Abstract
Recreational use of TeX&Co in my work is enumerated and elucidated. Examples from MetaFun, from Lancaster’s Fonts for Free, from Jackowski&Ryćko metafont logo, and from Word have been borrowed. PostScript and let TeX insert mark-up, will be the main subjects of discussion. PostScript is not sufficient for graphics. Now and then MetaPost is used to specify a problem in a declarative way, or at the end Photoshop is used to enrich the graphics interactively by colour gradients. Moreover, for drawing emulations of 3D objects, projection techniques are indispensable. Emulations of Escher’s impossible cube and of Gabo’s objects are included as 3D-examples. All my pictures have a recreational flavour because none has been triggered by external practical need. Interesting is the combined use of Turtle Graphics and recursion. TeX codes and PostScript codes are compared, although they are like apples and pears intrinsically incomparable, but ... have been used for the same purpose. The most astonishing is that so much from BLUE.tex passed by unnoticed. Pic.dat for TeX-alone pictures has received its cousin library, PSlib.eps, for PostScript pictures. The TeX-MF-flow picture has been updated and included, next to a screen-shot of a nowadays IDE TeXworks. In this note I’ll try to draw your interest, to persuade you, kind reader, to look at the contents, the paradigms, and the kernel and modules set-up of BLUE.tex. My sincere hope is that BLUE.tex will be saved from oblivion, that the paradigms used will be adhered. The serious undertone in TeX is about minimal mark-up or better still the absence of user mark-up, where TeX will insert the mark-up. The serious undertone in PostScript is about printing along paths, especially for the special cases where the paths are implicit. Handy and convenient is the extended PSlib.eps to over 300 pictures. Critics on TeX&Co and pdFTeX have been included, next to my wishes. After the presentation PSTricks was shown to me, and my comment on it is included.

Keywords
Acrobat Pro, Adobe, art, automatic mark-up, backtracking, BLUE, Blue Sky research, bridge, Caroll, chess, Cohen, ConTeXt, crosswords, dancing text, Deubert, Ensor, EPSF, Escher, FIFO, font charts, function-grapher previewer, Gabo, Hagen, Henderson, IDE (Integrated Development Environment), impossible figures, Jackowski, Lancaster, Lauwerier, LIFO, Lindenmayer, magic square, Malevich, Margritte, MetaFun, MetaPost, Metafont, MetaType1, minimal encapsulated PostScript, minimal mark-up, minimal plain TeX, Mondriaan, Monte Carlo, musiXtex, mppreviewer, Nolde, Photoshop, π-decimals, projection, PSlib, PSTricks, PSView, Pythagoras tree, Ryčko, Schrofer, Soto, Taupin, TeXworks, tic-tac-toe, Vasarely.
Introduction

In the late 80s I became aware of \TeX and immediately realized the relevance for a university community. I started the 'Publiceren met LaTeX' project, which resulted in the CWI-syllabus 19. We organized a \LaTeX course at Utrecht. University users found their way in how to use \LaTeX. I became 1st president of NTG.

In order to learn macro-writing I developed my bridge macros, which marks my start of Recreational use of \TeX. My learning of macro-writing culminated in BL\texttt{ue}.\texttt{tex} and my 'Publishing with \TeX' guide,\(^1\) which concentrates on what can be done by \LaTeX alone, without incorporating the results of graphics software.

My next project was typesetting tables by \TeX, where I en-passant looked for a taxonomy of tables. The conclusion of this work was that tables are too varied, but one could discern a broad class of tables which have a border and in there the proper table data. This lead to my table macros, which I presented at the Euro\TeX\texttt{92 at Prague.}\(^2\) My Recreational use of \TeX in the table area are amongst others bridge layouts, the crosswords table, a magic square, and the PASCAL’s triangle of binomial coefficients.

At the Prague conference I was impressed by Karel Horák’s graphical work in Metafont. At home I started to use Metafont for graphics, mainly recreational, which resulted in my ‘cat’.\(^3\) The incorporation of Metafont graphics in \TeX via symbols of a font I experienced as inconvenient. Later I learned about \texttt{psfig}, which easily lets you include PostScript pictures in \TeX-documents. The use of \texttt{psfig} marks my beginning of \TeX\&PostScript. My viewer was the Apple Laserwriter, and not \texttt{PSView} which was not available on my PowerMac. My use of PostScript as part of \TeX\&Co has a strong recreational flavour. Many pictures have been inspired by work of artists, such as Escher, Gabo, Malevich, Mondriaan, Soto, Schrofer, Vasarely, ... as can be witnessed in this paper. Pictures have been improved:

- PostScript pictures resulting from MetaPost with at least better BoundingBox values,
- \texttt{gkp}-pictures were done anew in PostScript now and then, and included in \texttt{PSlib.eps}.

All pictures come with better explanations. Inclusion in my pdf\TeX-documents goes by the macros \texttt{\pdfximage}... \texttt{\pdfrefximage}\texttt{\pdflastximage}, or my less-verbose macros \texttt{\insertjpg}, c.q. \texttt{\insertpdf}.

My use of graphics with \TeX marks five periods: 1st by \LaTeX’s picture-environment, 2nd by \TeX’s gkp-macros, with the same functionality as the picture-environment, 3rd by Metafont, supported by projection techniques, 4th by MetaPost, 5th by PostScript, supported by Photoshop as post-processor, mainly for colour gradients.

This paper consists of examples from earlier MAPS papers, from Hagen’s MetaFun, from Lancaster’s Fonts for Free, from the 3D Jackowski\&Ryck\texttt{o metafont logo, from Word and from literature. The 1st appendix contains my balanced binary tree macros in \TeX of old next to my superior PostScript variant, on occasion of the Euro\TeX-Con\TeXt\texttt{2012. Another appendix contains determination of the BoundingBox values in 1-pass, on-the-fly. The 3rd appendix contains a LMR font table.}

Select what you are interested in. If only you enjoy one picture, kind reader, I’m happy already 😊.

1. Available from CTAN.
2. Knuth considers bordered matrices in the \TeX\texttt{book but does not mention bordered tables.}
3. Much later the cat was adapted to MP and the resulting data resulted in an EPSF.
One by one the guests arrive, MAPS 96.2 1996

This 1-page paper is best read with Cohen’s song in the background. It is a plea for serious — non-recreational — use of \TeX.

“...This plea, this shout, hopes to awaken the notion that we are all better off if we write macros in the lowest common set of all \TeX-flavours, i.e. plain \TeX. At least it might initiate a discussion whether to do so or otherwise, because I’m realistic enough that not all share my views ...”

A little later the song continues

“And no one knows where the night is going
And no one knows why the wine is flowing
O love, I need you, I need you, I need you
I need you now ...”

The point I’m trying to make is that we are all better off when complex fundamental parts will be programmed in plain \TeX, perhaps after it has proven to be worth it. To end Cohen’s song

“The guests are coming through
The open-hearted many
The broken-hearted few”

Looking back the \TeX-community decided otherwise: \LaTeX-packages are contributed to CTAN; Con\TeXt and Lua\TeX were developed; the new Latin Modern Roman fonts are Adobe Type 1 🎉. The GUST e-foundry \TeX-Gyre OTF-project is under way, funded by several LUGs and TUG. But ... nevertheless I keep saying it.

Macros from Blue \tex and pictures from \texttt{PSlib.eps} can be reused even by Con\TeXt, \LaTeX, ... respectively MetaPost users, because they are written in the common plain \TeX subset, respectively the underlying PostScript. But there is more than reuse ... MetaType 1 fonts are in Adobe Type 1, however ... Adobe has declared Adobe Type 1 obsolete, see Ludwichowski this proceedings.

The Life-cycle diagram of publications is one of my favourites. The invoke of \texttt{\halign} is straight-forward.

\begin{verbatim}
Produce \rightarrow Distribute \rightarrow Consume
\uparrow \uparrow \downarrow
reuse retrieve store \end{verbatim}

In principle the above life-cycle is OK, but ... in practice the reuse aspect is hampered by changes, such as a different IDE

☐ or a new \TeX engine, such as pdf\TeX, which no longer supports for example \texttt{\psfig}

☐ or programs have become obsolete such as the picture environment

☐ or the gkp-macros have become outdated, as happened with the Happy Birthday cake picture.

Moreover, it is hard to maintain original data over time, over computer renewals. Nevertheless ...

4. During the presentation the tune was played by just pushing a button in my slide, multi-media, aha.
5. The same holds for pictures: we should create and adhere a library of \texttt{PS} pictures. Why not start with \texttt{PSlib.eps}?
Typesetting Crosswords via \TeX, MAPS 8, 1992

The typesetting crossword tool, as one of the tools in tools.dat, comes with BLUe.tex. The environment is \bigin crossword\ldots \endcrossword. The example has been borrowed from the table chapter of PWT. The crosswords tool has been copied from BLUe’s tools.dat and used stand-alone in this paper.

\begin{crosswords}
\begin{data}
P*On
DEk*
*n*S
\end{data}
\crw
<Clues in 2 vtop’s, v-centered>
\sol
\endcrosswords

Interesting is the near-WYSIWYG-data specification of the puzzle. Minimal mark-up has been strived after, no \cr-s nor \&-s have to be inserted by the user, \TeX will do it for you. Mean-and-lean is that the solution or the puzzle can be toggled by \sol respectively \crw. Note the use of capitals and lower case. The capitals mark where a number for the clues has to be inserted, automagically 😊. Paradigm: let \TeX insert mark-up.

A variant via PostScript inspired by David Byram–Wigfield, who created a special font QuadFont, interesting in itself, for the black and white squares. But… without numbers for the clues and no toggling of solution and puzzle. In my PS version I simplified, without creating QuadFont. \TeX’s version is superior.

\begin{Verbatim}
/x(0 0 20 20 rectstroke 20 0 translate) def
/X(0 0 20 20 rectstroke 0 20 20 rectfill 20 0 translate) def
/crl{-80 -20 translate 0 0 moveto} def
x X x x crl
\end{Verbatim}

Typesetting Bridge via \TeX, MAPS 7, 1991

My recreational use of (La)\TeX started with writing La\TeX bridge macros in 1990. In 1995 as part of BLUe.tex the plain \TeX variants became a tool in BLUe’s toolbox. The macros are available in BLUe.tex’s tools.dat. The environment \beginbridge \ldots \endbridge selectively loads, behind the scenes and OS-independently, the macros from the tools.dat into your BLUe job. They can also be copied from the toolbox, manually, and used as a independent part, without BLUe, as I did for this paper.

6. For a wealth of examples see Practical PostScript—A guide to Digital Typesetting, David Byram–Wigfield. \url{http://www.cappella.demon.co.uk}, or John Deubert’s \url{http://www.acumentraining.com/acumenjournal.html}.

7. Bridge is a card game and played with 52 cards: A K Q J T 9 \ldots 3 2, each in the suits: , , and . There are 4 players around a table called North, East, South and West. N and S form a team, so do E and W. The cards are dealt, each receives 13 cards and then the auction starts. After the auction the playing of the cards begins. A game takes 5-7min.
Recreational use of \TeX\&\LaTeX

EURO\TeX\ 2012 & 6CM PROCEEDINGS

The \LaTeX\ bridge macros are mentioned, and some results have been shown. From the macro-writing point of view, the dynamically declaration of token variables, as shown below, is interesting; a paradigm. The cards as sets and \TeX-operations on sets is a paradigm too.

%\NT is alias of \newtoks without restricted use; \ea means \expandafter
\ea\let\ea\NT\csname newtoks\endcsname
\NT\Ns\NT\Es\NT\Ss\NT\Ws \NT\Nh\NT\Eh\NT\Sh\NT\Wh
\NT\Nd\NT\Ed\NT\Sd\NT\Wd \NT\Nc\NT\Ec\NT\Sc\NT\Wc \NT\hnd

The \play table is interrupted by showing the status of the play, the remaining cards, between trick 7 and 8. Interesting is that data integrity has been strived after, because played cards have been removed from memory. Note the minimal mark-up: h just means hearts. At the time I did not know how \TeX could include the &-s and \cr-s.

There is also an auction-environment. The example is borrowed from the table chapter of Publishing with \TeX, PWT for short. In the \LaTeX\ Graphics Companion the \LaTeX bridge macros are mentioned, and some results have been shown. From the macro-writing point of view, the dynamically declaration of token variables, as shown below, is interesting; a paradigm. The cards as sets and \TeX-operations on sets is a paradigm too.

%\NT is alias of \newtoks without restricted use; \ea means \expandafter
\ea\let\ea\NT\csname newtoks\endcsname
\NT\Ns\NT\Es\NT\Ss\NT\Ws \NT\Nh\NT\Eh\NT\Sh\NT\Wh
\NT\Nd\NT\Ed\NT\Sd\NT\Wd \NT\Nc\NT\Ec\NT\Sc\NT\Wc \NT\hnd

\begin{itemize}
 \item Puzzle KQ76 6NT by East
 \item A\hspace{1cm} J98 by East
 \item J942
 \item 65
 \item AJ3
 \item K653
 \item W\hspace{1cm} S
 \item E\hspace{1cm} N
 \item T9
 \item A2
 \item T5
 \item KJ9xxxx
 \item 8542
 \item QT74
 \item Q876
 \item \showgame
 \item 2
 \item \showgame
 \item 8 x 7 6 J – 8
 \item \showgame
\end{itemize}

\begin{tabular}{c c c c c}
Trick \& NS \& EW \\
1 \& 4! \& K \& 8 \& 2 \& 1 \& \ LEADS \bplay \\
2 \& A \& 5 \& x \& 2 \& – 2 \& h\hspace{1cm} hK \& h8 \& h2 \& --& h\hspace{1cm} h\cr
3 \& Q \& 6 \& x \& 2 \& – 3 \& c\hspace{1cm} c5 \& cx \& c2 \& --& c\hspace{1cm} c\cr
4 \& T \& 9 \& K \& 4 \& – 4 \& c\hspace{1cm} h9 \& ck \& s4 \& --& c\hspace{1cm} a\cr
5 \& J \& 5 \& 3 \& 6 \& – 5 \& c\hspace{1cm} s5 \& s3 \& s6 \& --& c\hspace{1cm} h\cr
6 \& 9 \& 8 \& 5 \& 7 \& – 6 \& c\hspace{1cm} s8 \& h5 \& s7 \& --& c\hspace{1cm} h\cr
7 \& x \& 6 \& J \& 2 \& – 7 \& c\hspace{1cm} s6 \& sJ \& d2 \& --& c\hspace{1cm} h\cr
\end{tabular}

\begin{itemize}
 \item Puzzle KQ76 6NT by East
 \item A\hspace{1cm} J98 by East
 \item J942
 \item 65
 \item AJ3
 \item K653
 \item W\hspace{1cm} S
 \item E\hspace{1cm} N
 \item T9
 \item A2
 \item T5
 \item KJ9xxxx
 \item 8542
 \item QT74
 \item Q876
 \item \showgame
 \item 2
 \item \showgame
 \item 8 x 7 6 J – 8
 \item \showgame
\end{itemize}

et cetera
Computers and Bridge
In the past 20 years we have witnessed an enormous development, and increase in
the use, of computers. In Bridge this has resulted in Bridge playing software such as
the Dutch multiple Computer Bridge World-champion Jack.

Jack plays bridge
Characteristics: Data integrity, WYSIWYG input, Portable Bridge Notation stan-
dard, HTML export.

Jack bridge reporting
Do notice that typesetting is an aside for the developers of Jack.
The (recreational) play is assisted by Bridgemate (chipped-)boxes, which are used
for the registration of the scores and are Wi-Fi coupled to the tournament directors
computer for calculating the ranking. The results are put on the club’s WWW page,
made possible by the Nederlandse Bridge Bond, where the club members may find
the scores and the ranking. All the hands played are usually also available, on the
WWW and on an A4-sized paper.
Mondriaan inspired invitation

The Mondriaan (background) lozenge has been emulated in PostScript. The complete invitation after merging of the photograph and adding text, has been done in Photoshop. Emulated Mondriaan →

Other Games and \TeX

Chapter 10 of the LaTeX Graphics Companion is devoted to Playing Games: Chess, Chinese Chess, Go, Backgammon, Card Games, Crosswords in various forms, and Sudokus. In the sequel I’ll mention what has been published in MAPS on the issue.

Hanna Kołodziejska has published in MAPS 7, p63–68, 1991, her ‘Go diagrams with \TeX.’ She was inspired by Zalman Rubinstein, ‘Chess printing via MetaFont and \TeX,’ TUGboat, 10, 2. Piet Tutelaers has published in the (same) MAPS issue on the occasion of the NTG meeting about Games&\TeX, ‘A font and Style for Typesetting Chess using (La)\TeX,’ MAPS 7, p41-46.

Go diagrams with \TeX

\begin{verbatim}
\board{
 * * B *
 * * * P
 * P * * *
 * * * *
 N * * *
 KP* * *
 * K* * *
 * * * *
}
\end{verbatim}

Chess position →

Computer chess is computer architecture encompassing hardware and software capable of playing chess autonomously without human guidance. Computer chess acts as solo entertainment (allowing players to practice and to better themselves when no human opponents are available), as aids to chess analysis, for computer chess competitions, and as research to provide insights into human cognition.

Chess-playing computers are now accessible to the average consumer. From the mid-70’s to the present day, dedicated chess computers have been available for purchase. There are many chess engines such as Crafty, Fruit and GNU Chess that can be downloaded from the Internet for free. These engines are able to play a game that, when run on an up-to-date personal computer, can defeat most master players under tournament conditions. Top programs such as the Proprietary software programs Shredder or Fritz or the open source program Stockfish have surpassed even world champion calibre players at blitz and short time controls. In October 2008 Rybka was rated top in various rating lists and has won many recent official computer chess tournaments such as CCT 8 and 9, the 2006 Dutch Open Computer Championship, the 16th IPPCC, and the 15th World Computer Chess Championship. As of August 2012, Houdini is the top rated chess program on the IPON rating list with Rybka in 5th place.

8. Curiously Draughts is missing.
\textbf{\LaTeX{} and Music}

Chapter 9 of the \LaTeX{} Graphics Companion is devoted to Preparing Music Scores, and consists of 76p. It is hardly for fun. Musi\TeX{} of the late Daniel Taupin is leading. Too advanced and too difficult to be treated here, as can be witnessed from the various pre-processors to simplify the use.

\begin{center}
\includegraphics[width=0.8\textwidth]{music_diagram.png}
\end{center}

\textbf{Graphics in Publishing with \LaTeX{}, 1995}

The graphics in PWT is limited, because the graphics is obtained by \LaTeX{} alone. The gkp-macros have been used for PWT. These macros are limited due to the few discrete orientations of lines and there is no colouring.

\textbf{Magic Squares recreational Math}

A magic square of order n, is a square array of numbers consisting of the distinct positive integers $1, 2, \ldots, n$, arranged such that the sum of the numbers in any horizontal, vertical, or main diagonal line is always the same number, known as the magic constant $M_n = \frac{1}{2}n\left(n^2 + 1\right)$.

Proof. Sum of all elements $\sum_{k=1}^{N} k = \frac{1}{2}N(N+1)$, $N = n^2$.

One column, or row, sums up to $\frac{1}{2}N(N+1)/n = \frac{1}{2}n(\frac{n^2}{2} + 1)$, the magic constant M_n.

In http://en.wikipedia.org/wiki/Magic_square curious, recreational Math algorithms are mentioned for squares of (double) even and odd n.

A 4x4 magic square puzzle is available at http://www.dubster.com/math/, where one can drag-and-drop the pieces; the magic constant is 30.

\textit{For odd squares the fun algorithm reads ...} Starting from the central column of the first row with the number 1, the fundamental movement for filling the squares is diagonally up and right, one step at a time. If a filled square is encountered, one moves vertically down one square instead, then continuing as before. When a move would leave the square, it is wrapped around to the last row or first column, respectively.

\begin{center}
\begin{tabular}{cccc}
1 & 1 & 1 & 1 \\
- & - & - & 3 \\
- & - & - & 3 \\
- & - & - & 3
\end{tabular}
\end{center}

The permutation array algorithm, as mentioned above, is implemented as a PS-snippet for ms3x3 as follows9

\begin{verbatim}
%!PS-Adobe-3.0 EPSF-3.0
%!Title: Magic Square of order 3. %Permutation array algorithm as given in Wikipedia
%!Creator: Kees van der Laan, okt 2012
%!BoundingBox: 0 0 24 36
%!BeginSetup
%!EndSetup
/Times-Roman 12 selectfont
/0 8 1 6
/p {0 8 1 6
3 5 7
9 3 1 5
16 1 8 9
4 2 4 15
9 2 4 3 5 7
}/beginSetup

9. ms3x3, ms4x4 and ms5x5 are included in PSlib.eps.
In PSlib I have included a branch-and-bound, backtracking algorithm for order 3. The finding of symmetrical copies in the branch-and-bound algorithm is suppressed by fixing the middle above element on 1 and restricting the loop variables. The unrestricted code took 38sec and restricted 3sec in Acrobat Pro. PSview took 3sec for the restricted version. The number of magic squares for n=1 is 1, for n=2 there is no magic square and for n=3, 4 and 5 see the accompanying table. Programming the Magic square is as instructive as programming the 8-Queens problem. For the latter see Wirth, N(1976): Algorithms + Datastructures = Programs, p143. Programming Magic squares yields extra Math insight.

For double-even squares the fun algorithm reads ... All the numbers are written in order from left to right across each row in turn, starting from the top left corner. Numbers are then either retained in the same place or interchanged with their diametrically opposite numbers. In the magic square of order four, the numbers in the four central squares and one square at each corner are retained in the same place and the others are interchanged with their diametrically opposite numbers.

\begin{verbatim}
1 2 3 4 1 15 14 4 15 14 4
5 6 7 8 -> 5 6 7 8 -> 12 6 7 9
9 10 11 12 -> 9 10 11 12 <- 8 10 11 5
13 14 15 16 13 3 2 16 13 3 2 16
\end{verbatim}

The Magic square of Dürer shows more than the usual properties: also the four quadrants add up to the magical constant 34. By adding up 2 to each cell the magic constant becomes 42, the answer to the question of 'Life, Universe, and Everything.'

Frans Goddijn calls \texttt{oldstyle} numbers ‘dartele cijfertjes.’ A nice Dutch word, dartel.

Knuth’s most beautiful tables
Knuth’s useful and most beautifully structured and parametrized mark-up of font tables is worth studying. Knuth’s macros have been incorporated in BLUe.tex. In the Metafont book in App H a similar but interactive program testfont.tex is available and when \TeX{}live has been installed one can just say \texttt{\input testfont.tex}.

\begin{verbatim}
16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1
\end{verbatim}

In PWT the \texttt{\nltable} macro was used with flexibility with respect to the frame and the horizontal and vertical lines. Syntactic sugar?

For use with pdf\TeX{} the mark-up reads as given below.

La\TeX{} and Con\TeX{}t users are not aware of this mark-up, I presume, but they might benefit from it.

\input blue.tex
\begin{chart}{\postdisplaypenalty=0}
\tenrm
%or \tenit ... \tenlmr?
\normalchart
\end{chart}
\bye
%or simply
\input testfont.tex
%a prompt for font name
%appears: type cmmr10 f.e.
\table
\bye

Font tables have been supplied in the \TeX{}book, Appendix F. In Appendix H of the Metafont book \texttt{testfont.tex} is discussed12

I was curious how I could obtain a font table for Latin Modern Roman. Hans Hagen prompted \texttt{\starttext\showfont[\lmroman10\regular]\[all]\stoptext}, which I processed under Context(Lua\TeX) in \TeX{}works. Pane 1 of the table is supplied in the 3rd Appendix.

H-fractal from PWT

Earlier I remarked that the binary tree, the H-fractal and Adobe’s FractArrow, Bluebook, p.74, are closely related, one just has to adapt the invoke by the appropriate angle.

In \texttt{BLUE.tex} I implemented the Turtle Graphics approach. The H-fractal was programmed recursively and supplied as exercise 5.3 in PWT. Apart from pictures generated on-the-fly, pictures are provided in \texttt{pic.dat}, the picture-base of \TeX{}-alone pictures which comes with \texttt{BLUE.tex}.

Compared with programming in PostScript the coding of a \TeX{}-alone picture is cripple, without the possibility to crop the result, to include BoundingBox values for pdf\TeX{}. There is no need to include the H-fractal gkp-codes and PS-codes here; they have been included in the Euro\TeX{}-Con\TeXt{}2009 proceedings. I also mentioned there the notches, the absence of appropriate line-endings in \TeX{}. \TeX{} is the wrong tool for graphics, definitely. But … in cooperation with Metafont artistic effects can be obtained, as was done by Jackowski&Ryćko in the early 90s. For simple, quick-and-dirty, line-drawings \TeX{} might do.

Iterated Function System fractals from PWT

In 1989 I attended the TUG conference where Alan Hoenig showed some iterated function system fractals,13 which I reproduced in PWT. The idea is that the points within an n-gon are created by: the mean of a random point within the n-gon and one of its corners at random, à la Monte Carlo. A random number generator for plain \TeX{} had to be written. The representation of the corner points is tricky via \texttt{\newdimen}-variables, in order to perform the arithmetic. Too much details in order to be presented here.

\texttt{12. Lu\cking, D(2010): How to use fntproof.tex and testfont.tex (from the WWW).
13. His paper has been published in TUGboat 1989. For iterated function systems and fractals, see Peitgen c.s. (2004 2nd ed): Chaos and Fractals. Springer. No sophisticated Math is required for reading the book.}
Pascal triangle from PWT

The table chapter of PWT contains the Pascal triangle. The triangle shows the binomial coefficients \(\binom{n}{k} \). If the values of \(\binom{n}{k} \) are available, the typesetting is a trifle via the use of \texttt{\displaylines}, \TeXbook, p362. The values \(\binom{n}{k} \) can be generated on-the-fly by the recursion

\[
\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}, \quad n = 2, \ldots, \quad k = 1, \ldots, n-1, \quad \binom{n}{0} = \binom{n}{n} = 1
\]

which has been used in the code as shown in the verbatim text at right below. The intriguing macros make use of recursion for calculating each element in a row. Each row is overwritten in \texttt{\1,\2,...} which also entails that each 'row' is extended dynamically. This reminds me of the dynamic array functionality. Paradigm: a counter-value becomes a control sequence name to denote the position in the row with as value the binomial coefficient.

\begin{verbatim}
\$\$\displaylines{\1\cr 1\quad 1\cr ...
1\quad 9 \ldots 9 \quad 1\cr}$$
\newcount\n \newcount\rcnt \newcount\cnt \newcount\tableentry \newcount\prev
% \def\pascal#1{\n#1 \def\0{1} %presets
\ccnt1 \loop\expandafter\xdef\csname\the\ccnt\endcsname{0}
\ifnum\ccnt<\n \advance\ccnt1
\repeat \rcnt0 \cnt0 \displaylines{\rows}
%
\def\rows{\global\advance\rcnt1 \ifnum\rcnt>n \swor\fi \nxtrow\rows}
\def\swor#1\rows{\fi}
%
\def\nxtrow{1 \ccnt1 \prev1
\loop\ifnum\cnt<n \rcnt \tableentry\prev \prev
\csname\the\cnt\endcsname\prev \advance\tableentry\prev
\expandafter\xdef\csname\the\cnt\endcsname{\the\tableentry} %the new entry
\repeat\rcnt\nxtrow\ccnt1 \prev1
%show the entry}
$$\pascal{8}$$
\end{verbatim}

In the picture at right a variant of the PACAL triangle has been shown, where the odd-valued entries are coloured black and the even-valued entries are left blank, which reminds me of the Sierpiński triangle. The macros and pictures have been submitted to GUST’s Programming Pearls 2012.

Towers of Hanoi play from PWT

In general BLU has as top level minimal one-part macros and tries to circumvent the curly braces mania: no curly braces around arguments! Invoke: \texttt{\Hanoi\I\II\III},

\begin{verbatim}
1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1

1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1

1
 1 1
 1 2 1
 1 3 3 1
 1 4 6 4 1
 1 5 10 10 5 1
 1 6 15 20 15 6 1
 1 7 21 35 35 21 7 1
\end{verbatim}
where the capital Roman numerals denote the towers. The one-part macro invokes the two-part macros, the environment. The Hanoi macros are available within the \beginhanoi...\endhanoi environment.

The process of replacement of the disks will also be printed by the shortened invoke of the one-part macro \sethanoi\textless n\textgreater, \textless n\textgreater an integer, the height of the initial tower. The intermediate stages will be shown, no user mark-up is needed. The Hanoi-tool has been copied from BLUe’s tools.dat and is used stand-alone in this paper to reproduce the results. Paradigm: the use of a hidden loop counter. The loop counter is dynamically created in \preloop; the user is not bothered by it.

\textbf{Soto’s Op Art from PWT}

A verbose version of Soto’s Op Art emulation was written originally in Metafont in 1995. For the Euro\TeX-Con\TeXt2009 the picture was redone in concise plain \TeX, with the use of \TeX’s \leaders, \xleaders and the reuse of \setbox-es. A gkp-macro version appeared earlier in PWT. On occasion of this conference a simpler, mean-and-lean PS-variant has been written.

\begin{verbatim}
\def\boxit#1{\vbox{\hrule
 \hbox{\vrule#1\vrule}
 \hrule}}
\newbox\cb \newdimen\ul \ul=6ex
\newdimen\size \size12\ul
\setbox\cb\vbox to2\ul{\vss
 \hbox to2\ul{\hss\vrule height1.2\ul width1.2\ul
 \hss}\vss}}
\$\boxit{\vbox{\offinterlineskip
 \hbox{\xleaders\hbox to.5ex{\hss\vrule height\size
 \hss}\hskip\size}\kern-\size%setback
 \leaders\hbox{\leaders\copy\cb\hskip\size}\hskip\size}}$
\end{verbatim}

In \TeX we strive after efficiency by using \setbox-es, such that repetitive material is only typeset once and reused by copying; in PS there is the ucache concept. My PS-graphics is small and fast enough.

\textbf{Jiggling squares from PWT}

An old example, which I did in \TeX, see Euro\TeX-Con\TeXt2009, and on occasion of Euro\TeX-Con\TeXt2012 in PostScript, in a split-second.

\begin{verbatim}
%!PS-Adobe
...
\begin{verbatim}
%!PS-Adobe
...
\end{verbatim}
\end{verbatim}

14. Jesús Rafael Soto, 1923–2005, was a Venezuelan Op and Kinetic artist, a sculptor and a painter. Soto has created penetrables, interactive sculptures which consist of square arrays of thin, dangling tubes through which observers can walk. It has been said of Soto’s art that it is inseparable from the viewer; it can only stand completed in the illusion perceived by the mind as a result of observing the piece.

Do realize the use of integers only in the model, otherwise rounding errors spoil the strict regularity. No lines are drawn, except for the border, just \texttt{fills} filled by the non-zero winding rule. Pitfalls for the unwary. One element of the tile is a square \texttt{O}, programmed by a \texttt{0c} \texttt{Ic fill}. How is the \texttt{O} programmed in the Metafont book? From p303

\begin{verbatim}
beginlogochar("O",15); x1=x4=.5w; top y1=h+o; bot y4=-o; x2=w3-x3=good.x(1.5u+s); y2=y3=barheight;
super_half(2,1,3); super_half(2,4,3); labels(1,2,3,4); endchar;
\end{verbatim}

Remarkable is that 2 halves of a superellipse have been used, not just the complete inner and outer contours, apparently for consistency with the upper half of the letter \texttt{A}. On p32 the character \texttt{O} has been drawn by the use of \texttt{penstroke}.

\textbf{Shrinking squares}

At last I traced the origin of the left ubiquitous illustration, which is about drawing just squares in transformed user space: Barnsley, M.F(1988): Fractals Everywhere. It is used in Ch. 3.6 to illustrate the idea of a contractive transformation on a compact metric space.

\begin{verbatim}
%!PS-Adobe-3.0 EPSF-3.0
...
/r 50 def /2r {r r add} def /-r {r neg} def
/alpha 6 def /c 1 alpha cos alpha sin add div def
/square{-r -r 2r 2r rectfill}def
0 1 45{2 mod setgray square /r r c mul def alpha rotate}for
The right picture is an intriguing variant; nearly the same code. Paradigm: change of black and white in traversals of the loop.
\end{verbatim}

\textbf{Malevich suprematism}

\begin{verbatim}
Malevich Suprematism:
White cross on a White background
Emulation →
\end{verbatim}

I have included a picture, and its emulation, of Malevich’s15 ‘White Cross on a white background,’ because he is the father of suprematism, which deletes the superfluous, which I associate with Minimal Mark-up. But ... sometimes redundancy is beneficial.

\textbf{Happy birthday NTG from PWT}

This cake I produced on occasion of the first lustrum of NTG. The original version made use of \LaTeX{}’s picture environment and does no longer work on my system since I abandoned \LaTeX{}. The 2nd version was done with the gkp-macros.16 At the time I experienced drawing a circle by splines as difficult.17 The 3rd version of the picture is in PostScript, shown at right, is a trifle and took me a couple of minutes.

15 Kazimir Malevich, 1878–1935. Russian painter, born in Kiev.
16 I should make it priority 1 to get BL\texttt{U}e \texttt{.tex} running again as a format in \TeX{}works.
17 For the solution à la Knuth, see the Metafont book p263, or Appendix 1 in Gabo’s Torsion, MAPS 42, 2011.
Logo from PWT and a logo from MetaFun

The logo was created by the gkp-macros. The current version in PostScript took me just a minute. The proportions obey the golden ratio, realized by scaling. At right a logo borrowed from MetaFun.

Profiles or a candle?

The Metafont code of 1996 was converted into MetaPost, well simply stripped from Metafont’s necessities such as screen settings, cullit, show, …, and dropped onto Troy Henderson’s mppreviewer to yield .png, on occasion of EuroTeX-ConTeXt2012. Happily, I saved profile from disappearance.

Flowchart from PWT

In PWT the flowchart of \TeX’s loop was made within \LaTeX’s picture-environment and later converted into plain \TeX where the picture was created by the gkp-macros. On the occasion of Euro\TeX-Con\TeXt2009 the flowchart was created in MetaPost by means of Hobby’s boxes macros, and resulted in a PostScript program created by MP. The right picture mimics \TeX’s loop. At right my PostScript code on occasion of Euro\TeX-Con\TeXt2012. No boxes macros are needed; the coding is equally simple, or equally difficult, depending on your expertise, as the MetaPost code.

The recent picture, with golden ratio proportions, took me 45min to create in PostScript which is too long for a production tool. The creation of the previous loop-pictures took me at least as long, if not longer. Use is made of rectstroke, centershow and Adobe’s Bluebook arrow. Ça va sans dire that the direct PostScript program is much shorter than the PostScript code which resulted from MetaPost.

18. I used Hans Hagen’s pair \texttt{\startuseMPgraphic{dummy}}, \texttt{\stopuseMPgraphic} and \texttt{\useMPgraphic{dummy}} and got results by Con\TeXt(Lua\TeX) in \TeX works. I no longer need Henderson’s MPpreviewer. Troy has also provided a \LaTeX and a function-grapher previewer.

19. In contrast with the usual implementations, while respectively repeat … until, where the test is performed at the beginning respectively at the end, the test for termination in \TeX’s loop can be placed at a place at will within the loop. The same is possible in PostScript within the loop procedure, where termination goes via the invoke of exit (for the inner loop). I consider the implementation of \TeX’s loop ingenious.
The flowchartloop def is included in PSlib.eps. Do compare the three generations of code: based on the picture environment, MetaPost (both listed in the EuroTEX-ConfEx2009 paper), and the PostScript code given here. My conclusion is, and was, that PostScript can equally-well be used directly in a 1-pass job, most of the times.

Below my most complex \TeX-made flowcharts of old. The \TeX-MF picture has been adapted for this conference.

The above \TeX-flow is nowadays practically integrated in simple to use IDE’s, such as \TeXworks, where the various processing modes, such as pdf\TeX, can be chosen from pull-down menus.\footnote{Blue Sky provided 20 years ago similar functionalities in its \TeXtures for the Macintosh.}

\TeXworks shows 3 panels: the edit panel with the source .\tex, the result panel with .pdf, and the processing window with the process report and the error messages,
eventually. A form of WYSIWYG. Another pull-down menu in the edit panel lets you choose your font and the use of spelling checkers. There is also a script option. In the help menu there is an option for the 'Short manual for \TeXworks' by Alan Delmotte, Stefan Löffler, and others.

Font Fun in \TeX&Co

Though \TeX's CM-fonts are bitmapped and rigged, occasionally recreational effects have been obtained.

Dancing texts by PostScript

Hans Hagen in his MetaFun inspired me to think about dancing texts. In PostScript the effect can be obtained by the use of \texttt{kshow}, where the procedure as argument of \texttt{kshow} takes care of (slightly) rotating user space for each character. \texttt{nrand} delivers a random number $\in [0, 1)$, and \texttt{unirand} a random number $\in (-1, 1)$, both from \texttt{PSlib.eps}. The colours are composed randomly. In Photoshop dancing-like texts can be obtained by typesetting along a sine-curve. The picture at right is by Emil Nolde. Avoid in PostScript the trap to create a font variant.

A nice application for children’s party invitation cards.

\begin{verbatim}
07101951 srand
/Helvetica 35 selectfont 0 0 moveto 1 0 0 setrgbcolor
(pop pop unirand 4 mul rotate nrand nrand nrand setrgbcolor)
(Kees van der Laan) kshow %a paradigm
\end{verbatim}

21. Emil Nolde, 7 August 1867 Near Nolde (Denmark) – 13 April 1956 Seehröhe, was a German painter and printmaker. He was one of the first Expressionists, a member of Die Brücke, and is considered to be one of the great oil painting and watercolour painters of the 20th century. He is known for his vigorous brushwork and expressive choice of colours. Golden yellows and deep reds appear frequently in his work, giving a luminous quality to otherwise somber tones. His watercolors include vivid, brooding storm-scenes and brilliant florals. 'There is silver blue, sky blue and thunder blue. Every colour holds within it a soul, which makes me happy or repels me, and which acts as a stimulus. To a person who has no art in him, colours are colours, tones tones...and that is all.'
Font Fun in TeX

The classical example is the word TeX, with dropped E. Another classic is XeTeX which can’t be done in TeX alone. With dvips the mirroring can be done at the PS-level, but alas pdfTeX does not allow for PS. NTG’s first logo was ‘Nederlandse TeX Gebruikersgroep,’ which was soon changed, on the way to the TUG meeting at Karlsruhe in discussion with Johannes Braams, into ‘Nederlandstalige TeX Gebruikersgroep,’ meaning Dutch-language based.

\[
\frac{N}{2} \text{ederlandstalig}
\]

The coloured smiley is in PostScript; the others are done in TeX by dots; very cripple TeX programming.

The TeX-lion and the MF-cat, by Duane Bibby, the running illustrations in the TeXbook and the MetaFontbook, made the books a pleasure to read. The EuroTeXConTeXt2012 logo is nice and fun.

Hans Hagen’s MetaFun
Don Lancaster’s Font Fun
In the late 1970s TeX appeared with rigid, bitmap CM font families. In the mid 1980s Adobe developed scalable, and adaptable PostScript fonts, thanks to the font matrix concept.\footnote{22} Lancaster played 20 years ago with PostScript’s font variability. In his pssecrets\footnote{23} he showed various font variations. These modified fonts can be used in PostScript, which is fair enough. Adobe Type 1, with \texttt{afm2tfm} for conversion of the metrics, can be used in TeX, although this route becomes more and more outdated in view of that Adobe has Adobe Type 1 declared obsolete and in view of unicode and the TeX-Gyre OTF-project, next to the incorporation of Open Type Fonts in the new TeX-engines LuaTeX, or XeTeX.\footnote{24}

The tiny PostScript program for the shadowfont is not at all difficult and demonstrates the use of the font matrix, TFM for short.\footnote{25} The reverse font is straightforward too with TFM: e.g. $[\begin{array}{c} -40 & 0 & 0 & 40 & 0 & 0 \end{array}]$.

\begin{verbatim}
%%Title: Shadow font, Don Lancaster, 1990
%%BoundingBox: -1 -25 180 30
%%BeginSetup
.8 setgray /msg (Free font) def
/Palatino-Bold findfont [40 0 32 -30 0 0] makefont setfont
0 0 moveto msg show%shadow
0 setgray /Palatino-Bold 40 selectfont
0 0 moveto msg show

\font\body="Zapfino" at 10pt \body
\font\title="Zapfino:Stylistic Variants=First variant glyph set" at 12pt \title
\font\author="Zapfino:Stylistic Variants=Second variant glyph set" at 10pt \author
\vskip 6pt
\centerline{\title A \ SHORT \ STORY}
\vskip .5cm
Once upon a time, in a distant galaxy called Ööç,
there lived a computer named R.~J. Drofnats.
Mr.~Drofnats---or ``R. J.,'' as he preferred to be called---was happiest
when he was at work typesetting beautiful documents.
bye
\end{verbatim}

Metafont\&TeX can be used to create beautiful artistic results with fonts as has been shown in the 90s by Boguslaw Jackowski and Marek Ry\c{e}ko. Non-scalability is not relevant for pieces of art.

\texttt{\%PS-Adobe-3.0 EPSF-3.0}
\texttt{\%Title: Shadow font, Don Lancaster, 1990}
\texttt{\%BoundingBox: -1 -25 180 30}
\texttt{\%BeginSetup}
\texttt{.8 setgray /msg (Free font) def}
\texttt{/Palatino-Bold findfont [40 0 32 -30 0 0] makefont setfont}
\texttt{0 0 moveto msg show%shadow}
\texttt{0 setgray /Palatino-Bold 40 selectfont}
\texttt{0 0 moveto msg show}

\texttt{\font\body="Zapfino" at 10pt \body}
\texttt{\font\title="Zapfino:Stylistic Variants=First variant glyph set" at 12pt \title}
\texttt{\font\author="Zapfino:Stylistic Variants=Second variant glyph set" at 10pt \author}
\texttt{\vskip 6pt}
\texttt{\centerline{\title A \ SHORT \ STORY}}
\texttt{\vskip .5cm}
\texttt{Once upon a time, in a distant galaxy called Ööç,}
\texttt{there lived a computer named R.~J. Drofnats.}
\texttt{Mr.~Drofnats---or ''R. J.'', as he preferred to be called---was happiest}
\texttt{when he was at work typesetting beautiful documents.}
\texttt{bye}

\footnote{22} Making outline fonts from TeX’s CM fonts is not simple, while outline variants of PS fonts are a trifle. Using font outlines for clipping is fun in PS. In TeX I don’t know how to do it.
\footnote{23} http://www.tinaja.com/glib/pssecrets.pdf. The layout of his tiny programs is horrible. The ones I copied I have simplified.
\footnote{24} Veith, U. M. Miklavce(2012): Another incarnation of Lucida: Towards Lucide OpenType. Bacho\TeX2012 proceedings, 5–13. Ludwichowski, this proceedings.
\footnote{25} The font matrix is specified by 6 digits between square brackets, similar to the general transformation matrix, TFM for short, of PostScript.
Word Art in MS-Word

My Word 7 comes with Word Art options and the user can play with the appearance of texts. My wife Svetlana Morozova tipped me about the font fun in Word. In Photoshop similar effects can be obtained. \TeX’s bitmap CM fonts are too rigid for fun.

Font outlines

In \TeX and MetaPost the creation, and the clipping use, of an outline of a glyph is not possible. In PostScript it is part of the orthogonal philosophy: any path, including the character path left by a charpath operator, can be used as a clipping outline boundary.26 The def o(utline)show, with on the stack a (string), reads as follows /oshow{true charpath stroke}def.

Clipping of an outline path may yield interesting effects. The example is borrowed from the Bluebook p103.

StarLines

StarLines
/Times-Roman 50 selectfont .25 setlinewidth
/rays{120{0 0 moveto 108 0 lineto 1.5 rotate}repeat stroke}def
0 0 moveto (StarLines) true charpath clip
newpath 100 -15 translate rays

Carving

Another nice example in Hans’ MetaFun is the tallying of data. I imitated his Con\TeX–MetaPost table example. My tallying is done in PostScript, see the code below at right, and the table is set via \halign.

System	% Users
Atari | 10.4 |
MS-DOS | 49.1 |
OS/2 | 9.4 |
MacOS | 5.7 |
UNIX | 51.9 |
Windows | 64.2 |

/tally{/n exch def 0 0 moveto 1 1 n{dup 5 mod 0 eq{-8 0 rmoveto /d 10 nrand sub def 7 d rlineto 4 d neg rmoveto} ifelse 1 r rotate 0 10 rlineto r neg rotate 2 -10 rmoveto} ifelse

Hans’ 1-pass job has much in favour. I like, of course, my cooperating tools approach. I don’t have to remember the philosophy and details of Con\TeX, MetaPost, nor Metafun; just good old plain \TeX and PostScript. The tallying macro and the dancing text were written on occasion of Euro\TeX-Con\TeX 2012.

26. This works only for characters which are defined as outlines.
Escher knot

The Escher knot was programmed in Metafont and MetaPost. It marks my beginning of using Metafont/Post as declarative graphical languages. From the latter program the spline data were distilled and inserted in the tiny PostScript program below, with the number of fractional decimals rounded to 2. The gradient colouring has been done in Photoshop by my wife Svetlana Morozova on occasion of the EuroTeX-ConTeXt2009.

While pondering about the Escher knot another solution came to mind for the single knot in PostScript.

An alike of the third figure in MP reads

The variability by \(r \) and \(t \) seems sufficient. The ‘tube’ version is complicated by hidden lines, which were gracefully handled in MetaPost in the EuroTeX-ConTeXt2009 paper, by use of cutbefore and cutafter. The single knot version has less graceful curves. The shape can be adapted by changing \(r \) and/or \(t \). It looks like that Metafont’s tension functionality is not needed. BTW, I much prefer for a curve in Metafont’s lingo \(z_0..controls z_1 and z_2..z_3 \), more in accordance with PS’s `curveto` and the Math formula \[\sum_{i=0}^3 (1-t)^3-i t^i z_i, \] without the strange unusual notions tension and curl.

In PostScript there is no path data-structure and no `def` for calculating the intersection point of 2 B-cubics. It is curious that PostScript does not contain an evaluation procedure for points on a spline. The ‘de Casteljau’ algorithm for evaluation is nothing more than fixing precedence of operations by parentheses.

27. Dennis Roegel has published many articles on MetaPost.
Recreational use of \TeX\&Co

EURO\TeX\ 2012 & 6CM PROCEEDINGS

\[z(t) = \sum_{i=0}^{3} z_i (1-t)^{3-i} t^i = (1-t) \left((1-t) z_0 + t z_1 + t (1-t) z_2 \right) +
+ t \left((1-t) (1-t) z_1 + t z_2 + t (1-t) z_2 \right). \]

Together with my solve it should not be difficult to write a def splineintersection.

Not recreational, pretty serious. Maybe, someday, sometime …

Knuth in the MetaFont book, p13, gives a graphical representation of the evaluation, mediation algorithm

\[
\begin{align*}
 z_1 & \rightarrow z_{12} = \frac{1}{2}[z_1, z_2] \\
 z_2 & \rightarrow z_{23} = \frac{1}{2}[z_2, z_3] \\
 z_3 & \rightarrow z_{34} = \frac{1}{2}[z_3, z_4] \\
 z_4 & \rightarrow z_{1234} = \frac{1}{2}[z_{12}, z_{23}, z_{34}, z_{4}] \\
\end{align*}
\]

where \(\frac{1}{2}[z_1, z_2] \) means the midpoint of the line through \(z_1 \) and \(z_2 \).

To get the remaining points of the curve determined by \(z_1, z_2, z_3, z_4 \) repeat the same construction on \(z_1, z_{12}, z_{123}, z_{1234} \) and \(z_{1234}, z_{234}, z_{34}, z_4 \), ad infinitum.

The fixing of the precedence of the operators by parentheses is the simplest way to describe the algorithm.

Text along paths, Adobe’s \texttt{pathtext}, Bluebook p167

I would not dream of trying to do this picture in \TeX. Adobe treated us on a nice, powerful PostScript def \texttt{pathtext}. But … sometimes we can do without it.

8 March, MAPS 42, 2011

There were several problems which had to be solved in order to achieve the present. First, type-setting along a lemniscate, which was done by Adobe’s \texttt{pathtext} BLUEbook p168. Next the type-setting of Cyrillic in PostScript. This was done by Adobe’s \texttt{ReEncodeSmall}, Bluebook p207, after I found a font with Cyrillic glyphs. Third, inclusion of \texttt{.jpg} photographs in an EPSF program, which was done after the \texttt{.jpg} was saved as EPSF in Photoshop.

Powerful \texttt{pathtext} is, but … we can do without \texttt{pathtext} when the path is implicit.
CD-DVD labels, MAPS 43, 2012

Adobe’s 85 Bluebook CD label enriched with notes background

Essentially, it is Adobe’s example program from the Bluebook p163, about printing along circular arcs. I have enriched the CD-label by a background, where the .jpg picture has been converted into EPSF.\(^{28}\)

\(\pi\)-decimals

A nice printing along an (infinite) implicit spiral is \(\pi\)-decimals. Special is that it has been done without using the page-builder, as Pawel Jackowski used to say. The spiral path is implicit, no explicit path has been built up nor is pathtext invoked. It has been published as a GUST programming Pearl 2010. Below a slightly adapted version because PSView and Acrobat yielded different results on the Bacho\TeX\ Pearl version.\(^{29}\)

The pop pop in the procedure are there because kshow pushes 2 neighbouring values of the string on the stack each time, which we don’t use in the procedure. The back-slash allows breaking a long string over lines. The picture was borrowed from the CWI-calendar of 1972.\(^{30}\)

The calculation of the digits of \(\pi\) is a different matter. For a historical survey see paragraph 3.3 in Peitgen c.s. (2004): Chaos and Fractals, or Beukers, F. (2000): Pi, de Geschiedenis en de Wiskunde van het getal \(\pi\). Epsilon. (In Dutch). It is no surprise that millions of digits could only be calculated because of computers.

\(^{28}\) Willi Egger explained how to use Con\TeX\’s layers to add a picture as background, Euro\TeX\-Con\TeX\ 2009.
\(^{29}\) PSView and Acrobat Pro give sometimes different rotated results on pictures where use is made of rotated User Space. Apparently there is some confusion in implementing rotated user space. Moreover, a rotation over 89.9 degrees and a rotation over 90 degrees yielded significantly different results. This is all circumvented in the new version.
\(^{30}\) Frans Goddijn suggested that it would make a nice poster.
Seal: text along circular arc

The following seal, or text along a circular arc, illustrates the use of \text{\texttt{kshow}}, not \text{\texttt{pathtext}}. The circular path is implicit, no explicit path has been built up nor is \text{\texttt{pathtext}} invoked.³¹

The included, impossible Escher triangle is intriguing. Once the symmetry has been revealed the programming is a trifle. This time the PostScript \texttt{def}, as included in \texttt{PSlib.eps}, is given in the verbatim below. All 40 pictures of the ‘Paradigm: Just a little bit of PostScript’- article have been included in \texttt{PSlib.eps}.

```
/textalongarc{%jalxx
/Courier 10 selectfont
/text (happy postscripting to you) def
/r 100 def
gsave
3(25 34 moveto 3 rotated copies of broken line
25 -34 lineto
17 -38.2 lineto
17 20 lineto
-17.6 0 lineto
120 rotate
}repeat stroke
90 rotate %begin orientation
0 r moveto %begin point
{pop pop -7.04 rotate 6 0 rmoveto} text kshow
grestore
)def
```

Texts along arbitrary paths in Con\TeX{} interfaced with MetaPost

I tried a 1-liner MP-interfacing program from the MetaFun manual in \TeX{}work’s Con\TeX{}(Lua\TeX{}):

```
\starttext\startuseMPgraphic{dummy} fill fullcircle scaled 5cm withcolor red;\stopuseMPgraphic
\useMPgraphic{dummy} \stoptext
```

My first Con\TeX{} run! There is still hope in angry days for BLUe ...

Professional Circular Text by Photoshop and Word

³¹ If you want to do this in \TeX{}Metafont alone consult Hoenig, A(1989): Circular Reasoning: Type-setting along a circle and related issues, TUGBoat11, or easier consult the digital 24hrs library http://\texttt{www.tug.org/TUGboat/tb11-2/tb28hoenig.pdf}.
Stars around I — PostScript straight away, MAPS 18, 1997

The stars around notes, I & II, were written after Jacko’s Metafont course in Holland, where he taught us among others the OK font. See also Adobe’s Bluebook, programs 16–21. In Adobe’s Redbook p101, there is an example of a user-defined font of two characters, a filled square and a filled triangle. Another example is given by David Byram-Wigfield who creates a special font QuadFont for crosswords. Don Lancaster advocates his Fonts for Free modifications, such as embossed variants.

GUST battleship

The GUST EuroTeX1994 logo — The Battleship — I rewrote at the time in PostScript. In order to obtain the intersection points of 2 straight lines a stack-oriented 2x2 linear equation solver was written in PostScript. In the specification of the points, \p0 ... \p9, intersect has been invoked, which delivers the intersection point of 2 lines. The mean invoke delivers the midpoint of 2 points. The equation solver in PostScript and the def’s intersect and mean are included in PSlib.eps. This is an example where the a priori projection of the drawing and working in 2D throughout is handy. No 3D data.

\p0(0 0)def
\p1(3 s mul 0)def
\p2(4.5 s mul 2 s mul)def
\p3(3 s mul s)def
\p4(-.75 s mul 2 s mul)def
\top(2.5 s mul 3 s mul)def
\p5(p0 top p3 p4 intersect)def
\p6(p0 p1 mean top p3 p4 intersect)def
\p7(top p1 p3 p4 intersect)def
\p8(p2 p5 top p1 intersect)def
\p9(p8 dup 0 exch top p0 intersect)def

Paradigms: Loops, MAPS 96.2, 1996

Outlines

Borrowed from the \TeX{}book p65, but rewritten with the use of the FIFO paradigm, and in PostScript, but ... alas, there is no stringsize operator in PS. PS’ stringwidth delivers only the x-size of the string. The kludge of rotating a character and measuring the ‘height’ did not work. Pathbb was needed. A nice example of the use of outlines is GUST’s logo.

\leavevmode\fifo\ Tough exercise. \wofif()=sentinel%with
\def\fifo{\ifx\ofif\fifo\fififo%\def\fifo{\ifx\ofif\fifo\fififo%\def\processw{\ifx\fifo\fifo\process}\
\def\process{\boxit}\}X\}
\def\boxit{\setbox0=\vbox{\hrule\hbox{\vrule\phantom#1\vrule}\hrule}}
\leavevmode\fifo\ Tough exercise. \wofif()=sentinel%with
\def\fifo{\ifx\ofif\fifo\fififo%\def\fifo{\ifx\ofif\fifo\fififo%\def\processw{\ifx\fifo\fifo\process}\
\def\process{\boxit}\}X\}
\def\boxit{\setbox0=\vbox{\hrule\hbox{\vrule\phantom#1\vrule}\hrule}}
\leavevmode\fifo\ Tough exercise. \wofif()=sentinel%with
\def\fifo{\ifx\ofif\fifo\fififo%\def\fifo{\ifx\ofif\fifo\fififo%\def\processw{\ifx\fifo\fifo\process}\
\def\process{\boxit}\}X\}
\def\boxit{\setbox0=\vbox{\hrule\hbox{\vrule\phantom#1\vrule}\hrule}}

32. Since then a 3x3 linear equation solver has been included in PSlib. eps, which (as the 2x2 solver) uses partial pivoting. These are to be preferred above the appealing Metafont/-Post symbolic equation solving functionality when the system is ill-conditioned. For those cases it is best to reformulate the problem into a better conditioned one; next best is to use pivoting strategies. In solving the radical circle problem in my Circle Inversions paper, a sub-problem was to determine the touching point of 2 circles, which is ill-posed, and therefore restated as finding the intersection point of a circle and a nearly-orthogonal line to it.
Paradigm: the use of the nested FIFO-technique,33 that is, words are scanned and each word is scanned for its characters. A beautiful example of the use of \texttt{\textbackslash phantom}. PS paradigm: walking through a string. In PS a character’s BoundingBox has to be determined. The charbox width is not the same as stringwidth of a character, see picture at right borrowed from the Redbook. The left-side bearing, a kerning(?), is included in the value of stringwidth. The PS-code looks simpler with \texttt{forall} scanning.

\textbf{MetaFun’s funny-boxed texts}

Note the curved, or as Hans calls them squeezed, boxes, which can’t be done nicely in \TeX alone.

\textbf{Paradigms: Searching, MAPS 96.2, 1996}

After so many years, BLU\texttt{e}.tex amazed me by this Searching article. A variant solution of the \TeXbook exercise 22.14 has been worked out. In ‘Paradigms: searching,’ I used a tree structure in \TeX for searching. At the end of the article the tree of information was printed as shown below.

I collected my BLU\texttt{e} files: \texttt{blue.tex}, fmt.dat, tools.dat, lit.dat, and pict.dat, in a map and reproduced the tree by just doing what was stated in the article, and listed in the input verbatim below. I’m pleased by the results. BLU\texttt{e} surprised even me, by this unbalanced tree and the mean-and-lean data description, after so many years!

\begin{verbatim}
\input blue.tex
\thisbt{\xoffset{-400}}
\beginbt 1 NTG member?
 10 Plain TeX ie?
 100 Honoured?
 1000 Kees
 1001 HH
 101 On board?
 1010 Chair?
 10100 Erik
 10101 Secretary?
 101010 Gerard
 101011 Treasurer?
 1010110 Wietse
 1010111 Dark?
 10101110 Johannes
 10101111 Anonymous
 11 Just a friend
 16 \endbt%16=checksum sort of \bye
\endverbatim

Below from bttool the backtrack macro has been copied. The nodes are binary numbers, and when the node<binary number> is undefined the end of the branch has been reached, and backtracking is performed. \texttt{whiteS} draws South and the leaves. Not recreational, pretty advanced macro writing. BLU\texttt{e} in full glory.

\begin{verbatim}
\beginbt \def\drawbt{\whiteS{120}\
\ea\ifx\csname\node0\endcsname\relax
\tbward\fi%Backtrack\S{80}\advance\k-125\W{\the\k}\S{80}\edef\node{\node0}\drawbt\relax}\E{\the\k}\S{80}\edef\node{\node1}\drawbt\relax}
\def\tbward#1\relax{\fi}
\endverbatim

\end{verbatim}

Note the minimal, necessary data specifications: just the binary ‘addresses’ of the nodes next to their contents. \TeX will handle all that is needed.

Contest: How to do this in PS or MP?34

33 FIFO and LIFO sing the blues — Got it?, 1992, 1995(rev), MAPS 9(original). Bernd Raichle likes my \texttt{\textbackslash fifo...\textbackslash ofif} termination \TeXnique.

34 Because it was with the gkp-macros I obtained not a picture cropped to the BoundingBox. In order to crop the picture I selected the picture in Acrobat Pro and copied it to the clipboard, and created a new cropped .pdf, at the expense of sharpness. I should redo it in PostScript, on occasion of Euro\TeX-Con\TeXt2012. Phil Taylor communicated his recent work on a real genealogy tree in \TeX.
A balanced tree in \textsc{TeX} and \textsc{PostScript}

The production rule à la Lindenmayer for the balanced tree reads

\[
B_t \mathord{n} = E_\mathord{n} \oplus \left[N_{\mathord{n}/2} B_{\mathord{n}/2} \right] \oplus \left[S_{\mathord{n}/2} B_{\mathord{n}/2} \right], \quad \text{with \ } n = \ldots 256, 128, \ldots 2,
\]

\(B_t \mathord{n}\) the Binary tree of order \(n\),

\(E_\mathord{n}, N_\mathord{n}, S_\mathord{n}\) means draw East, North, South with step-size \(n\)

\(\oplus\) means splice operator, i.e. concatenate properly.

[means store graphics state on the GS-stack and open a new one,

] means remove current graphics state off the GS-stack and recall previous.36

\begin{verbatim}
\def\bintree{E\{the\n\} \ifnum\n=2 \eertnib\fi \divide\n2 {N\{the\n\} \bintree\} \S\{the\n\} \bintree\} \def\eertnib#1\bintree{\fi}%terminator
\let\Eold=E %Text at leaves
\def\E#1{\global\advance\k1 \xytxt{ \csname\the\k\endcsname}%leaf \Eold8}}
\def\1{CGL}\def\2{GJHvN}\def\3{JLB}
...
\def\xytxt#1{%place text #1 at x, y \xy{vbox to0pt{\vss \hbox to0pt{\strut#1\hss\kern0pt}}} \def\xy#1{%place \#1 at x, y \vbox to0pt{\kern-y \hbox to0pt{\kern-y \vbox to0pt{\kern-x\hss}}}}
\def\1{CGL}\def\2{GJHvN}\def\3{JLB}
\def\1{CGL}\def\2{GJHvN}\def\3{JLB}
\def\ntg{k\get23\rmoveto\show\grestore}
\def\k{k1\add\def\n16\le{25j(50)\ife\0\rlineto\deff}}
\def\xytxt#1{%place text \#1 at x, y \xy{\vbox to0pt{\vss \hbox to0pt{\strut#1\hss\kern0pt}}} \def\xy#1{%place \#1 at x, y \vbox to0pt{\kern-y \hbox to0pt{\kern-y \vbox to0pt{\kern-x\hss}}}}
\def\1{CGL}\def\2{GJHvN}\def\3{JLB}
\def\ntg{k\get23\rmoveto\show\grestore}
\xy{\vbox to0pt{\vss \hbox to0pt{\strut#1\hss\kern0pt}}} \def\xy#1{%place \#1 at x, y \vbox to0pt{\kern-y \hbox to0pt{\kern-y \vbox to0pt{\kern-x\hss}}} \def\xy#1{%place \#1 at x, y \vbox to0pt{\kern-y \hbox to0pt{\kern-y \vbox to0pt{\kern-x\hss}}} \def\ntg{k\get23\rmoveto\show\grestore}
\makeatletter
\def\Courser{12\selectfont \kern0\def\k1\add\def\n16\le{25j(50)\ife\0\rlineto\deff}}
\makeatother
\end{verbatim}

Intriguing is the use of \texttt{currentpoint} in \textsc{PostScript}, which saves the current position values on the stack for use in the other branch. In the \textsc{TeX}-version the placing of the picture on the page is cumbersome. \textsc{PostScript} is simpler for the purpose.

Paradigm: the wind def: \texttt{N, E and W}, which resulted from the Turtle Graphics approach, are used within a recursive environment.

Alice’s tale and the mouse’s tail, \textsc{GUST} Programming Pearl 2010

This emblematic proza by Lewis Carroll has been first typeset in \textsc{PostScript}, by the use of \texttt{\forall}, which expects an array, enclosed by \texttt{\[\]}, and a procedure, enclosed by \texttt{\{ \}}, on the stack. It is another example of printing text along a path, without an explicit \textsc{PostScript} path, neither is \texttt{isspace} invoked. The array contains a necklace of strings, each enclosed by \texttt{\(\)}, the WYSIWYG data. The procedure scales and typesets the lines. No explicit positioning by coordinates on the page nor controlling of the loop is needed. I started with \textsc{PS}’ \texttt{pathforall}, worked on it for 15-30min, when the direct method popped up.

Paradigm: The \texttt{forall} walks through the array and delivers each element of the array on the stack.

In \textsc{TeX}, within a verbatim environment, the same can be achieved with mark-up in a WYSIWYG way; on the other hand one may dawdle with shifted \texttt{\hbox}es. Simplest is just to use \texttt{\obeylines\obeyspaces} and overrule \textsc{TeX}’s default neglecting of superfluous spaces and \textit{e-o-l}s. I was biased by \textsc{TeX}’s automatisms and overlooked the simplest solution for quite a while.

35 E-mail solutions to \texttt{kisa1@xs4all.nl}

36 The addition of the graphics state concept to the Lindenmayer production rules is an enrichment.
Fury said to a mouse, That he met in the house, 'Let us both go to law: I will prosecute you. Come, I’ll take no denial; We must have a trial: For really this morning I’ve nothing to do.’ Said the mouse to the cur, ‘Such a trial, dear sir, With no jury or judge, would be wasting our breath.’ ‘I’ll be judge, ‘I’ll be jury,’ Said cunning old Fury: ‘I’ll try the whole cause, and condemn you to death.’

Fury said to a mouse, That he met in the house, 'Let us both go to law: I will prosecute you. Come, I’ll take no denial; We must have a trial: For really this morning I’ve nothing to do.’ Said the mouse to the cur, ‘Such a trial, dear sir, With no jury or judge, would be wasting our breath.’ ‘I’ll be judge, ‘I’ll be jury,’ Said cunning old Fury: ‘I’ll try the whole cause, and condemn you to death.’
Tic-tac-toe interactivity
A tic-tac-toe application via the log-file, what was called at the time ‘in dialogue with \TeX,’ is discussed in the Searching-article. More elaborated macros are supplied in the article. The advanced macros pay attention to for example a test for inconsistent input, or when a draw situation has arrived to stop automatically and start a new game. At the time when I wrote the macros the dialogue with \TeX was via the log-file. At the moment \TeX works opens a different window for supplying the answers to \TeX’s questions; the questions are shown in the console window.

\begin{verbatim}
%def showboard\{\immediate\write0{\1\2\3}
%immediate\write0{\4\5\6}
%immediate\write0{\7\8\9}}%
%def initialize\{\def\1{-}\def\2{-}\def\3{-}
%\def\4{-}\def\5{-}\def\6{-}
%\def\7{-}\def\8{-}\def\9{-}}%
%def play\{\initialize \loop\showboard
%\ifx\mark\markplayer
%\let\mark\markopponent\else
%\let\mark\markplayer\fi
%\immediate\write0{Supply index for \mark:}
%\read0to\index \expandafter
%\xdef\csname\index\endcsname{\mark}
%\ifnum\index>0 \repeat}%end \play
%def markplayer{+}
%def markopponent{o}
%endlinechar-1 %TB20.18
\play \bye
\end{verbatim}

Interactivity: Hans Hagen’s calculator in Con\TeXt + MetaPost + PDF + ...

Paradigms: Just a little bit of PostScript, MAPS 19, 1996

The article will be named JlPS, for short. Previewing was inconvenient via the Apple Laserwriter. PSView and GhostScript were not available on my PowerMac. All pictures in the article have been included in PSlib.eps on the occasion of Euro\TeX-Con\TeXt21012.

Yin Yang
Everybody made his Yin Yang, I presume. Hobby provided it as an example in his MetaPost manual. Included is my matured coding, which is different from the coding in ‘Tiling in Metafont and PostScript.’
Barn and Malbork window

The left window has been done by the use of `arc` and the rotation of user space in PostScript. The right window is an exercise in using splines, the `curveto`, and choosing appropriate control points. The choice of control points I did by trial-and-error. Both are included in `PSlib.eps`.

Stylistic flowers

The black-and-white line-drawing flower has been drawn in PostScript, see verbatim above, where use has been made of the variable user space, such that the drawing of each leaf begins and ends in (0, 0). Subtle are the choices of the circle centres and their sequence. The coding is one of my favourites to demonstrate the use of the variable user space functionality in PostScript. The gradient colouring has been done interactively in Photoshop by my wife Svetlana Morozova on occasion of the EuroTeX-ConTeXt2009. The rotation of the user space can be understood by just paying attention to the rotated coordinate axes. All that follows is drawn with respect to the rotated coordinate axes. At right a circular Julia fractal ‘stylistic flower.’

For the bulletin of our gardeners club

The barn window has been reused, enriched by rotated text in PS. Paradigm: rotated texts stored as array.

Tiling in PostScript and Metafont — Escher’s wink, MAPS 19, 1997

The article will in the sequel be referred to by TPS-MF, for short. All pictures in the article have been included in `PSlib.eps` on the occasion of EuroTeX-ConTeXt2012.

Escher’s Sun and Moon

← central part

Dark birds in daylight or white birds at night?
The picture was sampled: the sampled points were provided as spline data.

Zon en maan →

37. See the Bluebook Ch 6 More Graphics, p49, for an enlightening, simple picture.
Escher’s fishes and Buddha’s

These tiles are examples of Escher’s technique where the drawing extends over the boundary of the square tile, such that it matches with the adjacent tiles. The right picture consists of 4 groups of 4 tiles, where the later are composed of rotated copies.

Tilings

The left figure is done by a garland of pentagons. The garland is copied 4 times. The enclosed star is spurious. The right figure is classified by \{4, 6, 12\}, a nice layout for a herb garden.

Schrofer’s Op Art

A nice picture is Schrofer’s Op Art, of which I included a tile of four.\(^\text{38}\) Crucial are the row and column indices. The circles and ellipses are scaled copies of the unit circle. All the 80+ pictures from the ‘Paradigm: Tiling in Metafont and PostScript’ article have been included in PSlib.epd on occasion of EuroTEXConTEXT2012.

Tiling by stars

In PSlib.epd this stars composition has name tilxia; the code is \(\approx 40\) lines long.

\[\text{http://nl.wikipedia.org/wiki/Willem_Schrofer}.\]
Puzzle with cat

%MetaPost variant of \quote{cat} which was adapted from Metafont
\begin{verbatim}
beginfig(1); tracingstats:=proofing:=1;
path p[]; sz=25; hsize=17.5sz; vsize=10sz;
% moustache
pickup pencircle scaled .1pt;
draw (.75hsize, .75vsize)--(.75hsize, .2vsize)--
(.333hsize, .2vsize);
draw (.725hsize, .75vsize)--(.725hsize, .225vsize)--
(.333hsize, .225vsize);
draw (.7hsize, .75vsize)--(.7hsize, .25vsize)--
(.333hsize, .25vsize);

z1=(hsize,.5vsize); % right
z2=(.5hsize, vsize); % top
z3=(0,.5vsize); % left
z4=(.5hsize, 0); % bottom
penpos1(.05vsize,0);penpos2(.09vsize,90);penpos3(.175vsize,180);
penpos4(.075vsize,270);
%Nonlinear interpolation for extra point z25
z25=(z2{left}..{down}z3)intersectionpoint
((.2hsize,0)--(.2hsize,vsize));
penpos25(.15vsize,135);
penstroke z1e{up}..z2e{left}..z25e..z3e{down}..
z4e{right}..{up}z1e;
% mouth
pickup pencircle scaled .2pt;
draw superellipse((hsize, .2vsize),(.75hsize, .4vsize),
(.5hsize, .2vsize),(.75hsize,0),.725);
% ear
z5=(0,.5vsize); penpos5(1.75pt,-90);
z6=(.5hsize,.5vsize);penpos6(8pt,0);
p1=z5..controls (.125hsize, .333vsize) and
(.375hsize,.333vsize)..z6;
z7=point.5 of p1; penpos7(1.2pt,-30);
z9=point.5 of p1;%(.25hsize,.4vsize);
x9:=x9-.175pt; penpos9(.75pt,180);
z8=(.25hsize,.75vsize);penpos8(.3pt,180);
penstroke z6e..z7e..z5e;
penstroke z8e..z9e;
% brow
z10=(hsize,vsize);penpos10(1.2pt,90);
z11=(.575hsize,.9vsize);penpos11(.5pt,135);
z12=(.5hsize, .75vsize);penpos12(.8pt,180);
z13=(.575hsize,.6vsize);penpos13(4pt,-135);
z14=(hsize,.5vsize);penpos14(.15pt,-90);
penstroke z10e{left}..z11e..(down)z12e..
z13e..(right)z14e;
% eyes
p2= superellipse((sz, .375sz),
(.5sz, .75sz), (0, .375sz), (.5sz,0),.725);
pickup pencircle scaled .1pt;
draw p2 shifted (.6hsize,.75vsize);
draw p2 shifted (.79hsize,.75vsize);
endfig;
\end{verbatim}
The background picture I made ≈50 years ago by hand. When I started with Metafont in 1995 it was my first graphics example. The PostScript code resulted from the MetaPost adaptation, i.e. deleting Metafont peculiarities. Both included codes are too lengthy to my taste. The PS variant shows how, after we have distilled the PS data from MP, the picture can be further enriched in PS.

MetaFun simple contrasts

The two pictures at right make use of a varied pen in MetaPost. Calligraphic effects can be obtained.

Vasarely

In 1995 I created 8 Vasarely impressions in Metafont; today I could still visualize them in BlueSky’s Metafont on my PowerMac of the mid-90s.

The black-and-white pictures were visualized by, and downloaded as .png from, Troy Henderson’s mppreview. The Metafont line-picture makes use of the interpath functionality, Metafont book p134, which functionality is not available in PostScript, see code below, nor is there a path data-structure, alas.

\begin{verbatim}
sz=100; path p,q;
p= (-sz,0){right}...(-.9sz,0)...(0,.2sz)...(.9sz,0)...{right}(sz,0);
q= (-sz,sz)--(-.25sz,sz)--(0,sz)--(.25sz,sz)--(sz,sz);
for k= 0 upto 10: pickup pencircle scaled (.02(k+1)*pt) draw interpath(k/10, p, q); endfor
addto currentpicture also currentpicture rotated 180;
addto currentpicture also currentpicture rotated 90;
pickup pencircle scaled .1pt; draw unitsquare scaled 2sz shifted (-sz,-sz);
\end{verbatim}

The 3 Vasarely impressions left use PostScript’\texttt{rnd}, the pseudo-random number generator. The PS-code for the second picture reads

\begin{verbatim}
\begin{verbatim}
sz=100; path p, q;
p= (-sz,0)(right)...(-.9sz,0)...(0,2sz)...(.9sz,0)...(right)(sz,0);
q= (-sz,sz)--(-.25sz,sz)--(0,sz)--(.25sz,sz)--(sz,sz);
for k= 0 upto 10: pickup pencircle scaled (.02(k+1)*pt) draw interpath(k/10, p, q); endfor
addto currentpicture also currentpicture rotated 180;
addto currentpicture also currentpicture rotated 90;
pickup pencircle scaled .1pt; draw unitsquare scaled 2sz shifted (-sz,-sz);
\end{verbatim}
\end{verbatim}

\begin{verbatim}
\begin{verbatim}
39. Troy has improved his previewer since 2009, several packages can be used now. http://www.tlhiv.org/mppreview. He has also provided a LaTeX previewer and a function-grapher previewer. See his TUGboat 2012 article. All have been done because installing volunteer software by a casual user has become too cumbersome.

40. Victor Vasarely born Vásárhelyi Győző, 1906 Pécs – 1997 Paris, was a Hungarian French artist whose work is generally seen as aligned with Op Art. His work entitled Zebra, created by Vasarely in the 1930s, is considered by some to be one of the earliest examples of Op Art. Vasarely developed his style of geometric abstract art, working in various materials but using a minimal number of forms and colours. http://www.en.wikipedia.org/wiki/Victor_Vasarely.
\end{verbatim}
\end{verbatim}
Projection for emulation of space objects

The idea in the projection used is that an object is viewed at in plane (computer screen) orthogonal to the view direction. In programming this is translated such that the spacial coordinates are projected onto the projection plane by \texttt{ptp}, mnemonics for point-to-pair.\footnote{For more detail see Appendix 0 of Gabo's Torsion, MAPS 42, 2011.}

\textit{The pyramid illustrative example} is the pyramid. Data of the pyramid and the pyramid code have been borrowed from \texttt{PSlib.eps}.

Pyramid viewed from various viewpoints. Do compare the code of pyramid with Hobby’s pyramid as given in the MetaPost manual. Equally simple, isn’t it?

\textbf{Escher’s impossible cubes, \TeX{} Education, Euro\TeX{}-Con\TeX{}t2009}

For each corner of the cube there are 8 data-points, specified in 3D. In projection the points of intersection have been calculated as function of the viewing angle. Pretty detailed and tedious code. Too lengthy to be included here. The Metafont book contains a poor man’s version, p113, exercise 13.7. The impossible cube in PostScript was written on occasion of the Euro\TeX{}-Con\TeX{}t2009.
In 1996 I emulated Linear Construction No 2 in Metafont. The picture created by the original Metafont version of the emulation of Linear Construction No 2 is full-page included in LaTeX’s Graphics Companion. In the Gabo’s Torsion paper an improved and more accurate version in PostScript has appeared, next to some more emulations of Gabo’s works. At right an animated simple versions of Linear Construction No 2. In 2011 I rewrote the emulations in PostScript. More use of projection techniques is in Gabo’s emulations. The last PostScript version of the Linear Construction No 2 is the most complete and the best. The reverse video suggests the perspex material. Mathematically, the constructions are regular surfaces, meaning the surfaces are suggested by straight lines. It is said that Suspended was Gabo’s favourite, because he showed the object at each-and-every exhibition.
Invokes of Gabo’s emulations from PSlib. eps.

Warning GhostScript can’t be used for previewing with library use because GhostScript does not support the run command for file-inclusion, apparently. Do use PSView, Acrobat Pro or …

Gabo’s Torsion, MAPS 42, 2011

For the Metafont/Post aficionados my Torsion Metafont code of old is included, complete with projection and interactivity, which was not included in MAPS 42.
My emulations of Gabo’s objects on paper started in Metafont in 1996, which marks the beginning of my using projection techniques. In the paper a few of Gabo’s 3D constructions have been emulated in projection and can be viewed from various viewing angles. Torsion pictures in reverse video have been supplied below.

Naum Gabo, 1890–1977. Born Naum Borisovich Pevsner, Bryansk. Russian Constructivist. An excellent book about him and his works: Naum Gabo 60 years of Constructivism. Prestel-Verlag 1985, which appeared on the occasion of the retrospective exhibition with the same name at the Dallas Museum of Art, the Art Gallery of Ontario, the Guggenheim Museum NY, the Akademie der Künste Berlin, the Kunstsammlung Nordrhein-Westfalen, the Tate Gallery London. Wikipedia contains a short biography.

42. Naum Gabo, 1890–1977. Born Naum Borisovich Pevsner, Bryansk. Russian Constructivist. An excellent book about him and his works: Naum Gabo 60 years of Constructivism. Prestel-Verlag 1985, which appeared on the occasion of the retrospective exhibition with the same name at the Dallas Museum of Art, the Art Gallery of Ontario, the Guggenheim Museum NY, the Akademie der Künste Berlin, the Kunstsammlung Nordrhein-Westfalen, the Tate Gallery London. Wikipedia contains a short biography.

43. Graphics and \TeX — a reappraisal of Metafont, 1996, MAPS 16.
This paper also introduces \texttt{PSlib.eps}.

\textbf{Apollonius problem}

The jewel of the Circle Inversions paper is the solution of Apollonius problem: circles touching three circles. Apollonius problem is a classic, which solution I have overlooked for quite a while. The use of the Apollonius2 PostScript \texttt{def} is no more difficult, or easier, depending on your expertise, than using high-level packages.

\begin{verbatim}
0 0 R 0 360 arc stroke% draw the 3 given circles
x1 y1 r1 0 360 arc stroke
x2 y2 r2 0 360 arc stroke
x1 y1 r % 3 circle specs for Apollonius2
x2 y2 r % pos r means touch external to x2 y2 r circle
0 0 R neg % neg R means touch inside R-circle
Apollonius2 %delivers touching circles
/rsnd1 exch def /ysnd1 exch def /xsnd1 exch def%collect data from stack
/rsnd2 exch def /ysnd2 exch def /xsnd2 exch def
green %or a setdash when in b&w
xsnd1 ysnd1 rsnd1 0 360 arc stroke%draw found circles
xsnd2 ysnd2 rsnd2 0 360 arc stroke
\end{verbatim}

\textit{The radical circle} is the circle orthogonal to three circles. The library \texttt{def radial} from \texttt{PSlib.eps} avoids an ill-posed sub-problem. Below are included pictures of: two circles which intersect orthogonally, a circle through a point \(p \) which intersects two circles orthogonally, and the radical circle. How to invoke \texttt{radical} from \texttt{PSlib.eps} is shown in the PostScript snippet.
Recreational use of \TeX\&Co

\textbf{Circle covered by circles}

The covering of a circle by small circles I did in 1997 by using a non-linear equation solver in PostScript: solveit. Since I rediscovered the solution of Apollonius problem it can be programmed simpler, by the use of the \texttt{def Apollonius2}. At right a nice emulated collier of the inversion of the Mandelbrot fractal, borrowed from Lauwerier(1990): Een wereld van Fractals.

\textbf{Inverted smileys and hearts}

Tedious programming for inverted smiley-s. I did only 2 levels of circle inversions.

Inverted hearts was a side-effect when in search for Escher’s Circle limits. The PS code was prompted by the Apple Laser Writer.

\textbf{Circle inversion of a rectangular grid}

The inversion has been simplified: circular curves have been straightened in the inversion.

At right the realization as a skylight window.

\textbf{Pythagoras Trees, submitted MAPS, Baboo\TeX2012 proceedings}

The Tree is a collection of scaled and rotated squares placed such that each parent square and its descendants enclose a rectangular triangle. The program is my favourite, non-trivial example of translating and rotating user space in PS. All one has to program is drawing a square and place it scaled and rotated at the right place, repetitively. This can be programmed in PostScript elegantly due to the translation and rotation of User Space functionality. Backtracking and the bookkeeping of auxiliaries is implicit.

The paper contains variants of the Pythagoras tree, such as an oblique tree and the ‘X-mas’ tree. More realistic trees are mentioned. The Pythagoras Tree has appeared as GUST Programming Pearl in 2011.

\texttt{à la Mondrian, MAPS 41, 2010}

The compositions of coloured line pieces biased by a shade of colour, see accompanying figure, are optionally enclosed in, and clipped by, a square, diamond or oval, to be specified by the user. The program is called \texttt{Mondrian} in \texttt{PSlib.eps}. In the article a
MetaPost variant was developed for comparison. The PostScript code lends itself for library use. Moreover, the use of a PostScript library def is more direct, a one-pass job, then the use of MetaPost, because MetaPost is a preprocessor of PostScript.45

Game of Life Just to show that this game can yield fractal structures.

Classical Math fractals in PS, submitted MAPS, BachoTEX2012 proceedings

Lévy fractal An approximation of the Lévy fractal is also called a C (broken) line of a certain order. The constructive definition of various orders of C lines starts with a straight line, let us call this line C₀. An isosceles triangle with angles 45°, 90° and 45° is built on this line as hypotenuse. The original line is then replaced by the other two sides of this triangle to obtain C₁. Next, the two new lines each form the base for another right-angled isosceles triangle, and are replaced by the other two sides of their respective triangle, to obtain C₂. After two steps, the broken line has taken the appearance of three sides of a rectangle of twice the length of the original line. At each subsequent stage, each segment in the C figure is replaced by the other two sides of a right-angled isosceles triangle built on it. Such a rewriting relates to a Lindenmayer system. Paradigm: Lindenmayer production rule.

Julia fractals in PostScript, EuroTEX-ConTEXt2012

There are many Julia fractals. The one included below is my favourite. The left (incomplete) Julia fractal is obtained by inverse iteration and Monte Carlo, the right by the boundary scan method and enriched by colours by my wife Svetlana Morozova on occasion of EuroTEX-ConTEXt2012.46 Interesting is the relationship of the various

44. Piet Mondriaan, 1872-1944, was a Dutch painter. He was an important contributor to the De Stijl art movement and group, which was founded by Theo van Doesburg. He evolved a non-representational form which he termed Neo-Plasticism. This consisted of white ground, upon which was painted a grid of vertical and horizontal black lines and the three primary colours.
45. MetaPost does not interface. For example symbolic names declared in MetaPost can’t be accessed in the resulting PostScript.
Julia fractals and the Mandelbrot fractal, which is the map to, and the bifurcation diagram of, the various Julia quadratic fractals.

The late Mandelbrot advocacy of Fractal Geometry is better suited to model clouds and similar repetitive, natural forms than Euclidean geometry.

Conclusions

Portability in time of T\TeX\ scripts is hampered when several tools next to T\TeX\ have been used. T\TeX\ scripts which included PostScript graphics in the past, have to be adapted for use with pdf\TeX. Not only are T\TeX\’s CM bitmapped fonts too rigid with respect to font modifications and scaling, but also the philosophy of unbreakable boxes is too rigid in view of page-breaks. T\TeX\’s macro language is complicated, verbose and error-prone.

User mark-up can be reduced by letting T\TeX\ insert mark-up. Illustrations can be obtained by programming in PostScript, supported by Lindenmayer-like production rules and by projection techniques for emulation of 3D objects. Photoshop can be used as post-processor.

Printing along implicit paths can be done without the use of Adobe’s `pathtext` and alikes.

On occasion of Euro\TeX\-Con\TeX\2012 `PSlib` eps has been extended by more than 175 pictures, from JIPS, TPS-MF, and from my fractal geometry work, i.e. translations of Lauwerier’s BASIC codes into PostScript, and contains of sept 2012 ≈ 300 `defs` next to constants and colour names. The `defs` of Adobe’s Bluebook are included and are also available in a separate file. The test programs of the Bluebook are also available in a separate file.

`BLUE.tex`, `fmt.dat`, `tools.dat`, `pic.dat` for T\TeX-alone pictures (and the relatively new cousin `PSlib` eps, the library for PostScript pictures)\(^{48}\) next to `lit.dat`, can be of use for Ben Lee User of the T\TeX\book fame, even after 17 years. They survived several computer migrations. Pictures of `pic.dat` can be reused and adapted. I undusted the unbalanced binary tree jewel.

Metafun I (`mis`)used for viewing old Metafont graphics. Bluesky’s Metafont on my old PowerMac is no longer needed.

Not only is the use of T\TeX\&Co recreational, the attendance of (Euro)T\TeX-meetings is highly recreational and instructive, especially the Polish GUST BachoT\TeX’s with their bonfire and guitars at night. They were like holidays for me.

The mark-up of this paper does not adhere to the promise of the ideal marked-up texts; a lot of adjusting had to be done in order to obey the limitations of the page-size due to the `vbox`-s with unbreakable `verbatim` and picture elements next to each other. Letting float these elements would have yielded a mess.

Do realize that typesetting Bridge, Chess, or ... positions is several orders of magnitude less complicated than developing Bridge, c.q. Chess, playing programs.

Developers do the typesetting as an aside. Keep the right balance between form and contents.

‘A professional starts where an amateur ends’, to quote G.E. Forsythe, my greatest hero. Room for professionals.

“It’s a myth to believe that each-and-every (La)TeX, ConTeXt, LuaTeX, or …-user can produce printing-house typographic quality.”

It would be better if users are more modest and strive after preprint results. A preprint is correct with respect to contents and language. To achieve typographic printing-house quality requires another level of non-TExnical expertise. Typographical corrections should be strictly local and have no global effects, avoiding introducing new typographical errors.

IDE My PC runs 32 bits Vista, with Intel Quad CPU Q8300 2.5GHz assisted by 8GB RAM. I visualize PostScript with **PSView** and convert into .pdf via Acrobat Pro 7. My cripple PostScript editor is just Windows ‘kladblok (notepad), and sometimes I misuse **TEXworks** for the purpose.’ I use Adobe’s EPSF-feature to crop pictures to their **BoundingBox**. The cropping is necessary for inclusion in documents.

Pictures made by the gkp-macros are still viewed in my **BLUe.tex** system of 1995. Metafont pictures are viewed in BlueSky’s Metafont which runs on my PowerMac of 1996. No .eps or so as result. MetaPost pictures I drop on Henderson’s **mppreviewer** and get .png in return. Old Metafont I can view in Hans Hagen’s MP-interfacing program as well, next to via my BlueSky Metafont on my old PowerMac.

For production I use **TEXworks IDE** with the plain **TeX** engine, pdf**TeX**, with as few as possible structuring commands borrowed from **BLUe.tex** — adhering minimal **TeX** mark-up. I use the Terminal font in the edit window with the pleasing effect that comments remain vertically aligned in the .pdf window. For checking the English spelling I use the public domain **en_GB** dictionary and hyphenation patterns en_GB.aff in **TeX**works.

Prior to sending my **PDF**’s by email the files are optimized towards size by Acrobat Pro. The bad news with respect to .eps into .pdf conversion is, that Acrobat 10 Pro X does not allow for the **run** command for library inclusion.

Errors of **\texttt{TeX} …**

It is not told anywhere, but the rigid, bitmapped, unscalable CM-fonts is THE logical error of the twin **TeX**&Metafont, of which we suffer up till today.

“I spend a whole day on trying to create the Metafont-logo example, the Metafont book Appendix E, on my PowerMac of 1996. In vain, without results. I got io.300gf and io.tfm, but lacked the (old) tools to go on.

The other day it took me roughly half an hour to create Adobe’s example Type 3 font, Redbook p100. The Adobe’s process is less complicated and not lumbered by confusing and complicating bitmap-inheritances from the past. For the purpose of creating Wordart in the spirit of Jackowski&Ryćko the Adobe Type 3 process is good enough.”

Moreover, I experience the boxes-approach as too rigid, little flexible, hampering for example easy page-breaks with floating (misplaced) pictures as result, as well as the impossibility to use footnotes, endnotes or … from within a box; a 21st century tool unworthy.

Compared with PostScript, **TeX**’s macro language is more complex, as can be seen from the examples in the paper. But … we have to live with it, in want for something

49. **PSView** is extremely fast as previewer, allows PS library inclusion via the **run** command as well, reacts elegantly on errors by showing the results so far and supplies error messages via a pop-up GhostScript window, but … doesn’t provide for .pdf output, alas.

50. Courtesy Péter Szabó, Euro\TeX-Con\TeX2009.
simpler, better, but also open source and equally-well documented. Let us not make it more complicated by adding too big and too complex software.

Errors of pdfTEX

The logical error in pdfTEX is that it does not allow for EPSF inclusion. The use of PostScript via DVIPS had earned its place in the TeXworld: rich, powerful and much used.

Another weak point is the lack of maintenance. To develop a software tool is one thing to maintain it is quite another. A big disadvantage of the volunteer world: lack of follow-up.

Errors of TeXworks

Sometimes lines disappear in the edit-pane, as if printed on 1 line?? Very unhandy, I can't even edit these hidden lines.

Wishes under MS XP, MS Vista or MS System 7

For TeXworks I would like menu options .eps → .pdf and .mp → .pdf. A decent IDE for MetaPost and PostScript. Better PDF-viewer in TeXworks. Accurate BoundingBox values via pathbbox in 1-pass. BLUe as format in TeXworks. Maintenance pdfAllTeX, and to allow for PostScript in pdfTeX.

Post-Conference

After my presentation Herbert Voss showed me his PStricks, which is a continuation and extension of the work of Timothy Van Zandt and Dennis Girou. Impressive, very impressive! Especially his 3D extensions.

PStricks uses (harnessed) PostScript under the hood. The user-interface strongly reminds me of LaTeX-'s picture-environment. As far as I understand it, Timothy just implemented LaTeX's picture-environment in PostScript, via (one-way) interfacing. This entails that LaTeX users did not have to learn something new and received better value. However, the drawback is that the graphics is not backed up by an imaging model, and nasty things from the picture-environment are inherited.

It can't be used with pdf(La)TeX, because pdf(La)TeX does not allow for PostScript. Undoubtedly, the longer processing path via PostScript can be included as menu item in TeXworks, my TeX-editor.

In principle I favour the 3-steps process, in practice I use the 1-step fast way.

It's a pity that the code for the \(\pi \)-decimals picture, p294, has not been supplied in the book, so I can't compare it with my \(\pi \)-decimals code, as shown earlier and supplied in PSlib.eps.

Next best, I imitated Voss' example of rotated A's, more-or-less, which reminds me of Adobe's rotated word Adobe, Bluebook p98. The picture is also given in the Graphics Companion p357.

In PStricks' code is too much one has to remember to my taste, too many and too varied braces, \{...\}, (...), and [...] ... moreover, the data A has to be supplied three times.

51. When working with colours the weird \texttt{\pdfliteral{1 0 0 0 k}} and \texttt{\pdfliteral{1 0 0 0 K}} have to be included??
53. Although I don't know how to do that at the moment.
54. Another example of text along a spiral, explicit, is on p431 of the Graphics Companion, which comes close to typesetting along an implicit spiral.
Personally, I abhor the (curly) braces mania, and favour minimal mark-up; providing the data A three times is not minimal.

\begin{pspicture}(4.5, 3.5)
cnode*(2,2){4pt}{A}
multido{\nA=0+10. \rB=+0.5}{110}{%
put[rot=\nA, labelsep\rB pt]{\nA}{A}{A}}
\end{pspicture}

Acknowledgements

Thank you Adobe for your maintained, adapted to LanguageLevel 3 since 1997, good old, industrial standard PostScript and Acrobat Pro (actually DISTILLER) to view it, Don Knuth for your stable plain TEX, Jonathan Kew for the TEXworks IDE, Hàn Thê Thành for pdf(La)TEX.

Thank you Bogusłav Jackowski for supplying me with old artistic material from GUST, and some more.

Thank you Herbert Voss for your comments, that we have met and that we stay on speaking terms.

Thank you Jos Winnink and Henk Jansen for proofing an early draft and the latter also for proofing the final version. MAPS editors for improving my use of English and last but not least Taco Hoekwater for procrusting my plain TEX preprint note into MAPS format.

James Ensor’s impression of recreational ‘Breskens’

So long and thanks for all the fish.
My case rests, have fun and all the best.

Kees van der Laan
kisa1@xs4all.nl
Appendix: BoundingBox via pathbbox in 1-pass

The verbatim left shows my current trial-and-error cropping, while at right cropping is done on-the-fly in 1-pass, at the expense of providing the path double.

\[\text{The unbalanced tree jewel of old in cripple \LaTeX{}, I should rewrite in PostScript, next to providing for viewing part of a huge tree, by some sort of window on the tree.} \]
Appendix: Latin Modern Roman 16x16 font table (pane 1)

<table>
<thead>
<tr>
<th>Plane</th>
<th>Symbols and Characters</th>
</tr>
</thead>
<tbody>
<tr>
<td>P0</td>
<td>Normal symbols</td>
</tr>
<tr>
<td>P1</td>
<td>Unusual accents</td>
</tr>
<tr>
<td>P2</td>
<td>Accents as such</td>
</tr>
<tr>
<td>P3</td>
<td>Greek symbols</td>
</tr>
<tr>
<td>P4</td>
<td>Double embellished</td>
</tr>
<tr>
<td>P5</td>
<td>Characters</td>
</tr>
<tr>
<td>P6</td>
<td>Promille and euro</td>
</tr>
<tr>
<td>P7</td>
<td>TM</td>
</tr>
<tr>
<td>P19</td>
<td>Oldstyle digits</td>
</tr>
</tbody>
</table>

Above is included P0, with the usual glyphs (no euro, however), and some accented characters, AE ligature. Most of the 21 planes are nearly empty. The digits and the alphabet glyphs have the same digital address as in Knuth’s 7bit table. Quite another question is how to use Latin Modern and TeX-Gyre.

P1: unusual accents and some double accented characters
P2: accents as such
P3: a few Greek symbols
P5: double embellished characters, ‘accents, accents, accents…’
P6: promille and euro with address 254, as well as pound sterling
P7: TM
P19: contains oldstyle digits beginning with address 060.

BLU does not much profit from all this generality; scientific communication in one language, English, simplifies enormously. Keep simplifying on your mind.