}\advance\x\width
\advance\x\width
{\cf}\relax}%
\def\fc#1\relax{\fi}%
$$\width243 \unitlengthipt
\x-\width \divide\x2
\cf$$

The ‘fixed point’ of the production rule is the Cantor Dust fractal. For just showing a
few approximations of the Cantor Dust the TEX code will do. Lauwerier(1987) provides
a tiny BASIC program KAM. He also associates the Cantor dust with the trinary number
system because the interval is divided in 3 pieces, repeatedly. The Cantor dust of [0, 1]
consists of the trinary fractions where only the digits 0 and 2 occur, Lauwerier(1987,
p26). An eye-opener!

Cantor Dust as IFS Lauwerier(1989, ch8) constructs the Cantor Dust of high order by
the IFS

74 MAPS 44

Kees van der Laan

Xnel Zxn/3and Xpp1 Sxn/342/3 n=0,1,2,.. xo=1/3.

Again an eye-opener! His tiny program and my conversion read

X=.3 'start

FOR K=1 TO 100
IF RND<.5 THEN X=X/3 ELSE X=(X+2)/3
PSET(X, @) 'scale X if wanted

NEXT K

END

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Cantor Dust via IFS

%%Author: H.A. Lauwerier(1989): Oneindigheid

%%Transcriptor: C.G. van der Laan, may 2012

%%BoundingBox: -1 39 1010 70

%%BeginSetup

%%ENdSetup

%

% Program

%

/Courier 10 selectfont

22121943 srand /x .3 def%start

100{rand 1073741823 gt{/x x 2 add 3 div def}

{/x x 3 div def}ifelse

X 1000 mul 50 moveto (.) show
}repeat

showpage

%HEOF

If you, kind reader, shrug shoulders about paying so much attention to such a tiny
problem, | can only say that if you don't analyse tiny problems deeply, your solutions
of bigger problems will lack ingenuity.

Generalization to 2D yield the so-called Sierpinski carpets.

The algorithm reads: divide a square in 32 equal sub-squares and delete the middle,
or the middle cross, and do this repeatedly for the remaining 8 squares.

At the EuroTEX95 Bogustav Jackowski showed his variant, probably in connection
with his mftoeps program, which transforms Metafont code into PS. (I did not use
mftoeps, because it was PC-biased, and | had a Mac Powerbook 150.) This was at the
time that MetaPost, the preprocessor for PS with Metafont-biased user-language, was
not yet released in the public domain.

In my opinion he was on the right track: PS is mandatory for graphics to be included
in documents. It is just a pity he did not pursue that PS alone, or better EPSF, is
suitable for constructing graphics to be included in documents. His collaborators, Pjotr
and Pjotr, pursued PS in PSview.

| programmed the Sierpinski carpet, it is not the gasket, in TEX and in Metafont
after the conference. For historical reasons | have included the programs below. The
black-and-white figure is created by TgX-alone on-the-fly. (I just copied it from the
revised 1996 FIFO-article, and see,... it still works. The MF program also still works on
my museum Mac Powerbook 150 of 1995!)

The picture at right has been borrowed from the WWW. It illustrates a generalization
of the good old Cantor Dust into 2.5D, also called Menger sponge. Both pictures are
more interesting and more beautiful than the original 1D Cantor Dust.

Classical Math Fractals in PostScript VOORJAAR 2013 75

tracingstats:=1;proofing:=1;screenstrokes; %

pickup pencircle scaled 1;

def sierpinskisquare (expr s, p)=

if s>5:unfill unitsquare scaled .333s

shifted (p+.333sx(1,1));

sierpinskisquare(.333s, p);
sierpinskisquare(.333s, p+(.333s,0));
sierpinskisquare(.333s, p+(.667s,0));
sierpinskisquare(.333s, p+(0,.333s));
sierpinskisquare(.333s, p+(9,.6673s));
sierpinskisquare(.333s, p+(.667s,.333s));
sierpinskisquare(.333s, p+(.667s,.667s));
sierpinskisquare(.333s, p+(.333s,.667s));

fi enddef’;

%

s=100; fill unitsquare scaled s;

sierpinskisquare(s,origin);

showit;

end

\newdimen\x\newdimen\y\newdimen\size\newdimen\lsize
\def\sier{\ifdim\size<35pt \reis\fi
\divide\size3
{\sier}{\advance\x\size\sier}{\advance\x2\size\sier}%
{\advance\y\size{\sier}{\advance\x2\size\sier}}%
\advance\y2\size{\sier}{\advance\x\size\sier}%
\advance\x2\size\sier}
\def\reis#1\sier{\fi\putatxy\draw}
%with auxiliaries
\def\putatxy#1{\vbox to@pt{\vss
\hbox to@pt{\kern\x#1\hss}\kern\y}}
\def\draw{{\1size\size\divide\lsize3
\rlap{\vrule height\size width\lsize
\vbox to\size{\hrule width\lsize height\lsize\vss
\hrule width\lsize height\lsize}%
\vrule height\size width\lsize}}}

$$\vbox to120pt{\vss
\offinterlineskip\size120pt\x=-.5\size\yopt
\sier}$$

A PS program for a 2.5D Cantor Dust is cumbersome, because it has to deal with
projection and has to handle hidden lines.

Appendix: Hilbert Curve

Hilbert curves H; ... Hg have been shown in the introduction. Wirth(1975) | consider
a starting point for programming a Hilbert curve. Wirth could not know about the
rotation of US facility, nor did PS exist. The self-similarity property of the H-curve,
i.e. a curve is composed of (rotated) curves of one order lower, he programmed by
four rotated instances in (recursive) procedures A, B, C and D, which entailed a more
complex recursion scheme. For those who don't own the 1975 book | have included
the program and the procedure A. (Procedures B, C and D are similar.)

76 MAPS 44 Kees van der Laan

The left PS-program below is based on the production rule®
Hi = H, @T@H_1 &= &Hi_1 &1 @& H?, for1=1,2,..
where @ means spliced, the superscript denotes the rotation angle, the arrows T — |
mean draw a segment in the direction North, East, and South. In order to splice
correctly, the rotated copies have also to be mirrored, which is indicated by the pre-index

m.
%!PS-Adobe-3.0 EPSF-3.0 program Hilbert(pf,output);
%%Title: Hibert curve, Feb 2012 {plot Hilbert curves of orders 1 to n. Wirth(1975).}
%%Author: Kees van der Laan, kisal@xs4all.nl const n= 4; ho=512;
%%BoundingBox: -1 -1 321 151 var i,h,x,y,x0,y0: integer;
%%BeginSetup pf: file of integer; {plotfile}
%%EndSetup procedure A(i: integer);
%%BeginProlog begin if i>@ then
/-s s neg def begin D(i-1); x:=x-h; plot;
/1lineN{@ @ moveto @ s lineto currentpoint stroke translate}def A(i-1); y:=y-h; plot;
/1ineS{@ @ moveto @ -s lineto currentpoint stroke translatel}def A(i-1); x:=xth; plot;
/1ineE{@ @ moveto s @ lineto currentpoint stroke translate}def B(i-1);
% end
/Hilbert{%on stack order >=1 ==> Hilbert curve end;
%s size of line segment (global), {B, C and D similar for rotated instances}

1 sub dup @ gt begin startplot;
{90 rotate 1 -1 scale Hilbert 1 -1 scale -90 rotate i:=0; h:= ho; x0:=hdiv2; y0:=x0;

lineN Hilbert repeat {plot Hilbert curce of order i}

lineE Hilbert i:=i+1; h:= h div 2;

lineS Xx:=x@ + h div 2;
-90 rotate 1 -1 scale Hilbert 1 -1 scale 90 rotate y:=y@ + h div 2;

}if 1 add%reset order setplot;
} def A1)
%%EndProlog until i=n
% endplot
%Program ---the script--- end.

%
/s 10 def %size of segment
1 Hilbert pop Hj B
s 0 translate 2 Hilbert pop
2 s mul @ translate 3 Hilbert pop
3 s mul @ translate 4 Hilbert pop
showpage
%HEOF

The US facility of PS facilitates programming of these kinds of curves. Moreover, we
don’t need a plotfile in PS. After executing the PASCAL code we still have to create
a .pdf file suitable for inclusion in documents.

Lauwerier(1990) provides a BASIC program, Peanol, for the Hilbert curves, re-
stricted to orders < 5, via the Turtle Graphics method, i.e. drawing forward, meaning
the broken line is obtained by drawing the segments in increasing order 1, 2, 3, The
above program draws also forward by backtracking, a short of LIFO, Last-In-First-Out.
In Peanol the direction numbers are stored in an array of size 3411. Large enough for
practical purposes. (The program above does not need the explicit direction numbers.)

The Peano curve, as shown at the beginning of this note, can be programmed along
the same lines as for the Hilbert broken line above or via the Turtle Graphics casu quo
Lindenmayer approach a la Lauwerier, which | leave as an exercise to the reader.

Application of plane-filling curves occurs in discretization of images where instead of
a Cartesian grid the plane filling curve is used.

Classical Math Fractals in PostScript VOORJAAR 2013

Hilbert curve in Metafont and Joseph Romanovski's (1995) PS code

%cgl, 1995
tracingstats:=1; proofing:=1;screenstrokes;autorounding:=0; /S{0@ R rlineto currentpoint stroke movetol}def

pickup pencircle scaled 0.2pt; /T{90 rotate}def

def openit = openwindow currentwindow /TM{T 1 -1 scale}def
from origin to (screen_rows,screen_cols) at (-40s,15s)enddef; /H{TM dup 0 gt

path p; s=10; {1 sub

sz=0;p:=origin;%H_0 size and path HS

n=5; %Order of H-curve TMHS

for k=1 upto n:%H_1,...H_n consecutively HTS

p:= p transformed (identity rotated 90 -1 1 scale H 180 rotate
reflectedabout (origin,up))-- 1 add

p shifted ((-sz-1)*s,0)-- Jif ™

p shifted ((-sz-1)*s,(-sz-1)*s)-- }def

p transformed (identity rotated -90 /R 8 def 100 100 moveto 6 H pop
reflectedabout (origin,up) shifted (-szxs,(-2sz-1)%*s)); showpage

S5z:=2sz+1;

clearit;draw p; showit;

endfor

end

Joseph's code is a bit cryptic (but is similar to mine). He uses short names, which does
not make sense, makes the code difficult to read, which is considered a bad practice.
But, ... he was on the right track, also with the use of colours via PS.

Conclusion. Such a simple(?) problem yielded already a few variants, of which most
suffer from bad readability, because they are not biased by a production rule, IMHO.

Appendix: Sierpinski islands

Sierpinski islands Sy... S3 have been shown in the introduction, in overlay.

Wirth(1975), | consider a starting point for programming a Sierpinski island. Wirth
did not have the rotation of US facility, nor did PS exist.

Algorithm: The curve is closed and is composed of 4 (90° rotated) broken lines
connected by lines in the direction SE, SW, NW and NE. The program consists of
2 parts: first the generation of a side and second the appropriate splicing of rotated
copies.

The PS program is based on the following production rule for a side

Si=S; 1 @SE@ S{W @ E @ S{% @ NE@® Sy, fori=1,2,..
where & means spliced, the superscript denotes the rotation angle. and SE, E, NE mean
draw a line in the direction South-East, East, and North-East.

—
%!PS-Adobe-3.0 EPSF-3.0 W
%%Title: Sierpinski island Side, March2012
%%Author: Kees van der Laan
%% Affiliation: kisal@xs4all.nl
%%BoundingBox:-1 -82 287 2

%%BeginSetup

%%ENdSetup

%%BeginProlog

/s' s 1.4142 div def

/NE{@ @ moveto s' dup lineto currentpoint stroke translatel}def
/SE{@ © moveto s' dup neg lineto currentpoint stroke translate}def
/E {0 @ moveto s @ lineto currentpoint stroke translatel}def
/SideS{%on stack order >=1 ==> Sierpinski side

%s size of line segment (global)
1 sub dup @ ge
{ dup SideS
SE
dup -90 rotate SideS 90 rotate
E

77

78 MAPS 44

dup 90 rotate SideS -90 rotate
NE
dup SideS

}if 1 add} def

0 setlinejoin 1.415 setmiterlimit 1 setlinecap

%%EndProlog

%

%Program ---the script---

%

/s 10 def % size of segment
1 SideS pop

s @ translate 2 SideS pop

s @ translate 3 SideS pop

showpage

Wirth programmed the four rotated instances in (recursive) procedures A, B, C and D,

which entailed a more complex recursion scheme.

Ok i

Sierpinski islands O ...

For those who don’t own the 1975 book | have included Wirth's program, translated

into Metafont in 1995.

%!PS-Adobe-3.0 EPSF-3.0

%%Title: Sierpinski island, March 2012
%%Author: Kees van der Laan
%%Affiliation: kisal@xs4all.nl
%%BoundingBox:-10 -185 307 2
%%BeginSetup

%%ENdSetup

%%BeginProlog

(C:\\PS1ib\\PSlib.eps) run %loads /SideS and auxiliaries from PSlib
%%EndProlog

%

%Program ---the script---

%

/s 20 def % size of segment

4{ SE -90 rotate}repeat%S_0
1.5 s mul @ translate /s s 2 div def

4{ 1 SideS pop SE -90 rotate}repeat%S_1
4.5 s mul @ translate /s s 2 div def

4{ 2 SideS pop SE -90 rotate}repeat%S_2
10.5 s mul @ translate /s s 2 div def

4{ 3 SideS pop SE -90 rotate}repeat%S_3
showpage

%%EOF

The S,...S3 pictures obtained by
the given program are shown above.

Kees van der Laan

%Translation of Wirth's code into Metafont

tracingstats:=1;proofing:

=1;screenstrokes;

pickup pencircle scaled 0.01pt;

s=10; path p;
def openit =

def A expr k=if k>0:

A(k-1);draw z--hide(x:
B(k-1);draw z--hide(x:
D(k-1);draw z--hide(x:

A(k-1); fi enddef;
def B expr k=if k>0:
B(k-1);draw z--hide(x

A(k-1);draw z--hide(x
B(k-1); fi enddef;
def C expr k=if k>0:

C(k-1);draw z--hide(x:
D(k-1);draw z--hide(x:
B(k-1);draw z--hide(x:

C(k-1); fi enddef;
def D expr k=if k>0:

D(k-1);draw z--hide(x:
A(k-1);draw z--hide(y:
C(k-1);draw z--hide(x:

D(k-1); fi enddef;
def sierpinski expr k=%k

openwindow currentwindow from origin
to (screen_rows,screen_cols) at (-5s,5s)enddef’;

=x+h;y:=y-h)z;
=x+2h)z;
=xthiy:=y+h)z;

:=x-h;y:=y-h)z;
C(k-1);draw z--hide(y:
:=x+h;y:=y-h)z;

=y-2h)z;

=x-h;y:=y+h)z;
=x-2h)z;
=x-h;y:=y-h)z;

=x+h;y:=y+h)z;
=y+2h)z;
=x-h;y:=y+h)z;

is order of curve

if k>0: A(k);draw z--hide(x:=x+h;y:=y-h)z;
B(k);draw z--hide(x:=x-h;y:=y-h)z;
C(k);draw z--hide(x:=x-h;y:=y+h)z;
D(k);draw z--hide(x:=x+h;y:=y+h)z;

fi enddef;
z=origin; h=16;
sierpinski2; showit; end

